
1

SoftBridge: A Multimodal Instant Messaging
Bridging System

John Lewis, William Tucker and Edwin Blake
Collaborative Visual Computing Laboratory, Department of Computer Science

University of Cape Town
Private Bag Rondebosch 7700

Ph: (021) 650 2670 Fax: (021) 689 9465
Email: {jlewis, btucker, edwin}@cs.uct.ac.za

Abstract— Instant Messaging is traditionally a text
only affair. However, there are instances when it
would be useful to bridge to other types of media, like
speech. The SoftBridge is an application framework
that enables this kind of communications bridging us-
ing instant messages. Its use of protocols like the Jab-
ber Instant Messaging Protocol and the Simple Object
Access Protocol makes it simple, open and extensible.
It also allows bridging to non IP communications in-
frastructure, like the telephone network. We describe
the design and architecture of the system, protocol
and extensibility mechanism. Finally we describe our
experimental methodology and discuss the results of
our initial experiments.

Keywords—instant messaging, bridging, XML, SOAP,
Jabber, web services, speech synthesis, speech recog-
nition, multimedia

I. Introduction

Instant Messaging (IM) is becoming the primary
means of communication for many people. From the
moment they arrive at their office in the morning un-
til when they go home, they are connected. Not only
do they use IM to communicate with their friends and
colleagues, they also use it to access online services:
weather reports, news headlines, stock and currency
quotes. Currently, the majority of these systems are
text based. They are also server–centric. One par-
ticipant sends a text message to a server, which then
forwards that message to the recipient.

However, there is a growing demand for more than
the transfer of text. In some cases, people may want
to send simple graphics and images. In other cases,
users may simply not be able to handle textual data.
Furthermore, there may be limitations on equipment
and interfaces that makes text transmission either
impossible or undesirable. This where the concept of
the SoftBridge comes in [1].

The SoftBridge allows one user or endpoint to send
a message to another in the sender’s preferred form
and format. The SoftBridge, acting like the text re-
laying server mentioned earlier, converts the message

into a form that the recipient can handle. This pro-
cess may involve one or more media transformations
that are carried out on the media. The SoftBridge
can also handle n–way conversations, in which many
users, using heterogenous media types, communicate
in a single chat room.

The system is built upon an open Instant Mes-
saging platform called Jabber[2]. All Jabber mes-
sages are passed as XML, and there is a well defined
method for extending the protocol. We make use
of this facility in the SoftBridge. We also use XML
SOAP (Simple Object Access Protocol) [3], the up
and coming web based RPC protocol, for implement-
ing our own extensibility framework. The framework
incorporates a caching mechanism, as well as a load
balancing capability to enable a high degree of scal-
ability.

II. Background

The SoftBridge is an example of a synchronous
mixed media space. IMPROMPTU, Tattle Trail and
Thunderwire are examples of audio only media spaces.
Telgo323 and TelgoSIP, on the other hand, are lim-
ited mixed media spaces. JabCast is not a media
space as such — it is more of a universal messaging
system — but it makes use of the same core protocol
as the SoftBridge.

A. IMPROMPTU

IMPROMPTU [4], [5] is a distributed system that
allows audio to be streamed to a handheld device,
on request. It also provides an interface on the de-
vice that allows the user to correctly select the audio
stream they are interested in. They also provide text–
to–speech and speech recognition services that allow
voice prompts to be streamed to the device, and cap-
tured voice commands to be interpreted. The project
addresses some important issues regarding the loca-
tion of the various components of a media handling

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

system. They also address the issue of media trans-
port, and this is where there were some problems.
They implemented part of the system in Java, and
part of it in C++. In the Java domain, they used
Java Remote Method Invocation (JRMI) [6] to signal,
and Java Media Framework (JMF) [7] RTP streams
to transport the audio. In the C++ domain, they
were forced to use sockets and text commands for sig-
nalling and for transporting audio. This lead to sep-
arate Java and C++ API’s for the framework, which
were not entirely compatible. They implemented var-
ious applications on top of the framework, including
a MP3 audio streamer, a baby monitor, a headlines
reader, and an interesting telephone that scrambles
speech.

B. Tattle Trail

Tattle Trail [8] is “an archiving audio chat applica-
tion for mobile users over IP.” It is built on top of the
IMPROMPTU framework, and is intended to show-
case the facilities provided by that platform. The
idea is that users enter and leave the chat room at
will, and when they return, they are updated on the
current context of the conversation. They do this by
catching up, which means reviewing the recent his-
tory of the chat session. They can do this at high
speed, and much of the project is devoted to the best
interaction methodologies for achieving this. There
is also a facility to issue alerts, which allow users to
be offline, but still receive periodic updates of the
conversation.

C. Thunderwire

Thunderwire [9] is a shared, audio only media space.
It involves broadcasting high quality audio to hand-
held wireless devices, enabling a fully shared audio
environment. This project was one of the most com-
prehensive, because they conducted a two month long
field trial. They also investigated the social implica-
tions of the media space.

D. Telgo323/TelgoSIP

South African telecommunications utility Telkom
provides a device called the Teldem that allows Deaf
users to communicate with one another using a stan-
dard telephone line. It is essentially a teletype ter-
minal with a small LCD screen, a keyboard and a
built in modem. When Deaf user A wants to com-
municate with Deaf user B, A instructs the Teldem
to dial user B’s telephone number. User B’s Tel-
dem then answers and connects. The conversation is
performed by each user typing messages, which then
appear on the screen of the other user. Once the con-
versation is complete, they disconnect. The Teldem

only provides for one-to-one conversations between
Deaf people.

Telgo323 [10] was developed to allow a deaf user
with a Teldem to communicate with a hearing user
with a normal telephone. The text from the Teldem
is passed to a speech synthesis system, and the re-
sultant audio is fed to the hearing user’s telephone.
In the reverse, the audio captured from the hearing
user is passed to a speech recognition system, and the
recognised text is sent to the Teldem. This system
was designed to allow a one-to-one conversation be-
tween a deaf and hearing user. Unfortunately, due
to performance problems with the speech recogni-
tion system, only the deaf-to-hearing side of the sys-
tem was fully implemented. The initial prototype,
Telgo323 used the H323 telephony protocol to han-
dle the telephony signalling, whereas a subsequent
port, TelgoSIP, uses the Session Initiation Protocol.

E. JabCast Secure Realtime Communications

According to their web site, “The JabCast Secure
Realtime Communication System is the first technol-
ogy that allows for real time interactive text, file and
document exchange in a completely secure environ-
ment”[11]. However, after close examination of the
specification, and the white papers for the implemen-
tation, it is apparent that JabCast only allows real
time communication using short messages, but trans-
fers other media asynchronously. No content adap-
tion or conversion is attempted by this system.

F. The Jabber XML Instant Messaging Protocol

In an attempt to rationalise and consolidate the
Instant Messaging field, the Jabber Foundation [2]
was founded to develop an open, XML based instant
messaging protocol. Due to it’s simplicity and exten-
sibility, the protocol is gaining popularity. It is soon
to become an IETF standard named XMPP (eXtensi-
ble Messaging and Presence Protocol), which should
cause its support to surge. It has a server-centric
architectural design, in that messages are passed be-
tween clients via a central server.

III. Architecture and Protocol

The inspiration for the SoftBridge came from the
partial success of the Telgo* projects: allowing mul-
timodal bridging.

A. Aims

The aims of the SoftBridge system are as follows,
in order of priority:
1. Provide an application framework for multimodal
bridging.
2. Allow multiuser, multimodal conversation sessions.



3

SOFTBRIDGE

MEDIA TYPE X IN MEDIA TYPE X OUT

MEDIA TYPE Y OUT

MEDIA TYPE Z OUT

Fig. 1. High level concept

SERVERX

ADAPTION WEB SERVICE

CLIENT
BY

X Y

CLIENT
A

Jabber Jabber

XML/SOAP

Fig. 2. SoftBridge Data Flow

3. Be open and extensible, allowing the addition of
new media conversion services.
Hence we divide the design section into three parts:
Application Framework, in which we discuss the foun-
dations and basic platform; Multiple User Support,
in which we describe the multiuser facility; and Ex-
tension Mechanisms, in which we explain how the
system may be extended.

B. Application Framework

The operation of the system, in a highly simplified
form, is illustrated in Figure 1

In Telgo323 and TelgoSIP, text data went in from
the Teldem, and synthesised audio data came out,
eventually finding its way to the hearing user. In the
reverse, audio data from a single hearing/speaking
user went in, and the recognised text came out, on
its way to the deaf user. In the SoftBridge we are
attempting to generalise and pluralise this approach.
We generalise it in the sense that the input and out-
put may be any media type, not just text or speech.
We pluralise it in that the user relationship is now
a one–to–many broadcast, instead of a one–to–one
unicast.

Our system is based on the Jabber architecture [12]
and consists of the following components:
• Set of Users
• Set of Media Types
• Set of Media Adapters
• The Main Server
• Breakout servers
This architecture is illustrated in Figure 3.

B.1 Users

A User has the following characteristics: Name,
Input Media and Output Media. Input Media is the

type of media that the client can capture from the
outside world. Output Media is the type of media
that the client can render. For instance, for a cell-
phone, “inputmedia” would be SPEECH, and “out-
putmedia” would be SPEECH. For a text based chat
system, “inputmedia” would be TEXT, and “output-
media” would be TEXT. It is the responsibility of the
client to capture or render the media data.

B.2 Media Types

A Media Type is a symbolic name for a class of
media. Common media types are TEXT, SPEECH
and VIDEO. The “inputmedia” and “outputmedia”
attributes of each user must be one of the registered
media types.

B.3 Media Adapters

In a bridging scenario, User A with media type X
has sent a message (containing media data of type
X) to User B that can only render media of type Y.
Hence the SoftBridge must convert the media from
type X to type Y. This requires a adapter that can
perform conversion XY. The system has a registry of
media adaptions, in the form (inputmedia, output-
media, webservice url).

The media adapters are implemented as XML SOAP
web services that must expose a standard interface.
This enables the system to access any adapter, query
it for media conversion capabilities, and perform me-
dia adaptions, simple by knowing its URL.

B.4 The Main Server

The server ties the rest of the components together.
The core algorithm is as follows:
1. M = Message from User A to User B
2. X = Output media type of User A
3. Y = Input media type of User B
4. if X is not equal to Y
(a) T = media adapter for XY
(b) if T exists, perform media Adaption
(c) Substitute new media into M
5. Forward M to B
6. Go To 1
This flow of data is illustrated in Figure 2.

Hence, if a user can handle the media that another
user is sending, no adaption takes place. Otherwise,
an adaption web service is found and called. The
server also takes care of ancillary issues like presence
(available, away etc.) and notifications.

Load balancing in achieved by measuring the time
it takes for a particular web service to process a re-
quest. Based on this measurement, we select the ser-
vice with the shortest average processing time to han-
dle the request.



4

MAIN SERVER

CLIENT

CLIENT CLIENTBREAKOUT

ADAPTION
WEBSERVICES

Fig. 3. Overall System Architecture

B.5 Breakout Servers

In some cases, it is not possible for a client to
send XML messages straight to the SoftBridge server,
mainly because it cannot handle Internet protocol.
An example of this is telephony support: telephones
cannot handle IP, and cannot send XML formatted
strings. Instead, we added a Telephony Breakout
Server, that acts as a gateway between the Pub-
lic Switched Telephone Network (PSTN), and the
IP/XML world of the SoftBridge.

A telephone subscriber connects to the Telephone
breakout by dialling into it. The breakout, in turn,
is connected to the SoftBridge. The telephone user
is categorised as a SPEECH IN/SPEECH OUT Soft-
Bridge user, so the bridge captures audio and feeds it
into the SoftBridge. Messages destined for the tele-
phone based user will get automatically converted
into audio by the bridge, and the breakout then streams
it down the line. The Telephony breakout can also be
configured to perform speech recognition and speech
synthesis locally, making it into a TEXT IN/TEXT
OUT SoftBridge user. This functionality is also used
to give instructions and feedback to the user in both
modes. In turn the user can control the bridge using
either speech commands, or DTMF tones.

C. Multiple User Support

The Jabber foundation has defined a standard way
of providing multiple user support [13]. Users join
a chat room by sending it an “Available” presence
message. The chat room then relays their availability
to the rest of the participants. When a user sends a
message to the chat room, the message gets relayed
to all the users in the room, including the sender.

The SoftBridge chat room component operates in
the same way. Incoming messages destined for the
chat room do not undergo any media conversion —
the chat room is only a relay. The chat room then
forwards the message to each of the participants, per-

forming media conversion when necessary.
Unfortunately, this naive approach can cause inef-

ficiency, as several participants may have the same
media requirements, and multiple conversions may
be performed. In order to prevent this occurring, we
implemented a message cache, that caches the out-
put messages. When a message M of output media
type O is to be sent, the cache is checked. If mes-
sage(M,O) is found in the cache, the cached message
is sent. If it is not found, message(M,O) is inserted
into the cache.

D. Extension Mechanisms

The system can be extended by registering addi-
tional media conversion web services. These web ser-
vices must implement the following interface:

interface MediaAdapter {
String[] getInputMediaTypes();
String[] getOutputMediaTypes();
String adapt(String inputMedia,
String outputMedia, String inputXML);

}

The actual messages are extended using the method
prescribed by the Jabber protocol: special “X” ele-
ments are inserted in the XML message, and the me-
dia data in encapsulated inside those. A standard,
text only Jabber message has the following format:

<message from=‘userA@server’
to=‘userB@server’>
<body>Message Text</body>
</message>

An extended Jabber message containing audio, for
instance, would be as follows:

<message from=‘userA@server’
to=‘userB@server’>
<body></body>
<x xmlns=‘jabber:x:softbridge’>
<audio bits=‘16’ freq=‘22500’
encoding=‘base64binary’>
BASE_64_ENCODED_AUDIO_DATA

</audio></x></message>

The SoftBridge extracts and sends the entire contents
(in this example, the audio element) of the X element
to the webservice. Depending on the type of media
returned by the service, the server then deletes the
entire X tag, and inserts the XML data returned from
the service.

The webservice URL is registered with the system
using the Administration webservice.



5

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Message Number

T
im

e 
(s

ec
on

ds
)

IN-SERVICE SERVICE SERVICE-OUT

Fig. 4. Time Division for Text to Speech Bridging

IV. Evaluation

We are in the process of evaluating the system in
terms of performance and robustness. We are cur-
rently carrying out two categories of experiments:
“real user” experiments, and “fake user” (or simu-
lated user) experiments.

A. Experimental Methodology

A.1 Real User Experiments

In the “real user” experiment, a deaf user has an
online conversation with a hearing user. The deaf
user is classified as a text in/text out SoftBridge
user. During the experiment, the hearing user was
either text in/text out, text in/speech out or speech
in/speech out. Hence, we were able to test the system
in the following situations:
1. text in/text out → text in/text out (no bridging)
2. text in/text out → text in/speech out (text to
speech bridging)
3. text in/text out → speech in/speech out (text to
speech and speech to text bridging)
The system logs all messages and media conversion
operations for measurement purposes.

A.2 Fake (simulated) User Experiments

We have also developed a SoftBridge client that al-
lows chat logs (IRC or otherwise) to be played back
into the system. It is possible to specify the media
input and output types of the simulated users. It is
also possible to create logs that test various bound-
ary conditions, such as simulating overload and non-
realistic usage. This enables us to get a more com-
plete picture of the system’s performance.

B. Experimental Results

In this section, we present the results from the sin-
gle “real user” experiment we have carried out so far.
The details are as follows:
• Number of participants: 2

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

Message Number

T
im

e 
(s

ec
on

ds
)

SERVICE-IN SERVICE SERVICE OUT

Fig. 5. Time Division for Speech To Text Bridging

– 1 deaf user.
– 1 hearing user.
• Messages passed : 188
– text-text : 71
– text-speech: 112
– speech-text : 5
• Average text length: 32 chars
• Avg. processing time (all): 0.215 sec.
• Avg. processing time (bridged): 0.514 sec.
– Text-Speech Avg : 0.271 sec.
– Speech-Text Avg : 3.873 sec.
• Avg. Infrastructure Time:
– Text To Speech: 14%
– Speech To Text : 1%
• Correlations:
– Total Processing Time/Message Length: 0.923
– TTS Service Time/Message Length: 0.932

C. Discussion of Results

The results show that the performance of the sys-
tem itself (also known as the “infrastructure”) is ad-
equate for simple one-to-one conversations. Consid-
ering the time it takes to either compose or dictate a
message, the sub second processing times (avg. 0.215
sec) for text to speech adaption are acceptable, and
doesn’t cause any appreciable delay. This comment
also applies to the processing time for the speech to
text adaptions (avg. 3.873 sec).

Figure 4 shows the time breakdown for all messages
that were bridged from text to speech: “in-service” is
the time between receiving the message and passing
it to the conversion service, “service” is the time be-
tween passing the message to the service and receiv-
ing it back, and “service-out” is the delay between
receipt from the service, and transmission to the re-



6

Total Time VS Message Length (TEXT/TEXT-->TEXT/SPEECH)

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
Message Number

T
im

e 
(s

ec
on

ds
)

0
20
40
60
80
100
120
140
160
180

Le
ng

th
 (

ch
ar

ac
te

rs
)

Total Time
Length

Fig. 6. Comparison of Total Processing Time with Message
Length

cipient user. Figure 5 presents the same information
for messages that were bridged from speech to text.

It may be observed that for text to speech bridging,
the larger infrastructure delay is in the “service-out”
component. This is due to the handling of the audio
data returned from the conversion service. The same
observation is true for the speech to text bridging:
the audio data is received from the sender and passed
to the service, so the “in-service” component is larger.

It may also be observed that the largest time com-
ponent in both bridging cases is the media adaption
itself. Unfortunately, this delay is caused by the per-
formance of the speech synthesis and speech recogni-
tion systems respectively, and is unlikely to improve
in the near future. However, due to the extensible
nature of the SoftBridge, it is trivial to add new ser-
vices with higher performance.

Finally, Figure 6 shows the relationship between
the length of a message and the total processing time,
which turns out to have a very high correlation (0.923),
as expected.

V. Conclusion

The SoftBridge provides an extensible, open plat-
form for developing multimodal bridging applications,
being based on XML protocols like Jabber and SOAP.

The system not only allows bridging between dif-
ferent media modalities, like text and speech, but also
between different media infrastructures, like the In-
ternet and the telephone network, through the use of
Breakout servers.

We have also performed some initial experiments,
using “real user” data, and the results show that the
performance of the system is acceptable, especially
after taking the performance of the underlying ser-
vices (speech synthesis, recognition) into account.

References

[1] J A Lewis, W D Tucker and E H Blake, “SoftBridge: An
Architecture for Bridging the Digital Divide,” in Proceed-
ings of the South African Telecommunications and Appli-
cations Conference (SATNAC 2002), Champagne Sports
Resort, South Africa, Sep 4-9 2002 (CDROM Publica-
tion), 2002.

[2] Jabber Software Foundation, “What is Jabber?,”
http://www.jabber.org/about/overview.html, 2003.

[3] “The SOAP Forum,” http://www.soapforum.org, 2003.
[4] K. Lee, “IMPROMPTU: Audio applications for mobile

IP,” Master’s thesis, Massachusetts Institute of Technol-
ogy, 2001.

[5] C. Schmandt and J. Kim and K. Lee and G. Vallejo and
M. Ackerman, “Mediated Voice Communication via Mo-
bile IP,” in Proceedings of the UIST International Con-
ference, pp 141-150, 2001.

[6] “Java Remote Method Invocation,”
http://java.sun.com/products/jdk/rmi/, 2003.

[7] “The Java Media Framework,”
http://java.sun.com/products/java-media/jmf/, 2003.

[8] Jang Soo Kim, “TattleTrail: An Archiving Voice Chat
System for Mobile Users Over Internet Protocol,” 2002.

[9] Debby Hindus, Mark S. Ackerman, Scott D. Mainwar-
ing, and Brian Starr, “Thunderwire: A Field Study of
an Audio-Only Media Space,” in Computer Supported
Cooperative Work, 1996, pp. 238–247.

[10] M Glaser and W D Tucker, “Web-based Telephony
Bridges for the Deaf,” in Proceedings of the South
African Telecommunications and Applications Confer-
ence (SATNAC 2001), Wild Coast Sun, South Africa,
Sep 3-5, 2001 (CDROM Publication), 2001.

[11] “The JabCast SRC System,” http://www.jabcast.com.
[12] Jabber Software Foundation, “Jabber Technology

Overview,” http://www.jabber.org/about/techover.html,
2002.

[13] Peter Saint-Andre, “JEP-0045: Multi-User Chat,”
http://www.jabber.org/jeps/jep-0045.html, 2003.

John Lewis is a Masters candidate with the Collaborative
Visual Computing Laboratory of the Department of Computer
Science at the University of Cape Town. His research is par-
tially sponsored by SANPAD and the Telkom/Siemens/THRIP
Centre of Excellence in ATM & Broadband Networks and their
Applications

William ‘Bill’ Tucker is currently working towards a PhD
in Computer Science at the University of Cape Town address-
ing Quality of Interaction and the Effects of Delay in dis-
parate IP-based bridging scenarios. He is a member of the
Telkom/Cisco/THRIP Centre of excellence in IP and Inter-
net Computing at the University of the Western Cape.

Edwin Blake heads up the Collaborative Visual Computing
Laboratory at UCT and participates in the Telkom/Siemens/
THRIP Centre of Excellence in ATM and Broadband Net-
works and their Applications. His research interests include
Collaborative Virtual Environments, Presence, and multi dis-
ciplinary approaches to experimental Computer Science.


