
Why Does Code Review Work for Open Source
Software Communities?

Adam Alami
IT University of Copenhagen

Denmark

Marisa Leavitt Cohn
IT University of Copenhagen

Denmark

Andrzej Wasowski
IT University of Copenhagen

Denmark

Abstract—Open source software communities have
demonstrated that they can produce high quality results. The
overall success of peer code review, commonly used in open source
projects, has likely contributed strongly to this success. Code
review is an emotionally loaded practice, with public exposure of
reputation and ample opportunities for conflict. We set off to ask
why code review works for open source communities, despite this
inherent challenge. We interviewed 21 open source contributors
from four communities and participated in meetings of ROS
community devoted to implementation of the code review process.

It appears that the hacker ethic is a key reason behind the
success of code review in FOSS communities. It is built around
the ethic of passion and the ethic of caring. Furthermore,
we observed that tasks of code review are performed with
strong intrinsic motivation, supported by many non-material
extrinsic motivation mechanisms, such as desire to learn, to grow
reputation, or to improve one’s positioning on the job market.

In the paper, we describe the study design, analyze the collected
data and formulate 20 proposals for how what we know about
hacker ethics and human and social aspects of code review,
could be exploited to improve the effectiveness of the practice
in software projects.

Index Terms—Open Source, Code Review, Motivation

I. INTRODUCTION

Code review is an established software engineering practice, that
ensures good quality of source code, lowers bug frequency, and
enforces coding standards [1]. During code review, reviewers
(software engineers other than the author) read code in order
to point out mistakes, shortcomings, and convention violations
that had been overlooked during programming. The practice
has evolved over the years from simple inspections of sections
of code to formalized techniques that give immediate feedback.
Reviews are performed in various forms, such as pair program-
ming, informal walkthroughs, and mandatory approvals before
code merging. A variety of tools have been developed to help
reviewers scrutinize and check the viability and functionality
of code during these reviews, and to formulate feedback.

Code review is particularly successful and cherished in free
and open source software (FOSS) communities [1]–[4]. Some
would go as far as to say that code review is the raison d’être
of FOSS: “code review . . . is the reason behind open source.
If anyone could contribute to a project, there could be chaos.”
It is a ”wall that separates bad code from good code.”1 When
asked about relative importance of code review and testing, code
review is often ranked clearly above testing by FOSS engineers.

1Statements by FOSS engineers interviewed in this study.

The effectiveness of code review depends on the level of
participation, the size of the changes made, and the reviewer
experience and expertise. Thus it is not an entirely obvious
practice to implement. Now, that code review is also widely
used in the industry [4], [5], it is particularly relevant to
understand why and how it works. As, the standard of peer
reviewing in the open source environment remains a beacon
of best practice, we turn our attention to FOSS projects for
insight. We investigate the practice from the perspective of the
main participants, their motives and behaviors. We ask:

RQ: Why does code review work for FOSS communities?

We want to understand how contributors deal with the inherent
negative feedback; what motivates them; and what values lead
them to first contribute code of high quality, then produce
high quality feedback, and finally to diligently consider the
feedback to improve the contributions. We ask this question to
(i) learn from FOSS communities to translate the experience
to closed-source environment, (ii) to help other projects
in implementing the practice successfully. We formulate
observations based on data and then speculate how project
and community managers can incorporate these results into
their work culture. We find that:

• FOSS contributors experience rejection and negative feed-
back regularly. Communities do not eliminate this negative
experience, as this seems to be the core improvement
mechanism of code review.

• Our subjects develop mature attitude to negative feedback,
taking it as an opportunity to learn, to improve, and
ultimately excel in their job.

• The ethic of passion drives the contributors. They are
passionate about all aspects of the project, including the
reviews. The passion allows them to invest themselves into
code review, and it also makes them resilient to negative
interactions.

• Community members develop a working ethic of care,
showing commitment and care toward the project, the com-
munity, and other developers. The code review is a gate
keeping practice, an implementation of the care for quality
of the project. Thus care is a strong motivator for both for
performing the code review, and for diligent execution.

• Intrinsic motivation: Altruism and enjoyment are key
intrinsic motivators of FOSS code reviewers. Even

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/232190504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


paid-for code reviewers are effectively volunteers, who
choose tasks following intrinsic interests.

• FOSS communities have developed a gift economy,
centered around a range of non-monetary non-material
extrinsic motivators: reciprocity of contributions, sharing
success, displaying status and reputation, transfer of
FOSS reputation to professional career, continuous
learning and development, all the way to punishment
for under-performance. These economy “pays” for code
review effort.

In the final part of the paper, we reinterpret these observations
to extract ideas for improving the code review process in
existing projects and communities. We hypothesize that prac-
tices described by our subjects (for instance, communicating
guidelines, or establishing mentorship) are the reasons behinds
their thriving during code review. We thus formulate them as
imperative suggestions, that, we hope, can be used for further
investigation in action research projects.

We start by characterizing the studied communities in this
paper, using them also to cast some light on the practice of
FOSS code review (Section II). Section III describes the study
design. Section IV is devoted to the analysis and interpretation
of the data. We aggregate the actionable hypotheses in
Section V, discuss related work in Section VI, and conclude in
Section VII.

II. SUBJECT COMMUNITIES

We begin by characterizing the five studied FOSS communities
and how do they use code review. Throughout the paper we
use the terms developer, programmer, software engineer, and
hacker interchangeably to refer to FOSS contributors.

Robot Operating System (ROS) is a popular open-source middle-
ware for robotics. It provides standard communication and
coordination features, and bundles implementations of essential
robotics-specific functionality with software drivers for popular
hardware components. A ROS-based application is created by
complementing selected ROS components with application spe-
cific code, typically in Python or in C++. The project originated
in 2007 at the Stanford Artificial Intelligence Laboratory. In
2008, it transferred to Willow Garage, a robotics start-up. Since
2013, it has been stewarded by the Open Robotics foundation.

Since its inception, the community enforced reviews for every
pull request, even for changes from the core team. Common
code inspection meetings were also organized. Over time the
review practices have deteriorated and are abandoned due to
lack of resources. This development partly motivates our study—
we work with the community to re-energize the practice through
an action research style intervention. As a result the community
is initiating a pilot project using standard GitHub tools for
code review and a policy that encourages code contributors
submitting pull requests to review their peers’ contributions.

Apache Allura is a hosting platform. Allura integrates key devel-
opment tools (version control repositories, issue tracker, wikis,
blogs, etc.) for developers. It is an open source project, under

the umbrella of Apache foundation, implemented in Python.
Since 2012 it is used by SourceForge as the main platform.

The official community code guidelines2 require that each
contribution is tested in a local fork prior to submission. Each
pull request must be accompanied with the necessary test cases
to be added to the automated test suite of the project. As a
precondition to the submission, the contribution must pass all
existing tests. Contributions with “open” status are reviewed
and discussed in the Git Merge Request discussion forum or in
the issue tracker. Violations of the community code review are
highlighted, architectural and programming decisions are de-
bated. Good contributions are praised. A contribution could be
rejected for minor code guidelines violations. Any member of
the community can review code; however, ultimately it is the de-
cision of the maintainer whether to merge a contribution or not.

The Comprehensive Knowledge Archive Network (CKAN) is
an open source project developing a web-based storage and
distribution platform for data, mostly used by public institutions
joining the open data movement. CKAN is implemented
primarily in Python and JavaScript. The project is overseen by
the Open Knowledge International association.

The CKAN community uses GitHub for pull requests
management and code review. Each contribution must be accom-
panied with the relevant tests and updated documentation. Once
a pull request is submitted, it is subject to review by one to four
other community members. The community specifies coding
standards for all used technologies (i.e. Python, CSS, etc.).
Architectural and programming decisions are debated and minor
code guideline violations are pointed out. The official review
guideline recognizes that besides standards, reviewer’s judg-
ment is a key factor in accepting or rejecting contributions. 3

FOSSASIA is a community centered in Southeastern Asia
developing software for social change since 2009. FOSSASIA
projects are not limited to software applications, but include
also hardware and design.

FOSSASIA focuses “on the code quality more than on
managing pull request ethics,”4 emphasizing the actual goal
of the code review work. Its best practices are documented
in programing and commit style guidelines. Pull requests are
reviewed using standard GitHub facilities. Up to eight reviewers
participate in a single discussion. Acceptance requires reaching
a consensus between reviewers. It is the responsibility of the
core team to review code. Reviewers in this community can be
pedantic, even grammatical errors in the code comments are
pointed out. Still, FOSSASIA manages to maintain a friendly
atmosphere. Reviewers offer help to fix errors if required.

The Linux Kernel is the most popular and versatile operating
system kernel on the planet, used on super computers and web-
servers, powering up cloud infrastructure, and controlling lots of
mobile and embedded devices (including all Android devices).

2https://forge-allura.apache.org/p/allura/wiki/Contributing%20Code/
3http://docs.ckan.org/en/2.8/contributing/reviewing.html
4https://github.com/fossasia/susi server

https://forge-allura.apache.org/p/allura/wiki/Contributing%20Code/
http://docs.ckan.org/en/2.8/contributing/reviewing.html
https://github.com/fossasia/susi_server


Since its inception in 1991, the project is a success story,
especially in terms of developing a sustainable community.

Unlike other communities, Linux is not using GitHub for
code review, but communicates changes and performs the
review using mailing lists. The code style guideline and pull
request submission documentation are thoroughly detailed.
Even the size of the email is specified. Contributors are
encouraged to prepare patches that are concise and logically
atomic. Contributors submit their patches to the relevant
subsystem mailing list, where they are reviewed by volunteers.
Criticism and other comments are exchanged very openly
in the mailing list. Code is pedantically reviewed; there are
known cases when a patch went through 20 review iterations.
Acceptance of a patch is subject to a community consensus,
but the ultimate decision resides with the maintainer.

III. METHOD

Recall that we are asking Why does code review work for FOSS
communities? To answer this question we want to dig deeply
into the mindset of participants in this inherently human process
that relies heavily on communication skills; that involves
feedback, critique and rejection on daily basis; and that exposes
power and decision hierarchies in communities. For this reason,
we choose a qualitative research method that is suitable for
exposing participants’ experiences and motivations. We have
conducted 21 semi-structured interviews with members of
the communities that are using code review (Apache Allura,
CKAN, FOSSASIA, Linux). To this we add observation of
three meetings of the ROS community (10–16 participants)
devoted to implementing a new code review process. While
the interviews explain mostly the experience with the
existing process, the meetings are more likely to review the
expectations, wishes, and concerns with the process, as during
the meetings people reflect about consequences of instituting it.

A. Interviews

While a structured interview has a rigorous set of questions,
which does not allow to divert, a semi-structured interview is
open, allowing new ideas to be brought on top of a predefined

TABLE I
KEY PARTS OF THE INTERVIEW FRAMEWORK

in
tr

o Can you talk to me about your community?
What first motivated you to participate in this community?

co
re Can you describe the code review process in your community?

pr
ob

in
g

What makes you adhere to best practices?
How do you cope with the feedback?
What makes you want to participate in code review?
Can you share with me an example of good feedback you received,
a part of the code review, and how did you feel about it?
Can you share with me an example of negative feedback you
received, part of the code review, and how did you feel about it?

question framework. The flexibility is used to enhance the
depth of interviewee’s statements. This makes semi-structured
interview suitable for capturing rich qualitative data and
obtaining deep insights into people’s believes and behaviors.

The questions in our interview framework fall into three
categories: introductory, core, and probing (Tbl. I). The intro-
ductory questions were designed to warm up the conversation.
The core question related directly to our research question.
The probing questions aimed at making the conversation
detailed and concrete. We also asked other questions (not
in the table) about quality assurance practices in FOSS. These
questions sometimes revealed the relation of code review to
other practices, as shown in the statements reported in Sect. I.

B. ROS Community Meetings on Code Reviews

The interviews were executed with members of the communities
that successfully use code review. In contrast, the ROS
community has failed to sustain the practice in the past, and
now, having grown substantially, it attempts to reboot it. As part
of our action research involvement with the ROS community we
facilitated community meetings, where QA practices are being
discussed and implemented. Re-instituting the code review was
one of the highest prioritized activities of this group (within
the top three of the sixteen prioritized actions).

Three one hour long community meetings were dedicated
to the implementation and the logistics required to implement
a code review process in the community. The meetings had an
open structure. Ideas to implement, and details of implementa-
tions were proposed and voted by participants (and not by the
facilitators, the authors). It is important that the meeting group
takes the execution of decisions on themselves, so they have to
bear in mind the cost of the implementation. In the meetings, we
also observe reflections on the prior attempt to implement code
review in the community, and reflections on this. The meeting
data complements the interview data in following ways: we
collect opinions of much more contributors quickly, we can see
how differing opinions are confronted, we see how ROS contrib-
utors discuss the failure of code review, and how they anticipate
the practice in a community that is not yet converted to use it.

C. Subject Selection

We have selected the five FOSS communities (Sect.II), to
achieve a deep understanding of the phenomena under study.
We interviewed 21 participants from Allura, CKAN, FOSSA-
SIA, and Linux communities. We searched for contributors
on LinkedIn, using community name and terms ”contribu-
tor“/”developer“. We contacted random entries from the search
results and used snowballing to increase the sample. We had no
prior relationships to any of the subjects. Table II summarizes
the demographics of the population. The role labels are self-
selected by participants (on LinkedIn profiles). The majority of
the participants contribute to FOSS as part of their professional
employment and are paid for their contributions. Two of the
participants were students. Twenty participants were males and
one was a female.



The participants for ROS community meetings on quality
assurance have been recruited using two methods: directly
inviting community members to participate (eight individuals)
and via an announcement in the community public forum (15
individuals). The group counts predominately developers, but
also some directors, project managers and CTOs of companies
using ROS are amongst the group members. Not all 23
participants joined all three meetings; attendance was in average
16 participants.

D. Data Collection

Due to geographical distribution of subjects, all interviews were
conducted remotely, using Google Hangouts. Each interview
lasted 40-60min and generated on average 14 pages of verbatim.
The ROS QA group meetings used an electronic meeting
platform, GoToMeeting. We transcribed the recorded audio,
generating 16 pages of verbatim per meeting on average.

E. Analysis

We analyzed the material from interviews and meetings
following the guidelines of Robson and McCartan [9] and of
Miles and coauthors [10]. The analysis was iterative, started
in early stages of data collection, and continued throughout
the study. First, the open coding enabled us to retrieve and
compare the text that has been linked to a particular theme.
We devised the codes by examining the data line-by-line using
the following questions as a lens: What is this saying? What
does it represent? What is happening in here? What is she
trying to convey? What is the process being described?

Then we searched for patterns in statements and ideas,
formulating themes. A theme is a concept, an implied topic

TABLE II
DESCRIPTION OF THE STUDY POPULATION

Participant Community Role Experience [Y] Country

1 Allura student 2 India
2 Allura software developer 12 USA
3 Allura senior software developer 14 USA

4 CKAN software developer 10 Slovenia
5 CKAN software engineer 12 UK
6 CKAN student 2 Slovenia
7 CKAN senior software engineer 8 UK

8 FOSSASIA software developer 2 India
9 FOSSASIA software engineer 8 India
10 FOSSASIA software engineer 10 India
11 FOSSASIA software developer 8 India
12 FOSSASIA software developer 7 India
13 FOSSASIA software engineer 13 India

14 Kernel Linux kernel engineer 18 Denmark
15 Kernel Linux kernel hacker 10 Denmark
16 Kernel principal engineer 23 Brazil
17 Kernel embedded Linux engineer 5 Spain
18 Kernel embedded Linux engineer 7 USA
19 Kernel Linux kernel engineer 10 USA
20 Kernel Linux kernel engineer 12 USA
21 Kernel senior project manager 30 USA

that organizes a group of repeating ideas that help to answer
the study question [9]. We used analytical memos to formulate
and work with the themes: the first author compiled a number
of memos based on the coding that summarized and aggregated
observations. These where used as discussion material between
the authors. Table III captures the identified themes, examples
of verbatim, and argues why a particular theme was selected.

IV. FINDINGS

Code review is an emotionally loaded practice, with lots of
exposure of reputation and ample opportunities for conflict. In
the following we present our findings, which explain how the
successful communities deal with these issues. In a nutshell, we
stipulate that the underlying reason behind code review success
in FOSS is hacker ethics. Himanen [11] argues that the hacker
ethics are more about moral virtues, in contrast to the protestant
work ethic, which stresses diligent hard effort. Hacker’s values,
according to Himanen include but are not limited to passion,
caring, creativity and joy in creating software.

A. Rejections & Negative Feedback
A publicly communicated rejection of a contribution is a
common experience in FOSS code review, across all studied
communities. The reports from the Linux kernel community
are most pronounced, where some even speak of “rejection
by default,” assuming the rejection as the initial position (Par-
ticipant 16). An examination of the Linux Kernel mailing list
archives shows that the language used can be intimidating.5 The
Linux kernel community uses frequent rejections and the harsh
language deliberately as a “congestion control” mechanism
(Participant 13) that limits the overflow of contributions.

How do contributors handle rejections and negative feedback
in code review? Given the vulnerability of contributors in the
code review process, one would expect that FOSS communities
would be decaying. Yet, the communities, we studied, are
flourishing. It appears that ability to deal with rejection is
sine qua non for succeeding in open source: “for someone to
succeed he needs to be able to handle rejections, rudeness,
and jarring-to-the-senses language” (Participant 14). In the
remainder of this paper we investigate the mechanisms that we
observed at work, that, among others, minimize the negative
effects of receiving critical feedback: learning from rejection,
the ethics of passion, the ethics of care, and reputation.

Implications. Crucially, none of the subject communities
attempt to eliminate rejection and negative feedback from
their development process. This is clearly not a route to deal
with the issues of code review. Anybody implementing a code
review process should institute an environment where rejections
are common, accepted, and normal. Mentoring and training
should be considered to support newcomers to the practice in
learning how to handle rejections.
Observation 1. Contributors are subject to frequent rejections
in code review. Communities neither reduce nor eliminate the
negative feedback, as they believe it is core to the practice.

5https://lkml.org/lkml/2018/8/3/621

https://lkml.org/lkml/2018/8/3/621


TABLE III
THEMES: EXAMPLES, DEFINITIONS, AND WHY THEY WERE CHOSEN

Theme Definition The theme in our data Example verbatim

Rejection An action taken by someone of not accepting,
trusting, or considering a contribution of another
community member. In the context of code review,
this refers plainly to the refusal to include the
contributed code in the main project.

Rejection is an inherent and dominat-
ing characteristic of the code review
process, thus it appears in our data
naturally. Rejections were discussed
frequently, both directly and indirectly.

I was completely depressed. It was some feed-
back I got on Friday. I have a patch which
has gone through 5 revisions . . . I had these 5
revisions and this has not happened! . . . I got
these two guys which they are anti-social. They
picked a piece of my code and say why do you
do this? This is crap, it will hurt performance . . .
They never say something nice. Participant 14

Iterative
improve-
ment

In code review, a cycle of repeated review, rejection,
and improvement (in response to criticism) of the
same contribution.

Iterative improvement (our name) was
brought up by several participants,
both in negative and positive sense.
Some participant perceive it as ”de-
pressing“ other see it as an opportunity
to learn and grow.

Only a certain type of people can handle this.
It’s not very healthy on the mental state. You
have to be able to handle this and very persis-
tent. The last patch I got in has gone through
7 revisions before it got in. Participant 14.

Passion A strong inclination toward a significant activity in
one’s life. Passion is often self-defining, pertinent to
one’s identity. It is a necessary component in reach-
ing the highest level of achievement, and contributes
to creativity. It affects autonomy, competence, and
relatedness [6].

Passion occurs directly numerous
times in data. Subjects also talk about
their community and work passion-
ately. They speak with certainty, in
higher pitched and faster voice that
demands attention, with positive and
assertive body language.

. . . down the line, you always get to be attached
to the project and get the passion of contribut-
ing and getting it out to the world so yes, it
is one of the reasons why people contribute.
Participant 8

Caring A relationship where the “caring” person acts in
response to a perceived need from the “cared-for.”
A caring relationship is a basic human instinct, a
universal virtue. The caring party engages in helping
the cared-for [7].

Caring repeatedly appears as a core
value in the interviews and discussions,
with symptomatic phrases like “I care,”

“we care”. We see both care for ab-
stract entities (the project, community,
quality) and for community members.

In FOSSASIA we care. It’s not like an average
job. We do it because we want to do it and we
care about the quality. Participant 10

Intrinsic
motiva-
tion

An internal desire to perform an activity. Self-
applied. Arises from a direct relationship between
the individual and the circumstances. The reward is
intangible—a sense of achievement or satisfaction.
Intrinsic behavior springs from the human need for
competence and self-determination, directly derived
from the emotions of interest and enjoyment [8].

While talking about their tasks, par-
ticipants repeatedly used phrases
like ”makes me happy“ or ”feels
good/nice.“

It feels nice doing something for the community.
There is satisfaction, especially when the PR
is merged. It feels nice! Participant 10

Extrinsic
motiva-
tion

Inspiration to act to gain some external reward [8],
valued by goal-oriented individuals. An extrinsic
reward is tangible or physically given to award
one’s participation. Extrinsic rewards are easier to
exploit in project management than intrinsic ones.

This theme emerged as participants
talked repeatedly about the signifi-
cance of reputation to themselves or
to their peers.

It’s a great piece of software and a success
story. Everybody wants to be part of it. Not
only that, having a reputation in the community
also counts. Participant 16

B. Iterative Improvement

Code review in the studied communities is iterative. Typically,
after a rejection, or in response to negative feedback, the
contributors implement necessary improvements, and ask for
another review. A pull request may go through 20 iterations of
review in the Linux community (Participant 15). In FOSSASIA,
the range is 1–4 iterations (Participant 12). This amount of
iterative scrutiny may appear intimidating at first. One could
be tempted to conclude that the comfort of the contributors is
sacrificed in the name of quality. However this is not the view
shown by our subjects: Iterative improvement is a mechanism
to turn the negative feedback into a positive experience—they
can advance their technical excellence in the process.

How learning affects code review? Ghosh and coauthors
observe that knowledge is a salient motive for participation
in FOSS [12], [13]. Lakhani and Wolf report that 45% of
the survey’s participants join a FOSS community to improve
their skills [14]. FOSS creates a positive environment for
learning [13]. Our subjects concur. They use terms such

as “opportunity to learn” (Participant 15) and “self-growth”
(Participant 21) when referring to processing feedback. The
rejection and negative feedback are rationalized from an issue
to a reason for individuals to join the process.

Observation 2: The iterative improvement cycle in code
review turns negative feedback into a positive opportunity
for learning and technical-growth by contributors. Receiving
feedback may even become a reason for participation.

Implications. Reacting to feedback in mature ways can be
learned. Organizations and FOSS communities should consider
using, for instance, coaches and mentors to help the participants
in code review to develop a constructive attitude to feedback.

C. Ethic of Passion

Passion is a strong inclination or desire toward an activity
that one likes or even loves, that one finds important, and
one invests time and energy in [15]. Passion is a necessary
component in reaching the highest level of achievement, and
contributes to creativity [15]. FOSS contributors review code



that does not concern them in any way out of their passion
for programming, passion for the community’s project, and
passion for excellence. “In open source or at least in the Linux
Kernel community it’s not a job like in a company, even though
most people are getting paid now. People have passion about
this. I think the most important thing is how they perceive the
criticism when they are passionate about the work. I think
we don’t see it as criticism” (Participant 20). Participants see
passion also as a help in coping with negative feedback. They
speak with passion and a sense of purpose.
How does passion shape the execution of code review?
Vallerand et al. propose a dualistic model of passion, dis-
tinguishing obsessive and harmonious passion [15]. Obsessive
passion is tied to a person’s self-esteem, ego. The person’s
identity is defined by the passion, thus she is compelled to
engage in the activity. Such person engages in an activity rigidly.
Obsessive passion generates strong negative effect when the
person is unable to be involved in the activity. Our data does not
show any strong links between the activity of code review and
the participants’ identity, and we do not observe any negative
effect regarding inability to perform code reviews. Hence, we
conclude that passion of the studied subjects is of the harmo-
nious type. Harmonious passion results from an autonomous
internalization of acceptance of the activity [15]. The desire to
participate in the activity is significant, but not overpowering.
Harmonious passion generates greater positive effect than obses-
sive passion. Individuals subject to harmonious passion demon-
strate better concentration, better flow, and flexible persistence.

According to Vallerand’s model, passion should positively
affect the quality of the performed code reviews, and our
subjects concur, for instance: “passion is the force behind the
quality of the work and people contributions” (Participant 11).
Interestingly, Bonneville-Roussy et al. [16] analyze the types of
goals that people subject to harmonious and obsessive passion
set. They note that only harmonious passion generates so called
mastery goals, which is consistent with our subjects being very
passionate about technical excellence, and the participation in
code reviews to achieve the excellence (see Observation 2).

Observation 3: The ethic of passion motivates FOSS con-
tributors. Consequently, they dedicate effort to code review,
deliver high quality, and are more resilient to rejection.

Implications. It is definitely difficult to operationalize passion.
Passion is innate, but it can be developed and nurtured like
any other value. It should be nurtured in software engineering
environments. If code review is important for an organization,
passion for the practice should clearly be key for selecting the
project members (as opposed to training skeptics to perform
code review). Since passion is contagious, organizations and
projects should strive to recruit passionate managers and team
members, and encourage them not to be shy about their passion.

D. Ethic of Caring

Toombs et al. [17] argue that hacker communities demonstrate
a nonliberal ethos, prizing self-determination, technological
expertise, independence, freedom from government, and

suspicion of authorities. However, for these communities
to function, care values are also important, those values of
collaboration, cooperation, and support of one another. For
FOSS contributors, work is about the power of human reunion,
about working together and caring for each other, for the
community, and for the project. “People in the community
care about the work. They care about the community, about
the product and its quality. Everybody cares. This caring
together makes a difference. You don’t feel [like if you were]
working for a company.” (Participant 11) Caring, as articulated
by the subjects, is the feeling and the display of concern and
attaching importance to the community work and its products.
How does care shape the execution of code review? Subjects
believe in a positive correlation between caring ethic, work
satisfaction and performance. Community members appear
to naturally care for the project and do not want anything that
would hamper its effectiveness and efficiency. Code review is
a way to execute that care for reviewers, to enforce the quality
requirements. Asked how people cope with a heavy review
load in the Linux community, Participant 16 stated “People
care about quality in this community. Not only that. People
are passionate about the project.” Participant 3 puts code
reviews and care as the two most important factors behind
the success of FOSS: “number one is peer review, so that is
one of the main practices. Number two, we try to do it with
care. Number three, we try to have as many tests as possible
and we try to have at most 80-90% code coverage.”

Paradoxically, caring is the motivating factor for some
subjects, also when they are reviewees. Care shown by
others may help to deal with negative aspects of code review.
Participant 1 names the caring attitude of his community
mentors as the main motivator behind his persistence in the
early days. Others talk about reviewers who not only criticize
contributions, but also offer help to improve them.

Observation 4: The ethic of care drives our subjects. They
use the gate of code review to exercise care for quality. Care
also helps them to control the negative feedback.

Implications. Care is easier to habituate than passion. Thus
companies and projects should find it easier to exploit it, by
instituting an ethic of care. A caring attitude can be rewarded
and encouraged. It appears that a successful implementation
of code review would be helped if leaders cared about how
contributors cope with feedback, and if they themselves shown
care for code review. Note that in many FOSS communities
the project leader is actually the most active code reviewer.

E. Intrinsic Motivation

Intrinsic refers to the innate, the natural, the part of a whole
that cannot be removed from the whole nor the whole from it.
Intrinsic motivation derives from internal satisfaction. Some
subjects directly name natural affinity for programming behind
their dedication to work (including code review), adherence to
best practice and assuring the overall quality of the tasks.

Altruism and enjoyment were observed to be the main
intrinsic motivation amongst our participants, for instance: “The



TABLE IV
EXTRINSIC MOTIVATORS IN THE STUDIED COMMUNITIES

Motivator Description

Reciprocity Known in the literature as the gift economy. Other community mem-
bers respond positively to your contributions, through mechanism like
reviewing code for each other, offering help, public appreciation, etc.

Participation
in success

Success is attractive, and contributors find it rewarding to be part of a
successful project, and being able to help, or given responsible roles
in it (such as code reviewer).

Status,
reputa-
tion

Work experience in a FOSS project accumulates technical exper-
tise and social capital elevating the contributor status. Since the
management hierarchy is much less important than in commercial
organizations, the status matters more here. Reputation and status
might be intangible, or expressed using a metric system (like Karma
points, forks, likes, etc.)

Career
building

Both intangible and “tangible” reputation accumulated in successful
open source projects, translate into carrier opportunities for engineers:
interesting job offers, presenting at conferences, etc.

Learning Code review, like any feedback process, provides peer-learning and
development opportunities. The reviewers act like masters in relation-
ship to apprentices (contributors). These roles can of course swap for
the same individuals.

Be
amongst
the best

Code-review introduces a high acceptance bar, deterring mediocre
submissions. Contributors’ apprehension of critique is an extrinsic
motivator that leads to better initial submissions and more diligent
improvement to feedback. Unlike the previous five, this is the only
negative extrinsic motivator (exercised by code reviewers) that we
have seen in our study.

feeling that your code is going to be used, maybe, for future.
Maybe its going to help some people and that’s something I
really like” (Participant 7). The FOSS motivation literature
suggest that enjoyment is a key motivator for contributors [14],
[18], [19]. Subjects are “happy” (Participant 7) or experience

“nice feelings” (Participant 21) when performing code review.
How does intrinsic motivation influence the execution of
code review? Intrinsically motivated employees perform well,
behave effectively, and remain loyal to the organization [20].
Rogstadius and coauthors determined that increased pay does
increase worker’s willingness to accept a task and faster
completion, but pay does not affect the quality of the work
[21]. They claim that, intrinsic motivators can lead to higher
quality work, in fact, higher than extrinsic rewards.

Our subjects agree with these findings, Participant 11 states
“It’s a great feeling. I don’t know how to describe it, but feels nice.
It drives me always to do more and better.” The intrinsic quality
in the execution of code review starts from the selection process.
Contributors voluntarily select the patch they are comfortable to
review. This is different from many closed-source environments,
where reviewers are assigned to review code.

Observation 5: Altruism, and enjoyment are key intrinsic
motivators for our subjects. Open source reviewers are
effectively volunteers (even if paid) and can choose review
tasks following intrinsic interests.

Implications. The very nature of intrinsic motivation is that it
cannot be easily controlled externally. Perhaps, the only way to
exploit it, is to watch for the symptoms (altruistic behaviours,
enjoyment), and take them as indicators of good code reviewers.
Furthermore, increasing the freedom of choice for reviewers
might increase their effectiveness.

F. Extrinsic Motivation

Perhaps the most interesting are the extrinsic motivators that
affect the code review, as they are the most controllable
mechanism in place. We analyze them in more detail than
the previous findings. Table IV summarizes the six extrinsic
motivators identified in our data. We devote a paragraph to
each below. We close each of them with a hypothesis on how
it could be exploited by project managers implementing code
review.
Reciprocity. In contrast to our present economy system, which
is based on quantifiable and measurable exchange transactions
using money as unit for measurement, the gift economy is
much more flexible. When giving, the contributor is owed [22].
There is an implicit moral obligation to reciprocate the gesture
of giving [23], but more subtle than just give-and-take. The
exchange does not require quantification and measurement, or
at least not explicitly. A FOSS community gives you learning,
expertise and the sense of togetherness. Your respond helping
others to experience the same. “I feel satisfied when I’m able
to give back something that I have” (Participant 6).

How shall one operationalize this motivator? First, the
situation where learning, expertise, and the sense of community
is offered to contributors and reviewers is easy to mirror
in other projects (both closed and open source). Second,
our data shows that it may be worth to make the software
engineering environment a relational (where relations grow
through reciprocal exchanges), not only transactional (where
time and effort is exchanged for a paycheck).
Participation in success. Success is attractive to hackers.
A successful project earns the respect of contributors, and
attracts more contributors. “It’s a great piece of software and
a success story. Everybody wants to be part of it” (Participant
16). Success is a general motivator, also for parties during
code review, which is seen as a key practice contributing to
the success in FOSS communities. It is hard to make a project
successful, however successful projects can exploit it to attract
community members, and can expect members to be more
motivated to contribute.
Status in the community. Reputation. Reputation is the most
pronounced extrinsic motivator in our data, out of all listed in
Table IV. This is in line with the rich literature about desire for
reputation as a motivation to participate in FOSS communities
overall [14], [24]–[26]. Some subjects partake in code review as
a way to gain reputation and recognition. Some go as far as to
name the status an “award” for code review. Some perform it
particularly diligently, as not to loose the hard earned reputation.
Work experience in an open source project accumulates
technical expertise and social capital elevating the contributor’s
status. Since the management hierarchy is much less important
than in commercial organizations, the status matters more here.

Reputation is motivating even for junior contributors.
Participant 1 reports how he felt having received praise
from his mentor for suggesting an alternative architectural
solution in a code review. The mentor recognized his technical
expertise: “I felt like I [was] made for this, I had to do this



more and more . . . four to five hours continuously, I coded
for the second issue to get the same feedback and I’m still
doing this continuously because that energizes me.”

Paradoxically, code reviewing earns reputation, but then it
may diminish the effect of code review on one’s contributions.
Some highly recognized senior contributors admit that they are
treated more respectfully in code review, because of their repu-
tation, or even that they are able to commit code without review.

How to exploit reputation and status in project organization
to boost code review? One simple idea is to use gamification.
Another idea is to let the code review practice contribute to
building a meritocratic structure in the project.

Today reputation is often gamified through some kind of
points system (karma), computed by the project development
platform. ROS community members, who work on implement-
ing the new code review process, believe that performing code
reviews should be reflected by rewards in such a point system.

Accruing and recognizing status based on technical contri-
butions leads to construction of meritocracy as a backbone
social hierarchy in the project. The senior members of ROS
community believe that meritocracy should be designed and
blended into the process of code review. So code review should
become an instrument into organizing the community—then,
as a side effect, the code review will work better itself.
Career building. Subjects recognize that active participation
in FOSS projects is a differentiating factor on the job market,
a tangible sign of expertise that can be leveraged in career
development. “It’s nice to build up a CV, it’s nice for an intel-
lectual perspective because once you get some code accepted,
it means that you are reaching some level of, you know some
stuff” (Participant 17). A company director active in the ROS
community meetings stated that his company benchmarks
candidates using community profiles and reputation.
Learning. Participants of code reviews learn from each other.
Subjects agree that is beneficial for many; for junior project
members, but also for the reviewers. “that’s how they [review-
ers] learn, maybe they will see in the code something that they
didn’t know about and it’s interesting to them so they will ask
about it, or they discuss it” (Participant 4). “Review is making
us better programmers. We learn when we review others code
and when our code is being reviewed. You learn from other
code and how they code and you learn from the feedback” (Par-
ticipant 14). This is the self-applying motivator of code review:
people participate for the direct educational benefit of it. Project
managers should remember that for many subjects not the mun-
dane and simple, but the stimulating and developing tasks are
motivating, and maintain the corresponding allocation of tasks.
Be amongst the best. Mediocrity is prosecuted with a harsh
language and strong tone in the Linux Kernel community.
This attitude aims at filtering the best and shields the project
from average contributions. “I think if you get just the best
people, perhaps the contributions are then the best. There
are many ways of interacting that requires this high touch.”
(Participant 16). While widely criticized online,6 even the

6For example: https://sage.thesharps.us/2015/10/05/closing-a-door/

critiques admit that code review communication needs to be
harsh. The problem they criticize is not harshness, but lack
of respect: “I need communication that is technically brutal
but personally respectful” (idem.). This is the only negative
motivator observed in the study; the main form of punishment
for under-performing used in FOSS communities.

Observation 6: An established reciprocal gift culture, sharing
in the fame of success, reputation, public visibility of status for
employers, learning opportunities, and punishment for not per-
forming ultimately the best are the key extrinsic motivators be-
hind work and code review of our subjects. These are all non-
monetary motivators that can be used to improve code review.

G. Trustworthiness of the findings

The validity of qualitative research is achieved through trust-
worthiness [27], [28]. Four constructs are used to establish
trustworthiness: credibility, transferability, dependability, and
confirmability.

Credibility establishes internal validity, which rivals hypothe-
ses exclusion [27], [29], [30]. It ensures the proposed theory
is reliable and representative of the raw data [31]. We used
peer debriefs and participant checks. One author conducted
the coding the other authors confirmed the emerging theory
and categories from the collected data. Participant checks have
been used for narrative accuracy and interpretive validity [27],
[29], [32]. Participants were asked to validate the authenticity
of the verbatim transcripts. They were also asked to comment
on the analytical interpretation. Their comments served as a
check on the viability of the coding.

Transferability refers to the extent to which the findings
of qualitative research, either partially or completely, can be
generalized or applied to similar settings [27]. We believe
that we meet the transferability requirements by providing
evidence that the research findings could be applicable to
other similar contexts (i.e., free and open source communities).
An audit trail is available and detailed enough to allow other
researchers to replicate a similar inquiry in similar communities
[33]. Sikolia et al. [28] suggest that researchers can ensure
transferability by describing the research clearly, explaining
the diverse experiences of the participants, implementing
methodology, interpreting the results, and adding contributions
from debriefing.

Dependability is synonymous with reliability in the tradi-
tional quantitative research. It is concerned with the ability
of the research to reach the same conclusions if replicated in
the same setting and conditions [27]. It measures replicability
or repeatability. This is done by a peer researcher who audits
and confirms that the research procedures are followed and
authentic. Shenton [27] suggests that the research report should
include discussions on dependability and that researchers should
comprehensively explain the research design and the data
gathering methods.

Confirmability refers to real objectivity in the study. It is
improved by triangulation of the study data and findings [27].
The study should reflect the preferences of the participants and

https://sage.thesharps.us/2015/10/05/closing-a-door/


not the researchers. Unlike quantitative studies, the direction
of a qualitative study is created by the participants and not the
researchers. The reflective discussion of the researcher promotes
the reality that the data indeed reflects the participants’ views
and not the researcher’s. An audit trail should also be discussed
in the study report as another tool to improve confirmability in
the study [27], [29]. This audit establishes confirmability [28].
An audit trail is when a detailed process of data collection,
data analysis, and interpretation of the data has been provided.

V. DISCUSSION

Our analysis shows that the human aspect of code review is
definitely not to be ignored. Human constructs such as handling
rejection, coping with close scrutiny, ethic of passion, ethic of
care, intrinsic and extrinsic motivations shape the execution
of code review in important and mostly positive ways. We
aggregate the most actionable consequences of the study, along
with proposals of actionable interventions in Table V.

Rejections are an inherent aspect of the code review process
(Observation 1). Software engineering environments should
institute a culture where rejections are embraced. A rejection
culture implies understanding and communicating that rejection
is not a failure. Otherwise it is very difficult to use code-review
to improve quality. Instead of being eliminated, rejection and
the negative experiences need to be sublimated into a learning
opportunity. Fortunately, this can be rationalized and trained
and many organizations use internal reviewing successfully as
way to raise quality of products.

According to Burke and Fiksenbaum passion enhances
mental and psychological well-being of the employees [34].
FOSS contributors (Observation 3) show as the most passionate
workers in engineering, and, as such, an excellent subject
to study this phenomenon further. Project and community
managers should definitely not ignore but cherish and support
this virtue of software teams.

While the ethic of care is not really associated with a
stereotypical antisocial programmer in public perception,
the FOSS contributors clearly exhibit traits of caring, at
least in the limited scope of their project and community
(Observation 4). That care is apparently developed through
existing mechanisms in the FOSS communities that can also
be used by others: the contagious care of project leaders,
mentoring arrangements, and a sense of shared ownership of
project’s design, goals, and ways of working.

It is difficult to directly implement exploitation of intrinsic
motivators in code review. Self-determination theory attempts
to differentiate factors that facilitate and that undermine
intrinsic motivation [35]. A sub-theory, the cognitive evaluation
theory, maintains that interpersonal events that lead to feelings
of competence enhance intrinsic motivation when they are
accompanied by a sense of autonomy [35], [36]. Autonomy
is described as the leeway that is given to the employee to
complete their job tasks [37].

Scientists do agree that satisfaction and performance in-
creases intrinsic motivation. Kraiger, et al. [38] argue that a
positive effect increases people’s enjoyment and interest. Erez

et, al. [39] found that a positive effect increases the intrinsic
attractiveness (i.e. goodness) of moderately desirable rewards.
It also affects satisfaction and performance during the activity
[39], [40]. Thus it would be extremely valuable to explore more
action oriented research involving intrinsic motivation in code
review, and collaborative software development in general.

The richness of extrinsic motivators is visible in the studied
communities (Observation 6). There are known results that
extrinsic motivators do correlate with performance and that
they synergize with intrinsic motivations [41], [42]. We list
some ideas on how to exploit them to improve code review in
the bottom most part of Table V.

VI. RELATED WORK

The subject of code review has been investigated from various
angles, yet, the human and social aspects of the process received
little attention. Bachelli and Bird [43] found that the top
motivation for code reviewers is finding defects, but in fact,
defect-related communication is proportionally small. Instead,
the reviewers are concerned with knowledge transfer, increasing
team awareness, and creating alternative solutions. The fabric
of code review is communication, knowledge transfer, praise
and critique. Code review is primarily a social activity.

Lussier [44] describes the experience of first rejection
of a contribution to the Wine project, an open source
implementation of the Windows API. While the team was
initially resentful, after three more rejections, the code was
accepted. Meanwhile the team developed a real sense of
ownership and pride in their work. Lussier recounts that the
passion of contributors is one of the reasons for the high quality
of code. These findings are in accordance with our conclusions.

Asynchronous reviews support team discussions and find
the same number of defects as collocated meetings [1]. They
provide passive listeners with learning experience; focus better
on the ideal solution, not on the defects, but still find defects
earlier than the scheduled reviews. Most FOSS reviews begin
within hours of submitting the change and are completed
within one or two days. It is key that the reviewed changes
are small, independent, and complete; typically 11—32 lines
of code. Rigby et al. point out that communities allow expert
developers to self-select submissions to review [1]. Selecting
tasks can allow experts to stay vested in a project. However,
their study misses the human and social factors of code review.
We show that these are important. They sway the execution
positively and steer the outcome to higher quality. They also
appear to be exploitable in project organization.

Votta [45] suggests that face-to-face code review meetings
of the whole team should be replaced with depositions. A
deposition is a three-person team: an author, a moderator, and
a reviewer. To save costs, the moderator can be eliminated.
The results of such meetings are just as effective as full-team
meetings. Our study indicates that human and social aspects of
code review can counteract the impersonality of asynchronous
meetings, and they can still allow for many experts to interact.

German and colleagues [46] studied OpenStack. They found
twenty-four percent of participants subject to reviews stated that



TABLE V
AN INTERPRETATION OF THE STUDY: SUGGESTIONS OF ACTIONABLE INTERVENTIONS

Consequence of Observations Examples of consequent actions/interventions for projects
A working environment valuing code
review embraces rejection, as rejection
is inherent and valuable in code review.
(cf. Observation 1)

– Provide code review guidelines on how to communicate constructive feedback and how to
interpret feedback.

– Include handling rejections into training for new engineers. Rejection is not failure.
– Establish an in-house counseling, mentoring or coaching function for engineers that maintains

understanding of the positive value of code review.

Iterative improvement is an important
method of programming work, besides
the pervasive striving for perfection.
(cf. Observation 2)

– Promote code review practice as a knowledge sharing and learning opportunities.
– Reward and appreciate learning, and striving for excellence both in teams and individuals.
– Democratize the code review process. Allow reviewers to select what they want to review.

The ethic of passion should be nurtured
in project teams and communities.
(cf. Observation 3)

– Recruit passionate developers if possible. Seek passion for code review in particular. Appoint
passionate individuals to lead software engineers.

– Eliminate toxic sources that deplete passion from engineers.
– Reduce tasks that do not coincide with passions.
– Include passion and self-determination as a parameter when allocating tasks. FOSS contributors

choose what to work on, what to review, when to do it, etc.

The ethic of care is a positive contrib-
utor in a project team involved in code
review, worthwhile cultivating.
(cf. Observation 4)

– Care and commitment shall be demonstrated at every level of the software team. Leaders
should review code diligently. Many FOSS project leaders are top code reviewers.

– The FOSS we studied, nurture care by establishing mentor–contributor relationships that last
up to five years. Developing relationships seems key to the ethic of care.

– Develop a team as a community, especially regarding reviews. Develop “our way” of doing
things and enforce it in reviews; emphasize common ownership, methods, designs and successes.

Nurturing engineers’ intrinsic motives,
altruism and enjoyment. (cf. Observa-
tion 5)

– Intrinsic motives are very difficult to exploit, and little known results of action research
regarding that exist in software engineering. To the best of our knowledge, so far this is
mostly an area for future research.

Many non-monetary exploitable extrin-
sic motives drive FOSS contributors
to make code-review effective. (cf.
Observation 6)

– Do not neglect non-monetary non-material rewards, but develop a relational environment in
your team, where rewards come from collaboration.

– If your project is successful, use it to attract motivated community members.
– Build a meritocratic hierarchy, a key motivator for performing well in code reviews.
– You might want to use a point system to gamify gaining reputation and status.
– Acknowledge and reward individuals and group achievements regularly, with growth

opportunities (promotions, conference talks, etc.).
– Use code review as a key learning and development opportunity for engineers in your team.

they are treated unfairly occasionally and fifteen percent feel
they are treated unfairly often. Reviewers who were questioned
stated that they conduct reviews fairly (60%), but some stated
that they conduct reviews unfairly occasionally (40%). They
stated that contributions are prioritized for review by the
developer’s expertise, the importance of the patch, the author
of the patch, the difficulty of the patch, or the freshness of
the patch, which can affect consistency and perceptions of
fairness. Newcomers are often treated with a negative bias, as
well. These findings emphasize the importance of the human
and social aspect of code review.

VII. CONCLUSION

We had set out to explore why code review works for
open source software communities. We interviewed 21 open
source developers from four different successful communities
and collected data from meetings of a community debating
introduction of code review. Having analyzed the data, we
find that, besides the well known project management and QA

reasons for success of the code review practice, a number of
human and social aspects are key—they create a psychological
and social environment that is friendly for development of
successful code review interactions.

In order to encourage future work, we examined the data, and
extracted patterns of management, behavior, and other elements
of the FOSS work environment pertaining to code review that
appear to be replaceable in other contexts (Table V). We hope
that these can be a useful inspiration for project and community
managers. Fore-mostly, we hope that they can inspire action
research interventions into both closed and open source projects,
and that this way we can obtain a better understanding how to
proactively control the quality of code review.

Acknowledgment: Supported by the ROSIN project under
the European Union’s Horizon 2020 research and innovation
programme, grant agreement No 732287. We would like to
thank the interviewees for their participation and making this
research possible.



REFERENCES

[1] P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German, “Con-
temporary peer review in action: Lessons from open source development,”
IEEE software, vol. 29, no. 6, pp. 56–61, 2012.

[2] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proceedings
of the 30th international conference on Software engineering. ACM,
2008, pp. 541–550.

[3] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern
code reviews in open-source projects: Which problems do they fix?”
in Proceedings of the 11th working conference on mining software
repositories. ACM, 2014, pp. 202–211.

[4] A. Aurum, H. Petersson, and C. Wohlin, “State-of-the-art: software
inspections after 25 years,” Software Testing, Verification and Reliability,
vol. 12, no. 3, pp. 133–154, 2002.

[5] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
Foundations of empirical software engineering: the legacy of Victor R.
Basili, vol. 426, no. 37, 2005.

[6] R. J. Vallerand, C. Blanchard, G. A. Mageau, R. Koestner, C. Ratelle,
M. Léonard, M. Gagné, and J. Marsolais, “Les passions de l’ame: on
obsessive and harmonious passion.” Journal of personality and social
psychology, vol. 85, no. 4, p. 756, 2003.

[7] N. Noddings, Caring: A relational approach to ethics and moral
education. Univ of California Press, 2013.

[8] R. M. Ryan and E. L. Deci, “Intrinsic and extrinsic motivations: Classic
definitions and new directions,” Contemporary educational psychology,
vol. 25, no. 1, pp. 54–67, 2000.

[9] C. Robson and K. McCartan, Real world research. John Wiley & Sons,
2016.

[10] M. B. Miles, A. M. Huberman, and J. Saldana, “Qualitative data analysis:
A method sourcebook,” CA, US: Sage Publications, 2014.

[11] P. Himanen, The hacker ethic. Random House, 2010.
[12] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles, “Free/libre and open

source software: Survey and study,” 2002.
[13] R. A. Ghosh, “Understanding free software developers: Findings from

the FLOSS study,” Perspectives on free and open source software, pp.
23–46, 2005.

[14] K. R. Lakhani, R. G. Wolf, and Others, “Why hackers do what they
do: Understanding motivation and effort in free/open source software
projects,” Perspectives on free and open source software, vol. 1, pp. 3–22,
2005.

[15] R. J. Vallerand, S.-J. Salvy, G. A. Mageau, A. J. Elliot, P. L. Denis,
F. M. E. Grouzet, and C. Blanchard, “On the role of passion in
performance,” Journal of personality, vol. 75, no. 3, pp. 505–534, 2007.

[16] A. Bonneville-Roussy, G. L. Lavigne, and R. J. Vallerand, “When passion
leads to excellence: The case of musicians,” Psychology of Music, vol. 39,
no. 1, pp. 123–138, 2011.

[17] A. L. Toombs, S. Bardzell, and J. Bardzell, “The proper care and feeding
of hackerspaces: Care ethics and cultures of making,” in Proceedings
of the 33rd annual ACM conference on human factors in computing
systems. ACM, 2015, pp. 629–638.

[18] K. R. Lakhani and E. Von Hippel, “How open source software works:
” free” user-to-user assistance,” Research policy, vol. 32, no. 6, pp.
923–943, 2003.

[19] B. Luthiger and C. Jungwirth, “The Chase for OSS Quality: The Meaning
of Member Roles, Motivations, and Business Models,” in Emerging Free
and Open Source Software Practices. IGI Global, 2007, pp. 147–168.

[20] R. Q. Danish, M. K. Khan, A. U. Shahid, I. Raza, and A. A. Humayon,
“Effect of intrinsic rewards on task performance of employees: Mediating
role of motivation.” International Journal of Organizational Leadership,
vol. 4, no. 1, 2015.

[21] J. Rogstadius, V. Kostakos, A. Kittur, B. Smus, J. Laredo, and M. Vukovic,
“An assessment of intrinsic and extrinsic motivation on task performance
in crowdsourcing markets.” ICWSM, vol. 11, pp. 17–21, 2011.

[22] E. S. Raymond, “The Cathedral and the Bazaar,” 1998.
[23] D. Zeitlyn, “Gift economies in the development of open source software:

anthropological reflections,” Research policy, vol. 32, no. 7, pp. 1287–
1291, 2003.

[24] J. Hahn, J. Y. Moon, and C. Zhang, “Emergence of new project
teams from open source software developer networks: Impact of prior
collaboration ties,” Information Systems Research, vol. 19, no. 3, pp.
369–391, 2008.

[25] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software devel-
opers in Open Source projects: an Internet-based survey of contributors
to the Linux kernel,” Research policy, vol. 32, no. 7, pp. 1159–1177,
2003.

[26] J. Lerner and J. Tirole, “Some simple economics of open source,” The
journal of industrial economics, vol. 50, no. 2, pp. 197–234, 2002.

[27] A. K. Shenton, “Strategies for ensuring trustworthiness in qualitative
research projects,” Education for information, vol. 22, no. 2, pp. 63–75,
2004.

[28] D. Sikolia, D. Biros, M. Mason, and M. Weiser, “Trustworthiness of
grounded theory methodology research in information systems,” 2013.

[29] S. C. Brown, R. A. Stevens, P. F. Troiano, and M. K. Schneider,
“Exploring complex phenomena: Grounded theory in student affairs
research,” Journal of college student development, vol. 43, no. 2, pp.
173–183, 2002.

[30] G. Rolfe, “Validity, trustworthiness and rigour: quality and the idea of
qualitative research,” Journal of advanced nursing, vol. 53, no. 3, pp.
304–310, 2006.

[31] D. Straub, M.-C. Boudreau, and D. Gefen, “Validation guidelines for
IS positivist research,” The Communications of the Association for
Information Systems, vol. 13, no. 1, p. 63, 2004.

[32] M. Carcary, “The Research Audit Trial: Enhancing Trustworthiness in
Qualitative Inquiry.” Electronic Journal of Business Research Methods,
vol. 7, no. 1, 2009.

[33] A. Cooney, “Rigour and grounded theory,” Nurse researcher, vol. 18,
no. 4, pp. 17–22, 2011.

[34] R. J. Burke and L. Fiksenbaum, “Work motivations, satisfactions,
and health among managers: Passion versus addiction,” Cross-Cultural
Research, vol. 43, no. 4, pp. 349–365, 2009.

[35] R. M. Ryan and E. L. Deci, “Self-determination theory and the facilitation
of intrinsic motivation, social development, and well-being.” American
psychologist, vol. 55, no. 1, p. 68, 2000.

[36] F. P. Morgeson, K. Delaney-Klinger, and M. A. Hemingway, “The
importance of job autonomy, cognitive ability, and job-related skill
for predicting role breadth and job performance.” Journal of applied
psychology, vol. 90, no. 2, p. 399, 2005.

[37] C. J. Fornaciari and K. L. Dean, “Experiencing organizational work de-
sign: Beyond hackman and oldham,” Journal of Management Education,
vol. 29, no. 4, pp. 631–653, 2005.

[38] K. Kraiger, R. S. Billings, and A. M. Isen, “The influence of positive
affective states on task perceptions and satisfaction,” Organizational
Behavior and Human Decision Processes, vol. 44, no. 1, pp. 12–25,
1989.

[39] A. Erez and A. M. Isen, “The influence of positive affect on the
components of expectancy motivation.” Journal of Applied psychology,
vol. 87, no. 6, p. 1055, 2002.

[40] B. M. Staw and S. G. Barsade, “Affect and managerial performance:
A test of the sadder-but-wiser vs. happier-and-smarter hypotheses,”
Administrative Science Quarterly, pp. 304–331, 1993.

[41] J. Boiché, P. G. Sarrazin, F. M. Grouzet, L. G. Pelletier, and J. P. Chanal,
“Students’ motivational profiles and achievement outcomes in physical
education: A self-determination perspective.” Journal of Educational
Psychology, vol. 100, no. 3, p. 688, 2008.

[42] L. G. Pelletier and P. Sarrazin, “Measurement issues in self-determination
theory and sport.” 2007.

[43] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the 2013 international conference
on software engineering. IEEE Press, 2013, pp. 712–721.

[44] S. Lussier, “New tricks: How open source changed the way my team
works,” IEEE software, vol. 21, no. 1, pp. 68–72, 2004.

[45] L. Votta, “Does the Modern Code Inspection Have Value,” in Presentation
at the NRC Seminar on Measuring Success: Empirical Studies of Software
Engineering, 1999.

[46] D. M. German, G. Robles, G. Poo-Caamaño, X. Yang, H. Iida, and
K. Inoue, “Was my contribution fairly reviewed?: a framework to study
the perception of fairness in modern code reviews,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 523–534.


