

Edinburgh Research Explorer

Enabling Dynamic Communication for Runtime Circuit
Relocation

Citation for published version:
Adetomi, A, Enemali, G & Arslan, T 2019, 'Enabling Dynamic Communication for Runtime Circuit
Relocation', IEEE Transactions on Very Large Scale Integration Systems, pp. 1-14.
https://doi.org/10.1109/TVLSI.2019.2934927

Digital Object Identifier (DOI):
10.1109/TVLSI.2019.2934927

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Very Large Scale Integration Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. Nov. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/232189249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TVLSI.2019.2934927
https://www.research.ed.ac.uk/portal/en/publications/enabling-dynamic-communication-for-runtime-circuit-relocation(bb8db259-51f3-4005-810a-f56f051e4fc8).html

1

Enabling Dynamic Communication for Runtime

Circuit Relocation

Adewale Adetomi, Godwin Enemali, and Tughrul Arslan, Senior Member

Abstract—Runtime circuit relocation has been proposed for

mitigating the effect of permanent damages in reconfigurable

hardware like FPGAs with potentials to improve reliability and

reduce or eliminate system downtime. However, a major obstacle

to the adoption of circuit relocation is the presence of static

communication links between circuits. Existing solutions to this

are either computationally expensive or counter-intuitive to

system reliability. This article proposes a dynamic

communication mechanism that is able to circumvent the static

links. The clock buffers in a typical FPGA use independent wires

and thus, do not constitute static routing. These are repurposed

as network links to provide dynamic communication for

relocatable circuits, with a demonstrator based on a 4-node star

network showing a bandwidth of 428.58 Mbps for a 32-bit

payload at an overhead of only 144 slices on the Artix-7 FPGA.

Index Terms—circuit relocation, network on chip,

reconfigurable computing, reliability

I. INTRODUCTION

HE use of reconfigurable hardware like FPGAs for

computing has become more popular recently. In

particular, the possibility of modifying the configured circuit

in runtime is attractive for error mitigation in harsh

environments like space, where radiations can induce

temporary errors and permanent damages. One key technique

that has been proposed for mitigating permanent damages is

circuit relocation, which involves moving a configured circuit
(or task) from one place to the other on the chip [1]. In

addition, circuit relocation is important in Wear-Levelling

(WL) approaches for mitigating ageing-induced permanent

damages. In general, WL is any strategy deployed to pre-empt

damages before they occur, spreading out wear and prolonging

the lifespan of the chip. WL can involve the alternate usage of

chip resources over time to achieve uniform ageing [2][3].

Runtime circuit relocation is enabled by the Dynamic

Partial Reconfiguration (DPR) technology in FPGAs [4],

which allows a part of the FPGA to be reconfigured while the

rest of the chip remain functional. In the Partial
Reconfiguration (PR) flow, the chip area is divided into a

static region (for non-PR circuits) and a reconfigurable region,

which is floor-planned into multiple Reconfigurable Partitions

(RPs) for Reconfigurable Modules (RMs) to be (re)configured.

In general, an RM can only be placed in an RP for which it has

been floor-planned at compile time. Circuit relocation allows

an RM to be used in un-associated RPs.

 An important challenge with circuit relocation, which has

limited its applicability, is how to provide dynamic

communication for relocated circuits in runtime since inter-

circuit links are statically determined at compile time.

Runtime routing is a possible solution to dynamic

communication but it is both complicated and computationally

expensive, often requiring several thousands of clock cycles

[5]. In addition, there can be static routes in the target location

which belong to the static region, and these must be preserved.

 Network on Chip (NoC) has come to be regarded as the

future of on-chip communication, owing to advantages such as

modularity and concurrency [6]. However, NoCs typically use

the general routing resources of the chip as network links,

thereby constituting static routes which are a barrier to

relocation. To alleviate this problem, a network link that does
not use the general interconnect resources should be used

where possible. Incidentally, it turns out that most FPGA-

based designs do not use the available on-chip global and

horizontal clock buffers [7] and invariably, the clock network.

Repurposing these buffers and networks for use as

communication network links would help circumvent the

restriction of static routes and allow the arbitrary relocation of

circuits. Since the clock buffers do not use the general logic

routing resources [7], the path from a transmitting circuit to a

receiving circuit is free of logic interconnections. Moreover,

these otherwise redundant resources, which are not used for
their intended clocking-related purposes have already been

paid for in silicon. As such, using them for communication-

related purposes represents an added value.

Furthermore, it is important to note that routing congestions

are often the reason static routes cross into RPs from the static

region. A way of reducing routing congestion, especially at the

interface of circuits, and thus, reducing the number of static

routes is to use bit-serial interconnections between circuits, as

this has been shown to have reduced footprint and congestion

factors [8]. Incidentally, our use of clock buffers for

communication calls for the adoption of bit-serial connection

at the clock buffer level. However, multiple bit-serial
connections can be used depending on the availability of clock

buffers in the target FPGA. In addition, a bit-serial

implementation is beneficial because it helps in easily meeting

the requirement for the preservation of existing static routes,

while at the same time garnering the other benefits of bit-serial

over bit-parallel interconnects, which include high speed and

power savings as demonstrated in [8] and [9].

Because the proposed technique incurs a low overhead of

resources and involves the unique use of clock buffers for

serial network interconnection, we have termed it Clock-

Enabled Low-Overhead Communication (CELOC). Without
loss of generality of application, CELOC has been targeted at

Xilinx FPGAs and demonstrated on the 7 Series fabric.

T

A. Adetomi, G. Enemali and T. Arslan are with the Institute for Integrated Micro and Nano Systems, University of Edinburgh, King’s Buildings, Edinburgh EH9

3FF, Scotland, United Kingdom. (e-mail: {a.adetomi, g.enemali, t.arslan}@ ed.ac.uk).

2

The main motivation for proposing CELOC is to

circumvent RP-crossing static routes which prevent the

relocation of circuits in a PR design. We name two type: Type

A – those that originate from (static logic blocks that belong

to) the static design and are allowed to cross into RPs by the

design tool [4]; and Type B – those that derive from inter-

circuit communication via LUTs and registers. Every other

form of routing, including those that may go through clock
buffers are internal to RPs and are not bottlenecks to

relocation as they are part of the RM. Type-A static routes can

be easily mitigated by enlarging offending partitions. Our aim

is to address Type-B static routes by preventing inter-circuit

communication from going through the general interconnect

when crossing RPs.

We have presented preliminary results in [10], [11], and

[12]. This article provides more in-depth descriptions and

reports on further findings. The key contributions include:

1) The use of the clocking infrastructures of an FPGA for

on-chip dynamic communication.
2) Characterization of different clock buffer combinations

for communication.

3) A prototype NoC that uses CELOC to support runtime

circuit relocation.

II. BACKGROUND

On-chip communication architectures can be grouped into

three main categories, namely P2P, Bus, and NoC, based on

the structure of the physical interconnect, the protocol of data

transfer, and the interface design [13]. The main characteristic

of P2P interconnect is the simple and direct interconnection

between two communicating circuits, but it is quite inefficient
in terms of scalability as the number of cores increases. The

shortcomings of P2P architecture scales up in shared buses.

While shared bus allows multiple cores to communicate by

granting them access to a central global bus; however, because

of the diverse nature and the sheer number of these cores,

buses become longer, introducing longer communication

latencies, and consuming more power [14]. Buses are not

flexible enough as an addition of a new module requires that

the entire system be redesigned. As a result, NoCs have been

proposed as the future of on-chip communication.

A. Network-on-Chip for Communication

The NoC was borne out of the need to improve scalability,

modularity, and performance among other factors, in on-chip

communication [15]. This need arose because of the increase

in the number and type of modules or processing elements

running and communicating on a device. CPUs, graphics

processors, DSPs, memory elements, and other modules with

different functionalities became common-place on a single
chip, effectively giving rise to the idea of System-on-Chip.

The deficiencies of dedicated P2P and bus architectures are

rooted in the reliance on the routing of wires between

communicating circuits. With the increase in networking

requirement as more cores are added, wires become long and

connections more complicated, leading to increased power

consumption. It is clear that modern on-chip communication

cannot rely on connection-based interconnections. These

deficiencies have given rise to the notion of routing packets,

and not wires [6], which is the main idea behind the NoC.

Instead of establishing P2P connections, whether based on

direct dedicated interconnections or shared buses, the NoC

abstracts the Data Link Layer (data transfer on wired links)

from the Application/Presentation Layer (the on-chip cores).

That is, it decouples computation from communication with

the potential to bring about unprecedented levels of scalability

and performance. The general structure of an NoC is shown in

Fig. 1, with 3-by-3 nodes as an example. NoCs come in
various forms targeted at addressing different performance

metrics, but in general, they are made up of routers, adapters,

and links that connect all the cores (processing elements or

circuits) on a chip. Each core is interfaced to the network via a

network adapter that implements a network interface on the

network side and a core interface on the core side.

Fig. 1: The architecture of a generic NoC

There are several architectural features of NoCs. However,

since the concept of NoCs is an already comprehensively

covered subject, more extensive details on its basics can be

found in [15] and [16]. Nevertheless, it is pertinent to identify

the performance parameters of NoCs, which are bandwidth,

throughput, and latency [16]. Measured in bits per second

(bps), the bandwidth of an NoC is the maximum rate of data

transfer and it usually considers the entire packet. Throughput

makes allowance for the fact that a packet usually contains

non-message-related header and tail information. As such, it
measures the rate of transfer of the message payload in

messages per second or messages per clock cycle. Both

bandwidth and throughput scale with the number of channels.

Latency is the time elapsed from the instance a packet departs

a source node to being completely received at the destination.

B. Shortcomings of NoCs

As promising as NoCs are, they have their downsides.

Though they offer a good communication solution when

compared to dedicated P2P and bus communications, there is

an attendant resource overhead, which can be significant in

smaller devices. That is, NoCs lead to an increase in the

footprint of the overall design, and this is due mainly to the

additional resources used for the routers to grant network

access to the tasks. Depending on the size of the network, an

overhead of up to 34.8% (3227 slices) for a 2-by-2 network is

not impossible [17].

Moreover, while compared to shared buses, NoCs lend
themselves more readily to runtime circuit placement because

of their support for easy modularity and scalability; however,

the static routes of the network links still constitute a

bottleneck to circuit relocation. In particular, the traditional

NoC links pose the challenge of static routes as these links are

constructed from the chip’s general routing resources and are

free to cross the reconfigurable partitions in partially

reconfigurable system architecture. In a bit-parallel NoC, the

network adapter at each node creates static routes that cross

into other nodes. A bit-serial NoC that uses general

interconnects as links would have lesser static routes, but it

Core

Router

Link

3

would still require online redetermination of route in order to

support dynamic communication.

Meanwhile, it is possible to completely do away with

routers and still have comparable or better network

performance as demonstrated in [18], where a routerless NoC

shows a 7.7x reduction in power, a 3.3x reduction in area, a

1.3x reduction in zero-load packet latency, and a 1.6x increase

in throughput when compared to a router-based NoC.

C. Bit-Serial and Bit-Parallel NoCs

The interconnections that carry packets from router to

router can be made up of several single wires to form a

parallel link that is able to switch a multi-bit data at a time.

This is the typical case with NoCs and such NoCs can be
referred to as bit-parallel NoCs. On the other hand, the link

can also be composed of a single wire which is able to

transmit a bit of data at a time, and as such, the resulting NoC

can be termed bit-serial.

Although bit-parallel NoCs generally offer higher

throughputs, however, it has been shown that a serial

implementation has the potential to reduce the area overhead

and power utilization of NoCs [9] while at the same time

improving noise and signal interference, offering simpler

network layout, and enhancing timing verification. It turns out

that because of the efficiency it brings, high-speed serial

communication is the current trend in digital design, e.g., PCI
Express. As a result of the serial single-wire implementation,

the usual performance-limiting skew on parallel links is

localized to a single link and as such a much higher frequency

is possible with a serial link.

A bit-parallel link can provide a higher throughput than a

bit-serial one when clocked at the same frequency. However,

in the long run, a bit-serial link can achieve higher throughput

if it can be clocked at a fast enough rate, at which point a bit-

parallel link fails because of skew. For instance, in [8], the

authors demonstrate bit-serial NoC routers that are 2-3x faster

than their equivalent bit-parallel routers even with some level
of pipeline optimization in the parallel implementation.

To reduce an NoC’s area utilization, bit-serial network

access can be used as proven in [9], where in a comparative

analysis of serial and parallel interconnects, the authors note

significant improvements of up to 5.5× and 17× power

consumption and area utilization respectively of serial links

over parallel links. Similarly, in [8], the author observes that

bit-parallel routers are 8× (for LUTs) and 23× (for FFs) larger

than bit-serial routers. In addition, bit-serial designs are noted

to have route congestion factors of only 1-2% compared to 10-

20% for their bit-parallel counterparts.

Incidentally, because of their limited number in a typical
FPGA, the clock buffers are better suited as bit-serial links,

with each clock buffer able to drive a bit from the source

circuit to the destination circuit in one clock cycle.

D. The Need for Dynamic Communication

One of the key requirements for circuit relocation is the
provision of dynamic communication for relocatable circuits.

As such, the need for dynamic communication infrastructures

is a salient one. An approach to dynamic communication is

taken in DyNoC, a dynamic network-on-chip architecture

[19]. While several research works have been carried out on

dynamic or reconfigurable NoCs, most do not actually

consider the placement of a new task. Rather, they are mostly

concerned with the runtime restructuring of the network

topology or packet routing to meet changing communication

needs as seen in ReNoC [20] and Hoplite [21] respectively.

On the other hand, DyNoC’s approach to dynamic

communication involves placing a new circuit over existing

deactivated network routers while leaving surrounding routers
free for communication. With this arrangement, a new circuit

can be placed anywhere on the mesh network with continued

access to the network. However, we deem this approach to

still have the challenges of static routes as the authors do not

seem to have provided details on how these are managed and

their implementation diagram [19] shows routings

crisscrossing the entire floorplan. Indeed, it is unlikely that the

authors intend DyNoC to be a communication network for

relocatable circuits, as this is not a claim in the work.

An ideal situation for dynamic communication is to have no

static interconnects to deal with or need to create routes on the
fly. A step in that direction is taken in [22], where the authors

present a communication mechanism that involves using the

Internal Configuration Access Port (ICAP) of an FPGA to

transfer data between arbitrarily-placed hardware tasks, in the

context of achieving the relocatability of tasks. This is done by

connecting memory elements (distributed RAMs or BRAMs)

to the inputs and outputs of circuits to serve as data memories

and using the ICAP as a side channel to copy data from output

memories to input memories thereby avoiding static

interconnects. The data contents of a memory element can be

accessed online from the device’s configuration memory.
This idea of moving data from one task to another without

using physical wires can be seen as a form of relocation and it

has limitations and consequences as highlighted in [23]. There

is no way to know when a task has finished computation apart

from polling the task. With multiple tasks possibly

simultaneously active, this is even more demanding. There are

three operations needed to be performed for each data

relocation – polling, readback, and writing. All these

operations have to be serialized since the ICAP is a single

resource. That is, ICAP-based data relocation is not concurrent

and this is the main bottleneck with it.

Furthermore, the single nature of the ICAP could have an
implication on system reliability and performance. The ICAP

has a maximum theoretical bandwidth of 400 MB/s [4] and

Xilinx recommends that more than 99% of this bandwidth

should be dedicated to Soft Error Mitigation (SEM) [24] for

the entire device. Using at least 99% for SEM means that only

4 MB/s of the ICAP’s bandwidth is available for other

functions. With communication drawn in, there are two

system functions competing for the remaining 4 MB/s. In

other words, time spent on communication is time not

available for SEM and configuration.

III. CLOCKING RESOURCES IN THE XILINX 7 SERIES FPGA

AND THE FEATURES EXPLOITED BY CELOC

An understanding of the types and features of the clock

buffers available in the FPGA is crucial in the design and

implementation of CELOC. A typical Xilinx FPGA is divided

into areas called clock regions [7] containing configurable

logic blocks, block RAMs, and DSPs. Different networks of

4

clock buffers feed clock signals to these resources, with the

clock network of all modern FPGAs based on the Spine-and-

Ribs topology [25], where vertical spines drive clock signals

into horizontal ribs. Eventually, local ribs in the clock regions

clock logic resources directly. Fig. 2 shows the clock network

distribution and interaction in a single clock region of the 7

series FPGA. There is a horizontal clock row (HROW) that

spans the entire length of the clock region. Clock signals
switch vertically upward and downward from the HROW to

reach logic resources. The most important thing to note and

that which is being exploited in our adaptation of clock buffers

and networks for inter-task communication is that the clock

networks use independent physical wires different from the

general logic interconnects. Inside a clock region, switch

matrices route clock signals to the logic resources.

Fig. 2: The network distribution in the clock region of a 7 series FPGA

In order to realize CELOC, two factors are important for a

clock buffer – the span or reach of the buffer, and the

availability of a CE pin for logic functions. The former

determines how far on the chip a communication signal can

travel while the latter affects the number of transmitting nodes
a CELOC network can support. In addition, the clock buffer

must be user-accessible in the design tool, that is, it must be

possible to instantiate and place it in order to control

connections to and from it. For instance, in the UltraScale

architecture, BUFCE_LEAF clock buffers are not user-

accessible and are for routing clocks vertically from horizontal

distribution [26]. However, this does not have a limiting effect

on CELOC as this routing is guaranteed to be non-RP-crossing

[4]. Furthermore, any other use of a clock buffer is acceptable

so far it is internal to the RM being relocated, as is the case

with the BUFCE_LEAFs.

A. Global Clock Buffers/Multiplexers – BUFG(CE)

The global clock buffers drive the global vertical clocking

backbone in the device. Their reach spans the entire FPGA

and they can feed any clocking point in the device. As such,

they can be used for device-wide communication. The global

clock nets have the capacity to drive not only CLK inputs of
logic resources but also the Set/Reset (SR) and CE inputs of

registers. This feature is particularly important in achieving

CELOC-based dynamic communication, as it allows a

communication clock signal to be received via the SR input of

a register, ensuring that no local (static) route crosses the RP.

B. Horizontal Clock Buffers – BUFH and BUFHCE

They drive the horizontal global clock tree spines but span
only two horizontally-adjacent regions. The CE of the

BUFHCE can be used to achieve a true logic function on a

clock cycle-to-cycle basis, allowing the control of the transfer

of the clock input to the output of the buffer. The BUFHCE

can be used for horizontal communication in a CELOC-based

NoC. There are 12 BUFH(CE)s in each region.

C. Multi-Region Clock Buffers – BUFMR and BUFMRCE

These are used to enable multi-region clocking by directly

driving regional clock and I/O buffers (BUFRs and BUFIOs)

in the same clock region and the ones above and below it. Like

the BUFHCE, their CE can be used to control the input-to-

output transfer. The BUFMRCE can be used to achieve a

CELOC-based network that is local to three vertical clock

regions. There are two BUFMR(CE)s in each clock region.

D. Regional Clock Buffers - BUFR

These can drive any clocking point drivable by a global

clock in a single clock region. In each region, there are four

clock trees and nets, which are distinct from the global ones.

There are four BUFRs driving these independent trees and

nets in each region, allowing multiple unique clocks to feed a

single design. These buffers can be used in both BUFR and

BUFRCE configurations. They have two control lines, the CE

and the clear (CLR), which can only be used in the frequency
division mode. That is, the CE can only be toggled if the

BUFR_DIVIDE option is set to any number other than

“BYPASS” when the buffer is instantiated in RTL. With

regards to CELOC, BUFR(CE)s can be used for intra-region

communication and are essential for transferring signals out of

a clock region as they are able to connect directly to BUFGs.

IV. ADAPTATION OF CLOCK NETWORK INFRASTRUCTURES

FOR ON-CHIP COMMUNICATION

The availability of a diverse range of clock buffers with

global and local spans in the Xilinx FPGAs offers a unique

possibility that can be utilized to achieve on-chip
communication functionality. CELOC involves an adaptation

of these clock buffers to serve as binary (‘0’ or ‘1’) signal

transmitters and receivers on the FPGA. Meanwhile, would

repurposing clock buffers for communication not be

detrimental to their intended functionality? While the clock

buffers and nets are precious and are available in the chip

predominantly for clocking-related functionalities like

glitchless multiplexing between clock sources, clock gating to

reduce dynamic power consumption, and elimination of clock

distribution delays, however, most FPGA designs contain

several unused clock buffers [7]. With CELOC, these

redundant buffers are repurposed to provide a static-route-free
inter-communication for relocatable circuits.

Fig. 3 presents the CELOC concept in a diagrammatic

form. By gating a free-running communication clock using a

clock buffer, it is possible to send data from a transmitting

(TX) task to a receiving (RX) task from any location on the

device to another reachable by the buffer. At the TX end, a

Serializer works in a Parallel-In Serial-Out (PISO) version to

send data while a Deserializer at the RX reverses the operation

in a Serial-In Parallel-Out (SIPO) version. CELOC requires

Switch

Matrix

Switch

Matrix

S
w

it
ch

 B
o
x

clock

S
w

it
ch

 B
o

x

To BUFR in top

adjacent clock region

To BUFR in bottom

adjacent clock region

To
adjacent

clock
region

S
w

it
ch

 B
o

x

12 BUFHs

2

BUFMRs

4

BUFRs

S
w

it
ch

 B
o

x

16 BUFGs

5

an RX task to be fed with three clocks: task_clock,

com_clock, and data_clock. The task_clock is used to clock

tasks while com_clock is used to generate data_clock, which

carries a serialized data from the source to the destination.

Fig. 3: Serial data transmission through clock buffers

A. Data Transfer Mechanism

The parallel data from a TX task is serialized and shifted

out bit-by-bit to an RX task through the clock buffers. A

register is used to latch the parallel data for onward shifting to

the clock enable (CE) of the buffer on the ce_cntrl signal line.

This latching is done by the Data Latch Controller. Since the

same register block is used for shifting out the serial bits,

multiplexers are used to select between updating the registers
with new data and shifting already latched data.

The ce_cntrl signal, which carries the serial data to be

transmitted controls the output of the buffer by toggling its

CE. A ‘1’ allows the input of the buffer to pass through to the

output, while a ‘0’ ties the output to zero. Since the

communication clock (which can be the same as the task

clock) and the task clock are synchronous, a ‘1’ on ce_cntrl

essentially allows a full clock cycle to pass through while a ‘0’

blocks it. As an example, Fig. 4 shows the theoretically

expected signal transitions for transmitting 10011010 (binary)

(see Table I for the corresponding truth table). The RX task’s
SIPO circuit can detect a falling edge on com_clock as a ‘1’.

With respect to the distance between the TX and RX tasks, the

clock buffers in the Xilinx FPGAs are designed for short

propagation delays and very low skew [7]. This helps prevent

the kind of long propagation delays associated with shared-bus

interconnects. As a result, the two clock signals (com_clock

and data_clock) can travel far with minimal loss of phase

alignment, and thus ensure timing closure.

com_clock

ce_cntrl

data_clock 1 0 0 1 1 0 1 0
Fig. 4: An example showing the transmission of an 8-bit data 10011010

TABLE I: THE TRUTH TABLE FOR CLOCK-ENABLED DATA TRANSMISSION

Inputs Outputs

tx_serial_data (ce_cntrl) com_clock data_clock

1 X com_clock

0 X 0

B. Communication Clock and Task Clock Generation

In order to achieve the maximum possible throughput for

data transfer, it is important to drive com_clock as high as

possible. An advantage of using a separate clock as the

communication clock is that we are not limited to the

frequency of the task clock; the communication engine can run

at a much higher frequency. The FPGA has PLL primitives

that can be used to generate clock signals at frequencies much

higher than that of the clock fed into the FPGA.

In the demonstration of CELOC in this work, the

PLLE2_BASE primitive in the 7 series FPGA is used to

generate the two clocks (com_clock and task_clock). Two

global clock buffers are then used to distribute them
throughout the chip when necessary. Fig. 5 shows the

schematic of the PLL-based clock generation and distribution

for CELOC. The core of the clock generator is the

PLLE2_BASE primitive, which can be used as a frequency

synthesizer, jitter filter, or to deskew clocks. As a clock

generator, the PLL requires internal feedback as shown.

Fig. 5: The schematic of the PLL-based clock generator for CELOC

C. Clock Domain Crossing

Because com_clock and task_clock are functionally in

different clock domains – one used to clock the registers that

push out the serial bits, and the other to retrieve the serialized

data through another set of registers, it is important to
investigate the impact of Clock Domain Crossing (CDC). To

avoid complications from CDC, the two clocks are sourced

from a single PLL clock generator with the communication

clock made as high as possible. This helps to prevent setup

and hold timing violations by keeping both the transmission

and the reception synchronous and in the same clock domain –

no asynchronous clocks and no variable phase alignment.

Therefore, no clock domain crossing issues are expected since

the same clock (com_clock) is used to transmit and receive

data [27]. Nevertheless, every implementation of CELOC is

checked for CDC violations using the Vivado timing report.

D. Data Recovery Mechanism

Since we are interested in preventing static routes from

crossing RM boundaries, it is important that the recovery of

the serial bits at the RX input should employ a mechanism that

is independent of general interconnects. Hence, an ideal

interface to data_clock should be a clocking point in a logic
element. Two candidates for this are registers and latches with

non-clocking inputs that can be fed by clock signals. The

FDPE register and the LDPE latch [28] in the 7 series FPGA

fall into this category and can thus be connected as shown in

Fig. 6 to receive data_clock into an RX circuit without using

the general interconnect. This is because their Set/Reset (SR)

and Preset inputs can be driven by global and horizontal clock

buffers. Their Q outputs produce the same waveform as the

original ce_cntrl signal used to toggle the clock buffers in Fig.

3. The choice of either the FDPE or the LDPE influences the

maximum bandwidth of communication (see Section VII).
The FDPE is a D flip-flop with clock enable (CE) and

asynchronous preset [28]. By connecting CE to a ‘1’ and D to

a ‘0’, with the clock input fed by the same clock (com_clock)

used to create the data clock at the transmitter, data_clock

TX Task RX Task

CE

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Data Latch Controller

Data Serializer

Data

Deserializer

Counter

Serial to Parallel Converter

Clock

Buffer

Blockce_cntrl

d
a
ta

_
cl

o
c
k

task_clock task_clock

com_clock

PLL Primitive

BUFGCLKOUT0CLKIN1Clock

BUFGCLKOUT1

task_clock

CLKFBOUT

CLKFBIN

com_clock

6

connected to the PRE input produces on Q, signal level

transitions corresponding to the rising edges of data_clock as

shown in Fig. 7 for the same 8-bit data 10011010 (binary)

transmitted in Fig. 3. To understand how this works, we

consider the truth table of the FPDE (see Table II). We

observe that by setting CE to ‘1’ and D to ‘0’, Q follows PRE

(data_clock) instead of D at every rising edge of C. The LDPE

data latch with asynchronous preset and gate enable [28]. A
similar explanation applies to the LDPE with regards to the

signal transmissions that allow data recovery, except that for

the LDPE, the gate (connected to data_clock) input’s signal

transitions are reversed.

V. PACKET SYNCHRONIZATION AND ENCODING

Since CELOC in general, serializes the data being sent

before transmission, an idle line will be either a ‘1’ or a ‘0’. It

then becomes important for the transceiver task to determine

when to start or stop reception? It is also possible for a task

node to join a CELOC-based network in the middle of

ongoing transmission. The new node has to correctly latch on
to the beginning and end of packets. In general, a CELOC-

based data transfer between any two circuits does not require

any special handshaking or encoding technique, as a data bit

that leaves the source circuit would arrive at the destination

circuit without any ambiguity if the two circuits are directly

interconnected. However, in CELOC-based NoCs, the source

and destination nodes may not be directly physically

connected and communication packets may be routed through

intermediate nodes until they reach their destinations. As such,

data packet synchronization may be required to coordinate

data transfer. It may be worth noting however, that packet
synchronization is not always required in bit-serial networks

[8]. Depending on the adopted topology, an NoC design might

be able to do away with packet synchronization and as such

save on encoding resources and latency. This approach is

favoured when applicable. However, in other applications,

encoding is necessary to avoid ambiguity in data transfer.

Fig. 6: The register setup for serial data recovery

TABLE II: THE TRUTH TABLE OF THE FDPE REGISTER

Inputs Outputs

PRE CE D C Q

1 X X X 1

0 0 X X No Change

0 1 D 1 D

com_clock

data_clock

FDPE_Q

 1 0 0 1 1 0 1 0

Fig. 7: A waveform showing serial data recovery from data_clock

To uniquely mark off the boundaries of transmission

packets in serial networks, frame synchronization mechanisms

are used. One such mechanism is byte stuffing, where a

special code byte is used to delimit packet boundaries. In order

to prevent incorrect synchronization, as the code byte may be

present in the data packet, special ‘escape’ codes are often

used [29], but the length of the packet ends up being

inconsistent [30]. This is not desirable in real-time

applications, where timeliness and predictability are

important. To achieve consistency in packet size, we propose

an adapted form of the Consistent Overhead Byte Stuffing

(COBS) [30]. The COBS maps numbers in the range [0, 255]

to numbers in the range [1, 255], thereby reserving one
number which can be used as the frame synchronizer

(delimiter). The details on how this is achieved can be found

in [30]. Adopting a similar technique to map the hex number

set [0, F] to [1, F], we reserve the number zero to be used as

the delimiter. We call this Consistent Overhead Nibble

Stuffing (CONS). Starting at the zeroth (most-significant)

nibble (4 bits of “0”s and “1”s), the occurrence of a zero is

replaced by the number of nibbles examined (including the

zero) followed by the non-zero nibbles before the zero. For

example, an arbitrary 32-bit packet of hex numbers

(400AD013) passed through the CONS encoder would
produce 2413AD313 (hex) as shown in Table III.

A simple way to carry out the encoding is to logically pad

the packet with zero nibbles at the beginning and end as

shown in the second row of Table III, with the first serving as

a placeholder for the overhead and the other as a phantom

helper to complete the encoding process. This phantom does

not actually count as part of the data. Each nibble of the

padded packet is then given an index starting at 0 from the

most significant nibble (0 to 9 in this example). The encoded

nibble of a zero nibble at index izn is obtained by subtracting

izn from iznext, where iznext is the index of the next zero nibble.
There cannot be another nibble after the appended zero nibble.

Therefore, the encoded packet is terminated on the

penultimate index (index 8 in this example). Further

illustrations in Table III show that an all-zero packet would be

encoded as 111111111 (hex) and a packet without a zero

nibble as 9XXXXXXXX (hex), where X is a non-zero nibble.

The advantage of this form of encoding is that every packet

is guaranteed to have a fixed overhead of one nibble. On the

other hand, the disadvantage, as the examples show is that

even when there is no zero nibble in the data, the overhead is

still incurred. However, this is the price that is paid for the

benefit of determinism in communication latency as far as the
data packet is concerned.

TABLE III: EXAMPLES SHOWING THE CONS ENCODING PROCESS

Index (in) 0 1 2 3 4 5 6 7 8 9

 Nibbles (Di) 0 4 0 0 A D 0 1 3 0

Code (iznext – izn) 2 1 3 3

Encoded Data 2 4 1 3 A D 3 1 3

 Nibbles (Di) 0 0 0 0 0 0 0 0 0 0

Code (iznext – izn) 1 1 1 1 1 1 1 1 1

Encoded Data 1 1 1 1 1 1 1 1 1

 Nibbles (Di) 0 5 1 D F 2 C 3 7 0

Code (iznext – izn) 9

Encoded Data 9 5 1 D F 2 C 3 7

In order for a new node to synchronize to the

communication network, a bit-level framing delimiter is

required. Since there is no zero nibble in the CONS encoding,

there cannot be more than three consecutive “0”s except if a

CE
PRE

QD0

1

com_clock

data_clock

serial_data

7

zero delimiter is used. To avoid ambiguity, a sequence of 1

and seven “0”s (10000000) will be used as the delimiter taking

a cue from [30]. This delimiter or Frame Synchronization

Sequence (FSS) is added at the beginning of each packet.

The FSS, the CONS overhead, and the data bits can all be

concatenated into a single packet as shown in Table IV. The

data bits can be no more than 7 bytes long for a fixed-width

data packet as this is the maximum number of bytes between
any two successive zeros that can be encoded by the CONS

scheme. This is because the 16 nibbles in the set [0, F] are

mapped to 15 nibbles in the set [1, F] for the purpose of

encoding zero nibbles. In other words, only 15 consecutive

zero nibbles (60 bits) can be encoded (including the phantom

zero appended logically to carry out the encoding). Removing

the 4 bits of this phantom zero leaves 56 bits (7 bytes) for the

actual data to be transferred.

Another way of looking at this is to note from Table III that

a code nibble is derived from the subtractive operation

between the indexes of two nearest zeros, with the code stored
in the position of the first (placeholder) zero nibble. Since a

nibble can only hold a maximum count of 15 (F in

hexadecimal), and the phantom zero appended to the data is

part of the count, the actual data (payload), which is the

allowed maximum value of the distance between any two zero

nibbles, is thus 14 nibbles (index 15+in minus index in minus

one phantom overhead nibble). This 14-nibble maximum data

bits is only true for packets with infrequent zeros; if zeros are

guaranteed to show up at no more than 14 nibbles apart, then a

single packet can have data bits in excess of 56 bits. However,

where such guarantees are not deterministic or where bounded
latencies are desired as is the case with real-time networking, a

fixed data bit of not more than 56 bits has to be enforced.

Nibbles have been used instead of bytes as a compromise

between the percentage overhead and the maximum data bits.

With a byte word length as in the original COBS, we would

incur 8 bits of overhead per packet, though the maximum data

bits would then be 254 bytes. A quick comparison shows that

the COBS has a lower percentage overhead of 0.39% per 254

bytes compared to 7.14% per 14 bytes in CONS. However, at

lower data sizes, COBS incurs more than CONS. For instance,

for a data size of 6 bytes, COBS would incur 20% overhead

compared to 8.33% in CONS. Moreover, the size of the
delimiter also increases with the word size, always two times

the word size, and thus influencing the total overhead and

latency of packet transactions. Ultimately, the choice of word

size will be a compromise between the percentage overhead

and the maximum data bits required per packet.

TABLE IV: THE PACKET FORMAT FOR CONS-ENCODED DATA BITS

Fields FSS CONS Overhead Max. Data

Number of Bits 8 bits 4 bits 56 bits

Comment Value: 80 hex CONS-encoded

VI. NETWORK ADAPTER FOR COMMUNICATION ACCESS

To exploit the clock network for communication, each of

the intercommunicating tasks in a system employing CELOC

must be wrapped with a Network Adapter to arbitrate access

to the CE of a clock buffer, When no packet synchronization
is used, the CONS encoder and decoder are not needed and

adapting to a network simply requires the

Serializer/Deserializer (SERDES) of Fig. 3.

The popular serial communication interfaces like the Serial

Peripheral Interface (SPI) and I2C are avoided because they

require more than one signal. A potential interface protocol for

CELOC could be a 1-wire protocol like the one introduced in

[31] or the Universal Asynchronous Receiver-Transmitter

(UART). Essentially, since only the CE pin in a clock buffer is
being driven by an RX task in CELOC, a single-wire protocol

would be more appropriate to prevent the usage of static

routing resources as much as possible. The proposed SERDES

provides a raw interface to the clock buffers and a higher-level

bit framer can always be used to adapt to different serial

protocols. As it is, the SERDES is a serial streaming interface

that would bit-stream a packet of data presented at its data

input and also recover a parallel data that is serially shifted in.

On the other hand, when packet synchronization is needed,

the CONS encoder and decoder are used and the task is

wrapped as shown in Fig. 8. This builds upon the proposed
SERDES by implementing five major blocks: a CONS

Decoder, a Task Interface Logic (TIL), and the CONS

Encoder. The next subsections provide more details on these

blocks and other components of the network adapter.

Fig. 8: The network adapter for packet-synchronized network access

A. Task Interfacing

This work proposes a task interface model that is based on

the Xilinx HLS Block-Level interface protocol [32] for any

task that has to communicate using CELOC’s packet-

synchronized wrapper. This model requires that a minimum of

five ports: ap_idle, ap_start, ap_rst, ap_ready, ap_done, and

ap_return (indicated by the arrow that feeds the Mux in Fig. 8)
are defined for a task. This ensures uniformity of interfacing

between different tasks and the CONS codec (decoder-

encoder) and provides a standardized task interface. In

addition, this is also in line with the current trend in using

HLS-generated HDL modules for rapid system development.

B. CONS Encoding

In the encoder, which also serves the function of data

serializer, the CONS encoding algorithm is implemented with

a finite state machine. The theoretical encoding process

presented in Section V is modified for hardware

implementation. The encoder starts its operation when a

START signal is asserted. First, it saves the data to encode in

a shift register and then starts the encoding process. The

process involves detecting zero nibbles and replacing them

with CONS codes. Once the entire packet is encoded, the bits

are shifted out serially for routing to the CE of a clock buffer.

Task
CONS

Encoder

CONS

Decoder

data_out

Synch
error

ready

com_clock

ap_ready
Task

Cntrlr

se
ri

a
l_

d
at

a_
o

u
t

d
at

a_
in

ap_start

Mutex

ap_idle

ap_done

ap_rstdata_rcvd

CE of

BUFFER

task_clock

start

TIL

8

When all the bits have been shifted out, the encoder asserts a

READY signal in readiness for another encoding operation.

C. CONS Decoding

The CONS decoder receives, decodes, and de-serializes a

CONS-encoded packet. In the decoder, the code nibbles in the

received packet are replaced with zeros. The decoding is

simplified by careful implementation of the decoding

algorithm. A close look at the encoded data in Table III

reveals that every code nibble points to the relative location of

the next code nibble. This is as expected since the CONS

codes are formed by counting the number of non-zero nibbles

preceding a zero nibble as explained in Section V. Also, the

first nibble received is always a code nibble. These
observations are crucial as they simplify the logic of the

decoder, and hence reduce the FPGA resources used. By

subtracting 1 from the value of a code we obtain the number

of data nibbles preceding the next code. Using a state

machine, we loop through all the codes and extract the

associated data. Once all the nibbles have been processed the

data_rcvd port (see Fig. 8) of the decoder is asserted and the

state machine resets in anticipation of a new packet.

D. Address-Inclusive Encoding and Decoding

A generic approach is taken in the implementation of the

encoder so that it is usable for varying numbers of data width.

In the vanilla implementation, where there is no addressing or

any special bits inserted in the packet, the codec is intended

for P2P communication without provision for addressing.

However, the applications that require CELOC for use in an

NoC would benefit from an addressable codec that has the

addressing functionality embedded in it.
More often than not, the packet in Table IV will need

addressing if CELOC is used to implement an on-chip

network. In appending the address bits to the packet, a plain

un-encoded non-zero addressing is recommended, where a

zero address is not used and the address bits, therefore, do not

need to be encoded. This ensures the address bits do not eat

into the maximum number of bits available for data. More

important though, is the fact that in a CELOC-based NoC, the

packet can, therefore, be routed through the network with

much less latency since the intermediate nodes do not

necessarily have to receive the entire packet as the address to

deflect a packet to is visible in the packet. There is a use_addr
port, with corresponding address ports on the interface of the

encoder and the decoder. This is used to enable the address-

inclusive mode and is controlled by the TIL.

E. Task Interface Logic

The TIL interfaces the task to the CONS Encoder and

Decoder. It glues together a Task Controller (TC), Mutex,
multiplexer (Mux), and Synchronizer (Synch). The Mutex is a

means of sending status information out of the task and

wrapper, especially for the purpose of error detection. For

instance, the decoder could fail due to an error in its internal

state machine’s state transition. The Mux is used to choose

between the outputs of the task and the Mutex.

The function of the TC is to start the task if it is idle and

data has been received by the decoder. It also deserializes the

received packet, recovers the data and presents it to the task.

In addition, it handles addressing when the address-inclusive

CONS is used. These are the functions of the TC in this

prototypic implementation. However, in a reconfigurable

system that deploys CELOC, the TC would receive command

packets from a system-level Task Communication Manager

(TCM) to start or stop its associated task. It would also receive

the destination address and the system time instance the

processed data should be sent. This time, however, cannot be
earlier than the time instance the task finishes execution. If the

packet is a command packet, the TC would check whether to

start the task or reset it based on the command and would do

accordingly. Otherwise, the received packet would be handled

as a data packet. If the task is already started, the TC would

route the new data to the task. The situation should not arise

where a task is not ready for new data, thus avoiding the need

for buffering and saving on memory resources. This is because

the TCM would dictate the time to send data based on when a

destination task can accept it. It would, therefore, be

counterintuitive to provide a buffering capability. However, a
buffer can easily be inserted if necessary but the TCM’s

algorithm and the task computation model would have to be

modified to account for this. In general, data should not be

processed by the task at a rate faster than it can be routed

through the CONS Encoder/Decoder (Codec) and the serial

communication network except if buffering is used.

Similarly, in data delivery to the CONS Encoder is not

buffered. The TIL ensures that the encoder is ready for a new

input before applying the task’s output data. The Synchronizer

does this by checking that both ap_ready and CONS

Encoder’s “ready” are driven HIGH before asserting the
CONS Encoder’s start. It is guaranteed that once ap_ready

goes HIGH, the data from the task is available as input to the

CONS encoder. This is because the Output Data Mutex and

Multiplexer are purely combinatorial and as such incur no

clock delays. To ensure a non-buffered data at the input of the

encoder, the encoding time should be accounted for in the

timing model a system deploying CELOC.

F. Resource Utilization and Performance Evaluation

Table V shows the resource overhead of the network

adapter for the bare SERDES and the packet-synchronized

version. Tiny finite state machines are implemented for the

PISO and SIPO blocks of the SERDES. These incur a total of

13 slices while the CONS-based adapter’s utilization amounts

to only 32 slices. As the reconfiguration frame, which defines

the minimum selectable area for partitioning the FPGA area, is

always two columns (200 slices for CLBs). This implies that

the adapter will fit right in, even with the smallest of tasks, by

occupying only between 6.5% and 16% area of the
reconfiguration frame.

TABLE V: RESOURCE UTILIZATION OF CELOC’S NETWORK ADAPTER

Resource

Network Adapter Modules

SERDES Packet-Synchronized

PISO SIPO CONS ENC CONS DEC CONS TIL

FFs 30 72 65 100 84

LUTs 14 10 35 28 24

DSPs 0 0 0 0 0

BRAMs 0 0 0 0 0

Slice 13 32

9

In terms of data transfer latency, the SERDES PISO block

latches the parallel data in one clock cycle and streams it for

the number of clock cycles equivalent to the number of bits in

the parallel data. The SIPO recovers the data in the same

period but uses one additional clock cycle for internal state

transitions. As a result, the SERDES latency for 32-bit data is

34 clock cycles.

For the evaluation of communication latency of the packet-
synchronized adapter, the CONS encoder is directly interfaced

to the CONS decoder and the number of cycles measured

individually for the encoder and decoder; and also for the

entire codec. Table VI presents the measured clock cycles.

From the moment the encoder’s start signal is asserted to the

end of encoding and serial data shifting out (ready signal

asserted), 56 clock cycles are incurred for the non-addressable

codec and 60 for the address-inclusive version. Similarly, for

the decoder, from the moment the FSS is received to the end

of decoding, these numbers are 48 and 52 respectively. An

entire 32-bit packet is sent and received in 60 and 64 clock
cycles respectively.

For the different word sizes, the test packet is made a

multiple of 32 bits for ease of comparison and the generation

of the latency equations. That is, for the word lengths of 4, 8,

16, and 32, data widths of 32, 64, 128, and 256 bits are used.

The equations should be used only when the packet size is

8𝑁𝑊, where 𝑁𝑊 is the word length in bits.

TABLE VI: THE CELOC CODEC’S LATENCIES FOR DIFFERENT WORD SIZES

Word

Size

(𝑁𝑊)

in Bits

Max. Data

Size Per

Packet

Clock Cycle Latency for 8𝑁𝑊 Data Bits

 Non-Addressable 4-bit Addressable

ENC DEC CODEC ENC DEC CODEC

4 56 bits 56 48 60 60 52 64

8 254 bytes 100 88 108 104 92 112

16 128 kB 188 168 204 192 172 208

32 16,384 MB 364 328 396 368 332 400

Latency Equation 60 + 12(𝑁𝑊 − 4) 64 + 12(𝑁𝑊 − 4)

VII. BUFFER CONFIGURATIONS FOR NETWORK ACCESS

The diagram in Fig. 9 is a representation of a section of the

Xilinx 7 series FPGA. The left and right clock regions are

symmetrical with respect to the placement of clock buffers.
Also indicated, are Circuit Regions (CRs) that are potential

areas within the clock regions for task placement targeting the

exploitation of clock buffers for communication. Note that not

all possible CRs and communication routes are shown. The

notion here is that inter-circuit communication should only be

through the clock buffers for the purpose of avoiding the static

routes completely in order to aid the flexible relocation of

circuits. Fig. 9 also shows the locations of the clock buffers on

the FPGA. In general, a 7 series FPGA (apart from the smaller

Artix-7 chips) has 4 BUFRs, 2 BUFMRs, and 12 BUFHs in

each clock region. In addition, there are 32 BUFGs at the

centre of the chip, common to all the regions.
While the buffers can be used to communicate in different

directions, certain configurations or combinations have to be

used in order to provide communication. This brings the

question of data transfer speed since by connecting one buffer

to another, a delay is introduced into the communication path.

In the next subsections, we present some possible

configurations of the clock buffers and their use cases. What

informs these configurations are the reach of the buffers and

the availability on them of clock enable (CE) pins that can be

actively toggled. Furthermore, there is a restriction on buffer-

to-buffer interconnections. For instance, it is only a BUFR that

can feed a BUFG directly. As a result, if an intra-clock-region

network has to access other clock regions not within its

neighbourhood (immediate vertical and horizontal regions), a
BUFR has to be used to drive a BUFG in order to feed such

regions with data_clock.

Fig. 9: A representation of the 7 series FPGA chip showing the locations of

clock buffers, circuit regions (CR1 to CR8) for placing circuits within clock

regions, and sample vertical and horizontal interconnections between the CRs

Since only the BUFGs and BUFHs can drive the SR/PRE

and CE inputs of registers, and it is essential for data_clock to

be interfaced with a receiving circuit through an input that can

be driven by a clock buffer, not all of the possible buffer

combinations can be used if relocation support is sought. Only

the ones that have data_clock coming out of a BUFG or

BUFH can be used.

In the subsections that follow, it should be noted that

arrows represent the direction of data transfer. For instance,
with respect to Fig. 9, CR1→CR8 means CR1 is transmitting

to CR8 while CR2↔CR3 implies a bidirectional data transfer

between CR2 and CR3. Moreover, since the clock regions

have some symmetry, a communication like CR1↔CR3 is

treated the same as CR2↔CR4; and CR1→CR6 as

CR5→CR2. Also, except where indicated in the figures, all

the connected clock buffers are in the same clock region, save

for the BUFGs, which do not belong to any clock region.

A. Clock Buffer Configurations for Global Communication

Since the BUFGs have a device-wide reach, they can be

used to transmit data to anywhere on the chip. This prevents

any circuit region from being excommunicated from other

regions. For instance, to communicate directly with CR-8

from CR-1 in Fig. 9, a BUFG has to be used (see Fig. 10(a)).

However, since the BUFGs are at the centre of the chip, an

intermediate buffer has to be used to get access to them. There

are four options – BUFR, BUFMR→BUFR (used in Fig.
10(a)), BUFH→BUFR, or BUFH→BUFMR→BUFR,

depending on the available buffers and the relative location of

the task. In contrast, for global communication like

CR2↔CR7, there is direct access to BUFGs. Therefore, the

BUFG-only configuration shown in Fig. 10(b) can be used.

Note that any communication that does not reside within the

CR6CR5 CR8CR7

CR2CR1 CR4CR3

Top

Half

Bottom

Half

2 Multi-

Region

Buffers

(BUFMRs)

4

Regional

Buffers

(BUFRs)

32 Global

Buffers

(BUFGs)

Horizontal Buffers (BUFHs)Clock Region Clock Management Tile (CMT) Column

10

same clock region, or that reaches only to an immediate

vertical or horizontal region is classified as global.

 (a) (b)

Fig. 10: Clock buffer configurations for global communication showing (a)

[BUFMR→BUFR→BUFG→], and (b) [BUFG→]

B. Buffer Configurations for Horizontal Communication

By placing circuits at the inner edges of two horizontal

adjacent clock regions, advantage can be taken of the BUFHs

for horizontal communication. However, circuits at the outer

edges require other configurations. With respect to Fig. 9, and

picking the top clock regions for illustration, the

communications that fall into the category of the horizontal

inter-clock region include CR1→CR2, CR1→CR3,
CR1→CR4, CR2→CR3, and CR2→CR4. Communications

like CR2↔CR3 and CR2→CR1 can be achieved by using the

configuration in Fig. 11(a). However, since there is no clock-

buffer-based physical link between CR1 and CR2 in the

middle of the clock region, while CR2→CR1 can use

[BUFH→], CR1→CR2 can use [BUFMR→BUFR→] (see

Fig. 11(b)). All the other communications have to use the

configuration [BUFMR→BUFR→BUFG→] presented in Fig.

10(a). It should be noted that CR2→CR1 can also use the

configurations in Fig. 11(c) and Fig. 11(d).

com_clock

TX

Circuit

data_clock to a

horizontal adjacent

clock region

CE

BUFH

com_clock

TX

Circuit

CE

BUFMR BUFR

data_clock to

horizontal circuits

in the same region
(a) (b)

com_clock

TX

Circuit

data_clock to

horizontal circuits

in the same region

BUFRBUFH

CE

com_clock

TX

Circuit

data_clock

to horizontal

circuits in

the same

region

B
U

F
R

BUFMRBUFH

CE

(c) (d)

Fig. 11: Clock buffer configurations for horizontal inter-region

communication showing (a) [BUFH→], (b) [BUFMR→BUFR→], (c)

[BUFH→ BUFR→], and (d) [BUFH→BUFMR→BUFR→]

C. Clock Buffer Configurations for Vertical Communication

From Fig. 9, and picking the left clock regions for

illustration, the communications that fall into the category of

the vertical inter-clock region include CR1↔CR5,

CR1→CR6, CR2→CR5, and CR2↔CR6. Note that symmetry

can be used to pick other ones. CR2→CR5, CR6→CR1 and

CR2↔CR6 communications can be through the configuration

in Fig. 12(a) and [BUFG→] presented in Fig. 10(b). All others

can use the one in Fig. 12(b). Note that the BUFRs in Fig. 12
are not in the same clock region as the other buffers. As a

result, they are indicated as BUFR(adj) in the figure caption.

com_clock

TX

Circuit

CE

BUFMR BUFR

data_clock to

vertical adjacent

clock regions

BUFR in the

adjacent region

com_clock

TX

Circuit

data_clock

to vertical

adjacent

clock

regions

B
U

F
R

BUFMRBUFH

CE

BUFR

in the

adjacent

region

(a) (b)

Fig. 12: Clock buffer configurations for vertical communication showing (a)

[BUFH→BUFMR→BUFR(adj)→], and (b) [BUFMR→ BUFR(adj)→]

D. Maximum Speeds of the Clock Buffers and Nets

The understanding of the maximum frequency of operation

of the clock buffers is crucial in the attempt to adapt them for
on-chip communication. This will help evaluate the limiting

factor in the achievable communication speed of CELOC for

different devices. Table VII shows the maximum frequencies

found in the respective datasheets of the 7-Series FPGAs. At

the time of writing, there is no Spartan-7 with speed grade -3.

E. Bandwidth Characterization

To determine the maximum speed that each clock buffer

configuration can achieve, the experimental setup in Fig. 13 is

used. The device used for the experiment is the Artix-7

(xc7a35tcpg236-1) FPGA with speed grade -1. The TX circuit

is used to generate predetermined data packets to be received

by the RX circuit. To confirm the correctness of data transfer,

the validation of the received data is done by using an

Integrated Logic Analyser (ILA) to observe the signal

transitions. A PLL clock generator is used to sweep the

communication clock’s frequency to the maximum value that

still meets timing and does not corrupt the communication.

TABLE VII: MAXIMUM OPERATING FREQUENCIES OF THE CLOCK BUFFERS IN

THE XILINX 7 SERIES FPGAS

Device
Speed

Grade

BUFG

[Tree]

(MHz)

BUFH

[Buffer]

(MHz)

BUFMR

[Buffer]

(MHz)

BUFR

[Tree]

(MHz)

Artix-7

-3

628 628 680 420

Kintex-7 741 741 800 600

Virtex-7 741 741 800 600

Spartan-7

-2

628 628 - 375

Artix-7 628 (394a) 628 (394a) 680 (600a) 375 (315a)

Kintex-7 710 (560a) 710 (560a) 800 (667a) 540 (450a)

Virtex-7 710 710 800 540

Spartan-7

-1

464 464 - 315

Artix-7 464 464 600 315

Kintex-7 625 625 710 450

Virtex-7 625 625 710 450

a At speed grade -2LE, 0.9 V

Fig. 13: The setup for characterizing the clock buffer configurations

The test communication packet is a 44-bit packet

comprising of 32-bit data, a frame synchronization sequence

of 8 bits and a serial encoder overhead of 4 bits. Table VIII

com_clock

TX

Circuit

CE

BUFMR BUFR

data_clock to

anywhere on the chip

BUFG

com_clock

TX

Circuit

data_clock

to anywhere

on the chip

BUFG

CE

PLL
Clock

Generator
TX

Circuit

RX

Circuit
Buffers

CE

ILA
Debugger

Circuit
com_clock

11

shows the maximum bandwidths (data transfer rates) at which

the buffer configurations work without a corrupted data

transfer. The corresponding data recovery register or latch is

also indicated. Moreover, based on the number of clock

buffers in the FPGA, the number of instances of each

configuration (not considering buffers used by other

configurations and those used for other purposes) that can

coexist in a single clock region is also indicated in Table VIII.
The highest speed of 275 Mbps is observed with the

[BUFH→BUFR→] configuration and the lowest (171.43

Mbps) with the [BUFR → BUFG →] and [BUFMR → BUFR

→ BUFG→] configurations. Indeed, BUFR appears to be the

limiting buffer. This is because it is the buffer with the slowest

speed. In fact, for the Artix-7 board used for the

experimentation, the speed grade is -1 and the BUFR’s

maximum frequency is graded at 315 MHz, which is the

minimum for any of the buffers in the chip (see Table VII).

Therefore, the average speed of 221.15 Mbps is relatively high

considering that it is only 29.79% short of the BUFR’s
maximum. By extension to other speed grades, the average

CELOC speed can be expected to scale as 70.21% of

fBUFR_MAX, where fBUFR_MAX is the maximum frequency of the

BUFR net in the target device.

TABLE VIII: BANDWIDTH OF THE CLOCK BUFFER CONFIGURATIONS

Clock Buffer Configuration
FDPE

/LDPE

Bandwidth

(Mbps)

Instance/

Region

BUFG→ FDPE 266.67 32/chip

BUFR→BUFG→ LDPE 171.43 4

BUFMR→BUFR→BUFG→ LDPE 171.43 2

BUFH→BUFR→BUFG→ LDCE 187.50 4

BUFH→BUFMR→BUFR→BUFG→ LDCE 171.43 2

BUFH→BUFMR→BUFR(adj)→BUFG→ LDCE 171.43 2

BUFH→ FDPE 266.67 12

BUFMR→BUFR→ LDPE 240.00 2

BUFH→BUFR→ LDPE 275.00 4

BUFH→BUFMR→BUFR→ LDPE 240.00 2

BUFH→BUFMR→BUFR(adj)→ LDPE 240.00 2

BUFMR→BUFR(adj)→ LDPE 240.00 2

BUFR→ LDPE 233.33 4

Average - 221.15 -

In addition, the use of the clock buffers does not impact

negatively on the number of circuits that can be on the FPGA

simultaneously. The CRs can accommodate more than one

circuit. Therefore, from the number of instances in Table VIII,

it is estimated that up to 16 circuits with communication

access can be in a single clock region at the same time

assuming they can be partitioned such that the CE access does

not constitute a static route problem. This number is arrived at

by excluding configuration instances that use similar buffers.
In addition, there are 32 global configuration instances that

can be shared by all the clock regions.

VIII. DYNAMIC COMMUNICATION WITH CELOC

This section advances a dynamic communication access

mechanism that is termed Clock-Enabled Relocation-Aware

Network-on-Chip (CERANoC). This builds on CELOC with

the main advantage for CERANoC being that the clock buffers

and nets use dedicated routes that are independent of the

general logic interconnect. This removes the restriction of the

static interconnect links and enhances the online relocation of

circuits. This mechanism relies on the replacement of the

interconnect links in NoCs with clock buffers. Since the clock

buffers do not use the general logic routing resources, the path

from a transmitting circuit to a receiving circuit is free of

general logic interconnections.

For circuit relocation to be feasible, communication must

be provided at the resource-matching destination for the

circuit being moved. With regard to Fig. 14, the easiest way to
provide this communication is to ensure that a route from Task

1 to LOC 2 is established at design time. This way, during

runtime, Task 2 can be moved to LOC 2 while maintaining its

communication link with Task 1.

The solution to dynamic communication in CERANoC

eliminates the static inter-circuit communication routes

altogether. Using Fig. 14 as an example, this is achieved by

removing the static inter-task connections and replacing them

with clock buffers as shown in Fig. 15. The hypothetical

layout of tasks here is the same as that in Fig. 14, except that

the interfaces between Tasks 1 & 2, and between Tasks 1 & 3
have been removed. To provide communication, a clock

buffer is used to transmit serial bits from Tasks 1 to 2 and 3.

This signal also feeds LOC 2, so that if Task 2 is relocated to

LOC 2, the communication between it and Task 1 remains

intact. At the same time, LOC 1 is now free of a crossing

routing. Basically, the surface of the chip is generally freed of

inter-circuit routings.

In the implementation of CERANoC in this work, the clock

regions of the FPGA are used as NoC nodes. The clock

buffers are pre-routed between clock regions at design time so

that during runtime, regardless of the clock region a task is
placed, it is able to communicate with any task in any other

clock region, with serial data riding on a clock signal from a

source node to a destination node.

Fig. 14: A diagram demonstrating how static routes hinder relocation

Fig. 15: By removing the inter-circuit interfaces and replacing them with

clock buffers, it is possible to achieve dynamic communication

In the following subsections, the special considerations for
the implementation of CERANoC are presented in relation to

the design parameters of a traditional NoC. It should be noted

that the aim is not to implement a full-fledge NoC as that is

beyond the scope of this work; rather, the intention is to

demonstrate how the use of clock buffers for inter-circuit

communication enhances the relocatability of circuits.

Task 1

LOC 3

Task 2

Task 3

LOC 2

LOC

1

Task 1

LOC 3

Task 2

Task 3

LOC 2

LOC

1

CE

12

A. Packet Format and Addressing Scheme

The FSS, the destination address, the CONS overhead, and
a data of 56 bits maximum are all concatenated into a single

packet as shown in Table IX. A unique Node ID is given to

each node on the network. This ID also serves as the address

of the node and is added to the communication packet as the

destination address. With N nodes, the address range is from 1

to N, with zero deliberately avoided because the address field

in the packet is un-encoded as noted for the address-inclusive

packet encoding and decoding in Section VI. As such, one

reason for transmitting the address in plain format is that the

routers need to know the destination address before routing the

packet. Encoding and decoding the address would incur
further clock cycles at the encoder and decoder and require

more logic resources in the router. Furthermore, an encoded

address would eat into the number of bits available for the

actual data, eventually preventing data transfer as N increases

and becomes 56. Therefore, with this careful choice of an

address range, CERANoC saves on time and resources, and

ensures maximum throughput.

TABLE IX: THE PACKET FORMAT FOR 4-BIT-DATA-WORD CERANOC

Fields FSS
Destination

Address

CONS

Overhead
Data

Number of Bits 8 bits aN bits 4 bits 56 bits max

Description Value: 80 hex Unencoded CONS-encoded
a N = number of nodes

B. Network Routing

A routing algorithm determines the routing of data from the

source to the destination in a network. The problem of

designing routing algorithms that meet different performance

and architectural requirements has been extensively studied.

Some of these requirements are low latency, low power

consumption, scalability, and programmability [33].

CERANoC supports any existing routing algorithm so far the
clock buffers can be arranged to serve as links in the topology

chosen. There is no other special consideration for routing in

CERANoC. For instance, a Torus CERANoC can use BUFGs

to connect the topmost clock regions to the tail regions and the

leftmost regions to the rightmost regions.

C. Prototype Network Demonstration

To demonstrate the feasibility of CERANoC, a 4-node

prototype star network with a Central Router is implemented

on the Artix-7 (XC7A35TCPG236) FPGA chip (see Fig. 16).

For the global clock generation and distribution, a special

switch_clock is needed by the Central Router. This is from the

same output that feeds the BUFG which distributes

com_clock. The clock buffer configuration used by the nodes

is [BUFMR→BUFR→BUFG→] but could have also been

[BUFR→BUFG→]. Note how the BUFGs are located

logically inside the Central Router. Because switch_clock

feeds these BUFGs, passing it through another BUFG would
adversely affect network bandwidth. Moreover, by directly

feeding the BUFGs, switch_clock ensures that on the part of a

receiving node, a received packet arrives directly from another

node with the data clock having been refreshed. This is

because as the data_clock from the BUFR enters the Switch

Arbiter, it is received by an LDPE latch and passed through a

crossbar logic before being fed to the CE of a BUFG,

essentially starting a new transmission (see Fig. 17).

Fig. 16: A 4-node CERANoC star network using clock buffers as links

Since the objective of this prototype demonstration is to

show that using the clock buffers in the manner stipulated by

CELOC/CERANoC facilitates dynamic communication and

circuit relocation by circumventing the general interconnect,

most of the intricacies of NoC designs are avoided as these are

already extensively studied. A point-to-point routing is used

for the star-network (see Fig. 18), and a 32-bit payload data is
used, giving a 48-bit packet. 48-bit buffer memories (48 x 1-

bit LUT-RAMs) are provided inside the Central Router in

order to temporarily store packets that cannot be immediately

routed. In order to control access to multiple nodes attempting

to transfer packets simultaneously to the same receiving node

and thus keep in line with real-time requirements, priorities

are assigned to the nodes based on the node address. A node

with a lower address has a higher priority.

Fig. 17: Data clock renewal in a star-shaped CERANoC

Fig. 18 shows the switch architecture implemented for the

4-node star network. Ni implies node i while Sjk denotes a

switch position from node j to node k. The indicated positions

of the switches are for the following routing: N0 → N3, N1 →

N0, and N3 → N1. There is one Node Router (NR) for each

input to the Switch Arbiter. In each NR there are three (N – 1)

independent switch endpoints (Sjk) which determine the
routing of the incoming packet to the other three nodes. In the

Switch Arbiter, there is a 4-bit occupied_switches register that

shows the state of the nodes with respect to data reception. A

node that is presently receiving a packet has its corresponding

bit turned on. The Switch Arbiter checks the destination

address of the packet against the state of the occupied

switches. If the destination node is not already occupied by an

BUFG

BUFG

BUFG

Task

Task Wrapper

Clock Buffer Block

 SERDES TX RX

. . .
Switch Buffer Block

Node

(N0)

Switch

Arbiter

CE

CE

CE
Reconfigurable

Region

switch_clockcom_clock

BUFR

CE

BUFMR

Central
Router

Clock Buffer Block

Serial

data

com_clock

BUFR

CE

BUFMR

switch_clock

Switch Buffer
Block

Refreshed

data_clock
BUFG

CE

data_clock Switch

Logic

13

ongoing transmission, the packet is routed through and the

occupied_switches state is updated.

To test dynamic communication and relocation at the

fundamental level, four tasks (θ0 to θ3) are set up, with one

task in each of the nodes. It is very important in this

demonstration to have a visual indication that new tasks are

able to establish communication and that existing tasks still

execute correctly when new tasks are placed in runtime. As a
result, a VGA application is used with the setup in Fig. 19.

Tasks θ0 to θ2 are pattern generators, each generating three

different patterns (P) of four vertical stripes of colours white

(W), red (R), green (G), or blue (B). Each of these coloured

stripes is represented by 8 bits (3 bits for R, 3 bits for G, and 2

bits for B). Every 32 bits of data sent by a pattern generator,

therefore, determines four stripes of 8-bit colour. θ0 to θ2

generate P0 to P2 respectively, with P0 = [W, R, G, B], P1 =

[G, B, W, R], and P2 = [B, W, R, G]. θ3 is a fixed VGA

controller that interfaces to a VGA monitor in order to display

the patterns generated by θ0 to θ2. At design time θ0 to θ3 are
floor-planned in nodes N0 to N3 respectively and partial

bitstreams are generated for only θ0 to θ2. Task θ3 has to be

static because it needs access to the VGA’s interface pins

which are in fixed locations on the FPGA. Tasks θ0 to θ2 are

set to transmit to θ3 at the same time. Because of the router

priority, this means P0 is continuously displayed. By blanking

N0 and N1 successively using blanking bitstreams, we are able

to see P1 and P2; reconfiguring N1 then N0 also results in

patterns P1 then P0, demonstrating that communication is

unimpaired when tasks are swapped in and out in runtime.

Fig. 18: The switch architecture for a 4-node CERANoC star network

Fig. 19: The setup for demonstrating CERANoC

The demonstration of relocation involves configuring θ0 in

N1 while blanking N0 and θ1 in N0 while blanking N1, though,
after changing the target frame address in the bitstream. In the

former case, we are able to see pattern P0 even though it is

configured in N1, and vice-versa for the latter case. The

Vivado Hardware Manager is used to configure the partial

bitstreams. Fig. 20 shows the floorplan of the FPGA after

implementation. It can be seen that the chip areas belonging to

nodes 0 to 2 are free of general routing. This is as expected.

The Network Interface does not contribute to static routing as

it is made part of the reconfigurable task itself. Only the clock

lines can be seen routed in the HROW from a global network
feeding the clock regions (refer to Fig. 2 in Section III). These

routings are dedicated clock nets and do not interfere with

relocation. This means the clock regions remain free of

general routing even though they are interconnected. The

connections to CEs are at the edges of the clock regions,

leaving the majority of the region free of general routing.

D. Resource Utilization

The only component peculiar to CERANoC is the network

adapter and it uses only 32 slices (see Section VI). The entire

4-node network itself (without the tasks) takes 144 slices.

Clock buffer utilization stands at 4 BUFMRs, 4 BUFRs, and 6

BUFGs, with per clock region utilization of 50%, 25%, and

3.125% respectively.

E. Network Latency

Since the central router simply routes the packet from the

source to the destination nodes, essentially effecting the

connection between [BUFMR→ BUFR→] and [BUFG→] in

a [BUFMR→BUFR→BUFG→] clock buffer configuration,

the packet transfer latency remains 64 clock cycles as

presented in Table VI in Section VI for packet-synchronized

address-inclusive encoding.

Fig. 20: The floorplan of the implemented 4-node network

F. Network Throughput

The CONS encoder and decoder do not share circuitry.

Therefore, nothing stops concurrent data transfers like these

four simultaneous data transfers: N0 → N1, N1 → N2, N2 → N3,

and N3 → N0. That is, for the 4-node star CERANoC, the

throughput of the individual link can be multiplied by 4 to
obtain the network throughput. As such, for an N-node star

CERANoC in full-duplex mode, the throughput (in Mbps) can

be defined by Eq. 1 in terms of the payload size (in bits), the

number of nodes (N), the frequency of operation (f in MHz),

and the latency cycles as follows:

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑃𝑎𝑦𝑙𝑜𝑎𝑑 (𝑖𝑛 𝑏𝑖𝑡𝑠)×𝑁×𝑓(𝑖𝑛 𝑀𝐻𝑧)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝐶𝑦𝑐𝑙𝑒𝑠
 (1)

S01

S03

S02

Logic ‘1’

S10

S30

S20

Logic ‘1’

N0 N0

Logic ‘1’

S13

S12

S10

Logic ‘1’

S31

S21

S01

BUFGN1 N1

S21

S23

Logic ‘1’

S20

S12

S32

Logic ‘1’

S02

N2 N2

S31

Logic ‘1’

S32

S30

S13

Logic ‘1’

S23

S03

N3 N3

Switch Arbiter
clock

BUFG

BUFG

BUFG

NR

NR

NR

NR

Display
Controller

CELOC Wrapper

Pattern
Generator

CELOC Wrapper

data_clockclock

CE

14

At 100 MHz this gives a throughput (data rate) of 200

Mbps for the network demonstrated. The CELOC links used

has a maximum speed of 171.43 Mbps (same as 171.43 MHz

since one bit is transmitted in one clock cycle). The maximum

throughput for the Artix-7 device used is, therefore, 428.58

Mbps for a 32-bit payload and N = 5 (assuming the Central

Router’s RP is also used to host a node). It should be noted

that the latencies for payloads other than 32 bits can easily be
determined from Table VI.

Compared with methods that involve runtime routing,

CERANoC does not incur any clock cycle overhead in order

to place a new circuit or relocate one in runtime. Moreover,

compared with the method in [22], the ICAP is not required

for communication purposes, thus allowing SEM to have as

much ICAP time as possible. The use of the ICAP for

communication could be counterintuitive where reliability is

important. Moreover, while DyNoC [19] also achieves

dynamic communication for newly placed tasks, it is not

certain that it is able to support relocation since the problem of
general routing seemed not to have been addressed.

CERANoC, on the other hand, leaves the chip area clear of

general routing.

IX. SUMMARY AND FUTURE WORK

This article has presented a unique adaptation of the clock

buffers and nets of an FPGA for dynamic communication for

relocatable circuits. By using clock buffers as communication

infrastructures, we have shown that it is possible to avoid

static interconnections and achieve communication among

existing tasks and tasks placed or relocated during run time on

an FPGA. One limitation in the present implementation arises
from the limited number of clock buffers, limiting the network

throughput. This is alleviated in newer chips like the

UltraScale, which have more clock buffers. In the future, we

will investigate architectures that will further exploit the clock

buffers for dynamic communication.

REFERENCES

[1] P. Sedcole, B. Blodget, J. Anderson, P. Lysaghi, and T. Becker,

‘Modular partial reconfigurable in Virtex FPGAs’, in International

Conference on Field Programmable Logic and Applications, 2005.,

2005, pp. 211–216.

[2] S. Srinivasan et al., ‘Toward Increasing FPGA Lifetime’, IEEE Trans.

Dependable Secure Comput., vol. 5, no. 2, pp. 115–127, Apr. 2008.

[3] L. Kirischian, V. Kirischian, and D. Sharma, ‘Mitigation of Thermo-

cycling effects in Flip-chip FPGA-based Space-borne Systems by

Cyclic On-chip Task Relocation’, in 2018 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), 2018, pp. 17–24.

[4] Xilinx Inc., ‘Vivado Design Suite User Guide, Partial Reconfiguration -

UG909 (v2018.1)’. Xilinx Inc., 2018.

[5] A. DeHon, R. Huang, and J. Wawrzynek, ‘Hardware-assisted fast

routing’, in Proceedings. 10th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, 2002, pp. 205–215.

[6] W. J. Dally and B. Towles, ‘Route packets, not wires: on-chip

interconnection networks’, in Design Automation Conference, 2001.

Proceedings, 2001, pp. 684–689.

[7] Xilinx Inc., ‘7 Series FPGAs Clocking Resources - User Guide UG472

(v1.11.2)’. Xilinx Inc., 2015.

[8] N. Kapre, ‘On Bit-Serial NoCs for FPGAs’, in 2017 IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2017, pp. 32–39.

[9] A. Morgenshtein, I. Cidon, A. Kolodny, and R. Ginosar, ‘Comparative

analysis of serial vs parallel links in NoC’, in 2004 International

Symposium on System-on-Chip, 2004, pp. 185–188.

[10] A. Adetomi, G. Enemali, and T. Arslan, ‘Clock Buffers, Nets, and Trees

for On-Chip Communication: A Novel Network Access Technique in

FPGAs’, in 2017 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), 2017, pp. 219–222.

[11] A. Adetomi, G. Enemali, and T. Arslan, ‘Relocation-Aware

Communication Network for Circuits on Xilinx FPGAs’, in 2017 27th

International Conference on Field Programmable Logic and

Applications (FPL), 2017, pp. 1–7.

[12] A. Adetomi, G. Enemali, and T. Arslan, ‘Characterization of Clock

Buffers for On-Chip Inter-Circuit Communication in Xilinx FPGAs’, in

2018 IEEE International Symposium on Circuits and Systems (ISCAS),

2018, pp. 1–5.

[13] T. S. T. Mak, P. Sedcole, P. Y. K. Cheung, and W. Luk, ‘On-FPGA

Communication Architectures and Design Factors’, in 2006

International Conference on Field Programmable Logic and

Applications, 2006, pp. 1–8.

[14] B. Fu and P. Ampadu, ‘Networks-on-Chip (NoC)’, in Error Control for

Network-on-Chip Links, Springer New York, 2012, pp. 33–47.

[15] T. Bjerregaard and S. Mahadevan, ‘A Survey of Research and Practices

of Network-on-chip’, ACM Comput Surv, vol. 38, no. 1, Jun. 2006.

[16] É. Cota, A. de M. Amory, and M. S. Lubaszewski, ‘NoC Basics’, in

Reliability, Availability and Serviceability of Networks-on-Chip,

Springer US, 2012, pp. 11–24.

[17] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins,

‘Interconnection Networks Enable Fine-Grain Dynamic Multi-tasking

on FPGAs’, in Field-Programmable Logic and Applications:

Reconfigurable Computing Is Going Mainstream, M. Glesner, P. Zipf,

and M. Renovell, Eds. Springer Berlin Heidelberg, 2002, pp. 795–805.

[18] F. Alazemi, A. AziziMazreah, B. Bose, and L. Chen, ‘Routerless

Network-on-Chip’, in 2018 IEEE International Symposium on High

Performance Computer Architecture (HPCA), 2018, pp. 492–503.

[19] C. Bobda, M. Majer, D. Koch, A. Ahmadinia, and J. Teich, ‘A Dynamic

NoC Approach for Communication in Reconfigurable Devices’, in Field

Programmable Logic and Application, J. Becker, M. Platzner, and S.

Vernalde, Eds. Springer Berlin Heidelberg, 2004, pp. 1032–1036.

[20] M. B. Stensgaard and J. Sparsø, ‘ReNoC: A Network-on-Chip

Architecture with Reconfigurable Topology’, in Second ACM/IEEE

International Symposium on Networks-on-Chip (nocs 2008), 2008, pp.

55–64.

[21] N. Kapre and J. Gray, ‘Hoplite: Building austere overlay NoCs for

FPGAs’, in 2015 25th International Conference on Field

Programmable Logic and Applications (FPL), 2015, pp. 1–8.

[22] X. Iturbe, K. Benkrid, T. Arslan, R. Torrego, and I. Martinez, ‘Methods

and Mechanisms for Hardware Multitasking: Executing and

Synchronizing Fully Relocatable Hardware Tasks in Xilinx FPGAs’, in

2011 International Conference on Field Programmable Logic and

Applications (FPL), 2011, pp. 295–300.

[23] O. Sander, L. Braun, M. Hübner, and J. Becker, ‘Data Reallocation by

Exploiting FPGA Configuration Mechanisms’, in Reconfigurable

Computing: Architectures, Tools and Applications, 2008, pp. 312–317.

[24] M. Welter, ‘Demonstration of Soft Error Mitigation IP and Partial

Reconfiguration Capability on Monolithic Devices - XAPP1261 (v1.0)’.

Xilinx Inc., 2015.

[25] J. Lamoureux and S. J. E. Wilton, ‘FPGA Clock Network Architecture:

Flexibility vs. Area and Power’, in Proceedings of the 2006

ACM/SIGDA 14th International Symposium on Field Programmable

Gate Arrays, New York, NY, USA, 2006, pp. 101–108.

[26] Xilinx Inc., ‘UltraScale Architecture Clocking Resources, User Guide -

UG572 (v1.8)’. Xilinx Inc., 19-Dec-2018.

[27] S. Verma and A. S. Dabare, ‘Understanding clock domain crossing

issues’, EE Times, 2007.

[28] Xilinx Inc., ‘Vivado Design Suite 7 Series FPGA and Zynq-7000 All

Programmable SoC Libraries Guide - User Guide UG953 (v2016.2)’.

Xilinx Inc., 2016.

[29] W. Simpson, ‘PPP in HDLC-like Framing’. [Online]. Available:

https://tools.ietf.org/html/rfc1662. [Accessed: 21-Jul-2016].

[30] S. Cheshire and M. Baker, ‘Consistent overhead byte stuffing’,

IEEEACM Trans. Netw., vol. 7, no. 2, pp. 159–172, Apr. 1999.

[31] P. Lin, ‘One wire serial communication protocol method and circuit’,

US7111097B2, 19-Sep-2006.

[32] Xilinx Inc., ‘Vivado Design Suite User Guide, High-Level Synthesis -

UG902 (v2017.4)’. Xilinx Inc., 2018.

[33] V. Rantala, T. Lehtonen, and J. Plosila, ‘Network on chip routing

algorithms’, Turku Centre for Computer Science, 2006.

