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Abstract—The adaptive multiple importance sampling (AMIS)
algorithm is a powerful Monte Carlo tool for Bayesian estimation
in intractable models. The uniqueness of this methodology from
other adaptive importance sampling (AIS) schemes is in the
weighting procedure, where at each iteration of the algorithm,
all samples are re-weighted according to the temporal determin-
istic mixture approach. This re-weighting allows for substantial
variance reduction of the AMIS estimator, at the expense of
an increased computational cost that grows quadratically with
the number of iterations. In this paper, we propose a novel
AIS methodology which obtains most of the AMIS variance
reduction while improving upon its computational complexity.
The proposed method implements an approximate version of
the temporal deterministic mixture approach and requires sub-
stantially less computation. Advantages are shown empirically
through a numerical example, where the novel method is able to
attain a desired mean-squared error with much less computation.

I. INTRODUCTION

Importance sampling (IS) methods are widely employed in
signal processing to perform approximate Bayesian inference.
In particular, they are implemented when the posterior proba-
bility density function (pdf) of a random variable of interest,
called the target distribution, is complicated (i.e., its moments
cannot be analytically computed and generating samples from
this pdf is impossible). IS samples from a simpler proposal pdf,
assigning weights to them according to the ratio between the
target and the proposal. Although the validity of this approach
is guaranteed under mild assumptions, the variance of the
estimator depends notably on the discrepancy between the
shape of the proposal and the target [1], [2].

In order to overcome this problem, substantial effort has
been devoted to the design of adaptive IS (AIS) schemes,
where the proposal density is updated by learning from all the
previously generated samples [3], [4]. Population Monte Carlo
(PMC) schemes [5]–[9] and the adaptive population impor-
tance samplers (APIS) [10], [11] are two general approaches
that combine the proposal adaptation idea with the cooperative
use of a cloud of proposal pdfs. In the PMC schemes a pop-
ulation of proposals is updated, e.g., changing their location
parameters, by the use of resampling steps [2, Chapter 14],
[5], [9]. In other methodologies, such as mixture PMC (M-
PMC), all the parameters of a mixture proposal distribution are
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adapted [6]. Moreover, different types of adaptation have been
proposed, for instance, by the use of MCMC outputs [11]–
[14]. Some of these techniques consider the application of the
so-called deterministic mixture weighting procedure, which
provides more efficient IS estimators when several different
proposal pdfs are jointly employed [15]–[17].

The adaptive multiple importance sampling (AMIS) algo-
rithm [18] occupies a central place in the literature, due
to its simplicity and efficiency. In AMIS, a single proposal
is adapted by computing empirical moment estimators, but
a temporal deterministic mixture approach is employed to
build the importance weights [15], [16]. For this reason, the
resulting estimators often present smaller variance than the
estimators corresponding to other AIS methods [17]. However,
this weight construction implies that all the previous proposals
must be evaluated at the new samples, and also that the new
proposal pdf must be evaluated at all the previous samples,
thus yielding an increase in computational cost as the algo-
rithm evolves in time.

In this work, we develop a novel strategy for reducing the
computation of the AMIS algorithm. In particular, we formu-
late an approximation to the temporal deterministic mixture
approach by reducing the number of mixture components in
the denominator of the importance weights. The approximation
is based on the idea that after a certain number of iterations,
the discrepancy between subsequently adapted proposal distri-
butions is minimal. We also develop an automated version of
the algorithm which detects the number of iterations at which
the approximation is appropriate.

II. PROBLEM FORMULATION

We consider an unknown vector x ∈ Rdx that must be
estimated from a set of observed data y ∈ Rdy . A statistical
model that relates the unknowns and the data is assumed to
be known and summarized in the posterior pdf defined as

p(x|y) =
`(y|x)h(x)

p(y)
∝ `(y|x)h(x), (1)

where `(y|x) is the likelihood function, h(x) is the prior
pdf, and Z ≡ p(y) is the normalization factor. We denote
π(x) ≡ `(y|x)h(x). The objective is to approximate the
posterior p(x|y) and moments of the form

I =

∫
g(x)p(x|y)dx, (2)



where g(x) is an integrable function w.r.t. the target distribu-
tion. In this paper, we focus on MC-based sampling [1], [2],
and in particular on AIS for the approximation task.

III. BACKGROUND

A. Importance sampling (IS)

IS is a Monte Carlo methodology for approximating dis-
tributions and their moments. In its basic implementation,
M samples are simulated from a proposal distribution q(x)
as x(m) ∼ q(x) for m = 1, . . . ,M . An importance weight is
assigned to each sample as w(m) = π(x(m))

q(x(m))
for m = 1, ...,M .

Under mild conditions, IS allows for an approximation of (2)
through the the self-normalized IS estimator if Z is unknown,

Î =

M∑
m=1

w̄(m)g(x(m)), (3)

where w̄(m) = w(m)∑M
j=1 w

(j) are the normalized weights. It is
well-known that the variance of (3) augments with the mis-
match between the proposal distribution q(x) and |g(x)|π(x).
For this reason, adaptive mechanisms are often employed.

B. Adaptive importance sampling (AIS)

The standard AIS methodology is an iterative process which
provides a gradual evolution of the proposal density, becoming
closer and closer to the target pdf. Generally, one considers
a parametric proposal density. We denote the vector of the
proposal’s parameters as θ. The procedure consists of three
basic steps: generation of samples from a proposal or set of
proposals (sampling), calculation of the importance of each
of the samples (weighting), and updating the parameters that
define the proposal to obtain the new proposal for the next iter-
ation (adapting). Typically, a standard AIS approach considers
a unique proposal with parameters θt (where t represents the
t-th iteration of the algorithm) and, with the adaptation, we
have θt → θ∞ as t → ∞. Namely, a classical AIS scheme
often reaches a stable configuration after a certain number of
iterations [3], [4]. The adaptation is often implemented by the
use of empirical moment estimators [4], [19].

C. Adaptive Multiple Importance Sampling (AMIS)

In the AMIS algorithm, one proposal is adapted over the
iterations. The adaptive procedure consists of estimating the
moments of the target with the available set of weighted
samples, and fitting the moments of the proposal (e.g., mean
and covariance matrix), as in classical AIS. Its key feature
is the re-weighting of all the past samples with a temporal
mixture weight where the whole sequence of proposals is used
in the denominator of the weights [18], [20]. AMIS is outlined
in Table I. Note that we denote θj = {µj ,Σj}.

It is important to notice that: (a) the temporal mixture in
the denominator of the weight calculation is incremental (Step
2b., Table I) and at each iteration a new mixand is added
with parameters obtained using all samples and weights from

Algorithm: AMIS
We denote θj = {µj ,Σj}.
1. Initialization: Select the initial proposal q(x;θ1).
2. For t = 1, ..., T

a. Draw M samples from the current proposal:
x
(m)
t ∼ q(x;θt), m = 1, . . . ,M.

b. Weighting and re-weighting procedure:

w
(m)
τ =

π(x
(m)
τ )

1
t

∑t
j=1 q(x

(m)
τ ;θj)

,
m = 1, . . . ,M

τ = 1, . . . , t.

c. Normalize the importance weights,

w̄
(m)
τ =

w
(m)
τ∑t

j=1

∑M
m=1 w

(m)
j

,
m = 1, . . . ,M

τ = 1, . . . , t.

d. Update the proposal parameters,

µt+1 =
t∑

j=1

M∑
m=1

w̄
(m)
j x

(m)
j ,

Σt+1 =
t∑

j=1

M∑
m=1

w̄
(m)
j (x

(m)
j − µt+1)(x

(m)
j − µt+1)ᵀ

3. Return {x(m)
t , w

(m)
t }Mm=1 for t = 1, ..., T .

TABLE I: The AMIS algorithm.

previous iterations; and (b) all the previous samples are re-
weighted at each iteration, considering the new denominator
of the weights (with an additional component).

AMIS performs very well in different scenarios [4], [18],
[20]. However, its computational cost increases with t. Specif-
ically, the number of proposal evaluations is O(MT 2), which
makes AMIS unfeasible after a certain number of iterations.

IV. PROPOSED ALGORITHM

We introduce efficient adaptive multiple importance sam-
pling (EAMIS), a novel AIS methodology which performs
similarly to AMIS, but with a reduced computational cost. The
efficiency of the scheme comes at the expense of a bias which
vanishes over iterations. The algorithm is shown in Table II.

A. Motivation

An interesting solution to consider for reducing the compu-
tational complexity of the re-weighting procedure is to approx-
imate the full temporal mixture using a mixture distribution
with a small number of components (reduced mixture). To
avoid additional computation, it is also desirable that we make
this approximation using only mixture components that we
have already evaluated. Consider that at iteration t > K we
would like to update the weights of samples from the previous
iteration. Instead of evaluating the new proposal q(x;θt) for
all previous samples (as in Step 2b., Table I), we would like
to make the following approximation of the temporal mixture,

1

t

t∑
j=1

q(x;θj) ≈
K∑
j=1

αjq(x;θj). (4)

The goal is to choose the weights αj (for j = 1, ...,K) to
justify the above approximation for all t > K.



Algorithm: EAMIS
We denote θj = {µj ,Σj}.
1. Initialization: Select the initial proposal q(x;θ1).
2. For t = 1, ..., T

a. Draw M samples from the current proposal:
x
(m)
t ∼ q(x;θt), m = 1, . . . ,M.

b. Weighting and re-weighting procedure:
if (t < K) then:

w
(m)
τ =

π(x
(m)
τ )

1
t

∑t
j=1 q(x

(m)
τ ;θj)

,
m = 1, . . . ,M

τ = 1, . . . , t.

else:

w
(m)
τ =

π(x
(m)
τ )

1
t

∑K−1
j=1 q(x

(m)
τ ;θj) + t−K+1

t
q(x

(m)
τ ;θ`∗ )

,

m = 1, . . . ,M , τ = 1, . . . , t, `∗ = max(τ,K).
c. Normalize the importance weights (see Table I).
d. Update proposal parameters (see Table I).

3. Return {x(m)
t , w

(m)
t }Mm=1 for t = 1, ..., T .

TABLE II: The EAMIS algorithm.

B. Algorithm Summary

Suppose that we run the AMIS algorithm for K iterations.
In this scenario, we have generated samples x

(m)
t ∼ q(x;θt)

for m = 1, . . . ,M and t = 1, . . . ,K. Following the standard
procedure of AMIS, we have a set of weights given by,

w(m)
τ =

π(x
(m)
τ )

1
K

∑K
j=1 q(x

(m)
τ ;θj)

, (5)

for m = 1, . . . ,M and τ = 1, . . . ,K. Now suppose that we
generate x

(m)
K+1 ∼ q(x;θK+1) for m = 1, . . . ,M . According

to the AMIS procedure, we need to evaluate q(x;θK+1) for
all previous samples in order to reweigh the previous samples.
Assuming that ‖µK+1−µK‖ < γ1 and ‖ΣK+1−ΣK‖ < γ2
for 0 < γ1, γ2 << 1, where ‖ · ‖ denotes a norm (e.g., L2

or Frobenius), we can justify the following approximation:
q(x;θK+1) ≈ q(x;θK). Intuitively, this means that evaluating
q(x;θK+1) is approximately the same as evaluating q(x;θK)
for all previous samples and weights. However, we have
already evaluated q(x;θK) to apply the temporal deterministic
mixture approach at iteration K in (5). Then, re-weighing the
previous samples is equivalent to updating the mixture weight
for q(x;θK) as follows,

w(m)
τ =

π(x
(m)
τ )

1
K+1

∑K−1
j=1 q(x

(m)
τ ;θj) + 2

K+1q(x
(m)
τ ;θK)

, (6)

for m = 1, . . . ,M and τ = 1, . . . ,K. For the weights
{w(m)

K+1}Mm=1, we use q(x;θ1), . . . , q(x;θK−1) and the newly
adapted q(x;θK+1) for the weight computation. In essence,
we can summarize the re-weighting procedure of the EAMIS
algorithm for iterations t ≥ K with the following:

w(m)
τ =

π(x
(m)
τ )

1
t

∑K−1
j=1 q(x

(m)
τ ;θj) + t−K+1

t q(x
(m)
τ ;θ`∗)

, (7)

for m = 1, . . . ,M and τ = 1, . . . , t. Here `∗ depends on τ
and is defined as `∗ = max(τ,K). Therefore, after iteration
K we reweigh samples generated in iterations τ = 1, . . . ,K

by updating the contribution of q(x;θK), while for τ > K
we update the contribution of the proposals used to generate
samples in that iteration. This has interesting theoretical guar-
antees. Mainly, for the samples generated at iteration t ≥ K,

w
(m)
t →

π
(
x
(m)
t

)
q
(
x
(m)
t ;θt

) as t→∞, (8)

which are just the standard IS weights. This result will
provide an important insight related to the convergence of the
methodology that will be studied in the extension of this work.

Other variants of this approximation could be designed,
however, the assumption must hold that for all t > K
q(x;θt) ≈ q(x;θK). Note that, for a great enough K, this
assumption is fulfilled since the adaptation is performed as
in a standard AIS scheme where θt → θ∞ for t → ∞.
We emphasize that the key contribution is that by leveraging
this approximation, we can approximate the weights from the
previous iterations of the algorithm with a substantial decrease
in the computational cost of evaluating proposals.

C. Discussion on Computational Complexity

The number of proposal evaluations required at each itera-
tion of the AMIS algorithm is O(M(2t−1)) for t = 1, . . . , T .
The total complexity is then O(MT 2). For the proposed
method, the per iteration complexity is the same as AMIS
for the first K iterations. For t > K, we exploit the fact
that besides re-weighting the temporal mixtures for the pre-
vious iterations, we only need to evaluate K new proposals
at each iteration. Then the total complexity of EAMIS is
O(MK(T −K) +

∑K
t=1M(2t− 1)). We can summarize this

complexity as O(MKT ). This gives the ability to choose K
to achieve a desired algorithm complexity. We note that if K
is chosen too small, then there is risk that the approximation
q(x;θt) ≈ q(x;θK) may not hold. In the following section,
we discuss a strategy to automatically choose K such that the
approximation is satisfied with limited computation.

D. Automatically Choosing K

Here we consider a mechanism automatically selecting K.
Our goal is to detect the iteration number in which the
proposal adaptations become minuscule, i.e., the value of
K for which q(x;θK+1) ≈ q(x;θK). To do this, at each
iteration we can consider a discrepancy measure D(·) between
the current proposal and the newly adapted proposal. If
D(q(x;θt+1), q(x;θt)) < ε, then we set K = t. There are
many discrepancy measures that can be chosen. For example,
we can simply use the L2 norm of the difference between
the means ‖µt+1−µt‖2. When the proposal distributions are
Gaussian, we can directly evaluate the Kullback-Leibler diver-
gence (KLD) using a closed-form expression. We note that the
KLD is not a true distance measure since it is asymmetrical,
however, it does take into account the covariance structure of
each distribution. We also point out that evaluation of the KLD
requires both the determinant of the covariance matrix and its
inverse (precision matrix), which will include an additional
computational cost that will depend on the dimension dx.
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Fig. 1: Summary of results from the numerical example.

V. NUMERICAL EXAMPLES

A. 2-Dimensional Banana Target
Suppose that x = [x1, x2]ᵀ ∈ R2. For this example, the

target distribution of interest is a two-dimensional banana-
shaped distribution,

ψ(x) = exp

(
− 1

2η21

(
4−Bx1 − x22

)2 − x21
2η22
− x22

2η23

)
. (9)

We note that the target π(x) ∝ ψ(x). For our simulations, we
set the parameters as follows: η1 = 4, η2 = 3.5, η3 = 3.5,
and B = 10. Through numerical integration over a grid, we
determined the normalizing constant and mean of this target
as Z ≈ 7.9978 and Eπ[X] ≈ [−0.4843, 0]ᵀ respectively. We
simulated the original AMIS algorithm [18], two variants of
the discarding AMIS (D-AMIS) approach in [21] (one which
chooses a heuristic discarding rate and one which chooses
a discarding rate to optimize effective sample size), and our
novel EAMIS approach. For each methodology, we initialized
the mean as µ1 ∼ U([−5,−2]2) and set the initial covariance
matrix as Σ1 = 5I2. For the EAMIS methodology, we
tested K ∈ {15, 20, 25, 30} and also a variant with automatic
selection of K. For the automated EAMIS, our discrepancy
measure was the L2 norm of the difference of the means,
i.e., ‖µt − µt−1‖2 with threshold ε = 0.005. The goal was
to estimate the mean of the target distribution, Eπ[X]. We
averaged our results over 1000 MC simulations.

Figure 1a plots the evolution of the average mean-squared
error (MSE) over iterations. The performance of our algorithm
is similar to that of AMIS. The methods proposed in [21]
perform poorly in this example, even when the optimized
variant is used. It is interesting to point out that the discarding
step in D-AMIS results in ’noisy’ performance, so despite
the D-AMIS methods have smallest computational complexity,
the performance does not compare to AMIS or to the pro-
posed methodology. Figure 1b highlights the advantage of the
proposed method over the AMIS algorithm. We can see that
EAMIS is able to achieve lower MSE at a faster computational
rate. In other words, AMIS requires many more evaluations
of the proposal distribution in order to achieve the same or
better performance as EAMIS. We also plot a histogram of the
chosen K in the automated version of the proposed algorithm

in Figure 1c. We can see that, depending on the specific
initialization of the proposal distribution, the algorithm results
in a different value of K on each run. This helps to eliminate
the concern of choosing an improper value of K, which would
cause a negative effect in the performance of EAMIS.
B. 10-Dimensional Banana Target

We extended the previous example to one of higher dimen-
sion, such that x ∈ R10. The target of interest becomes

π(x) ∝ ψ([x1, x2]ᵀ)

10∏
j=3

N (xj ; 0, 1), (10)

where N (xj ; 0, 1) denotes the pdf of a standard normal
distribution. For this example, Z ≈ 7.9978 and target mean
Eπ[X] ≈ [−0.4843, 0, . . . , 0]ᵀ. We simulated AMIS and
the automated EAMIS using M = 2000. Each method ran
until 107 proposal evaluations were reached. The error metric
utilized was average MSE for the estimation of Eπ[X] and the
mean-absolute error (MAE) for the estimation of Z. Results
were averaged over 1000 MC simulations and are shown in
Table III. It is clear from the results that the EAMIS technique
outperforms AMIS. For AMIS to achieve comparable perfor-
mance, many more proposal evaluations would be needed,
emphasizing the key advantage of EAMIS.

MSE(Eπ [X]) MAE (Z)
AMIS 0.0174 0.7853

EAMIS 0.0061 0.2538

TABLE III: Results for 10-dimensional banana target.

VI. CONCLUSIONS
In this work, we proposed a novel adaptive importance

sampling (AIS) scheme which improves upon the compu-
tational disadvantages of the adaptive multiple importance
sampling (AMIS) algorithm. The method employs the re-
weighting procedure of AMIS by approximating the temporal
deterministic mixture without the need of evaluating new
proposals for samples drawn in past iterations. Furthermore,
we developed an automated version of the scheme, which
robustly detects when the approximation of the temporal mix-
ture is valid. Simulation results indicate that the novel method
outperforms AMIS as the number of proposal evaluations to
achieve a desired mean-squared error (MSE) is much less for
the proposed method than for AMIS.
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