Metadata, citation and similar papers at core.ac.uk

Provided by UCT Computer Science Research Document Archive

Metadata Editing by Schema

Hussein Suleman

Department of Computer Science, University of Cape Town
Private Bag, Rondebosch, 7701, South Africa

hussein@cs.uct.ac.za

Abstract. Metadata creation and editing is a reasonably well-understood
task which involves creating forms, checking the input data and generat-
ing appropriate storage formats. XML has largely become the standard
storage representation for metadata records and various automatic mech-
anisms are becoming popular for validation of these records, including
XML Schema and Schematron. However, there is no standard method-
ology for creating data manipulation mechanisms. This work presents a
set of guidelines and extensions to use the XML Schema standard for
this purpose. The experiences and issues involved in building such a gen-
eralised structured data editor are discussed, to support the notion that
metadata editing, and not just validation, should be description-driven.

1 Introduction

Editing of structured metadata over Web interfaces introduces complexities be-
cause of the fixed structure of standard HTML interfaces. A typical problem
occurs when a metadata field is repeatable, as there is no simple way to dupli-
cate a single field in a static HTML form. As an example of this, users may have
multiple first names (e.g., Goolam Muhammad in Arabic), multiple last names
(e.g., Guzman Aranda in Espafiol) or both. In order for any metadata format to
correctly capture information about individuals, there has to be flexibility in the
data format as well as the input mechanism. Thus, the number of first names
and last names should ideally be variable, without requiring data and providing
a facility to add more fields of that type as needed.

This problem is exacerbated when there are nested metadata elements, e.g., a
name element containing separate sub-elements for first and last names. If there
are multiple names in addition to multiple first and last names, then the input
mechanism must cater for repeatability at different levels within the metadata.

Many existing Web-based metadata tools, such as Meta builder [1] and DC-
dot [2], use fixed formats for their input forms, thereby placing restrictions on
the metadata format due solely to the input mechanism used. A general solu-
tion to this problem requires the creation or use of a general-purpose metadata
specification language and a tool to interact with users to perform the required
editing based on the specifications for metadata formats. Initial work was done
in devising such a format in the Web Characterization Repository project [3].
In that project, metadata formats for different types of resources (papers, tools,

https://core.ac.uk/display/232195715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

etc.) were specified in terms of tabular descriptions supporting only flat for-
mats without nested elements. A similar technique was employed in the Mantis
project [4] from OCLC, which used a Java applet to support modification of
forms without additional server interaction. The Reggie and MetaEdit products
from the MetaWeb project [5] also used Java applets and a home-grown format
and XML DTDs respectively for field specification. More recently, the EPrints
software [6] uses a home-grown field specification language to generate standard
HTML forms when editing metadata.

With the emergence and growing popularity of the Open Archives Initiative’s
Protocol for Metadata Harvesting [7], an increasing number of digital library
systems are using XML Schema [8] to define their metadata formats precisely.
XML Schema is a declarative language to specify the format of XML files. For
metadata formats encoded in XML, only a subset of the full XML Schema speci-
fication is required since metadata representations usually have a rigid structure.

It was hypothesised in this work that XML Schema can be used as the basis
for a metadata description language that can drive a generalised editing process.
The current trend towards writing XML Schema for existing and new metadata
formats provides a ready backdrop against which to develop tools for data input
to complement the schema-based validation tools used by the W3C (e.g., XSV
[9]) and OAI (e.g., Repository Explorer [10]). Thus, any XML record created
with such an editing tool can be validated using schema-based validation tools
before being stored or processed further.

2 Interaction Model

In order to test this premise, the MDEdit Perl module was built to drive an
editing process based on a subset of XML-Schema, augmented by elements of
user interfaces. MDEdit uses plain vanilla HTML for its user interface. As a
result of this, every change in the input form structure requires a client-server
interaction. While this is not the most efficient operation, this approach was
taken to illustrate that generalised metadata editing is still possible in the worst-
case scenario where a browser has no advanced interactivity functionality. This
is critical if such methods are to be employed on small form-factor devices such
as PDAs and cellphones.

Fig 1 illustrates the interaction model employed by the MDEdit module. For
new metadata records, MDEdit reads in the schema file and generates an HTML
form from it with placeholders for minimal numbers of elements as specified by
the schema. Alternatively, when a metadata record already exists, MDEdit will
fill out the values already known when creating the form. Thereafter, while
editing the values stored in the form, the user may request additional input
elements for a single field or set of fields (as allowed by the schema). The server
will then regenerate the form with additional input mechanisms inserted into the
appropriate position, while still retaining all the data already entered. Finally,
the user submits the form, and the server then checks that the number and type
of each field and subfield conform to the schema. If there are errors, the form

Schema for editing metadata |

! Existing | | Validate Updated
! metadata | |:3] HTML [:: i : — XML
iorecord i | form f:- i : Slelglelels record

Generate
errors

Add Submit
field form

I i

Display form on user’s Web browser

Fig. 1. Interaction between MDEdit, user, schema, and metadata record(s)

is regenerated with errors highlighted. If there are no errors, the data from the
form is converted into an equivalent XML record, completing the process.

3 Data Types

MDEJdit supports only a few data types of those available in the XML Schema
standard, as these were deemed sufficient to provide input mechanisms for most
popular metadata formats. The types MDEdit can operate on are:

— string
— complexType, containing a sequence
— simpleType, containing a restriction with enumerations

The following schema excerpt shows a possible general definition for names of
people, with repeatability of elements at multiple levels of nesting, as discussed
previously.

<element name="name" minOccurs="1" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="first"
type="string" minOccurs="1" maxOccurs="unbounded"/>
<element name="last"
type="string" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
</element>

4 Extensions

While XML Schema is sufficient for defining the structure of metadata, specifying
the visual elements of a user interface (e.g., number of rows in a list box) requires
additional information. According to the XML Schema standard, every element
may have an an appinfo annotation containing tags specific to the application.
This was exploited to define application-specific extensions, some of which are
listed in Table 1.

Table 1. Sample of additional MDEdit schema tags to define appearance of HTML
forms

Tag Description

<caption> an alternate caption to use instead of the field name
<description> an optional description of what the field is
<rows> number of rows to use for the field display
<columns> number of columns to use for the field display
<inputtype> password - password entry box that displays * instead of
characters
file - file upload box
radio - use radio buttons for list instead of <select>

An example of an annotation to a schema using these extensions is as follows:

<element name="test" type="string">
<annotation>
<appinfo>
<caption>Test Input Field</caption>
<rows>40</rows>
</appinfo>
</annotation>
</element>

This example results is an input field in the HTML form with the text label Test
Input Field and a text box 40 characters wide for data entry/editing.

5 Rendering

At each stage in the process, the internal representation of the data and type
information is used to generate an equivalent HTML representation. The combi-
nation of schema type information, structural information and extensions is used
to determine an appropriate and intuitive visual aspect and/or input device for
each metadata field.

Fig 2 shows a typical HTML rendering of a simple annotated schema. The
schema used to generate this interface can be found in [11].

New Resource
0 items marked * ave mandatory [| clich on + to duplicate field
Which CSTC section are you submitting to ? * |- none selected - El
Title of Resource * |
Author * +
First name *
Last name *
Email *
Institution/Campany
Department/Center
Description
Upload File(s) +
Filename * Browse... |
Description *

Fig. 2. Typical user interface generated by MDEdit

6 Analysis and Future Work

The MDEdit module has been used extensively while developing demonstrations
of the Open Digital Library (ODL) [12] componentised model for building sys-
tems. Any loss of interactivity because of client-server communication is made
up for by the generalisations possible because of the model and schema-driven
nature of the tool. It has also been adopted for use on the website of the Net-
worked Digital Library of Theses and Dissertations [13] to handle registrations
of new members and addresses the problem that such registrations typically
include varying numbers of individuals.

While the MDEdit tool is practically useful, it is more important as a demon-
stration of the principle that schema can be used to drive the process of meta-
data entry and editing. Various avenues remain to be explored in terms of such
schema-driven metadata entry. These include:-

— extending existing tools to understand all aspects of the XML Schema spec-
ification, instead of just the subset used by MDEdit,

— investigating the feasability of serial entry drivers to create XML configura-
tion files at a terminal, and

— using the User Interface Markup Language [14] as an intermediate represen-
tation so that the resulting interfaces can easily be retargeted to multiple
devices.

While this project has implications for building digital libraries in a declar-
ative fashion, it also vindicates the design of XML Schema as a multi-purpose
descriptive language, with sufficient expressive power and extensibility to sup-
port functions beyond simple type-checking.

7 Acknowledgements

This work was funded in part by the US NSF (grant: 0002935) and was con-
ducted while at and in conjunction with members of the Digital Library Research
Laboratory at Virginia Tech.

References

1. Vancouver Webpages (2003), Meta builder. Website http://vancouver-
webpages.com/META /mk-metas.html

2. UKOLN (2003), DC-dot metadata editor. Website
http://www.ukoln.ac.uk/metadata/dcdot/

3. Suleman, H., E. A. Fox and M. Abrams (2000), “Building Quality into a Digital Li-
brary”, Proceedings of the Fifth ACM Conference on Digital Libraries, San Antonio,
Texas, USA, June 2000, pp. 228-229.

4. Shafer, Keith E. (1998), “Mantis Project Provides a Toolkit
for Cataloging”, OCLC Newsletter, No. 236, pp.21-23. Available
http://www.oclc.org/oclc/new/n236 /research_mantis_project.htm

5. Distributed Systems Technology Centre (2003), The MetaWeb Project. Website
http://www.dstc.edu.au/Research/Projects/metaweb/

6. Open Citation Project (2003), GNU EPrints 2. Website http://software.eprints.org/

7. Lagoze, Carl, Herbert Van de Sompel, Michael Nelson, and Simeon
Warner (2002), The Open Archives Initiative Protocol for Metadata Har-
vesting Version 2.0, Open Archives Initiative, June 2002. Available
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

8. Fallside, David C. (editor) (2001), XML Schema Part 1: Structures and Part 2:
Datatypes, W3C, 2 May 2001. Available http://www.w3.org/TR/xmlschema-1/
and http://www.w3.org/ TR /xmlschema-2/

9. Thompson, Henry S., and Richard Tobin (2003), XML Schema Validator. Website
http://www.ltg.ed.ac.uk/ ht/xsv-status.html

10. Suleman, Hussein (2001), “Enforcing Interoperability with the Open Archives Ini-
tiative Repository Explorer”, in Proceedings of the ACM-IEEE Joint Conference
on Digital Libraries, Roanoke, VA, USA, 24-28 June 2001, pp. 63-64.

11. Suleman, H. (2002), Open Digital Libraries, Ph.D. dissertation, Virginia Tech.
Available http://scholar.lib.vt.edu/theses/available/etd-11222002-155624/

12. Suleman, Hussein, and Edward A. Fox (2001), “A Framework for Building Open
Digital Libraries”, in D-Lib Magazine, Vol. 7, No. 12, December 2001. Available
http://www.dlib.org/dlib/december01 /suleman /12suleman.html

13. Fox, Edward A. (2003), Networked Digital Library of Theses and Dissertations.
Website http://www.ndltd.org

14. Phanouriou, Constantinos (2000), UIML: A Device-Independent User Interface
Markup Language, Ph.D. dissertation, Virginia Polytechnic Institute and State Uni-
versity.

