
Hierarchical Level of Detail Optimization for Constant Frame
Rate Rendering of Radiosity Scenes

S. Nirenstein E. Blake S. Winberg A. Mason

Collaborative Visual Computing Laboratory,
Department of Computer Science,

University of Cape Town.
snirenst@cs.uct.ac.za, edwin@cs.uct.ac.za

Abstract

The predictive hierarchical level of detail optimization algorithm of Mason and Blake is experimentally evaluated in the
form of a practical application to hierarchical radiosity. In a novel approach the recursively subdivided patch hierar-
chy generated by a perceptually refined hierarchical radiosity algorithm is treated as a hierarchical level of detail scene
description. In this way we use the Mason-Blake algorithm to successfully maintain constant frame rates during the inter-
active rendering of the radiosity-generated scene. We establish that the algorithm is capable of maintaining uniform frame
rendering times, but that the execution time of the optimization algorithm itself is significant and is strongly dependent
on frame-to-frame coherence and the granularity of the level of detail description. To compensate we develop techniques
which effectively reduce and limit the algorithm execution time: We restrict the execution times of the algorithm to guard
against pathological situations and propose simplification transforms that increase the granularity of the scene descrip-
tion, at minimal cost to visual quality. We demonstrate that using these techniques the algorithm is capable of maintaining
interactive frame rates for scenes of arbitrary complexity. Furthermore we provide guidelines for the appropriate use of
predictive level of detail optimization algorithms derived from our practical experience.
Keywords: Rendering, Hierarchical Level of Detail, Hierarchical Radiosity
Computing Review Categories: I.3.7

1 Applying Predictive Level of Detail
Algorithms

Level of detail techniques are used to eliminate scene de-
tail selectively and thereby improve frame rates in interac-
tive visualization. Recently predictive level of detail al-
gorithms have been proposed, whose aim is not merely
to accelerate rendering but rather to fix frame rates to a
user defined frequency. These techniques promise to allow
strict regulation of frame rates by managing the predicted
rendering cost of the scene while optimizing for maximum
visual quality. There have been few documented applica-
tions of predictive level of detail techniques to practical in-
teractive systems. This paper examines the integration of
hierarchical level of detail optimization with perceptually
driven hierarchical radiosity scenes.

We present the results of an investigation into the prac-
tical feasibility of the Mason-Blake predictive hierarchical
level of detail optimization algorithm [8, 9]. Our investi-
gation takes the form of the application of the algorithm to
the interactive rendering of hierarchical radiosity scenes.
In a novel approach, we treat the recursively subdivided
patch hierarchy generated by a perceptual refinement hier-
archical radiosity algorithm as a hierarchical level of de-
tail scene description with automatically generated shared
object representations. This is the first time, to our knowl-

edge, that hierarchical level of detail optimization has been
applied to such scenes in order to provide view-dependent
adaptive refinement in real-time.

Traditionally scene descriptions generated by
perceptually-driven hierarchical radiosity methods have
been rendered at the fixed maximum detail. Subdivision
into patches typically results in complex scenes consisting
of many times the number of polygons than the original
scene. Since this subdivision is closely integrated with the
radiosity simulation it occurs as a pre-process to rendering
and therefore can make no use of information that is
available at render-time about the position and focus of
interest of the viewer (ie. it is view-independent). By
treating the radiosity-generated scene description as a
hierarchical level of detail description we allow predictive
and dynamic view-dependent control over real-time ren-
dering complexity. This allows us to view more complex
interactive radiosity scenes at acceptable constant frame
rates.

The contributions of this paper are threefold:

� The process of integrating perceptually driven radios-
ity and hierarchical level of detail control is detailed.
This includes a novel benefit heuristic.

� A presentation of the extension techniques which were
used to increase the efficiency of the algorithm is
given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

� An empirical analysis of how hierarchical level of de-
tail optimization performs in practice.

The remainder of the paper is structured as follows. In
Section 2 we discuss previous work, including hierarchi-
cal level of detail and hierarchical radiosity. In Section 3
we introduce the application of hierarchical level of de-
tail optimization to radiosity. In Section 4 we describe the
experimental system, and in Section 5 we present and dis-
cuss the experimental results as well as our extensions to
the basic algorithm necessary for its practical application.
Finally Section 6 contains some concluding remarks.

2 Background

Predictive level of detail optimization algorithms have
been proposed by Funkhouser and Séquin [2], Maciel and
Shirley [6] and Mason and Blake [8]. These algorithms
are characterized by the fact that they attempt to place
an upper limit on the rendering complexity of each visu-
alization. By actively regulating the predicted rendering
complexity of each frame while optimizing for visual qual-
ity, they attempt to ensure consistent and reasonable frame
rates. The Maciel-Shirley and Mason-Blake algorithms are
further distinguished in that they allow the use of hierar-
chical level of detail descriptions in which shared repre-
sentations are provided for groups of objects. In addition
the Funkhouser-Séquin and Mason-Blake algorithms are
incremental and so exploit frame-to-frame coherence for
efficiency by accepting as input an initial solution derived
from the previous frame. As long as the optimal solutions
of successive frames are similar, these algorithms are very
efficient. Finally, unlike the Funkhouser-Séquin algorithm
(counterexample in [7]), the Mason-Blake algorithm pro-
vides a solution that is provably at least half as good as the
optimal solution (in terms of predicted visual quality) as
long as certain criteria are met. The worst-case complexity
of the Mason-Blake algorithm for n selected impostors is
O�n log n�, but being incremental, its average complexity
is dependent on frame-to-frame coherence and is typically
much better.

The Mason-Blake algorithm allows the use of hierar-
chical scene descriptions in which objects are grouped hi-
erarchically into larger group objects which represent the
union of their children. A drawable representation of an
object is referred to as an impostor of that object [6]. The
impostors of the children of a node together form a more
detailed representation than the impostor(s) of that node.
The entire scene consists in its simplest form of a single
object, called the scene object. Figure 1 shows a simple
example.

The Mason-Blake level of detail algorithm is applied
once per frame, and its output is a level of detail of the
scene object for that frame. Its input is the level of detail
selected for the previous frame (if any) and a constant ren-
dering cost limit that represents the rendering time avail-
able for this frame. The algorithm guarantees that the total
predicted rendering cost of the selected level of detail will

scene
object

impostors

Figure 1: A simple level of detail hierarchy. Objects are repre-
sented by circles, and their impostors by triangles. The root rep-
resents the lowest level of detail and the leaves the highest detail.
For each object, impostors represent various drawable represen-
tations in increasing amounts of detail.

be lower than the rendering cost limit, while attempting to
maximize its perceptual benefit. The algorithm must be
supplied with benefit and cost heuristics that provide rea-
sonable and efficient predictions of the perceptual benefit
and rendering cost of potential object representations.

3 Level of Detail for Hierarchical
Radiosity

Hierarchical radiosity [3, 4, 5] is a physically-based ren-
dering technique in which equations modeling the diffuse
transfer of light between surfaces are solved numerically
to produce shading intensity values for each surface. As an
approximation the scene is modeled by flat polygons, or
patches, and intensities are calculated for only the vertices
of these patches. An initial scene description consisting
of a relatively small number of flat top-level polygons is
adaptively subdivided according to estimates of perceptual
importance to produce a final collection of patches that ap-
proximate the scene (see Figure 2). The image quality of
the resulting visualization therefore depends strongly on
the local level of refinement of the patch hierarchy.

For our implementation we use a perceptually-based
refinement heuristic as defined by Secchia [10]. This
heuristic predicts the visual importance of surfaces accord-
ing to a model of human visual perception and exploits the
exaggerated importance of edges such as shadow bound-
aries to visual perception. The illuminated patch hierar-
chies generated using this heuristic are characterized by
higher levels of refinement in areas that are, in some sense,
perceptually more important. We use the radiosity engine
implemented by Secchia to generate input files for our sys-
tem. Furthermore we make use of the perceptual informa-
tion inherent in the adaptively refined radiosity hierarchy to
exploit visual perception in our benefit heuristic. We use
this heuristic to predict the visual importance of potential
impostors, taking into account the presence of perceptu-
ally important edges as detected by Secchia’s refinement
heuristic.

Since hierarchical radiosity rendering is performed as

a pre-process to rendering, the adaptive subdivision of the
top-level polygons is view-independent. The perceptual re-
finement heuristic predicts the inherent perceptual impor-
tance of patches and can make no assumptions regarding
the position or orientation of the viewer. Therefore each
part of the scene must be subdivided to the maximum level
of detail that might be required in any reasonable viewing
situation. Our approach is novel in that instead of simply
rendering the entire patch hierarchy at the highest level of
refinement reached by the algorithm everywhere in the tra-
ditional fashion, we treat the patch hierarchy as a hierarchi-
cal level of detail description. The intermediate (non-leaf)
patches that were generated and subsequently subdivided
serve as low detail impostors for the patches that arose
from them. This allows us to choose the level of refine-
ment appropriate for each part of the scene at render time,
taking into account the characteristics of the current view-
ing situation and the rendering time available. Although
we refer to the geometric aspects of the hierarchy, the level
of details also represent different levels of illumination de-
tail.

Our hierarchical level of detail description consists of
a hierarchy of nested patch objects. Each patch has a single
polygon impostor, and its four children are the patches (if
any) into which it was refined. The root object corresponds
to the entire scene and has no impostor. Its children are the
patches corresponding to the original top-level polygons.
The level of detail optimization consists of the selection,
for each frame, of a single subtree of the hierarchy rooted
at the scene object. The polygon impostors at the leaves of
the selected subtree comprise the selected scene represen-
tation. By taking advantage of view-dependent informa-
tion about the position and orientation of the viewer we are
able to adaptively and dynamically favour increased patch
resolution in areas that are perceptually more important.

Due to the predictive nature of the Mason-Blake algo-
rithm we are able to place firm bounds on the predicted
rendering cost of the selected scene representations. The
aim is to render, for each frame, the most perceptually ef-
fective scene representation that may be rendered in the
available rendering time. The point is that reducing ren-
dering complexity in unimportant areas allows us to render
more important areas in increased detail. Figure 2 shows
example output demonstrating the use of hierarchical level
of detail optimization.

It is worth noting that the use of radiosity patches as
impostors results in fewer of the “popping” effects that are
commonly associated with level of detail rendering, since
impostors are always co-planar with the geometry they rep-
resent. Some popping effects still occur however. These
are the results of sudden changes in detail in areas with a
large illumination gradient, such as shadow edges.

4 Experimental System

All tests were conducted on a Silicon Graphics O21 work-
station. This is a relatively low-end machine by the stan-
dards of today, however the usage of such a machine serves
as an excellent example of how software techniques may
be used extend the utility of such legacy equipment. We ex-
pect the algorithm to perform similarly for newer systems,
which are similarly matched with respect to the CPU and
graphics sub-system. For systems with weaker processing
power (relative to the graphics hardware), hierarchical sim-
plification (Section 5.6) may be used to great advantage.

We implemented an experimental system that allows
exploration of radiosity scenes both interactively and along
pre-defined paths. The system allows the interactive or pre-
configured control of various level of detail parameters and
views of the scene.

Cost and benefit heuristics were provided which pre-
dict the rendering cost and perceptual benefit of object im-
postors. These heuristics were designed to be as simple
as possible while still providing acceptable results. The
rendering cost of our single 4 sided polygon impostors is
measured as a constant 1.2 arbitrary units irrespective of
viewing distance and size, i.e. the cost defines a fixed up-
per limit on the number of polygons selected. We assume
that since our polygons are generally relatively small their
rasterization cost is relatively small and the rendering cost
is therefore dependent mostly on their setup cost. Our re-
sults (see Section 5.5) suggest that this is a sufficiently
accurate approximation for an O2. For a highly fill-limited
graphics sub-system it may be necessary to use alternative
heuristic based on solid-angle [1].

The perceptual benefit heuristic was formulated as:

benefit�p� � depthConstant�depth(p)

� log�sizeConstant�
area(p)

distance(p)
�1�

where area is the area in object space of the polygon com-
prising the impostor, distance is the distance of the center
of the polygon from the viewer, and depth is the maximum
depth of the full-detail hierarchical level of detail descrip-
tion at and below the node to which the impostor belongs.

We developed this heuristic in an experimental fash-
ion. The area and distance measures provide an estimate
of the projected size of the polygon on the viewport we
have found this to be sufficiently accurate. The effect of
this is that patches close to the viewer are favoured over
those that are further away. The constants determine the
relative influence of the terms and can be interactively ad-
justed in our system. In addition we reduce the benefit of
a polygon to zero if it is backfacing or if it is behind the
viewer, in order to take advantage of the rendering cost
saved by clipping and culling. This experimental heuris-
tic has given us acceptable results, although more accurate
heuristics could be developed.

By increasing the depth constant relative to the size
constant we distribute the available cost to the patches

1175mhz IP32 MIPS R10000, 128mb RAM

Figure 2: The top three images show the same view of the same scene, with rendering cost limits equal to 500, 1000 and 1500
respectively. At the bottom are wireframe renderings of the same views. Note the adaptive subdivision of patches.

deemed perceptually important by Secchia’s heuristic
(such as shadow edges). Increasing the size constant rela-
tive to the depth constant, shifts cost to those objects nearer
the viewer.

5 Results and Discussion

In this section we show how the optimization algorithm
depends on frame to frame coherence. We show how this
dependence can be reduced and limited in order to achieve
constant frame rates. We define frame rendering time to
be the time taken to render the scene at the selected levels
of detail. We further define frame optimization time or al-
gorithm execution time to be the time taken to execute the
level of detail selection algorithm. The frame generation
time is the time taken to create the frame from start to fin-
ish. The frame generation time is simply the sum of the
optimization time and the rendering time.

5.1 Dependence of Optimization Times on
Changes in Viewing Angle

We begin by investigating the worst case execution times
of the optimization algorithm itself. Recall that the opti-
mization algorithm is incremental and exploits frame-to-
frame coherence by basing its initial solution on the solu-
tion found for the previous frame (Section 2). The suc-
cess of this approach depends on the degree of coherence
between the final solutions of consecutive frames. We
therefore measure the change in viewing angle from one
frame to the next (for simplicity we disregard the changes
in viewing position) along each of several paths through

the scene and noted the corresponding optimization times
for each frame. We measure these four different rendering
cost limits. The rendering cost limit dictates how much to-
tal detail the algorithm is allowed to select. Figure 3 shows
the resulting graphs.

From Figure 3 it is apparent that the algorithm execu-
tion time is roughly proportional to the angular change in
viewing direction between successive frames. This is to be
expected as greater changes in viewing angle result in more
objects becoming visible that were previously not visible
and vice versa. As objects become newly invisible their al-
located rendering cost must be redistributed amongst other
objects (some of them newly visible) by means of repeated
level of detail incrementations and decrementations.

Although the 8.5 frames per second is not necessarily
considered interactive by today’s standards, any frame rate
may be chosen. A significant increase in the frame rate
would lead to a noticible image degredation, however we
consider consistency to be more important. A more accu-
rate perceptual metric would provide better image quality
with a smaller cost.

Also evident is that the algorithm execution time is
roughly proportional to the rendering cost limit. While the
aim of the algorithm is to ensure constant rendering times
irrespective of visible scene complexity, the optimization
time (the execution time of the algorithm itself) increases
as the amount of detail selected increases. Higher cost lim-
its imply that more selected impostors must be considered
for incrementation and decrementation in each iteration of
the algorithm.

Since the Mason-Blake algorithm is hierarchical it is
able to save optimization time by making use of shared

0

100

200

300

400

500

600

700

800

0 50 100 150 200

Change in Viewing Angle (in degrees)

A
lg
o
ri
th
m
 T
im
e
 (
in
 m
s
)

Cost = 3000

Cost = 2500

Cost = 2000

Cost = 1500

0

10

20

30

40

50

60

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

Turn Magnitude (in degrees)

F
re
q
u
e
n
c
y
 o
f
T
u
rn
 M
a
g
n
it
u
d
e

Figure 3: The figure on the left shows that the optimization algorithm execution times for various changes in viewing angle from one
frame to the next along a typical path and for various rendering cost limits. The cost of a single impostor is 1.2 units. The “cost” referred
to in the diagram is the rendering cost limit. Note that the change in viewing angle is usually less than 30 degrees (at 8.5 frames per
second). The figure on the right shows the relative frequency of the changes in viewing angle of a typical walkthrough.

impostor representations that are more efficient to consider
than a non-hierarchical collection of impostors providing
the same number of levels of detail for each scene object.
This saving increases as the rendering cost limit decreases,
since lower detail impostors are shared to a greater extent
than higher detail ones.

The linear dependence of optimization time on change
in viewing angle implies that the algorithm execution times
are lower in cases with greater frame-to-frame coherence,
as expected.

5.2 Frequency of Turn Magnitudes

Most of the turn magnitudes plotted in Figure 3 represent
pathological “non-incremental” cases in which the change
in viewing angle is great and there is little coherence from
one frame to the next. We therefore measured the relative
frequency of turn magnitudes for a typical walkthrough in
our system.

Figure 3 shows the resulting graph. It is clear that
small changes in viewing angle greatly outnumber large
ones, with changes above 30 degrees being extremely rare.
We expect this to be the case in any useful interactive visu-
alization system, as very large turn magnitudes are gener-
ally distracting to the user and in fact unlikely to occur at
all at high frame rates.

5.3 Algorithm Execution Times

The high degree of dependence of the algorithm execu-
tion time on frame-to-frame coherence and the relative in-
frequency of large turn magnitudes (and associated poor
frame-to-frame coherence) imply that the average execu-
tion time of the algorithm may be somewhat different to
the worst case time. Indeed, this is the raison d’être of
the incremental algorithm: to exploit frame-to-frame co-
herence and so ensure that average execution times are far
better than worst case execution times, at the expense of
the efficiency of the worst case. To test this we measured

minimum, average and maximum optimization times for a
typical path for a range of rendering cost limits.

Figure 4 shows the results. The average optimization
time is closer to the minimum time than the maximum, and
its behavior is close to linear. We surmise that this is due to
the relative infrequency of large turn magnitudes: typically
there is significant coherence between successive frames.
The minimum algorithm execution time (corresponding to
the limit case in which consecutive frames are identical)
is essentially constant with respect to the rendering cost
limit, but from Figure 4 it appears as if the maximum (ap-
proaching the opposite limit in which consecutive frames
are completely different) is greater than linear order.

0

200

400

600

800

1000

1200

1400

1600

1800

1500 2500 3500 4500 5500 6500 7500 8500 9500

Cost (Proportional to number of polygons)

A
lg
o
ri
th
 T
im
e
 (
in
 m
s)

Max

Average

Min

Figure 4: Plot showing how the maximum, minimum and aver-
age optimization algorithm execution times (over a typical walk-
through) vary with increasing rendering cost limit. The cost of a
single polygon impostor is 1.2 units.

The usefulness of the incremental algorithm hinges on
the fact that consecutive frames generally exhibit a high
degree of inter-frame coherence, as suggested by the rel-
atively high frequency of small turn magnitudes shown in
Figure 3. There are nonetheless cases in which coherence

is limited and optimization times are significantly high. If
left unchecked these may lead to excessive inter-frame de-
lays due to the cost of the algorithm itself rather than the
actual rendering.

5.4 Constancy of Frame Generation Times

To test the constancy of frame generation times, we mea-
sured instantaneous frame rates (defined as the inverse of
frame generation time) for each frame of a typical walk-
through, with a rendering cost limit corresponding to 2500
selected impostors (or 2500 rendered polygons). In order
to deduce the cause of any irregularities we found, we also
measured the frame rendering times and the optimization
times for the same walkthrough.

Figure 5 shows the results. It is clear that frame gener-
ation times vary dramatically from one frame to the next.
We note however that the time taken to render the se-
lected scene representation is relatively constant over all
160 frames, varying between approximately 50 and 80ms.
This shows that the algorithm is successful in maintaining
relatively constant rendering times. Furthermore, we note
that optimization algorithm execution times vary dramati-
cally from one frame to the next, and that there is a marked
correlation between the troughs in the graph of frame gen-
eration times and the peaks in the graph of optimization
times. This suggests that the variation in frame genera-
tion time is dependent mainly on variations of the execu-
tion time of the optimization algorithm; the algorithm is
successful in regulating frame rendering times, but is not
guaranteed to take a limited or constant amount of time to
do so. The objective thus becomes to place limits on the
execution time of the optimization algorithm itself.

5.5 Truncation of Algorithm Execution

The inconsistency of frame optimization times, if left
unchecked, might undermine the ability of the algorithm
to regulate frame generation times. We therefore imple-
mented a simple cut-off scheme in which the optimization
algorithm’s execution is simply halted if its execution time
is found to have exceeded some predetermined limit. In the
event of the algorithm being halted the solution reached so
far is used as the final solution. Due to the iterative refine-
ment strategy employed by the algorithm, its selected so-
lution after any iteration always represents a feasible and
complete (although not necessarily half-optimal) solution
to the hierarchical level of detail optimization problem.

We measured the instantaneous frame rates achieved
for a walkthrough with this technique. Figure 6 shows
the results. It is clear that time-truncation of the optimiza-
tion algorithm succeeds in ensuring an essentially constant
frame rate, irrespective of visible scene complexity.

The disadvantage of truncating the algorithm execu-
tion time is that in the frames where the execution is trun-
cated the algorithm produces a potentially less than half-
optimal solution. This may result in occasional drops in

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160

Frame

F
ra
m
e
s
 p
e
r
s
e
c
o
n
d

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160

Frame

T
im
e
 (
in
 m
s
)

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160

Frame

T
im
e
 (
in
 m
s
)

Figure 5: Plots showing (from top to bottom) instantaneous
frame rates, frame rendering times (excluding optimization time)
and optimization times (excluding rendering time) for each frame
over the course of a typical walkthrough. The rendering cost limit
is 3000, equating to 2500 single-polygon impostors. Note that the
Mason-Blake algorithm is successful in ensuring constant render-
ing times. However the issue that is discussed in this paper is the
non-constant execution of the optimization algorithm itself.

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900 1000
Frame

F
ra
m
e
s
 p
e
r
s
e
c
o
n
d

Figure 6: Frame rates of a typical walkthrough (calculated via
timing the intervals between frames), with optimization times
truncated at 50ms. The cost limit is 1500, corresponding to 1250
single-polygon impostors. The full detail scene representation
contains 36879 polygons.

visual quality. The amount of error introduced by trunca-
tion is approximately proportional to the amount of time
truncated.

Since there is significant coherence not only between
successive optimal detail levels but also between the
changes in successive optimal detail levels over a series
of frames, optimization time skipped on one frame is typi-
cally borrowed and then “repaid” in the form of additional
computation in the following frames. The error introduced
by truncation will always be corrected swiftly as long as
excessive execution times are rare. In a typical system the
image quality would worsen immediately after a sudden
excessive motion by the viewer and then progressively im-
prove (over a few frames) during periods of relatively little
incoherent motion.

As we noted with regard to Figures 3 and 4, optimiza-
tion time is dependent on the rendering cost limit and the
degree of coherence between successive frames. Because
the average optimization time is closer to the minimum op-
timization time than the maximum, we can expect the fre-
quency of truncations to be relatively low.

5.6 Hierarchy Simplification

Recall from Figure 4 that the average optimization time
was less than 100 ms for rendering cost limits lower than
approximately 2500, corresponding to the selection of
more than 2000 individual impostors. Because of the na-
ture of our impostors, this corresponds to only around 2000
polygons. This fine granularity of one graphics primitive
per impostor represents a worst case for our algorithm,
since every single polygon in the scene must be individ-
ually considered for selection. In fact, due to the speed of
the graphics hardware, the consideration of an impostor for
selection may be more expensive than simply rendering it.

To improve this situation we implemented a hierar-
chy simplification strategy in the form of a transformation
that reduces the hierarchy by recursively collapsing mul-
tiple impostors into single shared representations. After

application of this transform, the impostor of each object
is the union of the impostors that previously belonged to its
children. The leaves of the hierarchy are removed, as their
impostors are now replaced by those of their parents. In
the instance of our radiosity hierarchy a single application
of the transform results in each object (or patch) having a
single impostor consisting of four polygons (see Figure 7).
A second application results in impostors of sixteen poly-
gons, and so forth. The general effect of the transform is to
exponentially increase the granularity of the impostors so
that more scene geometry is represented by each impostor.
The cost and benefit heuristics must of course be adjusted
accordingly.

To test the success of this approach we measured op-
timization times for a walkthrough of a scene after zero,
one and two applications of the hierarchy simplification
transform. The results are shown in Figure 7. The ren-
dering cost limit in each case corresponds to a maximum
selection of 1666 polygons. The result of applying the sim-
plification transform is to greatly reduce the optimization
time required to select the same amount of scene detail.
After only one application of the transform the optimiza-
tion times in Figure 7 are reduced to well below 25 ms for
inter-frame turn magnitudes less than 50 degrees and for
a selected scene representation consisting of around 416
impostors.

It is important to note that after the application of the
transform (and adjustment of the cost heuristic to reflect
the fact that impostors are now more expensive to render)
the amount of detail that may be rendered within the avail-
able time does not change. Instead we have traded flexibil-
ity of detail selection for speed of optimization, by decreas-
ing the number of possible combinations of impostors from
which the algorithm may choose. We have found in prac-
tice that a single application of the transform in our case
results in an almost imperceptable loss of quality, whereas
two or more applications tend to result in visible degrada-
tion. Figure 8 compares the visible effects of zero, one and
two applications of the transform.

The number of times the transform needs to be applied
depends entirely on the system hardware. Once again this
is a sacrifice of rendering quality in order to maintain con-
stant, interactive frame rates on low end machines.

5.7 Dependence of Frame Generation Times
on Scene Complexity

In order to test the dependence of frame generation times
(and therefore frame rates) on the complexity of the full de-
tail scene, we measured non-optimized (full detail) render-
ing times, optimized rendering times, optimization times
and optimized frame generation times for identical walk-
throughs of increasingly complex versions of the same
scene, with the rendering cost limit held constant through-
out.

Figure 9 shows the results. The unoptimized render-
ing renders the impostors at the leaves of the hierarchical
scene description and the unoptimized rendering time in-

0

50

100

150

200

250

0 50 100 150 200

Change in Angle

A
lg
o
ri
th
m
 T
im
e

1 Quad

4 Quads

16 Quads

Figure 7: The figure on the left shows the first iteration of hierarchy simplification. Note that an entire level of the hierarchy has been
removed. Also note that the visible level of detail has not been adversely affected: The steps between the levels of detail are simply
bigger. The figure on the right shows optimization algorithm execution times (averaged over four different walkthroughs of the same
scene) for various changes in viewing angle after application of the hierarchy simplification transform zero, one and two times. The
rendering cost limit in each case corresponds to 1666 selected polygons.

Figure 8: The same view of the same scene after zero, one and two applications of the hierarchy simplification transform.

creases linearly with the complexity of the scene descrip-
tion, as we would expect (since the number of leaf nodes
in a regular hierarchy increases linearly with the total num-
ber of nodes). The rendering time of the optimized scene is
constant irrespective of full detail complexity, as we would
also expect since the complexity of the selected scene rep-
resentation is dependent only on the constant rendering
cost limit. The optimization algorithm execution times
are constant except for low scene complexities where they
increase with increasing scene complexity, probably due
to more successful caching of smaller scene descriptions.
The frame generation time, being roughly the sum of the
optimization time and the rendering time, behaves simi-
larly to the optimization time and becomes constant for in-
creasingly complex scene descriptions.

6 Conclusion

The results presented in this paper attest to the predictive
nature of the hierarchical level of detail optimization al-
gorithm, showing that it may successfully be used to en-
sure fixed frame rates, subject to the accuracy of the cost

heuristic used. The algorithm selects a scene representa-
tion for every frame that can be rendered in the available
time, regardless of the complexity of the full detail scene
representation and the complexity of the visible portion of
the scene.

The most significant obstacles to the algorithm appear
to be the fine granularity (in this case) of the level of de-
tail description and the destabilizing effects of visibility
culling on frame-to-frame coherence. Our results show
that the Mason-Blake algorithm is capable of maintaining
regular frame rendering times, but that the irregular exe-
cution times of the algorithm itself threaten to destabilize
frame rates unless they are actively controlled. We showed
that through the use of a simple cut-off scheme it is possi-
ble to ensure that the algorithm execution is not allowed to
impair frame rates, with little degradation of image quality.

The irregularity of the algorithm execution times is the
result of the algorithm’s strong dependence on frame-to-
frame coherence. The average performance of the algo-
rithm is far better than the worst-case performance, which
arises when frame-to-frame coherence is lacking. The use
of frustum culling tends to destabilize the algorithm by cre-
ating coherent irregularities in the visibility of groups of

0

50

100

150

200

250

300

350

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Max. Cost

T
im
e
 (
in
 m
s
)

A

B

C

D

Figure 9: Graphs showing the effects of increasing full de-
tail scene complexity (max cost) on: (A) optimized rendering
time (B) unoptimized (full detail) rendering time (C) optimiza-
tion times (D) optimized frame generation times The rendering
cost limit is held constant throughout.

objects that cause the algorithm to suddenly redistribute,
at some optimization cost, large amounts of rendering re-
sources. The truncation of optimization times serves to
resolve this.

The worst-case performance of the algorithm is di-
rectly proportional to the sheer number of available im-
postors, and is therefore strongly dependent on the gran-
ularity of the impostor representations. The experiment
presented here represents a worst case situation in which
every impostor consists of only one polygon. To improve
algorithm performance we successfully developed a hier-
archical simplification algorithm which increases the gran-
ularity of the impostors at small cost to visual quality. As a
general rule we suggest that the consideration of an impos-
tor by the level of detail algorithm should always be signif-
icantly cheaper than the simple rendering of the impostor.
The hierarchical simplification may be used to trade visual
quality for efficiency. This is effectively another means to
tune the system for low end systems.

The final result of our implementation was a working
system in which the Mason-Blake algorithm was used to
successfully regulate frame rates while providing accept-
able levels of visual quality.

6.1 Future Work

In a level of detail system, it is desirable to have the detail
distributed to the most perceptually important parts of the
scene. These parts are difficult to quantify, however they
are a subset of the parts of the scene which fall into the
view frustum and are unoccluded, namely the visible parts
of the scene.

A future research direction could be the development
of a more perceptually correct benefit heuristic. This
would include the visibility factors mentioned above, as
well as the direct application of psychophysical percep-
tion theory, i.e. the consideration of factors such as color,

edges, motion, etc.

References

[1] S. Coorg and S. Teller. Real-time occlusion culling for
models with large occluders. 1997 Symposium on Inter-
active 3D Graphics, pages 83–90, April 1997. ISBN 0-
89791-884-3.

[2] T. A. Funkhouser and C. H. Séquin. Adaptive display al-
gorithm for interactive frame rates during visualization of
complex virtual environments. In Computer Graphics Pro-
ceedings Annual Conference Series, volume 27, pages 247–
254. ACM SIGGRAPH, August 1993.

[3] P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hier-
archical radiosity algorithm. In Computer Graphics (ACM
SIGGRAPH ’91 Proceedings), volume 25, pages 197–206,
1991.

[4] P. S. Heckbert. Simulating Global Illumination Using
Adaptive Meshing. PhD thesis, University of California,
Berkeley, 1991.

[5] N. Holzschuch, F. X. Sillion, and G. Dretakkis. An ef-
ficient progressive refinement strategy for hierarchical ra-
diosity. Fifth Eurographics Workshop on Rendering, pages
343–357, June 1994. Held in Darmstadt, Germany.

[6] P. W. C. Maciel and P. Shirley. Visual navigation of large
environments using textured clusters. In 1995 Symposium
on Interactive 3D Graphics, pages 95–102, April 1995.

[7] A. E. W. Mason and E. H. Blake. A predictive incremental
hierarchical level of detail optimization algorithm. Techni-
cal Report CS99-04-00, University of Cape Town, 1999.

[8] A. E. W. Mason and E. H. Blake. Automatic hierarchical
level of detail optimization in computer animation. Com-
puter Graphics Forum, 16(3):191–200, August 1997. ISSN
1067-7055.

[9] E. Mason and E. H. Blake. A graphical representation of
the state spaces of hierarchical level of detail scene descrip-
tions. IEEE Transactions on Visualization and Computer
Graphics, 7(1):70–75, 2001.

[10] A. Secchia. Perceptual refinement for hi-
erarchical radiosity. Technical Report
CS-00-08-00, University of Cape Town,
http://www.cs.uct.ac.za/Research/CVC/techrep.html,
1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

