
ChattaBox: A Case Study in Using UML and SDL
for Engineering Concurrent Communicating

Software Systems
P S Kritzinger, M Chetty, J Landman, M Marconi and O Ryndina

Data Network Architecture Laboratory
Department of Computer Science

Private Bag Rondebosch
7701

South Africa
Tel: +27 21 650 3127

Fax: + 27 21 689 9465
Email: dna@cs.uct.ac.za

Abstract— This paper describes a case study that was con-
ducted to investigate software engineering of concurrent com-
municating systems (CCSs). Best practice software engineering
methodologies were used to specify and design a Voice over IP
(VoIP) system, which was then implemented. The methodologies
utilised were the Unified Modelling Language (UML) and the
Specification and Description Language (SDL), and the project
specifically explored their combined use.

The VoIP system implemented, called ChattaBox, allowed
users to communicate via voice, as well as several other features.
The system requirements and static design for the system were
carried out using UML diagrams. Dynamic design was done using
UML initially, followed by a conversion to SDL using a tool
provided by Telelogic. The resulting SDL design was verified
using the tool.

The final system was tested for correctness, performance and
usability. It met all of the requirements set out at the initial phase
of the engineering process, whilst remaining stable and protocol
compliant. After evaluating the engineering process itself, it was
concluded that the software engineering paradigm is vital to
the field of CCS engineering. Furthermore, UML was useful for
providing fast high level design capabilities, but was unable to
provide adequate verification of the design. The converted SDL
diagrams made up for this, although the biggest drawback of the
proposed software engineering process was the inefficient and
error-prone conversion, which needed much manual correction
and intervention.

Index Terms— VoIP, UML, SDL, Software Engineering

I. INTRODUCTION

An effective software engineering process is of great impor-
tance when developing a software artefact in today’s world of
complex technology. However, the field of software engineer-
ing does not yet offer an approach to software development

This project was undetaken at the Data Network Architecture (DNA)
Laboratory, University of Cape Town. The DNA Lab has a formal research
cooperation agreement with INT (near Paris) funded by the French Embassy
in South Africa. The research of the Group is further funded by the National
Research Foundation (NRF) and the national Technical and Human Resources
for Industry Programme (THRIP) with Siemens Communications (South
Africa) and Telkom as industry partners.

that is suitable to all types of systems. This paper focuses on
engineering concurrent communicating systems (CCSs). Ap-
plications using mobile communication and Internet protocols
are prime examples of these systems.

A case study investigating the engineering process for con-
current communicating software systems was conducted. The
main objective of the case study was to analyse the possible
software engineering routes when creating such systems, using
existing best practice methodologies and Computer Aided
Software Engineering (CASE) tools. A Voice over the Inter-
net Protocol (VoIP) system called ChattaBox was specified,
designed and implemented for this purpose.

Initially, the basic requirement for the software to be created
was that it supported VoIP communication [1]. However, to
make it sufficiently complex for the case study, ChattaBox
was evolved into a full-grown industry-strength distributed
application. Services such as voice mail and dynamic address
book were added. Furthermore, it was decided that load
balancing, security and data management on the server side
of the ChattaBox system should be supported.

During the case study, the possible ways of combining
the existing software engineering methodologies to arrive at
an effective approach to building complex software systems
were explored. The existing design methodologies that were
utilised were the Unified Modelling Language (UML) [2]
and the Specification and Description Language (SDL) [3].
Furthermore, usefulness of the object oriented design paradigm
in this field was investigated. Finally, the value of CASE tools
for software development was examined.

A ”forward engineering” approach was followed [4]. In
accordance with this approach, specification and initial design
were done in UML. Thereafter, the UML design diagrams
were converted to an SDL specification, which was then
verified and validated. The development process is illustrated
in Figure 1.

In order to put the forward engineering process into practice,
a means of converting the UML design to an equivalent SDL



Fig. 1. Forward engineering with UML and SDL

specification was required. UML Suite 4.5 as well as SDL and
TTCN Suite 4.3 offered by Telelogic were employed for this
purpose [5] .

II. BACKGROUND

Before the actual development of the system, background
research was undertaken on the best practice methodologies
UML, SDL and the protocols involved in Voice over IP.

A. Unified Modelling Language

According to Booch et al [2], UML is a graphical mod-
elling technique used for software engineering. Its use has
become very widespread during the recent years due to the
increased interest in the object oriented design methodology.
UML has been standardised by the Object Management Group
(OMG) since November 17, 1997. It can be used to model
many different types of systems although it was primarily
designed to aid software development. Its principal purpose
is to facilitate communication between programmers, software
architects and clients. In order to do this, it provides facilities
for modelling each phase of the software development life
cycle from requirements analysis to implementation.

An advantage of using UML is that it has many different
diagrams on offer, which allow one to have many different
views on a particular system. Another positive aspect of using
UML is that there is currently extensive CASE tool support
for UML.

On the other hand, as mentioned previously, the major
disadvantage of UML is that it has no formal semantics. This
makes it difficult to simulate UML models in order to test
them for correctness and is a major concern when engineering
CCSs.

B. Specification and Description Language

As stated in Belina et al [3], SDL is a formal language
used to specify and describe the functional behaviour of
software systems. It is standardised by the ITU (International
Telecommunication Industry). SDL has both a graphical for-
mat (SDL/GR) and a textual format (SDL/PR).

The major strength of SDL lies in its ability to simulate or
meta execute models. This allows one to verify and validate
systems specified with this language. When specifying con-
current communicating systems, in particular, this allows one
to detect errors before implementation. This is cost effective
and efficient. Moreover, SDL diagrams form a clear hierarchy
of detail from high level system diagrams to low level process
diagrams.

One disadvantage of using SDL is that, at present, there is
very little CASE tool support. A further disadvantage is that
SDL has fewer diagrams and therefore not as many views on
the system being specified. Lastly, SDL does not provide for
requirements specification.

It is for this reason that SDL was chosen only for the
latter part of the design of the ChattaBox system that was
implemented. A brief discussion of Voice over IP is given
next.

C. Voice over Internet Protocol

VoIP comprises a protocol stack designed for sending voice
data over packet switched networks. Voice signals are digitally
encoded using codecs or coder-decoders. This data is then
packetised and transported over an IP network (LAN, Internet,
etc.) between terminals.

The VoIP system that was designed and built for the purpose
of this case study involved implementations of Real Time
Protocol (RTP), Real Time Control Protocol (RTCP), Session
Description Protocol (SDP) and Session Initiation Protocol
(SIP). These are described in more detail in [6] and [1]. At
the top level of a VoIP system, SIP is the standard protocol for
initiating an interactive user session that involves multimedia
elements such as voice [7]. SIP is used in conjunction with
SDP to convey information about media streams to participants
of a multimedia session [8].

The actual voice packets are transported using RTP , a
protocol that specifies a way for programs to manage the real-
time transmission of multimedia data over either unicast or
multicast network services [9]. Finally, RTP is complemented
by RTCP which makes it possible to monitor data delivery.
Monitoring allows the receiver to detect if there is any packet
loss and to compensate for any delay jitter. The protocols
involved in VoIP were deemed sufficiently complex to fully
test the use of UML and SDL for CCS engineering.

III. RELATED WORK

There is much interest in the combined use of UML and
SDL. Holz [10], feels that the software engineering process
should incorporate the use of both languages. He claims that
UML is better suited to analysis and the early design of
a system, whereas SDL is more useful for detailed design
and as a high level implementation language. Furthermore, he



suggests extending SDL to include UML concepts. In a similar
vein, Bjorkander [11] and Dimitrov et al [4] advocate the
combination of UML’s expressive power with SDL’s coherence
and semantics.

Moreover, many researchers have investigated mapping one
language to the other. For instance, Selic et al [12] have
specified how to map SDL to UML through certain extensions.
Similarly, ITU have released recommendation Z.109 detailing
how to map UML to SDL.

Lastly, the organisations standardising both languages are
extending the languages to include concepts from both. ITU’s
latest version of SDL, SDL 2000, attempts to align SDL
with UML. Likewise, OMG is currently working on UML 2.0
which will include concepts that will allow for the validation
of UML specifications.

Clearly, both languages have their respective supporters and
there is much scope for investigating the combined use of the
languages.

IV. THE SOFTWARE ENGINEERING PROCESS

The ChattaBox system developed for the purpose of the case
study was engineered using the process outlined below.

A. Requirements Analysis and Specification

The first phase of any software engineering process is anal-
ysis and specification of requirements. Initially misinterpreted
system requirements may translate into a flawed product.

The ChattaBox requirements were specified using UML
use case diagrams, which specifically allow for engineering
of system requirements. These diagrams have three main
components: an actor (portrayed as a stick figure), a system
with which the user interacts (portrayed as a box/block) and
use cases (shown as bubbles inside the system block). Actors
can represent human users or systems and their components.

In the case of the ChattaBox system, two main requirement
groups were identified: end user requirements and internal
system requirements.

End user requirements, as stated above, refer to the func-
tionality provided by ChattaBox to a human user. Establish-
ing these requirements involved identifying all the possible
desirable functions of the software. The main function that
the ChattaBox software had to provide was to allow users to
establish voice calls. Additionally, a number of other feature
requirements were identified. The diagram in Figure 2 contains
a use case diagram that formed a part of the end user
requirements specification for ChattaBox.

From the use case diagram it is easy to see what is required
of the ChattaBox software from the end user’s perspective.
ChattaBox was required to keep an account for each user, and
provide a logging in facility. Accounts would allow users to
keep personalised settings and an address book. Additionally,
the software had to allow the user the basic call functionality,
such as to place and answer a call. A status service was also
to be provided to reflect users’ availability to accept calls.

Besides the basic functionality mentioned above, advanced
requirements were established for ChattaBox, which included
voice mail services among others.

Fig. 2. End user requirements for ChattaBox

The internal system requirements were used to describe the
needs of various components of the ChattaBox’s distributed
architecture. Each component would have to provide a service
to other components. These requirements were also mapped
out using use case diagrams.

B. Design

The design phase began with an overview of the architecture
of the ChattaBox system, which was represented using UML
component diagrams. These diagrams are a good place to show
the high level communication and distribution of components
and objects.

Fig. 3. Overview of the ChattaBox system

Figure 3 presents the architectural overview of the Chat-
taBox system. The system is roughly composed of two entities,
the client and the server.

The ChattaBox server consists of three major components:



1) Remoting Server - This component relies on Microsoft’s
.NET Remoting infrastructure to make abstracted net-
work calls. It enables facilities such as user status
changes and voice mail. Note that this component relies
on the Security package for authentication purposes.

2) Database - The database component manages persistence
of data.

3) SIP Proxy Server - The SIP Proxy server component
is responsible for forwarding SIP messages, which are
used during session establishment.

The ChattaBox client is composed of four major compo-
nents:

1) Remoting Client - The Remoting client communicates
with the Remoting server, using the Security package
for authentication of users.

2) SIP Client - The SIP client sends and receives SIP
messages to allow for session establishment.

3) RTP - The RTP component processes real-time voice
data, transporting it between two ChattaBox clients.

4) Voice Processor - The Voice processor component cap-
tures audio data from the sound input stream to be sent
via RTP.

The Security package includes software that allows for
client and server authentication using asymmetric keys and
a certificate scheme based on X.509 [13].

1) Static Design : The next phase concerned the structural,
static aspect of the design. UML class diagrams were em-
ployed during this phase. Class diagrams describe the types
of objects in the system and the various kinds of static
relationships that exist between them. They also show the
attributes and methods of a class and constraints concerning
the relationships between objects. An example of a class
diagram can be seen in Figure 4.

Fig. 4. ChattaBox User, VoiceMail Box and Voice Mail Message classes

2) Dynamic Design: The final phase of the design pro-
cess dealt with the dynamic behavior of the system. UML
interaction and statechart diagrams were produced to capture
this aspect of the design. Interaction diagrams are models that
describe how groups of objects collaborate in some behaviour.

A particular type of interaction diagram, a sequence dia-
gram, was used to capture the behaviour of individual use
cases. Sequence diagrams describe messages that are passed

between objects, allowing the designer to gain an understand-
ing of the overall flow of control. They are especially valuable
for modelling concurrent processes. An example sequence
diagram is shown in Figure 5.

Fig. 5. Sequence diagram for voice mail download

Statechart diagrams describe all the possible states that a
particular object can be in and how that state can change
as a result of events reaching the object. Statechart diagrams
were found to be useful for describing object behaviour across
several use cases. An example of a statechart diagram is given
in Figure 6. They are not particularly useful for describing
behaviour that involves a number of collaborating objects. The
combination of state and sequence diagrams however, allows
a complete overview of the dynamic aspects of the design.

Fig. 6. Statechart for processing of SIP messages

The primary aim of the case study was to prove the
correctness of the SIP protocol implementation, so this aspect
of the system was concentrated upon during the design phase.

C. Converting UML to SDL

The resultant complete design of the SIP component of
ChattaBox, consisted of two sets of class diagrams and state-
charts, divided according to the client/server model. Each set



of diagrams was converted separately to form a separate SDL
system, which interacted with its environment.

The conversion was not a straightforward process, as a
particular syntax had to be followed in UML for this step.
The initial class diagrams and statecharts, therefore, had to be
revised a number of times before they were suitable to initiate
a conversion. For instance, to facilitate for correct translation
of UML classes to SDL constructs, use of stereotypes was
required.

The client and server parts of the system design were
converted separately. It was discovered upon conversion, that
certain parts of the original UML design were not converted at
all. Therefore the SDL diagrams had to be augmented to retain
their meaning and at the same time to be syntactically and
semantically correct in SDL. As a result, a detailed knowledge
of SDL was required and the process of refining the SDL
diagrams was extremely time consuming.

D. Verification of the Design

After the SDL description of the SIP portion of ChattaBox
was deemed to be complete and equivalent of the UML design,
verification was conducted. This was done using the simulator
and validator tool provided by Telelogic SDL and TTCN Suite
4.3.

The simulator allowed the team to send signals of choice to
the system and to monitor the resultant behaviour. The reaction
and initiated actions of the two systems were observed for each
of the signals sent from the environment. This showed where
design was lacking and could be improved. In addition, the
validator tool was used to do an exhaustive state exploration
of each set of SDL diagrams. The results showed that the
systems was free from deadlock.

Once the SDL design was correctly verified, the implemen-
tation of ChattaBox began. For the implementation, both the
UML and SDL designs were used as a reference model to
ensure that it reflected the outcomes of the design process
accurately. Implementation details are beyond the scope of
this paper.

E. Testing

In order to establish whether the concurrent communicating
and distributed system implemented was correct, testing was
performed. Two main measures of correctness were estab-
lished. The first tested whether all the components of the
system were performing their functions appropriately. The
second tested whether the end user was satisfied with the
completed ChattaBox product. Both are described below.

1) Component Testing: Individual components were tested
separately during implementation. Testing involved a combina-
tion of black-box and glass-box testing. The following results
were derived from the tests:

� SIP Correctness: SIP calls were able to be connected
across multiple domains and multiple proxy servers suc-
cessfully. The SIP calling sequence adhered to the SIP
RFC standard [7]. SIP calls could correctly handle errors,
as well as graceful terminations (call teardowns).

� RTP Correctness: RTP connections were correctly han-
dled, and sessions were cleanly closed. Voice data was
audible, therefore successfully transmitted.

� Distributed Architecture Integrity: The distributed archi-
tecture balanced loads effectively. Servers would not run
unless valid certificates were found, and profiles and
voice mail could be successfully managed.

2) User Testing: The system was tested on a group of ten
individuals ranging in age from 18 to 49. Tests were carried
out in groups of two, with the chosen two, communicating
with each other using ChattaBox. The users were required
to perform tasks using the system. They were then asked
to judge the system via a questionnaire, which had been
created beforehand. Having analysed the data sampled from
the user tests, the following conclusions were made regarding
the ChattaBox system:

� The quality of sound was very good, although a notice-
able lag was present.

� The system was responsive to actions such as initiating
calls, profile changes, and voice mail management.

� The user interface was effective and fairly easy to use.
� The system was not unpredictable and behaved in the

manner in which a user intended it to behave.
Overall, ChattaBox succeeded in meeting its requirements.

It proved to be a stable, correct system based on the results
of the component and user testing.

V. CONCLUSIONS

The following conclusions were reached at the end of the
case study.

A. Software Engineering with UML and SDL

The chosen path using UML for the requirements analysis
and the initial design and SDL for the verification and testing
of the design provided insight into software engineering as a
whole. The experience gained during the case study confirmed
that a structured software development process is of great
importance when engineering a complex system.

Furthermore, the value of using UML and SDL for engi-
neering a CCS was assessed. UML was very beneficial in that
it allowed the group to view the system being developed at
a very high level and quite quickly. The conversion process
however, needs improvements if this path is to be feasible and
efficient.

The worth of using a software engineering path that proves
the correctness of a system before implementation has been
noted. Developing a large communicating and distributed
system proved to be very difficult especially when integrating
the individual components into the final system.

After performing exhaustive testing sessions needed to
ensure that the system was indeed running smoothly, it is
evident that any way to cut down on this part of the SDLC
would be useful. Furthermore, the knowledge that the design
logic of a system is correct saves a great deal of time during the
implementation phase. With correct design, the errors during
implementation are less likely to be fundamental logical errors
which often take a long time to solve.



B. Suitability of the Object Oriented Design Paradigm

The design using UML was entirely object oriented. It
was discovered that many concepts employed in the final
implementation were not suited to being modelled using an
object oriented paradigm. These included the concepts of
events, remote objects and threads. Implementation of most
distributed systems requires the use of such concepts. It is
therefore suggested that extensions to UML that allow for
better modelling of these concepts are needed.

Moreover, without an in depth knowledge of the technolo-
gies one is using, a complete detailed design is not always
possible. For instance, many of the constructs used in the
final implementation were not known about at the design stage.
Additionally, modelling without this knowledge meant that the
design had to remain at a fairly high level.

C. Usefulness of CASE Tools

The place of CASE tools in the software engineering
process is now well understood by the authors. Diagrams
are essential for the communication of ideas between team
members and can be used to clarify concepts that are not well
understood. The use of the Telelogic and Microsoft CASE
tools greatly enhanced the Software Development Life Cycle
(SDLC).

To conclude, it has been a long journey from the initial
stages of the ChattaBox case study until the actual realisation
of the system. Yet, much insight into the software engineering
of a complex system and team work has been gained.

VI. FUTURE WORK

Several suggestions for future work and alterations to the
software engineering path followed in this case study are
provided below.

The process of converting UML design to SDL should
be made more efficient. Efficiency would be gained if no
augmentation to the translated SDL diagrams was required
after conversion.

Further investigation should be undertaken into developing
a tool that allows reverse engineering between UML and
SDL. With such a tool, developers would be ensured that
one representation of the system is manipulated at all times.
Consequently, design could be tested for correctness in SDL,
while still being documented with the more user friendly
UML.

Another alternative would be to undertake a similar case
study using UML 2.0 or SDL 2000. Such a case study would
help to establish whether the extensions to these methodolo-
gies allow for the use of only one technique throughout the
entire software development life cycle, i.e. from requirements
and design through verification and finally to implementation,
testing and documentation. Should either of these languages
offer a complete path for engineering CCSs correctly, they
would be a valuable tool for future software engineers.

REFERENCES

[1] H. Schulzrinne and J. Rosenberg, “The IETF internet telephony archi-
tecture and protocols,” IEEE Network, vol. 13, pp. 18 – 23, May/June
1999.

[2] I. J. Grady Booch, James Rumbaugh, The Unified Modelling Language
User Guide. Addison-Wesley, 1999.

[3] D. H. Ferenc Belina, “The CCITT-Specification and Description Lan-
guage SDL,” Computer Networks and ISDN Systems, vol. 16, pp. 311–
341, 1989.

[4] R. D. Evgeni Dimitrov, Andreas Schmietendorf, “UML-Based Per-
formance Engineering Possibilities and Techniques,” IEEE Software,
vol. 19, pp. 74–83, January/February 2002.

[5] Telelogic, “Telelogic Web Site,” http://www.telelogic.com.
[6] H. Schulzrinne and J. Rosenberg, “The Session Initiation Protocol (SIP):

Internet-centric signaling,” IEEE Communications Magazine, vol. 38, pp.
134 – 141, October 2000.

[7] M. H. H. S. E. S. J. Rosenberg, “RFC2543: Session Initiation Protocol,”
http://www.faqs.org/rfcs/rfc2543.html.

[8] M. Handley and V. Jacobson, “RFC2327: Session Description Protocol,”
http://www.faqs.org/rfcs/rfc2327.html.

[9] S. C. H. S. R. F. V. Jacobson, “RFC1889: Real-time Transport Protocol,”
http://www.faqs.org/rfcs/rfc1889.html.

[10] E. Holz, “Application of UML in the SDL Design Process,”
http://citeseer.nj.nec.com/268645.html, June 1998.

[11] M. Bjorkander, “Graphical Programming Using UML and SDL,”
http://www.telelogic.com/download/paper/graphicalprogramming.

[12] B. S. J. Rumbaugh, “Mapping SDL to UML,”
http://www.rational.com/products/rosert/prodinfo/reading/sdl2umlv13.pdf.

[13] W. Stallings, Network Security Essentials: Applications and Standards.
Prentice, 2000.

P S Kritzinger P Kritzinger obtained his PhD from Waterloo University,
Canada, in 1972 where he became Assistant Professor for 2 years. Thereafter,
he taught at the University of London before he returned to take a senior
lecturer position at Stellenbosch University. He joined University of Cape
Town in 1985 as a full professor. Pieter is the founder of the Data Network
Architectures (DNA) Group.

M Chetty M Chetty obtained her BSc and BSc(Hons)from UCT. She is
currently doing her MSc with the Collaborative Visual Computing Laboratory
at UCT. Her project is investigating how Voice over IP may be used for
development purposes in rural South Africa.

J Landman J Landman obtained his BSc and BSc(Hons) from the UCT.
He is currently doing his MSc with the DNA laboratory at UCT. His project
focuses on Markov models for fading channels on UMTS air interfaces.

M Marconi M Marconi obtained his BSc and BSc(Hons)from the UCT. He
is currently working for a software company in the United States.

O Ryndina O Ryndina obtained her Business Science degree from the UCT.
She is currently pursuing an MSc with the DNA laboratory at UCT. Her
project will investigate methodologies for Requirements Engineering.


