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Abstract

Particle filters (PFs) are recursive Monte Carlo methods for online tracking and forecasting in state-space
systems. They are very general and, hence, can be used with a broad class of models, including ones that
are nonlinear and/or non-Gaussian. PFs suffer from a number of drawbacks including their computational
complexity and sensitivity to the choice of the state space model (i.e., its compatibility with the observed
data). Indeed, modelling errors and sharp changes in the dynamics of the state or the observation processes
that are not accounted for usually lead to a degradation of the performance of the PFs. In this paper we
draw from recent results on online assessment of convergence of PFs to propose a simple scheme to (a)
detect changes in a sate-space model from a series of observations that are described by the model and (b)
re-estimate the model to make it compatible with the observed data. The detection stage is fully general, as
it relies on a model-invariant statistic, while re-estimation can be done in several manners. Here, we discuss
possible schemes and illustrate the theory with a simple example for a conditionally-linear Gaussian model.
Keywords: Particle filter, sequential Monte Carlo, state-space models, change-point detection, model error.

1 Introduction

State space models (SSMs) are broadly used for the formal representation of partially observed dynamical
systems with uncertainty (see, e.g., Anderson & Moore (1979)). They involve two random sequences: the
state of the system, {Xt}t≥0, usually not directly observed, and the sequence of measurements or observations
{Yt}t≥1. The system dynamics and the link between the state and the observations are often described
probabilistically by the triplet

X0 ∼ K0(x0|θ), Xt ∼ K(xt|xt−1, θ), Yt ∼ g(yt|xt, θ), (1)

where θ is a vector of model parameters, K0(·|θ) is the probability density function (pdf) of the a priori
distribution of the state at time t = 0, K(xt|xt−1, θ) is the conditional density of a Markov kernel that
describes the state dynamics and g(yt|xt, θ) is the conditional pdf of the observation yt given the state xt.
Although several extensions are possible (e.g., allowing for K and g to change over time), model (1) captures
the key ingredients of SSMs as they are used in a wide range of practical applications.
Given a sequence of observations Yt = yt, t = 1, 2, . . ., the Bayesian filtering problem with an SSM consists
in the computation of the posterior probability distribution of the state Xt, denoted Πt, at each time step
(Anderson & Moore, 1979; Bain & Crisan, 2008). This problem does not admit a closed form solution except
in very particular cases, namely when model (1) is linear and Gaussian (then the sequence of Πt’s is Gaussian
and can be computed via the Kalman filter; see, e.g., Anderson & Moore (1979)) or when the state space is
discrete and finite.
Particle filters (PFs) are recursive Monte Carlo algorithms that approximate the sequence of posterior distri-
butions πt. Each approximation consists of a collection of Dirac delta measures located at random positions



in the state space, possibly with non-uniform weights. PFs can be used over a very broad class of SSMs, in-
cluding nonlinear and non-Gaussian models (see Del Moral (2004); Bain & Crisan (2008) for a comprehensive
treatment), with known and unknown parameters, as recently proved by Crisan & Miguez (2016) and Del
Moral et al. (2016). While very flexible and conceptually simple, PFs suffer from a number of drawbacks
related to their computational complexity and their sensitivity to mismatches in the specification of the SSM.
Indeed, modelling errors and/or sharp changes in the dynamics of the state or the observation processes that
are not accounted for can often cause a severe degradation in the performance of PFs. Such change points in
the series of observations {Yt}t≥1 can occur, e.g., when any parameters in vector θ (assumed static in model
(1)) change their value suddenly.
In this paper we draw from recent results on the validation of SSMs proposed by Djurić & Mı́guez (2010) and
on the online assessment of convergence of PFs, as introduced by Elvira et al. (2017), and propose a simple
scheme to (a) detect change points in the observed series {Yt}t≥1 and (b) re-calibrate the SSM to make it
compatible with the observed data. The detection stage is fully general, as it relies on a certain predictive
statistic which is invariant with respect (w.r.t.) to the SSM, while model re-calibration can be carried out
in several manners. Here, we discuss possible schemes and illustrate the theory with a simple example for a
conditionally-linear Gaussian model.
In the rest of the paper, we first recall some basic background material on the standard PF and explicitly
describe the problem of detecting change points in the series of observations (before the performance of the PF
deteriorates). The method for change-point detection is introduced in Section 3. It yields a general particle
filtering scheme robust to sharp changes in the SSM. A simple, illustrative example for conditionally-linear
Gaussian model is provided in Section 4 and, finally, conclusion are presented in Section 5.

2 Background and problem statement

We assume the SSM of Eq. (1), where the state sequence, Xt, takes values in X ⊆ Rdx and the observation
sequence, Yt, takes values in Y ⊆ Rdy , with dx, dy ≥ 1. The parameter, θ, takes values in D ⊆ Rdθ , and
dθ ≥ 1 as well. The parameters are unknown in general and we model θ as a (possibly multidimensional)
random variable (r.v.) with prior pdf p0(θ). Given (1) and θ ∼ p0(θ), we are implicitly assuming that all
probability distributions of interest in the SSM have densities w.r.t. the Lebesgue measure.
The conditional pdf of the parameter vector θ given the states X0:t = x1:t is denoted pxt (θ|x0:t) and the
posterior density of θ given the state Xt = xt and the observations Y1:t−1 = y1:t−1 is denoted pxyt (θ|xt, y1:t−1).
Here we use the notation xt1:t2 = {xt1 , xt1+1, . . . , xt2} for sequences. We write the density of Xt conditional
on the sequence X0:t−1 = x0:t−1 as

K̄t(xt|x0:t−1) :=

∫
K(xt|xt−1, θ)p

x
t−1(θ|x0:t−1)dθ,

while the likelihood of Xt = xt given the observations Y1:t = y1:t is

ḡt(yt|xt, y1:t−1) :=

∫
g(yt|xt, θ)pxyt−1(θ|xt, y1:t−1)dθ.

We assume the ability to sample from K̄t and to evaluate ḡt, either exactly or with sufficient numerical
accuracy. This means that we assume the ability to integrate out the parameter vector θ from the SSM,
an action that is usually termed Rao-Blackwellisation in the particle filtering literature (e.g., in Doucet
et al. (2000)). Note that in the above two equations we tacitly assume that the parameters that define the
parameter vector θ are not shared by the conditional density of the Markov Kernel, K(xt|xt−1, θ) and the
conditional pdf g(yt|xt, θ).
We aim at the recursive approximation of the posterior probability measure of the state Xt given the ob-
servations Y1:t = y1:t. This posterior measure is denoted Πt(A) := Prob(Xt ∈ A|y1:t), for any Borel subset
A ⊆ X and we assume it has an associated density πt(xt|y1:t) w.r.t. the Lebesgue measure. The sequence of
measures Πt, t ≥ 1, can be approximated using the classical sequential importance resampling (SIR) method
of Doucet et al. (2000), that we outline as Algorithm 1. We use the common term particles for Monte Carlo
samples in the state space X , and denote them as xit (for the i-th particle at time t).



Algorithm 1. SIR algorithm with N particles.

1. Initialisation: At time t = 0, draw N independent particles x10, . . . , x
N
0 from the prior pdf K0(x0).

2. Recursive step: Assume that we have generated sequences xi0:t−1, i = 1, ..., N , up to time t− 1. At time t,
proceed as follows:

(a) Draw new particles x̄it ∼ K̄t(xt|xi0:t−1), i = 1, ..., N .

(b) Compute normalised importance weights wit ∝ ḡt(yt|xit, y1:t−1), i = 1, ..., N .

(c) Resample: for i = 1, ..., N , set xi0:t = {x̄jt , x
j
0:t−1}, for some j ∈ {1, . . . , N}, with probability wjt .

Algorithm 1 describes a generic Rao-Blackwellised PF (RB-PF). When the parameter vector θ is known, the
RB-PF reduces to the standard bootstrap filter of Gordon et al. (1993), where the i-th particle x̄it is drawn
from the Markov kernel K(xt|xit−1) and its weight is, simply, wit ∝ g(yt|x̄it). At the (multinomial) resampling

step, we simply set xit = x̄jt with probability wjt . Note that, for known θ, there is no need to keep record of
the complete sequences of states xi0:t, but only the last particle xit. For the rest of this paper we assume θ is
a r.v. (hence, unknown) and take Algorithm 1 as our basic building block.
The SIR method produces several Monte Carlo approximations. If δx denotes the unit Dirac delta measure
located at x ∈ X , the random measure ΠN

t (dxt) = 1
N

∑N
i=1 δxit(dxt), is an estimate of the posterior measure

Πt(dx) = πt(xt|y1:t)dxt. Moreover, the random measure ΞNt (dxt) = 1
N

∑N
i=1 δx̄it(dxt) is an approximation of

the one-step-ahead predictive measure Ξt(dxt) = ξt(xt|y1:t−1)dxt, where ξt(xt|y1:t−1) is the pdf of Xt condi-

tional on Y1:t−1 = y1:t−1. Finally, µNt (yt|y1:t−1) := 1
N

∑N
i=1 ḡt(yt|x̄it, y1:t−1) is an estimate of the predictive

pdf of the observation Yt given the data record Y1:t−1 = y1:t−1, namely,

µt(yt|y1:t−1) =

∫
ḡt(yt|xt, y1:t−1)ξt(xt|y1:t−1)dxt ≈

1

N

N∑
i=1

ḡt(yt|x̄it, y1:t−1) = µNt (yt|y1:t−1).

It is straightforward from the results in Mı́guez et al. (2013) to prove that ΠN
t and ΞNt converge to Πt and

Ξt, respectively, in Lp as N →∞, while µNt (yt|y1:t−1)→ µt(yt|y1:t−1) point-wise as N →∞.
We assume a scenario where the parameters of the SSM of Eq. (1) may undergo a significant change at an
unknown time instant t = Tcp. This is a change-point where the dynamics of the state Xt or the conditional
pdf g(yt|xt, θ) of the observations changes abruptly, possibly causing the SIR Algorithm 1 to loose track of the
sequence of posterior distributions Πt. With our description of a generic SSM, we associate a change-point
to an instantaneous (and significant) change of the parameter vector θ, which is assumed unknown but static
in the construction of Algorithm 1.
Our aim is to extend Algorithm 1 in such a way that such change-points can be detected and a suitable
action can be taken to keep the sequence of approximate measures ΠN

t locked to the true posteriors Πt.

3 Online change-point detection

We propose an online change-point detection scheme based on the SSM validation method introduced in
Djurić & Mı́guez (2010) and the technique for online assessment of the performance of PFs introduced by
Elvira et al. (2017).
The method is based on assessing the observation Yt = yt by means of the predictive pdf µt(yt|y1:t−1) at each
time step. As discussed in Section 2 above, µt(yt|y1:t−1) cannot be obtained in a closed form, but it can be
approximated by the random pdf µNt (yt|y1:t−1). Here we assume that it is easy to generate independent and
identically distributed (i.i.d.) samples from the density µNt (yt|y1:t−1). Under regularity assumptions, and for
sufficiently large N , it can be proved (see Elvira et al. (2017)) that the actual observation Yt = yt and the
samples from µNt (yt|y1:t−1) are (approximately) i.i.d. under the (null) hypothesis that the observation Yt = yt
is indeed generated by the SSM of (1). Otherwise, if there is a mismatch or modelling error in the SSM, the
samples from µNt (yt|y1:t−1) and Yt = yt are not identically distributed in general.



Algorithm 2. Online change-point detection with non-overlapping windows of length W .

1. At every time t, [computation of the statistic]:

(a) Draw ỹ
(k)
t ∼ µNt (yt|yt−1), for k = 1, . . . ,K.

(b) Compute the realisation AK,t = aK,t, i.e., the position of yt within the set of ordered fictitious

observations {ỹ(k)t }Kk=1.

2. If t = nW for nN, [at the end of each window of length W ]:

(a) Compute the χ2
t statistic over the empirical distribution of St = {aK,t−W+1, aK,t−W+2, ..., aK,t} as

χ2
t =

K∑
j=0

(Oj − Ej)2

Ej
, (2)

where Oj = |{aK,τ ∈ St : aK,τ = j}| is the frequency of aK,τ = j and Ej = WQK(j) = W
K+1

is the
expected frequency under the null hypothesis.

(b) Calculate the p-value p∗K,t by comparing χ2
t with the χ2-distribution with K degrees of freedom.

(c) If p∗K,t ≤ γ:

• Declare a change-point.

• Fit the SSM using yt−W+1, . . . , yt (see the example in Section 4).

To be specific, we simulate K “fictitious observations”, denoted ỹ
(1)
t , . . . , ỹ

(K)
t , from the approximate pre-

dictive pdf µNt (yt|y1:t−1). Then, we define the set AK,t := {y ∈ {ỹ(k)
t }Kk=1 : y < yt}, where yt is the actual

observation at time t, and the r.v. AK,t := |AK,t| ∈ {0, 1, ...,K}. Note that AK,t is the set of fictitious
observations which are smaller than the actual one, while AK,t is the number of such observations. If we
let QK denote the probability mass function (pmf) of AK , it is not hard to show that QK is uniform in
{0, 1, ...,K}, independently of the value and distribution of yt (hence independently of the underlying SSM).
See Elvira et al. (2017) for a proof of this result.
The online change-point detection scheme proposed here is a Pearson’s χ2 test performed over the sequence
St = {AK,t−W+1, . . . , AK,t} of the last W samples of the statistic AK,t. The subsequence St can be con-
structed either as a sliding window or as non-overlapping subsequences of length W . The null hypothesis is
that the W samples in St are i.i.d. draws from the uniform distribution in {0, 1, ...,K}. When the p-value
output by the test lies below a predefined significance level γ, we declare a change-point. Algorithm 2 outlines
the proposed online change-point detection scheme. This procedure can be readily combined with the SIR
method, outlined as Algorithm 1, to yield a PF that automatically detects changes in the underlying SSM,
provided that N is large enough to guarantee µNt (yt|y1:t−1) ≈ µt(yt|y1:t−1).
The re-calibration of the SSM can be carried out in different ways. For the RB-PF, a natural option is to
reset pxt (θ|x0:t) = pxyt (θ|xt, y1:t−1) = p0(θ) for t = (n − 1)W + 1 when a change-point is detected. In this
way, we ‘drop’ the information conveyed by the old observations y1:(n−1)W (as it does not appear compatible
with the latest window y(n−1)W+1, ..., ynW ), and re-start the computation of the posterior distributions of

θ. Alternatively, if we prefer to operate a standard PF with an estimate of the parameter, say θ̂t, when a
change-point is declared at time t = nW , we can drop the parameter estimate θ̂nW and re-start the parameter
estimation algorithm from time t = (n− 1)W + 1 onwards.

4 Example: a conditionally-linear Gaussian SSM

As a simple illustration of the method, let us assume the conditionally-linear and Gaussian SSM given by

Xt = θXt−1 + Ut and Yt = Xt + Vt, (3)



Algorithm 3. SIR algorithm with N particles for the SSM of Eq. (3)

1. Initialisation: At time t = 0, draw N independent particles x10, . . . , x
N
0 from the prior pdf N(x0|σ2

0). Let
θ̂i0 = 0 and σi,2θ,0 = σ2

θ for every i = 1, ..., N .

2. Recursive step: Assume that we have generated the triplets
{
xi0:t−1, θ̂

i
t−1, σ

i,2
θ,t−1

}N
i=1

, up to time t− 1. At

time t, proceed as follows:

(a) For i = 1, ..., N ,

a.1) compute σi,2x,t = (xit−1)2σi,2θ,t−1 + σ2
u and x̂it = θ̂it−1x

i
t−1, then draw xit ∼ N(xt|x̂it, σi,2x,t);

a.2) update θ̂it = θ̂it−1 +
σ
i,2
θ,t−1

xit−1(x
i
t−x̂

i
t)

σ
i,2
x,t

and σi,2θ,t = σi,2θ,t−1

[
1− (xit−1)2σi,2θ,t−1

σ
i,2
x,t

]
.

(b) Compute normalised importance weights wit ∝ gt(yt|xit), i = 1, ..., N .

(c) Resample the triplets {xi0:t, θ̂it, σi,2θ,t}
N
i=1 with replacement according to the weights {wit}Ni=1.

where Ut and Vt are independent, zero-mean white Gaussian sequences with variance σ2
u and σ2

v , respectively,
i.e., Ut ∼ N(ut|0, σ2

u) and Vt ∼ N(vt|0, σ2
v). The static parameter θ is unknown; we assume a Gaussian prior

pdf with zero mean and variance σ2
θ , i.e., p0(θ) = N(θ|0, σ2

θ). The prior pdf for the state is also Gaussian,
specifically, K0(x0) = N(x0|0, σ2

0).
For this SSM, the RB-PF is relatively simple. The non-Markov kernel associated to the i-th sequence of
particles, K̄t(xt|xi0:t−1), can be written as

K̄t(xt|xi0:t−1) =

∫
K(xt|xit−1, θ)p

x
t−1(θ|xi0:t−1)dθ, (4)

where K(xt|xit−1, θ) = N(xt|θxit−1, σ
2
u) is linear-Gaussian and pxt−1(θ|xi0:t−1) can easily be shown to be

Gaussian as well. Indeed, given the sequence X0:t−1 = xi0:t−1 we can write down the linear-Gaussian model

p0(θ) = N(θ|0, σ2
θ), θn = θn−1, xin = xin−1θ + vn,

and compute the posterior pdf of θ conditional on xi0:n, pxn(θ|xi0:n), exactly using a Kalman filter. In particular,

pxt−1(θ|xi0:t−1) = N(θ|θ̂it−1, σ
i,2
θ,t−1) (5)

where θ̂it−1 and σi,2θ,t−1 are computed recursively for each particle. Substituting (5) into (4) yields a Gaussian

kernel for the r.v. Xt|xi0:t−1, namely

K̄t(xt|xi0:t−1) =

∫
N(xt|θxit−1, σ

2
u)N(θ|θ̂it−1, σ

i,2
θ,t−1)dθ = N(xt|x̂it, σ̂

i,2
x,t).

The computation of the weights is simple, as the pdf g(yt|xt, θ) = g(yt|xt) = N(yt|xt, σ2
v) is independent of

θ in the SSM of Eq. (3). Algorithm 3 summarises the procedure.
We have applied Algorithm 3 to track the SSM over 2, 000 time steps, with σ2

u = σ2
v = 1, N = 1000 particles

and W = 50 time steps. From time t = 0 to t = 999 the parameter is fixed as θ = 0.2 but at time
t = Tc = 1, 000 there is a change point and the parameter switches to θ = 0.999. Figure 1 (middle) shows
that the this change point is easily detected as the p-value of the test drops sharply below the significance
threshold γ = 10−2. At that time, the N Kalman filters are re-started, i.e., we set θ̂iTc = 0 and σi,2θ,Tc = σ2

θ,0

for every i = 1, ..., N . As a result, Figure 1 (left panel) shows that the RB-PF keeps track of the states xt
and it quickly adapts to the change in the parameter value (right panel).

5 Conclusions

We have introduced a simple scheme for automatic detection of change points in a series of observations
produced by a dynamical system modelled as an SSM. The scheme is based on a predictive statistic that is
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Figure 1: Left: Evolution of the true hidden state and the mean of the filtered distribution. Middle:
p-value of the Pearson’s χ2 test to assess the uniformity of the statistics AK,t. Right: Evolution of
the true parameter θ and the mean of the posterior p(θ|y1:t) approximated by the RB-PF.

invariant w.r.t. the assumed SSM and can be computed naturally using a PF. Modelling errors, or simply
mismatches between the observations and the assumed model, can be detected by testing the empirical
distribution of the predictive statistics. If the model is coherent with the observations, the predictive statistics
are uniform. If they are not, then we detect a change point and start a procedure to re-estimate the SSM.
An illustrative example for a Rao-Blackwellised PF has been presented.
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