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Enabling Dynamic Communication for Runtime 

Circuit Relocation 

Adewale Adetomi, Godwin Enemali, and Tughrul Arslan, Senior Member 

Abstract—Runtime circuit relocation has been proposed for 

mitigating the effect of permanent damages in reconfigurable 

hardware like FPGAs with potentials to improve reliability and 

reduce or eliminate system downtime. However, a major obstacle 

to the adoption of circuit relocation is the presence of static 

communication links between circuits. Existing solutions to this 

are either computationally expensive or counter-intuitive to 

system reliability. This article proposes a dynamic 

communication mechanism that is able to circumvent the static 

links. The clock buffers in a typical FPGA use independent wires 

and thus, do not constitute static routing. These are repurposed 

as network links to provide dynamic communication for 

relocatable circuits, with a demonstrator based on a 4-node star 

network showing a bandwidth of 428.58 Mbps for a 32-bit 

payload at an overhead of only 144 slices on the Artix-7 FPGA. 

Index Terms—circuit relocation, network on chip, 

reconfigurable computing, reliability 

I. INTRODUCTION 

HE use of reconfigurable hardware like FPGAs for 

computing has become more popular recently. In 

particular, the possibility of modifying the configured circuit 

in runtime is attractive for error mitigation in harsh 

environments like space, where radiations can induce 

temporary errors and permanent damages. One key technique 

that has been proposed for mitigating permanent damages is 

circuit relocation, which involves moving a configured circuit 
(or task) from one place to the other on the chip [1]. In 

addition, circuit relocation is important in Wear-Levelling 

(WL) approaches for mitigating ageing-induced permanent 

damages. In general, WL is any strategy deployed to pre-empt 

damages before they occur, spreading out wear and prolonging 

the lifespan of the chip. WL can involve the alternate usage of 

chip resources over time to achieve uniform ageing [2][3]. 

Runtime circuit relocation is enabled by the Dynamic 

Partial Reconfiguration (DPR) technology in FPGAs [4], 

which allows a part of the FPGA to be reconfigured while the 

rest of the chip remain functional. In the Partial 
Reconfiguration (PR) flow, the chip area is divided into a 

static region (for non-PR circuits) and a reconfigurable region, 

which is floor-planned into multiple Reconfigurable Partitions 

(RPs) for Reconfigurable Modules (RMs) to be (re)configured. 

In general, an RM can only be placed in an RP for which it has 

been floor-planned at compile time. Circuit relocation allows 

an RM to be used in un-associated RPs. 

 An important challenge with circuit relocation, which has 

limited its applicability, is how to provide dynamic 

communication for relocated circuits in runtime since inter-

circuit links are statically determined at compile time. 

Runtime routing is a possible solution to dynamic 

communication but it is both complicated and computationally 

expensive, often requiring several thousands of clock cycles 

[5]. In addition, there can be static routes in the target location 

which belong to the static region, and these must be preserved. 

 Network on Chip (NoC) has come to be regarded as the 

future of on-chip communication, owing to advantages such as 

modularity and concurrency [6]. However, NoCs typically use 

the general routing resources of the chip as network links, 

thereby constituting static routes which are a barrier to 

relocation. To alleviate this problem, a network link that does 
not use the general interconnect resources should be used 

where possible. Incidentally, it turns out that most FPGA-

based designs do not use the available on-chip global and 

horizontal clock buffers [7] and invariably, the clock network. 

Repurposing these buffers and networks for use as 

communication network links would help circumvent the 

restriction of static routes and allow the arbitrary relocation of 

circuits. Since the clock buffers do not use the general logic 

routing resources [7], the path from a transmitting circuit to a 

receiving circuit is free of logic interconnections. Moreover, 

these otherwise redundant resources, which are not used for 
their intended clocking-related purposes have already been 

paid for in silicon. As such, using them for communication-

related purposes represents an added value. 

Furthermore, it is important to note that routing congestions 

are often the reason static routes cross into RPs from the static 

region. A way of reducing routing congestion, especially at the 

interface of circuits, and thus, reducing the number of static 

routes is to use bit-serial interconnections between circuits, as 

this has been shown to have reduced footprint and congestion 

factors [8]. Incidentally, our use of clock buffers for 

communication calls for the adoption of bit-serial connection 

at the clock buffer level. However, multiple bit-serial 
connections can be used depending on the availability of clock 

buffers in the target FPGA. In addition, a bit-serial 

implementation is beneficial because it helps in easily meeting 

the requirement for the preservation of existing static routes, 

while at the same time garnering the other benefits of bit-serial 

over bit-parallel interconnects, which include high speed and 

power savings as demonstrated in [8] and [9]. 

Because the proposed technique incurs a low overhead of 

resources and involves the unique use of clock buffers for 

serial network interconnection, we have termed it Clock-

Enabled Low-Overhead Communication (CELOC). Without 
loss of generality of application, CELOC has been targeted at 

Xilinx FPGAs and demonstrated on the 7 Series fabric.  

T 

A. Adetomi, G. Enemali and T. Arslan are with the Institute for Integrated Micro and Nano Systems, University of Edinburgh, King’s Buildings, Edinburgh EH9 

3FF, Scotland, United Kingdom. (e-mail: {a.adetomi, g.enemali, t.arslan}@ ed.ac.uk). 
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The main motivation for proposing CELOC is to 

circumvent RP-crossing static routes which prevent the 

relocation of circuits in a PR design. We name two type: Type 

A – those that originate from (static logic blocks that belong 

to) the static design and are allowed to cross into RPs by the 

design tool [4]; and Type B – those that derive from inter-

circuit communication via LUTs and registers. Every other 

form of routing, including those that may go through clock 
buffers are internal to RPs and are not bottlenecks to 

relocation as they are part of the RM. Type-A static routes can 

be easily mitigated by enlarging offending partitions. Our aim 

is to address Type-B static routes by preventing inter-circuit 

communication from going through the general interconnect 

when crossing RPs. 

We have presented preliminary results in [10], [11], and 

[12]. This article provides more in-depth descriptions and 

reports on further findings. The key contributions include: 

1) The use of the clocking infrastructures of an FPGA for 

on-chip dynamic communication. 
2) Characterization of different clock buffer combinations 

for communication. 

3) A prototype NoC that uses CELOC to support runtime 

circuit relocation. 

II. BACKGROUND 

On-chip communication architectures can be grouped into 

three main categories, namely P2P, Bus, and NoC, based on 

the structure of the physical interconnect, the protocol of data 

transfer, and the interface design [13]. The main characteristic 

of P2P interconnect is the simple and direct interconnection 

between two communicating circuits, but it is quite inefficient 
in terms of scalability as the number of cores increases. The 

shortcomings of P2P architecture scales up in shared buses. 

While shared bus allows multiple cores to communicate by 

granting them access to a central global bus; however, because 

of the diverse nature and the sheer number of these cores, 

buses become longer, introducing longer communication 

latencies, and consuming more power [14]. Buses are not 

flexible enough as an addition of a new module requires that 

the entire system be redesigned. As a result, NoCs have been 

proposed as the future of on-chip communication. 

A. Network-on-Chip for Communication 

The NoC was borne out of the need to improve scalability, 

modularity, and performance among other factors, in on-chip 

communication [15]. This need arose because of the increase 

in the number and type of modules or processing elements 

running and communicating on a device. CPUs, graphics 

processors, DSPs, memory elements, and other modules with 

different functionalities became common-place on a single 
chip, effectively giving rise to the idea of System-on-Chip. 

The deficiencies of dedicated P2P and bus architectures are 

rooted in the reliance on the routing of wires between 

communicating circuits. With the increase in networking 

requirement as more cores are added, wires become long and 

connections more complicated, leading to increased power 

consumption. It is clear that modern on-chip communication 

cannot rely on connection-based interconnections. These 

deficiencies have given rise to the notion of routing packets, 

and not wires [6], which is the main idea behind the NoC. 

Instead of establishing P2P connections, whether based on 

direct dedicated interconnections or shared buses, the NoC 

abstracts the Data Link Layer (data transfer on wired links) 

from the Application/Presentation Layer (the on-chip cores). 

That is, it decouples computation from communication with 

the potential to bring about unprecedented levels of scalability 

and performance. The general structure of an NoC is shown in 

Fig. 1, with 3-by-3 nodes as an example. NoCs come in 
various forms targeted at addressing different performance 

metrics, but in general, they are made up of routers, adapters, 

and links that connect all the cores (processing elements or 

circuits) on a chip. Each core is interfaced to the network via a 

network adapter that implements a network interface on the 

network side and a core interface on the core side. 

   
Fig. 1: The architecture of a generic NoC 

There are several architectural features of NoCs. However, 

since the concept of NoCs is an already comprehensively 

covered subject, more extensive details on its basics can be 

found in [15] and [16]. Nevertheless, it is pertinent to identify 

the performance parameters of NoCs, which are bandwidth, 

throughput, and latency [16]. Measured in bits per second 

(bps), the bandwidth of an NoC is the maximum rate of data 

transfer and it usually considers the entire packet. Throughput 

makes allowance for the fact that a packet usually contains 

non-message-related header and tail information. As such, it 
measures the rate of transfer of the message payload in 

messages per second or messages per clock cycle. Both 

bandwidth and throughput scale with the number of channels. 

Latency is the time elapsed from the instance a packet departs 

a source node to being completely received at the destination. 

B. Shortcomings of NoCs 

As promising as NoCs are, they have their downsides. 

Though they offer a good communication solution when 

compared to dedicated P2P and bus communications, there is 

an attendant resource overhead, which can be significant in 

smaller devices. That is, NoCs lead to an increase in the 

footprint of the overall design, and this is due mainly to the 

additional resources used for the routers to grant network 

access to the tasks. Depending on the size of the network, an 

overhead of up to 34.8% (3227 slices) for a 2-by-2 network is 

not impossible [17]. 

Moreover, while compared to shared buses, NoCs lend 
themselves more readily to runtime circuit placement because 

of their support for easy modularity and scalability; however, 

the static routes of the network links still constitute a 

bottleneck to circuit relocation. In particular, the traditional 

NoC links pose the challenge of static routes as these links are 

constructed from the chip’s general routing resources and are 

free to cross the reconfigurable partitions in partially 

reconfigurable system architecture. In a bit-parallel NoC, the 

network adapter at each node creates static routes that cross 

into other nodes. A bit-serial NoC that uses general 

interconnects as links would have lesser static routes, but it 

Core
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would still require online redetermination of route in order to 

support dynamic communication. 

Meanwhile, it is possible to completely do away with 

routers and still have comparable or better network 

performance as demonstrated in [18], where a routerless NoC 

shows a 7.7x reduction in power, a 3.3x reduction in area, a 

1.3x reduction in zero-load packet latency, and a 1.6x increase 

in throughput when compared to a router-based NoC. 

C. Bit-Serial and Bit-Parallel NoCs 

The interconnections that carry packets from router to 

router can be made up of several single wires to form a 

parallel link that is able to switch a multi-bit data at a time. 

This is the typical case with NoCs and such NoCs can be 
referred to as bit-parallel NoCs. On the other hand, the link 

can also be composed of a single wire which is able to 

transmit a bit of data at a time, and as such, the resulting NoC 

can be termed bit-serial. 

Although bit-parallel NoCs generally offer higher 

throughputs, however, it has been shown that a serial 

implementation has the potential to reduce the area overhead 

and power utilization of NoCs [9] while at the same time 

improving noise and signal interference, offering simpler 

network layout, and enhancing timing verification. It turns out 

that because of the efficiency it brings, high-speed serial 

communication is the current trend in digital design, e.g., PCI 
Express. As a result of the serial single-wire implementation, 

the usual performance-limiting skew on parallel links is 

localized to a single link and as such a much higher frequency 

is possible with a serial link.  

A bit-parallel link can provide a higher throughput than a 

bit-serial one when clocked at the same frequency. However, 

in the long run, a bit-serial link can achieve higher throughput 

if it can be clocked at a fast enough rate, at which point a bit-

parallel link fails because of skew. For instance, in [8], the 

authors demonstrate bit-serial NoC routers that are 2-3x faster 

than their equivalent bit-parallel routers even with some level 
of pipeline optimization in the parallel implementation. 

To reduce an NoC’s area utilization, bit-serial network 

access can be used as proven in [9], where in a comparative 

analysis of serial and parallel interconnects, the authors note 

significant improvements of up to 5.5× and 17× power 

consumption and area utilization respectively of serial links 

over parallel links. Similarly, in [8], the author observes that 

bit-parallel routers are 8× (for LUTs) and 23× (for FFs) larger 

than bit-serial routers. In addition, bit-serial designs are noted 

to have route congestion factors of only 1-2% compared to 10-

20% for their bit-parallel counterparts. 

Incidentally, because of their limited number in a typical 
FPGA, the clock buffers are better suited as bit-serial links, 

with each clock buffer able to drive a bit from the source 

circuit to the destination circuit in one clock cycle. 

D. The Need for Dynamic Communication 

One of the key requirements for circuit relocation is the 
provision of dynamic communication for relocatable circuits. 

As such, the need for dynamic communication infrastructures 

is a salient one. An approach to dynamic communication is 

taken in DyNoC, a dynamic network-on-chip architecture 

[19]. While several research works have been carried out on 

dynamic or reconfigurable NoCs, most do not actually 

consider the placement of a new task. Rather, they are mostly 

concerned with the runtime restructuring of the network 

topology or packet routing to meet changing communication 

needs as seen in ReNoC [20] and Hoplite [21] respectively. 

On the other hand, DyNoC’s approach to dynamic 

communication involves placing a new circuit over existing 

deactivated network routers while leaving surrounding routers 
free for communication. With this arrangement, a new circuit 

can be placed anywhere on the mesh network with continued 

access to the network. However, we deem this approach to 

still have the challenges of static routes as the authors do not 

seem to have provided details on how these are managed and 

their implementation diagram [19] shows routings 

crisscrossing the entire floorplan. Indeed, it is unlikely that the 

authors intend DyNoC to be a communication network for 

relocatable circuits, as this is not a claim in the work. 

An ideal situation for dynamic communication is to have no 

static interconnects to deal with or need to create routes on the 
fly. A step in that direction is taken in [22], where the authors 

present a communication mechanism that involves using the 

Internal Configuration Access Port (ICAP) of an FPGA to 

transfer data between arbitrarily-placed hardware tasks, in the 

context of achieving the relocatability of tasks. This is done by 

connecting memory elements (distributed RAMs or BRAMs) 

to the inputs and outputs of circuits to serve as data memories 

and using the ICAP as a side channel to copy data from output 

memories to input memories thereby avoiding static 

interconnects. The data contents of a memory element can be 

accessed online from the device’s configuration memory.  
This idea of moving data from one task to another without 

using physical wires can be seen as a form of relocation and it 

has limitations and consequences as highlighted in [23]. There 

is no way to know when a task has finished computation apart 

from polling the task. With multiple tasks possibly 

simultaneously active, this is even more demanding. There are 

three operations needed to be performed for each data 

relocation – polling, readback, and writing. All these 

operations have to be serialized since the ICAP is a single 

resource. That is, ICAP-based data relocation is not concurrent 

and this is the main bottleneck with it. 

Furthermore, the single nature of the ICAP could have an 
implication on system reliability and performance. The ICAP 

has a maximum theoretical bandwidth of 400 MB/s [4] and 

Xilinx recommends that more than 99% of this bandwidth 

should be dedicated to Soft Error Mitigation (SEM) [24] for 

the entire device. Using at least 99% for SEM means that only 

4 MB/s of the ICAP’s bandwidth is available for other 

functions. With communication drawn in, there are two 

system functions competing for the remaining 4 MB/s. In 

other words, time spent on communication is time not 

available for SEM and configuration. 

III. CLOCKING RESOURCES IN THE XILINX 7 SERIES FPGA 

AND THE FEATURES EXPLOITED BY CELOC 

An understanding of the types and features of the clock 

buffers available in the FPGA is crucial in the design and 

implementation of CELOC. A typical Xilinx FPGA is divided 

into areas called clock regions [7] containing configurable 

logic blocks, block RAMs, and DSPs. Different networks of 
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clock buffers feed clock signals to these resources, with the 

clock network of all modern FPGAs based on the Spine-and-

Ribs topology [25], where vertical spines drive clock signals 

into horizontal ribs. Eventually, local ribs in the clock regions 

clock logic resources directly.  Fig. 2 shows the clock network 

distribution and interaction in a single clock region of the 7 

series FPGA. There is a horizontal clock row (HROW) that 

spans the entire length of the clock region. Clock signals 
switch vertically upward and downward from the HROW to 

reach logic resources. The most important thing to note and 

that which is being exploited in our adaptation of clock buffers 

and networks for inter-task communication is that the clock 

networks use independent physical wires different from the 

general logic interconnects. Inside a clock region, switch 

matrices route clock signals to the logic resources. 

 
Fig. 2: The network distribution in the clock region of a 7 series FPGA 

In order to realize CELOC, two factors are important for a 

clock buffer – the span or reach of the buffer, and the 

availability of a CE pin for logic functions. The former 

determines how far on the chip a communication signal can 

travel while the latter affects the number of transmitting nodes 
a CELOC network can support. In addition, the clock buffer 

must be user-accessible in the design tool, that is, it must be 

possible to instantiate and place it in order to control 

connections to and from it. For instance, in the UltraScale 

architecture, BUFCE_LEAF clock buffers are not user-

accessible and are for routing clocks vertically from horizontal 

distribution [26]. However, this does not have a limiting effect 

on CELOC as this routing is guaranteed to be non-RP-crossing 

[4]. Furthermore, any other use of a clock buffer is acceptable 

so far it is internal to the RM being relocated, as is the case 

with the BUFCE_LEAFs. 

A. Global Clock Buffers/Multiplexers – BUFG(CE) 

The global clock buffers drive the global vertical clocking 

backbone in the device. Their reach spans the entire FPGA 

and they can feed any clocking point in the device. As such, 

they can be used for device-wide communication. The global 

clock nets have the capacity to drive not only CLK inputs of 
logic resources but also the Set/Reset (SR) and CE inputs of 

registers. This feature is particularly important in achieving 

CELOC-based dynamic communication, as it allows a 

communication clock signal to be received via the SR input of 

a register, ensuring that no local (static) route crosses the RP. 

B. Horizontal Clock Buffers – BUFH and BUFHCE 

They drive the horizontal global clock tree spines but span 
only two horizontally-adjacent regions. The CE of the 

BUFHCE can be used to achieve a true logic function on a 

clock cycle-to-cycle basis, allowing the control of the transfer 

of the clock input to the output of the buffer. The BUFHCE 

can be used for horizontal communication in a CELOC-based 

NoC. There are 12 BUFH(CE)s in each region.  

C. Multi-Region Clock Buffers – BUFMR and BUFMRCE 

These are used to enable multi-region clocking by directly 

driving regional clock and I/O buffers (BUFRs and BUFIOs) 

in the same clock region and the ones above and below it. Like 

the BUFHCE, their CE can be used to control the input-to-

output transfer. The BUFMRCE can be used to achieve a 

CELOC-based network that is local to three vertical clock 

regions. There are two BUFMR(CE)s in each clock region. 

D. Regional Clock Buffers - BUFR 

These can drive any clocking point drivable by a global 

clock in a single clock region. In each region, there are four 

clock trees and nets, which are distinct from the global ones. 

There are four BUFRs driving these independent trees and 

nets in each region, allowing multiple unique clocks to feed a 

single design. These buffers can be used in both BUFR and 

BUFRCE configurations. They have two control lines, the CE 

and the clear (CLR), which can only be used in the frequency 
division mode. That is, the CE can only be toggled if the 

BUFR_DIVIDE option is set to any number other than 

“BYPASS” when the buffer is instantiated in RTL. With 

regards to CELOC, BUFR(CE)s can be used for intra-region 

communication and are essential for transferring signals out of 

a clock region as they are able to connect directly to BUFGs. 

IV. ADAPTATION OF CLOCK NETWORK INFRASTRUCTURES 

FOR ON-CHIP COMMUNICATION 

The availability of a diverse range of clock buffers with 

global and local spans in the Xilinx FPGAs offers a unique 

possibility that can be utilized to achieve on-chip 
communication functionality. CELOC involves an adaptation 

of these clock buffers to serve as binary (‘0’ or ‘1’) signal 

transmitters and receivers on the FPGA. Meanwhile, would 

repurposing clock buffers for communication not be 

detrimental to their intended functionality? While the clock 

buffers and nets are precious and are available in the chip 

predominantly for clocking-related functionalities like 

glitchless multiplexing between clock sources, clock gating to 

reduce dynamic power consumption, and elimination of clock 

distribution delays, however, most FPGA designs contain 

several unused clock buffers [7]. With CELOC, these 

redundant buffers are repurposed to provide a static-route-free 
inter-communication for relocatable circuits.  

Fig. 3 presents the CELOC concept in a diagrammatic 

form. By gating a free-running communication clock using a 

clock buffer, it is possible to send data from a transmitting 

(TX) task to a receiving (RX) task from any location on the 

device to another reachable by the buffer. At the TX end, a 

Serializer works in a Parallel-In Serial-Out (PISO) version to 

send data while a Deserializer at the RX reverses the operation 

in a Serial-In Parallel-Out (SIPO) version. CELOC requires 
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an RX task to be fed with three clocks: task_clock, 

com_clock, and data_clock. The task_clock is used to clock 

tasks while com_clock is used to generate data_clock, which 

carries a serialized data from the source to the destination. 

 
Fig. 3: Serial data transmission through clock buffers 

A. Data Transfer Mechanism 

The parallel data from a TX task is serialized and shifted 

out bit-by-bit to an RX task through the clock buffers. A 

register is used to latch the parallel data for onward shifting to 

the clock enable (CE) of the buffer on the ce_cntrl signal line. 

This latching is done by the Data Latch Controller. Since the 

same register block is used for shifting out the serial bits, 

multiplexers are used to select between updating the registers 
with new data and shifting already latched data. 

The ce_cntrl signal, which carries the serial data to be 

transmitted controls the output of the buffer by toggling its 

CE. A ‘1’ allows the input of the buffer to pass through to the 

output, while a ‘0’ ties the output to zero. Since the 

communication clock (which can be the same as the task 

clock) and the task clock are synchronous, a ‘1’ on ce_cntrl 

essentially allows a full clock cycle to pass through while a ‘0’ 

blocks it. As an example, Fig. 4 shows the theoretically 

expected signal transitions for transmitting 10011010 (binary) 

(see Table I for the corresponding truth table). The RX task’s 
SIPO circuit can detect a falling edge on com_clock as a ‘1’. 

With respect to the distance between the TX and RX tasks, the 

clock buffers in the Xilinx FPGAs are designed for short 

propagation delays and very low skew [7]. This helps prevent 

the kind of long propagation delays associated with shared-bus 

interconnects. As a result, the two clock signals (com_clock 

and data_clock) can travel far with minimal loss of phase 

alignment, and thus ensure timing closure. 

com_clock

ce_cntrl

data_clock  1         0         0          1         1          0         1         0  
Fig. 4: An example showing the transmission of an 8-bit data 10011010 

TABLE I: THE TRUTH TABLE FOR CLOCK-ENABLED DATA TRANSMISSION 

Inputs Outputs 

tx_serial_data (ce_cntrl) com_clock data_clock 

1 X com_clock 

0 X 0 

B. Communication Clock and Task Clock Generation 

In order to achieve the maximum possible throughput for 

data transfer, it is important to drive com_clock as high as 

possible. An advantage of using a separate clock as the 

communication clock is that we are not limited to the 

frequency of the task clock; the communication engine can run 

at a much higher frequency. The FPGA has PLL primitives 

that can be used to generate clock signals at frequencies much 

higher than that of the clock fed into the FPGA. 

In the demonstration of CELOC in this work, the 

PLLE2_BASE primitive in the 7 series FPGA is used to 

generate the two clocks (com_clock and task_clock).  Two 

global clock buffers are then used to distribute them 
throughout the chip when necessary. Fig. 5 shows the 

schematic of the PLL-based clock generation and distribution 

for CELOC. The core of the clock generator is the 

PLLE2_BASE primitive, which can be used as a frequency 

synthesizer, jitter filter, or to deskew clocks. As a clock 

generator, the PLL requires internal feedback as shown. 

   
Fig. 5: The schematic of the PLL-based clock generator for CELOC 

C. Clock Domain Crossing 

Because com_clock and task_clock are functionally in 

different clock domains – one used to clock the registers that 

push out the serial bits, and the other to retrieve the serialized 

data through another set of registers, it is important to 
investigate the impact of Clock Domain Crossing (CDC). To 

avoid complications from CDC, the two clocks are sourced 

from a single PLL clock generator with the communication 

clock made as high as possible. This helps to prevent setup 

and hold timing violations by keeping both the transmission 

and the reception synchronous and in the same clock domain – 

no asynchronous clocks and no variable phase alignment. 

Therefore, no clock domain crossing issues are expected since 

the same clock (com_clock) is used to transmit and receive 

data [27]. Nevertheless, every implementation of CELOC is 

checked for CDC violations using the Vivado timing report. 

D. Data Recovery Mechanism 

Since we are interested in preventing static routes from 

crossing RM boundaries, it is important that the recovery of 

the serial bits at the RX input should employ a mechanism that 

is independent of general interconnects. Hence, an ideal 

interface to data_clock should be a clocking point in a logic 
element. Two candidates for this are registers and latches with 

non-clocking inputs that can be fed by clock signals. The 

FDPE register and the LDPE latch [28] in the 7 series FPGA 

fall into this category and can thus be connected as shown in 

Fig. 6 to receive data_clock into an RX circuit without using 

the general interconnect. This is because their Set/Reset (SR) 

and Preset inputs can be driven by global and horizontal clock 

buffers. Their Q outputs produce the same waveform as the 

original ce_cntrl signal used to toggle the clock buffers in Fig. 

3. The choice of either the FDPE or the LDPE influences the 

maximum bandwidth of communication (see Section VII). 
The FDPE is a D flip-flop with clock enable (CE) and 

asynchronous preset [28]. By connecting CE to a ‘1’ and D to 

a ‘0’, with the clock input fed by the same clock (com_clock) 

used to create the data clock at the transmitter, data_clock 
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connected to the PRE input produces on Q, signal level 

transitions corresponding to the rising edges of data_clock as 

shown in Fig. 7 for the same 8-bit data 10011010 (binary) 

transmitted in Fig. 3. To understand how this works, we 

consider the truth table of the FPDE (see Table II). We 

observe that by setting CE to ‘1’ and D to ‘0’, Q follows PRE 

(data_clock) instead of D at every rising edge of C. The LDPE 

data latch with asynchronous preset and gate enable [28]. A 
similar explanation applies to the LDPE with regards to the 

signal transmissions that allow data recovery, except that for 

the LDPE, the gate (connected to data_clock) input’s signal 

transitions are reversed. 

V. PACKET SYNCHRONIZATION AND ENCODING 

Since CELOC in general, serializes the data being sent 

before transmission, an idle line will be either a ‘1’ or a ‘0’. It 

then becomes important for the transceiver task to determine 

when to start or stop reception? It is also possible for a task 

node to join a CELOC-based network in the middle of 

ongoing transmission. The new node has to correctly latch on 
to the beginning and end of packets. In general, a CELOC-

based data transfer between any two circuits does not require 

any special handshaking or encoding technique, as a data bit 

that leaves the source circuit would arrive at the destination 

circuit without any ambiguity if the two circuits are directly 

interconnected. However, in CELOC-based NoCs, the source 

and destination nodes may not be directly physically 

connected and communication packets may be routed through 

intermediate nodes until they reach their destinations. As such, 

data packet synchronization may be required to coordinate 

data transfer. It may be worth noting however, that packet 
synchronization is not always required in bit-serial networks 

[8]. Depending on the adopted topology, an NoC design might 

be able to do away with packet synchronization and as such 

save on encoding resources and latency. This approach is 

favoured when applicable. However, in other applications, 

encoding is necessary to avoid ambiguity in data transfer. 

  
Fig. 6: The register setup for serial data recovery 

TABLE II: THE TRUTH TABLE OF THE FDPE REGISTER 

Inputs Outputs 

PRE CE D C Q 

1 X X X 1 

0 0 X X No Change 

0 1 D 1 D 
 

com_clock

data_clock

FDPE_Q

 1         0         0          1         1          0         1         0

 
Fig. 7: A waveform showing serial data recovery from data_clock 

To uniquely mark off the boundaries of transmission 

packets in serial networks, frame synchronization mechanisms 

are used. One such mechanism is byte stuffing, where a 

special code byte is used to delimit packet boundaries. In order 

to prevent incorrect synchronization, as the code byte may be 

present in the data packet, special ‘escape’ codes are often 

used [29], but the length of the packet ends up being 

inconsistent [30]. This is not desirable in real-time 

applications, where timeliness and predictability are 

important. To achieve consistency in packet size, we propose 

an adapted form of the Consistent Overhead Byte Stuffing 

(COBS) [30]. The COBS maps numbers in the range [0, 255] 

to numbers in the range [1, 255], thereby reserving one 
number which can be used as the frame synchronizer 

(delimiter). The details on how this is achieved can be found 

in [30]. Adopting a similar technique to map the hex number 

set [0, F] to [1, F], we reserve the number zero to be used as 

the delimiter. We call this Consistent Overhead Nibble 

Stuffing (CONS). Starting at the zeroth (most-significant) 

nibble (4 bits of “0”s and “1”s), the occurrence of a zero is 

replaced by the number of nibbles examined (including the 

zero) followed by the non-zero nibbles before the zero. For 

example, an arbitrary 32-bit packet of hex numbers 

(400AD013) passed through the CONS encoder would 
produce 2413AD313 (hex) as shown in Table III. 

A simple way to carry out the encoding is to logically pad 

the packet with zero nibbles at the beginning and end as 

shown in the second row of Table III, with the first serving as 

a placeholder for the overhead and the other as a phantom 

helper to complete the encoding process. This phantom does 

not actually count as part of the data. Each nibble of the 

padded packet is then given an index starting at 0 from the 

most significant nibble (0 to 9 in this example). The encoded 

nibble of a zero nibble at index izn is obtained by subtracting 

izn from iznext, where iznext is the index of the next zero nibble. 
There cannot be another nibble after the appended zero nibble. 

Therefore, the encoded packet is terminated on the 

penultimate index (index 8 in this example). Further 

illustrations in Table III show that an all-zero packet would be 

encoded as 111111111 (hex) and a packet without a zero 

nibble as 9XXXXXXXX (hex), where X is a non-zero nibble. 

The advantage of this form of encoding is that every packet 

is guaranteed to have a fixed overhead of one nibble. On the 

other hand, the disadvantage, as the examples show is that 

even when there is no zero nibble in the data, the overhead is 

still incurred. However, this is the price that is paid for the 

benefit of determinism in communication latency as far as the 
data packet is concerned. 

TABLE III: EXAMPLES SHOWING THE CONS ENCODING PROCESS 

Index (in) 0 1 2 3 4 5 6 7 8 9 

           Nibbles (Di) 0 4 0 0 A D 0 1 3 0 

Code (iznext – izn) 2  1 3   3    

Encoded Data 2 4 1 3 A D 3 1 3  

           Nibbles (Di) 0 0 0 0 0 0 0 0 0 0 

Code (iznext – izn) 1 1 1 1 1 1 1 1 1  

Encoded Data 1 1 1 1 1 1 1 1 1  

           Nibbles (Di) 0 5 1 D F 2 C 3 7 0 

Code (iznext – izn) 9          

Encoded Data 9 5 1 D F 2 C 3 7  

 

In order for a new node to synchronize to the 

communication network, a bit-level framing delimiter is 

required. Since there is no zero nibble in the CONS encoding, 

there cannot be more than three consecutive “0”s except if a 

CE
PRE

QD0

1

com_clock
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serial_data
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zero delimiter is used. To avoid ambiguity, a sequence of 1 

and seven “0”s (10000000) will be used as the delimiter taking 

a cue from [30]. This delimiter or Frame Synchronization 

Sequence (FSS) is added at the beginning of each packet. 

The FSS, the CONS overhead, and the data bits can all be 

concatenated into a single packet as shown in Table IV. The 

data bits can be no more than 7 bytes long for a fixed-width 

data packet as this is the maximum number of bytes between 
any two successive zeros that can be encoded by the CONS 

scheme. This is because the 16 nibbles in the set [0, F] are 

mapped to 15 nibbles in the set [1, F] for the purpose of 

encoding zero nibbles. In other words, only 15 consecutive 

zero nibbles (60 bits) can be encoded (including the phantom 

zero appended logically to carry out the encoding). Removing 

the 4 bits of this phantom zero leaves 56 bits (7 bytes) for the 

actual data to be transferred. 

Another way of looking at this is to note from Table III that 

a code nibble is derived from the subtractive operation 

between the indexes of two nearest zeros, with the code stored 
in the position of the first (placeholder) zero nibble. Since a 

nibble can only hold a maximum count of 15 (F in 

hexadecimal), and the phantom zero appended to the data is 

part of the count, the actual data (payload), which is the 

allowed maximum value of the distance between any two zero 

nibbles, is thus 14 nibbles (index 15+in minus index in minus 

one phantom overhead nibble). This 14-nibble maximum data 

bits is only true for packets with infrequent zeros; if zeros are 

guaranteed to show up at no more than 14 nibbles apart, then a 

single packet can have data bits in excess of 56 bits. However, 

where such guarantees are not deterministic or where bounded 
latencies are desired as is the case with real-time networking, a 

fixed data bit of not more than 56 bits has to be enforced. 

Nibbles have been used instead of bytes as a compromise 

between the percentage overhead and the maximum data bits. 

With a byte word length as in the original COBS, we would 

incur 8 bits of overhead per packet, though the maximum data 

bits would then be 254 bytes. A quick comparison shows that 

the COBS has a lower percentage overhead of 0.39% per 254 

bytes compared to 7.14% per 14 bytes in CONS. However, at 

lower data sizes, COBS incurs more than CONS. For instance, 

for a data size of 6 bytes, COBS would incur 20% overhead 

compared to 8.33% in CONS. Moreover, the size of the 
delimiter also increases with the word size, always two times 

the word size, and thus influencing the total overhead and 

latency of packet transactions. Ultimately, the choice of word 

size will be a compromise between the percentage overhead 

and the maximum data bits required per packet. 

TABLE IV: THE PACKET FORMAT FOR CONS-ENCODED DATA BITS 

Fields FSS CONS Overhead Max. Data 

Number of Bits 8 bits 4 bits 56 bits 

Comment Value: 80 hex CONS-encoded 

 

VI. NETWORK ADAPTER FOR COMMUNICATION ACCESS 

To exploit the clock network for communication, each of 

the intercommunicating tasks in a system employing CELOC 

must be wrapped with a Network Adapter to arbitrate access 

to the CE of a clock buffer, When no packet synchronization 
is used, the CONS encoder and decoder are not needed and 

adapting to a network simply requires the 

Serializer/Deserializer (SERDES) of Fig. 3. 

The popular serial communication interfaces like the Serial 

Peripheral Interface (SPI) and I2C are avoided because they 

require more than one signal. A potential interface protocol for 

CELOC could be a 1-wire protocol like the one introduced in 

[31] or the Universal Asynchronous Receiver-Transmitter 

(UART). Essentially, since only the CE pin in a clock buffer is 
being driven by an RX task in CELOC, a single-wire protocol 

would be more appropriate to prevent the usage of static 

routing resources as much as possible. The proposed SERDES 

provides a raw interface to the clock buffers and a higher-level 

bit framer can always be used to adapt to different serial 

protocols. As it is, the SERDES is a serial streaming interface 

that would bit-stream a packet of data presented at its data 

input and also recover a parallel data that is serially shifted in. 

On the other hand, when packet synchronization is needed, 

the CONS encoder and decoder are used and the task is 

wrapped as shown in Fig. 8. This builds upon the proposed 
SERDES by implementing five major blocks: a CONS 

Decoder, a Task Interface Logic (TIL), and the CONS 

Encoder. The next subsections provide more details on these 

blocks and other components of the network adapter. 

 
Fig. 8: The network adapter for packet-synchronized network access 

A. Task Interfacing 

This work proposes a task interface model that is based on 

the Xilinx HLS Block-Level interface protocol [32] for any 

task that has to communicate using CELOC’s packet-

synchronized wrapper. This model requires that a minimum of 

five ports: ap_idle, ap_start, ap_rst, ap_ready, ap_done, and 

ap_return (indicated by the arrow that feeds the Mux in Fig. 8) 
are defined for a task. This ensures uniformity of interfacing 

between different tasks and the CONS codec (decoder-

encoder) and provides a standardized task interface. In 

addition, this is also in line with the current trend in using 

HLS-generated HDL modules for rapid system development. 

B. CONS Encoding 

In the encoder, which also serves the function of data 

serializer, the CONS encoding algorithm is implemented with 

a finite state machine. The theoretical encoding process 

presented in Section V is modified for hardware 

implementation. The encoder starts its operation when a 

START signal is asserted. First, it saves the data to encode in 

a shift register and then starts the encoding process. The 

process involves detecting zero nibbles and replacing them 

with CONS codes. Once the entire packet is encoded, the bits 

are shifted out serially for routing to the CE of a clock buffer. 
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When all the bits have been shifted out, the encoder asserts a 

READY signal in readiness for another encoding operation. 

C. CONS Decoding 

The CONS decoder receives, decodes, and de-serializes a 

CONS-encoded packet. In the decoder, the code nibbles in the 

received packet are replaced with zeros. The decoding is 

simplified by careful implementation of the decoding 

algorithm. A close look at the encoded data in Table III 

reveals that every code nibble points to the relative location of 

the next code nibble. This is as expected since the CONS 

codes are formed by counting the number of non-zero nibbles 

preceding a zero nibble as explained in Section V. Also, the 

first nibble received is always a code nibble. These 
observations are crucial as they simplify the logic of the 

decoder, and hence reduce the FPGA resources used. By 

subtracting 1 from the value of a code we obtain the number 

of data nibbles preceding the next code.  Using a state 

machine, we loop through all the codes and extract the 

associated data. Once all the nibbles have been processed the 

data_rcvd port (see Fig. 8) of the decoder is asserted and the 

state machine resets in anticipation of a new packet.  

D. Address-Inclusive Encoding and Decoding 

A generic approach is taken in the implementation of the 

encoder so that it is usable for varying numbers of data width. 

In the vanilla implementation, where there is no addressing or 

any special bits inserted in the packet, the codec is intended 

for P2P communication without provision for addressing. 

However, the applications that require CELOC for use in an 

NoC would benefit from an addressable codec that has the 

addressing functionality embedded in it.  
More often than not, the packet in Table IV will need 

addressing if CELOC is used to implement an on-chip 

network. In appending the address bits to the packet, a plain 

un-encoded non-zero addressing is recommended, where a 

zero address is not used and the address bits, therefore, do not 

need to be encoded. This ensures the address bits do not eat 

into the maximum number of bits available for data. More 

important though, is the fact that in a CELOC-based NoC, the 

packet can, therefore, be routed through the network with 

much less latency since the intermediate nodes do not 

necessarily have to receive the entire packet as the address to 

deflect a packet to is visible in the packet. There is a use_addr 
port, with corresponding address ports on the interface of the 

encoder and the decoder. This is used to enable the address-

inclusive mode and is controlled by the TIL. 

E. Task Interface Logic 

The TIL interfaces the task to the CONS Encoder and 

Decoder. It glues together a Task Controller (TC), Mutex, 
multiplexer (Mux), and Synchronizer (Synch). The Mutex is a 

means of sending status information out of the task and 

wrapper, especially for the purpose of error detection. For 

instance, the decoder could fail due to an error in its internal 

state machine’s state transition. The Mux is used to choose 

between the outputs of the task and the Mutex.  

The function of the TC is to start the task if it is idle and 

data has been received by the decoder. It also deserializes the 

received packet, recovers the data and presents it to the task. 

In addition, it handles addressing when the address-inclusive 

CONS is used. These are the functions of the TC in this 

prototypic implementation. However, in a reconfigurable 

system that deploys CELOC, the TC would receive command 

packets from a system-level Task Communication Manager 

(TCM) to start or stop its associated task. It would also receive 

the destination address and the system time instance the 

processed data should be sent. This time, however, cannot be 
earlier than the time instance the task finishes execution. If the 

packet is a command packet, the TC would check whether to 

start the task or reset it based on the command and would do 

accordingly. Otherwise, the received packet would be handled 

as a data packet. If the task is already started, the TC would 

route the new data to the task. The situation should not arise 

where a task is not ready for new data, thus avoiding the need 

for buffering and saving on memory resources. This is because 

the TCM would dictate the time to send data based on when a 

destination task can accept it. It would, therefore, be 

counterintuitive to provide a buffering capability. However, a 
buffer can easily be inserted if necessary but the TCM’s 

algorithm and the task computation model would have to be 

modified to account for this. In general, data should not be 

processed by the task at a rate faster than it can be routed 

through the CONS Encoder/Decoder (Codec) and the serial 

communication network except if buffering is used. 

Similarly, in data delivery to the CONS Encoder is not 

buffered. The TIL ensures that the encoder is ready for a new 

input before applying the task’s output data. The Synchronizer 

does this by checking that both ap_ready and CONS 

Encoder’s “ready” are driven HIGH before asserting the 
CONS Encoder’s start. It is guaranteed that once ap_ready 

goes HIGH, the data from the task is available as input to the 

CONS encoder. This is because the Output Data Mutex and 

Multiplexer are purely combinatorial and as such incur no 

clock delays. To ensure a non-buffered data at the input of the 

encoder, the encoding time should be accounted for in the 

timing model a system deploying CELOC. 

F. Resource Utilization and Performance Evaluation 

Table V shows the resource overhead of the network 

adapter for the bare SERDES and the packet-synchronized 

version. Tiny finite state machines are implemented for the 

PISO and SIPO blocks of the SERDES. These incur a total of 

13 slices while the CONS-based adapter’s utilization amounts 

to only 32 slices. As the reconfiguration frame, which defines 

the minimum selectable area for partitioning the FPGA area, is 

always two columns (200 slices for CLBs). This implies that 

the adapter will fit right in, even with the smallest of tasks, by 

occupying only between 6.5% and 16% area of the 
reconfiguration frame.  

TABLE V: RESOURCE UTILIZATION OF CELOC’S NETWORK ADAPTER 

Resource 

Network Adapter Modules 

SERDES Packet-Synchronized 

PISO SIPO CONS ENC CONS DEC CONS TIL 

FFs 30 72 65 100 84 

LUTs 14 10 35 28 24 

DSPs 0 0 0 0 0 

BRAMs 0 0 0 0 0 

Slice 13 32 
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In terms of data transfer latency, the SERDES PISO block 

latches the parallel data in one clock cycle and streams it for 

the number of clock cycles equivalent to the number of bits in 

the parallel data. The SIPO recovers the data in the same 

period but uses one additional clock cycle for internal state 

transitions. As a result, the SERDES latency for 32-bit data is 

34 clock cycles.  

For the evaluation of communication latency of the packet-
synchronized adapter, the CONS encoder is directly interfaced 

to the CONS decoder and the number of cycles measured 

individually for the encoder and decoder; and also for the 

entire codec. Table VI presents the measured clock cycles. 

From the moment the encoder’s start signal is asserted to the 

end of encoding and serial data shifting out (ready signal 

asserted), 56 clock cycles are incurred for the non-addressable 

codec and 60 for the address-inclusive version. Similarly, for 

the decoder, from the moment the FSS is received to the end 

of decoding, these numbers are 48 and 52 respectively. An 

entire 32-bit packet is sent and received in 60 and 64 clock 
cycles respectively. 

For the different word sizes, the test packet is made a 

multiple of 32 bits for ease of comparison and the generation 

of the latency equations. That is, for the word lengths of 4, 8, 

16, and 32, data widths of 32, 64, 128, and 256 bits are used. 

The equations should be used only when the packet size is 

8𝑁𝑊, where 𝑁𝑊 is the word length in bits. 

TABLE VI: THE CELOC CODEC’S LATENCIES FOR DIFFERENT WORD SIZES 

Word 

Size 

(𝑁𝑊)  

in Bits 

Max. Data 

Size Per 

Packet 

Clock Cycle Latency for 8𝑁𝑊 Data Bits 

 Non-Addressable 4-bit Addressable 

ENC DEC CODEC ENC DEC CODEC 

4 56 bits 56 48 60 60 52 64 

8 254 bytes 100 88 108 104 92 112 

16 128 kB 188 168 204 192 172 208 

32 16,384 MB 364 328 396 368 332 400 

Latency Equation 60 + 12(𝑁𝑊 − 4) 64 + 12(𝑁𝑊 − 4) 

VII. BUFFER CONFIGURATIONS FOR NETWORK ACCESS 

The diagram in Fig. 9 is a representation of a section of the 

Xilinx 7 series FPGA. The left and right clock regions are 

symmetrical with respect to the placement of clock buffers. 
Also indicated, are Circuit Regions (CRs) that are potential 

areas within the clock regions for task placement targeting the 

exploitation of clock buffers for communication. Note that not 

all possible CRs and communication routes are shown. The 

notion here is that inter-circuit communication should only be 

through the clock buffers for the purpose of avoiding the static 

routes completely in order to aid the flexible relocation of 

circuits. Fig. 9 also shows the locations of the clock buffers on 

the FPGA. In general, a 7 series FPGA (apart from the smaller 

Artix-7 chips) has 4 BUFRs, 2 BUFMRs, and 12 BUFHs in 

each clock region. In addition, there are 32 BUFGs at the 

centre of the chip, common to all the regions. 
While the buffers can be used to communicate in different 

directions, certain configurations or combinations have to be 

used in order to provide communication. This brings the 

question of data transfer speed since by connecting one buffer 

to another, a delay is introduced into the communication path. 

In the next subsections, we present some possible 

configurations of the clock buffers and their use cases. What 

informs these configurations are the reach of the buffers and 

the availability on them of clock enable (CE) pins that can be 

actively toggled. Furthermore, there is a restriction on buffer-

to-buffer interconnections. For instance, it is only a BUFR that 

can feed a BUFG directly. As a result, if an intra-clock-region 

network has to access other clock regions not within its 

neighbourhood (immediate vertical and horizontal regions), a 
BUFR has to be used to drive a BUFG in order to feed such 

regions with data_clock. 

 
Fig. 9: A representation of the 7 series FPGA chip showing the locations of 

clock buffers, circuit regions (CR1 to CR8) for placing circuits within clock 

regions, and sample vertical and horizontal interconnections between the CRs 

Since only the BUFGs and BUFHs can drive the SR/PRE 

and CE inputs of registers, and it is essential for data_clock to 

be interfaced with a receiving circuit through an input that can 

be driven by a clock buffer, not all of the possible buffer 

combinations can be used if relocation support is sought. Only 

the ones that have data_clock coming out of a BUFG or 

BUFH can be used. 

In the subsections that follow, it should be noted that 

arrows represent the direction of data transfer. For instance, 
with respect to Fig. 9, CR1→CR8 means CR1 is transmitting 

to CR8 while CR2↔CR3 implies a bidirectional data transfer 

between CR2 and CR3. Moreover, since the clock regions 

have some symmetry, a communication like CR1↔CR3 is 

treated the same as CR2↔CR4; and CR1→CR6 as 

CR5→CR2. Also, except where indicated in the figures, all 

the connected clock buffers are in the same clock region, save 

for the BUFGs, which do not belong to any clock region. 

A. Clock Buffer Configurations for Global Communication 

Since the BUFGs have a device-wide reach, they can be 

used to transmit data to anywhere on the chip. This prevents 

any circuit region from being excommunicated from other 

regions. For instance, to communicate directly with CR-8 

from CR-1 in Fig. 9, a BUFG has to be used (see Fig. 10(a)). 

However, since the BUFGs are at the centre of the chip, an 

intermediate buffer has to be used to get access to them. There 

are four options – BUFR, BUFMR→BUFR (used in Fig. 
10(a)), BUFH→BUFR, or BUFH→BUFMR→BUFR, 

depending on the available buffers and the relative location of 

the task. In contrast, for global communication like 

CR2↔CR7, there is direct access to BUFGs. Therefore, the 

BUFG-only configuration shown in Fig. 10(b) can be used. 

Note that any communication that does not reside within the 
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same clock region, or that reaches only to an immediate 

vertical or horizontal region is classified as global. 

 
 (a)                           (b) 

Fig. 10: Clock buffer configurations for global communication showing (a) 

[BUFMR→BUFR→BUFG→], and (b) [BUFG→]  

B. Buffer Configurations for Horizontal Communication 

By placing circuits at the inner edges of two horizontal 

adjacent clock regions, advantage can be taken of the BUFHs 

for horizontal communication. However, circuits at the outer 

edges require other configurations. With respect to Fig. 9, and 

picking the top clock regions for illustration, the 

communications that fall into the category of the horizontal 

inter-clock region include CR1→CR2, CR1→CR3, 
CR1→CR4, CR2→CR3, and CR2→CR4. Communications 

like CR2↔CR3 and CR2→CR1 can be achieved by using the 

configuration in Fig. 11(a). However, since there is no clock-

buffer-based physical link between CR1 and CR2 in the 

middle of the clock region, while CR2→CR1 can use 

[BUFH→], CR1→CR2 can use [BUFMR→BUFR→] (see 

Fig. 11(b)). All the other communications have to use the 

configuration [BUFMR→BUFR→BUFG→] presented in Fig. 

10(a). It should be noted that CR2→CR1 can also use the 

configurations in Fig. 11(c) and Fig. 11(d). 
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(c)                           (d) 

Fig. 11: Clock buffer configurations for horizontal inter-region 

communication showing (a) [BUFH→], (b) [BUFMR→BUFR→], (c) 

[BUFH→ BUFR→], and (d) [BUFH→BUFMR→BUFR→] 

C. Clock Buffer Configurations for Vertical Communication 

From Fig. 9, and picking the left clock regions for 

illustration, the communications that fall into the category of 

the vertical inter-clock region include CR1↔CR5, 

CR1→CR6, CR2→CR5, and CR2↔CR6. Note that symmetry 

can be used to pick other ones. CR2→CR5, CR6→CR1 and 

CR2↔CR6 communications can be through the configuration 

in Fig. 12(a) and [BUFG→] presented in Fig. 10(b). All others 

can use the one in Fig. 12(b). Note that the BUFRs in Fig. 12 
are not in the same clock region as the other buffers. As a 

result, they are indicated as BUFR(adj) in the figure caption.  
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Fig. 12: Clock buffer configurations for vertical communication showing (a) 

[BUFH→BUFMR→BUFR(adj)→], and (b) [BUFMR→ BUFR(adj)→] 

D.  Maximum Speeds of the Clock Buffers and Nets 

The understanding of the maximum frequency of operation 

of the clock buffers is crucial in the attempt to adapt them for 
on-chip communication. This will help evaluate the limiting 

factor in the achievable communication speed of CELOC for 

different devices. Table VII shows the maximum frequencies 

found in the respective datasheets of the 7-Series FPGAs. At 

the time of writing, there is no Spartan-7 with speed grade -3. 

E.  Bandwidth Characterization 

To determine the maximum speed that each clock buffer 

configuration can achieve, the experimental setup in Fig. 13 is 

used. The device used for the experiment is the Artix-7 

(xc7a35tcpg236-1) FPGA with speed grade -1. The TX circuit 

is used to generate predetermined data packets to be received 

by the RX circuit. To confirm the correctness of data transfer, 

the validation of the received data is done by using an 

Integrated Logic Analyser (ILA) to observe the signal 

transitions. A PLL clock generator is used to sweep the 

communication clock’s frequency to the maximum value that 

still meets timing and does not corrupt the communication. 

TABLE VII: MAXIMUM OPERATING FREQUENCIES OF THE CLOCK BUFFERS IN 

THE XILINX 7 SERIES FPGAS 

Device 
Speed 

Grade 

BUFG 

[Tree] 

(MHz) 

BUFH 

[Buffer] 

(MHz) 

BUFMR 

[Buffer] 

(MHz) 

BUFR 

[Tree] 

(MHz) 

Artix-7 

-3 

628 628 680 420 

Kintex-7 741 741 800 600 

Virtex-7 741 741 800 600 

Spartan-7 

-2 

628 628 - 375 

Artix-7 628 (394a) 628 (394a) 680 (600a) 375 (315a) 

Kintex-7 710 (560a) 710 (560a) 800 (667a) 540 (450a) 

Virtex-7 710 710 800 540 

Spartan-7 

-1 

464 464 - 315 

Artix-7 464 464 600 315 

Kintex-7 625 625 710 450 

Virtex-7 625 625 710 450 

a At speed grade -2LE, 0.9 V 

 
Fig. 13: The setup for characterizing the clock buffer configurations 

The test communication packet is a 44-bit packet 

comprising of 32-bit data, a frame synchronization sequence 

of 8 bits and a serial encoder overhead of 4 bits. Table VIII 
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shows the maximum bandwidths (data transfer rates) at which 

the buffer configurations work without a corrupted data 

transfer. The corresponding data recovery register or latch is 

also indicated. Moreover, based on the number of clock 

buffers in the FPGA, the number of instances of each 

configuration (not considering buffers used by other 

configurations and those used for other purposes) that can 

coexist in a single clock region is also indicated in Table VIII. 
The highest speed of 275 Mbps is observed with the 

[BUFH→BUFR→] configuration and the lowest (171.43 

Mbps) with the [BUFR → BUFG →] and [BUFMR → BUFR 

→ BUFG→] configurations. Indeed, BUFR appears to be the 

limiting buffer. This is because it is the buffer with the slowest 

speed. In fact, for the Artix-7 board used for the 

experimentation, the speed grade is -1 and the BUFR’s 

maximum frequency is graded at 315 MHz, which is the 

minimum for any of the buffers in the chip (see Table VII). 

Therefore, the average speed of 221.15 Mbps is relatively high 

considering that it is only 29.79% short of the BUFR’s 
maximum. By extension to other speed grades, the average 

CELOC speed can be expected to scale as 70.21% of 

fBUFR_MAX, where fBUFR_MAX is the maximum frequency of the 

BUFR net in the target device. 

TABLE VIII: BANDWIDTH OF THE CLOCK BUFFER CONFIGURATIONS 

Clock Buffer Configuration 
FDPE 

/LDPE 

Bandwidth 

(Mbps) 

Instance/ 

Region 

BUFG→ FDPE 266.67 32/chip 

BUFR→BUFG→ LDPE 171.43 4 

BUFMR→BUFR→BUFG→ LDPE 171.43 2 

BUFH→BUFR→BUFG→ LDCE 187.50 4 

BUFH→BUFMR→BUFR→BUFG→ LDCE 171.43 2 

BUFH→BUFMR→BUFR(adj)→BUFG→ LDCE 171.43 2 

BUFH→ FDPE 266.67 12 

BUFMR→BUFR→ LDPE 240.00 2 

BUFH→BUFR→ LDPE 275.00 4 

BUFH→BUFMR→BUFR→ LDPE 240.00 2 

BUFH→BUFMR→BUFR(adj)→ LDPE 240.00 2 

BUFMR→BUFR(adj)→ LDPE 240.00 2 

BUFR→ LDPE 233.33 4 

Average - 221.15 - 
 

In addition, the use of the clock buffers does not impact 

negatively on the number of circuits that can be on the FPGA 

simultaneously. The CRs can accommodate more than one 

circuit. Therefore, from the number of instances in Table VIII, 

it is estimated that up to 16 circuits with communication 

access can be in a single clock region at the same time 

assuming they can be partitioned such that the CE access does 

not constitute a static route problem. This number is arrived at 

by excluding configuration instances that use similar buffers. 
In addition, there are 32 global configuration instances that 

can be shared by all the clock regions. 

VIII. DYNAMIC COMMUNICATION WITH CELOC 

This section advances a dynamic communication access 

mechanism that is termed Clock-Enabled Relocation-Aware 

Network-on-Chip (CERANoC). This builds on CELOC with 

the main advantage for CERANoC being that the clock buffers 

and nets use dedicated routes that are independent of the 

general logic interconnect. This removes the restriction of the 

static interconnect links and enhances the online relocation of 

circuits. This mechanism relies on the replacement of the 

interconnect links in NoCs with clock buffers. Since the clock 

buffers do not use the general logic routing resources, the path 

from a transmitting circuit to a receiving circuit is free of 

general logic interconnections.  

For circuit relocation to be feasible, communication must 

be provided at the resource-matching destination for the 

circuit being moved. With regard to Fig. 14, the easiest way to 
provide this communication is to ensure that a route from Task 

1 to LOC 2 is established at design time. This way, during 

runtime, Task 2 can be moved to LOC 2 while maintaining its 

communication link with Task 1. 

The solution to dynamic communication in CERANoC 

eliminates the static inter-circuit communication routes 

altogether. Using Fig. 14 as an example, this is achieved by 

removing the static inter-task connections and replacing them 

with clock buffers as shown in Fig. 15. The hypothetical 

layout of tasks here is the same as that in Fig. 14, except that 

the interfaces between Tasks 1 & 2, and between Tasks 1 & 3 
have been removed. To provide communication, a clock 

buffer is used to transmit serial bits from Tasks 1 to 2 and 3. 

This signal also feeds LOC 2, so that if Task 2 is relocated to 

LOC 2, the communication between it and Task 1 remains 

intact. At the same time, LOC 1 is now free of a crossing 

routing. Basically, the surface of the chip is generally freed of 

inter-circuit routings. 

In the implementation of CERANoC in this work, the clock 

regions of the FPGA are used as NoC nodes. The clock 

buffers are pre-routed between clock regions at design time so 

that during runtime, regardless of the clock region a task is 
placed, it is able to communicate with any task in any other 

clock region, with serial data riding on a clock signal from a 

source node to a destination node. 

  
Fig. 14: A diagram demonstrating how static routes hinder relocation 

  
Fig. 15: By removing the inter-circuit interfaces and replacing them with 

clock buffers, it is possible to achieve dynamic communication 

In the following subsections, the special considerations for 
the implementation of CERANoC are presented in relation to 

the design parameters of a traditional NoC. It should be noted 

that the aim is not to implement a full-fledge NoC as that is 

beyond the scope of this work; rather, the intention is to 

demonstrate how the use of clock buffers for inter-circuit 

communication enhances the relocatability of circuits. 
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A. Packet Format and Addressing Scheme 

The FSS, the destination address, the CONS overhead, and 
a data of 56 bits maximum are all concatenated into a single 

packet as shown in Table IX. A unique Node ID is given to 

each node on the network. This ID also serves as the address 

of the node and is added to the communication packet as the 

destination address. With N nodes, the address range is from 1 

to N, with zero deliberately avoided because the address field 

in the packet is un-encoded as noted for the address-inclusive 

packet encoding and decoding in Section VI. As such, one 

reason for transmitting the address in plain format is that the 

routers need to know the destination address before routing the 

packet. Encoding and decoding the address would incur 
further clock cycles at the encoder and decoder and require 

more logic resources in the router. Furthermore, an encoded 

address would eat into the number of bits available for the 

actual data, eventually preventing data transfer as N increases 

and becomes 56. Therefore, with this careful choice of an 

address range, CERANoC saves on time and resources, and 

ensures maximum throughput. 

TABLE IX: THE PACKET FORMAT FOR 4-BIT-DATA-WORD CERANOC 

Fields FSS 
Destination 

Address 

CONS 

Overhead 
Data 

Number of Bits 8 bits aN bits 4 bits 56 bits max 

Description Value: 80 hex Unencoded CONS-encoded 
a N = number of nodes 

B. Network Routing 

A routing algorithm determines the routing of data from the 

source to the destination in a network. The problem of 

designing routing algorithms that meet different performance 

and architectural requirements has been extensively studied. 

Some of these requirements are low latency, low power 

consumption, scalability, and programmability [33]. 

CERANoC supports any existing routing algorithm so far the 
clock buffers can be arranged to serve as links in the topology 

chosen. There is no other special consideration for routing in 

CERANoC. For instance, a Torus CERANoC can use BUFGs 

to connect the topmost clock regions to the tail regions and the 

leftmost regions to the rightmost regions. 

C. Prototype Network Demonstration 

To demonstrate the feasibility of CERANoC, a 4-node 

prototype star network with a Central Router is implemented 

on the Artix-7 (XC7A35TCPG236) FPGA chip (see Fig. 16). 

For the global clock generation and distribution, a special 

switch_clock is needed by the Central Router. This is from the 

same output that feeds the BUFG which distributes 

com_clock. The clock buffer configuration used by the nodes 

is [BUFMR→BUFR→BUFG→] but could have also been 

[BUFR→BUFG→]. Note how the BUFGs are located 

logically inside the Central Router. Because switch_clock 

feeds these BUFGs, passing it through another BUFG would 
adversely affect network bandwidth. Moreover, by directly 

feeding the BUFGs, switch_clock ensures that on the part of a 

receiving node, a received packet arrives directly from another 

node with the data clock having been refreshed. This is 

because as the data_clock from the BUFR enters the Switch 

Arbiter, it is received by an LDPE latch and passed through a 

crossbar logic before being fed to the CE of a BUFG, 

essentially starting a new transmission (see Fig. 17). 

  
Fig. 16: A 4-node CERANoC star network using clock buffers as links 

Since the objective of this prototype demonstration is to 

show that using the clock buffers in the manner stipulated by 

CELOC/CERANoC facilitates dynamic communication and 

circuit relocation by circumventing the general interconnect, 

most of the intricacies of NoC designs are avoided as these are 

already extensively studied. A point-to-point routing is used 

for the star-network (see Fig. 18), and a 32-bit payload data is 
used, giving a 48-bit packet. 48-bit buffer memories (48 x 1-

bit LUT-RAMs) are provided inside the Central Router in 

order to temporarily store packets that cannot be immediately 

routed. In order to control access to multiple nodes attempting 

to transfer packets simultaneously to the same receiving node 

and thus keep in line with real-time requirements, priorities 

are assigned to the nodes based on the node address. A node 

with a lower address has a higher priority. 

  
Fig. 17: Data clock renewal in a star-shaped CERANoC 

Fig. 18 shows the switch architecture implemented for the 

4-node star network. Ni implies node i while Sjk denotes a 

switch position from node j to node k. The indicated positions 

of the switches are for the following routing: N0 → N3, N1 → 

N0, and N3 → N1. There is one Node Router (NR) for each 

input to the Switch Arbiter. In each NR there are three (N – 1) 

independent switch endpoints (Sjk) which determine the 
routing of the incoming packet to the other three nodes. In the 

Switch Arbiter, there is a 4-bit occupied_switches register that 

shows the state of the nodes with respect to data reception. A 

node that is presently receiving a packet has its corresponding 

bit turned on. The Switch Arbiter checks the destination 

address of the packet against the state of the occupied 

switches. If the destination node is not already occupied by an 
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ongoing transmission, the packet is routed through and the 

occupied_switches state is updated. 

To test dynamic communication and relocation at the 

fundamental level, four tasks (θ0 to θ3) are set up, with one 

task in each of the nodes. It is very important in this 

demonstration to have a visual indication that new tasks are 

able to establish communication and that existing tasks still 

execute correctly when new tasks are placed in runtime. As a 
result, a VGA application is used with the setup in Fig. 19. 

Tasks θ0 to θ2 are pattern generators, each generating three 

different patterns (P) of four vertical stripes of colours white 

(W), red (R), green (G), or blue (B). Each of these coloured 

stripes is represented by 8 bits (3 bits for R, 3 bits for G, and 2 

bits for B). Every 32 bits of data sent by a pattern generator, 

therefore, determines four stripes of 8-bit colour. θ0 to θ2 

generate P0 to P2 respectively, with P0 = [W, R, G, B], P1 = 

[G, B, W, R], and P2 = [B, W, R, G]. θ3 is a fixed VGA 

controller that interfaces to a VGA monitor in order to display 

the patterns generated by θ0 to θ2. At design time θ0 to θ3 are 
floor-planned in nodes N0 to N3 respectively and partial 

bitstreams are generated for only θ0 to θ2. Task θ3 has to be 

static because it needs access to the VGA’s interface pins 

which are in fixed locations on the FPGA. Tasks θ0 to θ2 are 

set to transmit to θ3 at the same time. Because of the router 

priority, this means P0 is continuously displayed. By blanking 

N0 and N1 successively using blanking bitstreams, we are able 

to see P1 and P2; reconfiguring N1 then N0 also results in 

patterns P1 then P0, demonstrating that communication is 

unimpaired when tasks are swapped in and out in runtime. 

 
Fig. 18: The switch architecture for a 4-node CERANoC star network 

 
Fig. 19: The setup for demonstrating CERANoC 

The demonstration of relocation involves configuring θ0 in 

N1 while blanking N0 and θ1 in N0 while blanking N1, though, 
after changing the target frame address in the bitstream. In the 

former case, we are able to see pattern P0 even though it is 

configured in N1, and vice-versa for the latter case. The 

Vivado Hardware Manager is used to configure the partial 

bitstreams. Fig. 20 shows the floorplan of the FPGA after 

implementation. It can be seen that the chip areas belonging to 

nodes 0 to 2 are free of general routing. This is as expected. 

The Network Interface does not contribute to static routing as 

it is made part of the reconfigurable task itself. Only the clock 

lines can be seen routed in the HROW from a global network 
feeding the clock regions (refer to Fig. 2 in Section III). These 

routings are dedicated clock nets and do not interfere with 

relocation. This means the clock regions remain free of 

general routing even though they are interconnected. The 

connections to CEs are at the edges of the clock regions, 

leaving the majority of the region free of general routing. 

D. Resource Utilization 

The only component peculiar to CERANoC is the network 

adapter and it uses only 32 slices (see Section VI). The entire 

4-node network itself (without the tasks) takes 144 slices. 

Clock buffer utilization stands at 4 BUFMRs, 4 BUFRs, and 6 

BUFGs, with per clock region utilization of 50%, 25%, and 

3.125% respectively. 

E. Network Latency 

Since the central router simply routes the packet from the 

source to the destination nodes, essentially effecting the 

connection between [BUFMR→ BUFR→] and [BUFG→] in 

a [BUFMR→BUFR→BUFG→] clock buffer configuration, 

the packet transfer latency remains 64 clock cycles as 

presented in Table VI in Section VI for packet-synchronized 

address-inclusive encoding. 

 

Fig. 20: The floorplan of the implemented 4-node network 

F. Network Throughput 

The CONS encoder and decoder do not share circuitry. 

Therefore, nothing stops concurrent data transfers like these 

four simultaneous data transfers: N0 → N1, N1 → N2, N2 → N3, 

and N3 → N0. That is, for the 4-node star CERANoC, the 

throughput of the individual link can be multiplied by 4 to 
obtain the network throughput. As such, for an N-node star 

CERANoC in full-duplex mode, the throughput (in Mbps) can 

be defined by Eq. 1 in terms of the payload size (in bits), the 

number of nodes (N), the frequency of operation (f in MHz), 

and the latency cycles as follows: 

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑃𝑎𝑦𝑙𝑜𝑎𝑑 (𝑖𝑛 𝑏𝑖𝑡𝑠)×𝑁×𝑓(𝑖𝑛 𝑀𝐻𝑧)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝐶𝑦𝑐𝑙𝑒𝑠
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At 100 MHz this gives a throughput (data rate) of 200 

Mbps for the network demonstrated. The CELOC links used 

has a maximum speed of 171.43 Mbps (same as 171.43 MHz 

since one bit is transmitted in one clock cycle). The maximum 

throughput for the Artix-7 device used is, therefore, 428.58 

Mbps for a 32-bit payload and N = 5 (assuming the Central 

Router’s RP is also used to host a node). It should be noted 

that the latencies for payloads other than 32 bits can easily be 
determined from Table VI. 

Compared with methods that involve runtime routing, 

CERANoC does not incur any clock cycle overhead in order 

to place a new circuit or relocate one in runtime. Moreover, 

compared with the method in [22], the ICAP is not required 

for communication purposes, thus allowing SEM to have as 

much ICAP time as possible. The use of the ICAP for 

communication could be counterintuitive where reliability is 

important. Moreover, while DyNoC [19] also achieves 

dynamic communication for newly placed tasks, it is not 

certain that it is able to support relocation since the problem of 
general routing seemed not to have been addressed. 

CERANoC, on the other hand, leaves the chip area clear of 

general routing. 

IX. SUMMARY AND FUTURE WORK 

This article has presented a unique adaptation of the clock 

buffers and nets of an FPGA for dynamic communication for 

relocatable circuits. By using clock buffers as communication 

infrastructures, we have shown that it is possible to avoid 

static interconnections and achieve communication among 

existing tasks and tasks placed or relocated during run time on 

an FPGA. One limitation in the present implementation arises 
from the limited number of clock buffers, limiting the network 

throughput. This is alleviated in newer chips like the 

UltraScale, which have more clock buffers. In the future, we 

will investigate architectures that will further exploit the clock 

buffers for dynamic communication.  

REFERENCES 

[1] P. Sedcole, B. Blodget, J. Anderson, P. Lysaghi, and T. Becker, 

‘Modular partial reconfigurable in Virtex FPGAs’, in International 

Conference on Field Programmable Logic and Applications, 2005., 

2005, pp. 211–216. 

[2] S. Srinivasan et al., ‘Toward Increasing FPGA Lifetime’, IEEE Trans. 

Dependable Secure Comput., vol. 5, no. 2, pp. 115–127, Apr. 2008. 

[3] L. Kirischian, V. Kirischian, and D. Sharma, ‘Mitigation of Thermo-

cycling effects in Flip-chip FPGA-based Space-borne Systems by 

Cyclic On-chip Task Relocation’, in 2018 NASA/ESA Conference on 

Adaptive Hardware and Systems (AHS), 2018, pp. 17–24. 

[4] Xilinx Inc., ‘Vivado Design Suite User Guide, Partial Reconfiguration - 

UG909 (v2018.1)’. Xilinx Inc., 2018. 

[5] A. DeHon, R. Huang, and J. Wawrzynek, ‘Hardware-assisted fast 

routing’, in Proceedings. 10th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, 2002, pp. 205–215. 

[6] W. J. Dally and B. Towles, ‘Route packets, not wires: on-chip 

interconnection networks’, in Design Automation Conference, 2001. 

Proceedings, 2001, pp. 684–689. 

[7] Xilinx Inc., ‘7 Series FPGAs Clocking Resources - User Guide UG472 

(v1.11.2)’. Xilinx Inc., 2015. 

[8] N. Kapre, ‘On Bit-Serial NoCs for FPGAs’, in 2017 IEEE 25th Annual 

International Symposium on Field-Programmable Custom Computing 

Machines (FCCM), 2017, pp. 32–39. 

[9] A. Morgenshtein, I. Cidon, A. Kolodny, and R. Ginosar, ‘Comparative 

analysis of serial vs parallel links in NoC’, in 2004 International 

Symposium on System-on-Chip, 2004, pp. 185–188. 

[10] A. Adetomi, G. Enemali, and T. Arslan, ‘Clock Buffers, Nets, and Trees 

for On-Chip Communication: A Novel Network Access Technique in 

FPGAs’, in 2017 IEEE International Parallel and Distributed 

Processing Symposium Workshops (IPDPSW), 2017, pp. 219–222. 

[11] A. Adetomi, G. Enemali, and T. Arslan, ‘Relocation-Aware 

Communication Network for Circuits on Xilinx FPGAs’, in 2017 27th 

International Conference on Field Programmable Logic and 

Applications (FPL), 2017, pp. 1–7. 

[12] A. Adetomi, G. Enemali, and T. Arslan, ‘Characterization of Clock 

Buffers for On-Chip Inter-Circuit Communication in Xilinx FPGAs’, in 

2018 IEEE International Symposium on Circuits and Systems (ISCAS), 

2018, pp. 1–5. 

[13] T. S. T. Mak, P. Sedcole, P. Y. K. Cheung, and W. Luk, ‘On-FPGA 

Communication Architectures and Design Factors’, in 2006 

International Conference on Field Programmable Logic and 

Applications, 2006, pp. 1–8. 

[14] B. Fu and P. Ampadu, ‘Networks-on-Chip (NoC)’, in Error Control for 

Network-on-Chip Links, Springer New York, 2012, pp. 33–47. 

[15] T. Bjerregaard and S. Mahadevan, ‘A Survey of Research and Practices 

of Network-on-chip’, ACM Comput Surv, vol. 38, no. 1, Jun. 2006. 

[16] É. Cota, A. de M. Amory, and M. S. Lubaszewski, ‘NoC Basics’, in 

Reliability, Availability and Serviceability of Networks-on-Chip, 

Springer US, 2012, pp. 11–24. 

[17] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins, 

‘Interconnection Networks Enable Fine-Grain Dynamic Multi-tasking 

on FPGAs’, in Field-Programmable Logic and Applications: 

Reconfigurable Computing Is Going Mainstream, M. Glesner, P. Zipf, 

and M. Renovell, Eds. Springer Berlin Heidelberg, 2002, pp. 795–805. 

[18] F. Alazemi, A. AziziMazreah, B. Bose, and L. Chen, ‘Routerless 

Network-on-Chip’, in 2018 IEEE International Symposium on High 

Performance Computer Architecture (HPCA), 2018, pp. 492–503. 

[19] C. Bobda, M. Majer, D. Koch, A. Ahmadinia, and J. Teich, ‘A Dynamic 

NoC Approach for Communication in Reconfigurable Devices’, in Field 

Programmable Logic and Application, J. Becker, M. Platzner, and S. 

Vernalde, Eds. Springer Berlin Heidelberg, 2004, pp. 1032–1036. 

[20] M. B. Stensgaard and J. Sparsø, ‘ReNoC: A Network-on-Chip 

Architecture with Reconfigurable Topology’, in Second ACM/IEEE 

International Symposium on Networks-on-Chip (nocs 2008), 2008, pp. 

55–64. 

[21] N. Kapre and J. Gray, ‘Hoplite: Building austere overlay NoCs for 

FPGAs’, in 2015 25th International Conference on Field 

Programmable Logic and Applications (FPL), 2015, pp. 1–8. 

[22] X. Iturbe, K. Benkrid, T. Arslan, R. Torrego, and I. Martinez, ‘Methods 

and Mechanisms for Hardware Multitasking: Executing and 

Synchronizing Fully Relocatable Hardware Tasks in Xilinx FPGAs’, in 

2011 International Conference on Field Programmable Logic and 

Applications (FPL), 2011, pp. 295–300. 

[23] O. Sander, L. Braun, M. Hübner, and J. Becker, ‘Data Reallocation by 

Exploiting FPGA Configuration Mechanisms’, in Reconfigurable 

Computing: Architectures, Tools and Applications, 2008, pp. 312–317. 

[24] M. Welter, ‘Demonstration of Soft Error Mitigation IP and Partial 

Reconfiguration Capability on Monolithic Devices - XAPP1261 (v1.0)’. 

Xilinx Inc., 2015. 

[25] J. Lamoureux and S. J. E. Wilton, ‘FPGA Clock Network Architecture: 

Flexibility vs. Area and Power’, in Proceedings of the 2006 

ACM/SIGDA 14th International Symposium on Field Programmable 

Gate Arrays, New York, NY, USA, 2006, pp. 101–108. 

[26] Xilinx Inc., ‘UltraScale Architecture Clocking Resources, User Guide - 

UG572 (v1.8)’. Xilinx Inc., 19-Dec-2018. 

[27] S. Verma and A. S. Dabare, ‘Understanding clock domain crossing 

issues’, EE Times, 2007. 

[28] Xilinx Inc., ‘Vivado Design Suite 7 Series FPGA and Zynq-7000 All 

Programmable SoC Libraries Guide - User Guide UG953 (v2016.2)’. 

Xilinx Inc., 2016. 

[29] W. Simpson, ‘PPP in HDLC-like Framing’. [Online]. Available: 

https://tools.ietf.org/html/rfc1662. [Accessed: 21-Jul-2016]. 

[30] S. Cheshire and M. Baker, ‘Consistent overhead byte stuffing’, 

IEEEACM Trans. Netw., vol. 7, no. 2, pp. 159–172, Apr. 1999. 

[31] P. Lin, ‘One wire serial communication protocol method and circuit’, 

US7111097B2, 19-Sep-2006. 

[32] Xilinx Inc., ‘Vivado Design Suite User Guide, High-Level Synthesis - 

UG902 (v2017.4)’. Xilinx Inc., 2018. 

[33] V. Rantala, T. Lehtonen, and J. Plosila, ‘Network on chip routing 

algorithms’, Turku Centre for Computer Science, 2006. 
 


