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Do We Need Many-valued Logics for Incomplete Information?∗

Marco Console , Paolo Guagliardo , Leonid Libkin
School of Informatics, University of Edinburgh

Abstract

One of the most common scenarios of han-
dling incomplete information occurs in relational
databases. They describe incomplete knowledge
with three truth values, using Kleene’s logic for
propositional formulae and a rather peculiar exten-
sion to predicate calculus. This design by a com-
mittee from several decades ago is now part of the
standard adopted by vendors of database manage-
ment systems. But is it really the right way to han-
dle incompleteness in propositional and predicate
logics?
Our goal is to answer this question. Using an epis-
temic approach, we first characterize possible lev-
els of partial knowledge about propositions, which
leads to six truth values. We impose rationality con-
ditions on the semantics of the connectives of the
propositional logic, and prove that Kleene’s logic
is the maximal sublogic to which the standard opti-
mization rules apply, thereby justifying this design
choice. For extensions to predicate logic, however,
we show that the additional truth values are not
necessary: every many-valued extension of first-
order logic over databases with incomplete infor-
mation represented by null values is no more pow-
erful than the usual two-valued logic with the stan-
dard Boolean interpretation of the connectives. We
use this observation to analyze the logic underlying
SQL query evaluation, and conclude that the many-
valued extension for handling incompleteness does
not add any expressiveness to it.

Introduction
Incomplete information is ubiquitous in applications that in-
volve querying and reasoning about data. It is one of the
oldest topics in database research [Codd, 1975], and is es-
sential in many applications such as data integration [Lenz-
erini, 2002], data exchange [Arenas et al., 2014], inconsistent

∗This paper was invited for submission to the Best Papers from
Sister Conferences track. It is an abridged version of a paper that
appeared in KR-2018 [Console et al., 2018].

databases [Bertossi, 2011], and ontology-based data access
[Bienvenu and Ortiz, 2015].

When it comes to querying incomplete data, practical solu-
tions, such as relational databases, rely on many-valued logics
to properly account for the lack of certainty. In fact, every
database management system (DBMS) uses a three-valued
logic for handling incomplete information, namely Kleene’s
logic [Bolc and Borowik, 1992]. This was the design choice
of SQL, the language of relational DBMSs, which is now
written into the SQL Standard [ISO/IEC, 2016], presented in
all database textbooks, and implemented in all database prod-
ucts. However, this is far from the only logic to have been
considered for representing incomplete information. The use
of Kleene’s logic was first proposed by Codd [1975], but
many other variants appeared afterward. Codd [1987] looked
at a four-valued logic, but in the end argued against it due
to the additional complexity. Nonetheless, well-documented
problems with incomplete information [Date and Darwen,
1996; Date, 2005] led to the search of more appropriate logics
for handling incompleteness. For example, Gessert [1990] re-
visited four-valued logics, while Yue [1991] considered log-
ics with four, five, and seven values, and showed how to en-
code them with three. A different kind of four-valued logics
for missing data was studied by Console et al. [2016], while
Darwen and Date [1995] suggested dropping nulls altogether
and go back to the usual Boolean two-valued logic.

There is also no shortage of many-valued logics that have
been proposed in closely related contexts. For example, a va-
riety of many-valued logics were used in the study of default
reasoning [Reiter, 1980] or in reasoning about inconsistency
[Zamansky and Avron, 2006]. Those are typically based on
the notion of bilattices, providing truth and knowledge order-
ings on the truth values [Arieli and Avron, 1996; Ginsberg,
1988]. A common one is Belnap’s bilattice with four truth
values [Belnap, 1977; Arieli and Avron, 1998], which also
found database applications [Grahne et al., 2015]; but oth-
ers exist as well, e.g., many generalizations of Kleene’s logic
based on numerical intervals describing the degree of being
true [Fitting, 1991]. A many-valued propositional logic must
also provide an interpretation of propositional connectives.
To make the general picture even muddier, for different sets
of truth values, different semantics of propositional connec-
tives exist, sometimes even non-deterministic ones [Arieli et
al., 2010].



Thus, we are far from having a clear picture of what to use
as a logic of incomplete information in data management ap-
plications. Choices are numerous, and there is no final ar-
gument as to why the approach of DBMSs that use Kleene’s
logic is the right one. Hence, the first question we address is:
1) What is the right many-valued propositional logic for han-

dling incomplete information?
Now suppose we have a propositional logic that correctly

accounts for truth values of statements about incomplete in-
formation, and for operations on them. In querying data, how-
ever, we use predicate logics. Indeed, the core of SQL is es-
sentially a programming syntax for relational calculus, which
is another name for first-order (FO) predicate logic.

Of course we know how to lift the semantics of proposi-
tional logic to the full predicate calculus by treating existen-
tial and universal quantifiers as disjunctions and conjunctions
over all elements of the universe. What we do not know is
how different choices of propositional logic for incomplete
information affect the power of predicate calculus. As one
example, consider the version of FO that underlies SQL and
is based on Kleene’s logic. What extra power does it pos-
sess over FO under the usual two-valued Boolean interpreta-
tion of the connectives? It was recently argued, by means of
rewriting SQL queries, that FO based on Kleene’s logic can
be encoded in the usual Boolean FO [Guagliardo and Libkin,
2017]. But is there a general result in logic that underlies such
a translation, and what is so special about Kleene’s logic that
makes it work?

Even more generally, the second question we would like to
address is:
2) How does the choice of a propositional logic for incom-

plete information affect predicate logic?
Finally, we would like to understand how these theoreti-

cal considerations relate to the practice of incomplete data in
relational databases. A rough approximation of the core of
SQL – the way it is presented in many database textbooks –
is first-order logic. But as soon as incomplete information
enters the picture, this becomes a many-valued FO. And yet
there is even more to it: in SQL queries, answer tuples are
split into true ones that need to be returned, and others that
are not returned, thus collapsing a three-valued logic to two-
valued. This leads to our last question:
3) What is the logic that underlies real-life handling of in-

complete information in relational databases (i.e., SQL’s
logic), and how much more power than the usual two-
valued FO does it possess?

The goal of this paper is to address these three questions.
Below we outline our main contributions.

Propositional Logic
To understand what a proper propositional logic for reason-
ing about incomplete information is, we need to define its
truth values, and truth tables for its connectives (we shall con-
centrate on the standard ones, i.e., ∧,∨, and ¬, although we
shall see others as well). We follow the approach of Ginsberg
[1988] to turn partial knowledge about the truth of a proposi-
tion into truth values. If we have a set W of worlds, and two

of its subsets T and F in which a proposition is true and false,
respectively, this produces a description (T, F,W ). It is pos-
sible that T ∪ F 6= W , i.e., we may have partial knowledge
about the truth or falsity of a proposition. We require how-
ever that T ∩F = ∅, as here we do not consider inconsistent
descriptions.

Taking those descriptions (T, F,W ) directly as truth val-
ues, however, is not satisfactory: we shall have too many
of them. Instead, we want to take as truth values what we
know about such descriptions. To this end, we use epistemic
theories that say what is known about a proposition α be-
ing possibly or certainly true or false; then, as truth values
we take maximally consistent epistemic theories. We show
that there are only six such theories, resulting in a six-valued
logic, denoted by L6v. For an arbitrary proposition α, these
six theories correspond to the following scenarios.
(1) We know that α is true in all worlds. We abstract this as

the truth value t (always true).
(2) We know that ¬α is true in all worlds, hence α is false in

all worlds. We abstract this as the truth value f (always
false).

(3) We know that there exists a world w in which α is true
and there exists a world w′ in which its negation is true.
Since α cannot be both true and false in the same world,
we have w 6= w′. We abstract this as the truth value s
(sometimes true and sometimes false).

(4) We know that there is a world in which α is true, but we
do not know whether there is a (distinct) world in which
its negation is true. Thus, α could be true in all worlds,
but we do not know that. We abstract this as the truth
value st (sometimes true).

(5) We know that there is a world in which the negation of α
is true and where α is then false, but we do not know
whether there is a (distinct) world in which α is true.
Thus, α could be false in all worlds, but we do not know
that. We abstract this as the truth value sf (sometimes
false).

(6) We do not know whether there exists a world in which α
is true nor whether there is one where its negation is true.
That is, we have no information at all, and we abstract
this as the truth value u (unknown).

The truth tables of L6v, shown in Figure 1, are again very
naturally derived from epistemic theories of partial knowl-
edge about the truth of propositions. The logic L6v contains,
as sublogics, the following: (1) the 2-valued Boolean logic,
which is the restriction of L6v to truth values t and f, and
(2) Kleene’s logic, denoted by L3v, which is the restriction to
truth values t, f,u.

As a final step, we look at what makes a many-valued logic
database friendly. It needs to be a sublogic of L6v and satisfy
some basic properties we expect to hold to be able to perform
query evaluation and optimization, namely distributivity and
idempotency (see [Jarke and Koch, 1984; Graefe, 1993]).
Theorem 1. The maximal sublogic of L6v that includes the
truth value t and in which the binary connectives ∧ and ∨ are
distributive and idempotent is Kleene’s logic L3v.



∧ t f s st sf u
t t f s st sf u
f f f f f f f
s s f sf sf sf sf
st st f sf u sf u
sf sf f sf sf sf sf
u u f sf u sf u

(a)

∨ t f s st sf u
t t t t t t t
f t f s st sf u
s t s st st st st
st t st st st st st
sf t sf st st u u
u t u st st u u

(b)

¬
t f
f t
s s
st sf
sf st
u u

(c)

Figure 1: The truth tables of L6v for ∧, ∨ and ¬.

This result justifies, at least at the propositional level, the
choice made by SQL designers and standardization commit-
tees in choosing the three-valued logic of Kleene as the logic
to be implemented in all database products.

Predicate Logic
We have justified Kleene’s propositional logic L3v as the right
choice for handling incompleteness in database contexts. But
database languages are not propositional: they are based on
FO instead. Thus, we look at variants of FO based on propo-
sitional many-valued logics such as L3v and L6v, and com-
pare their expressive power with that of the usual Boolean FO
(BFO) with just t and f. Our main result is that, when added
to FO, these many-valued propositional logics add no power:
FO based on L3v, or on L6v, or on any other many-valued
logic (under some mild restrictions on the connectives) has
no more power than BFO.

The need to consider predicate logics of incomplete infor-
mation arises most commonly in querying incomplete data-
bases, where special values, referred to as nulls, indicate in-
completeness of some sort. When atomic formulae may in-
volve nulls – e.g., in comparing a null with another value, or
in checking whether a tuple with nulls belongs to a relation
– the standard approach is not to follow the Boolean seman-
tics of FO, but instead to look for a many-valued semantics
that will properly lift a propositional logic to all of FO. While
propagating truth values through connectives and quantifiers
is completely standard, assigning them to atoms is not unique.
We consider three commonly occurring possibilities.

Boolean semantics. This is the standard two-valued FO se-
mantics, with only t and f as truth values. Given a database
D and a tuple ā, the formula R(ā) evaluates to t if ā is tuple
in relation R in D, and to f otherwise.

Null-free semantics. If ā is a tuple of constants, it is the
same as the Boolean semantics; but if ā contains nulls, the
formula evaluates to u.

Unification semantics. This was proposed by Libkin
[2016] to enforce certainty guarantees for query answers. It
is based on the notion of tuple unification: two tuples unify
if there exists a mapping from nulls to constants that makes
them equal. Then, given a database D, an atom R(ā) evalu-
ates to t if ā is in relation R in D, to f if no tuple in R unifies
with ā, and to u otherwise.

In all of these, instead of relational atoms we could use
equality atoms a = b as well, and the same definitions apply.

There is a priori no reason to apply the same semantics to
all atoms; instead, one can consider a mixed semantics where
each atomic formula is interpreted under one of the different
“pure” semantics described above. Indeed, this is the case for
SQL: relational atoms are interpreted under the Boolean se-
mantics, while equality atoms are interpreted under the null-
free semantics. We refer to the mixed semantics used by SQL
as the SQL semantics.

In the context of many-valued FO, the exact choice of se-
mantics of atoms does not matter: under reasonable assump-
tions, many-valued predicate logics do not give any extra ex-
pressive power compared to BFO, that is, the usual FO un-
der the standard Boolean interpretation of connectives and the
Boolean semantics of atomic formulae.

The result is based on capturing a many-valued FO logic by
BFO, in the following sense. A formula ϕ of FO based on a
many-valued propositional logic L is captured by BFO under
a semantics J K if for each truth value τ of L there exists an FO
formula ϕτ such that ϕ evaluates to τ under J K if and only if
ϕτ evaluates to true under the Boolean semantics. Intuitively,
if a formula is captured by BFO, this tells us that we do not
need a many-valued semantics.

To lift the capturing from atoms to arbitrary formulae of a
many-valued FO we only need to impose one condition on the
underlying propositional logic, namely that the connectives ∧
and ∨ be weakly idempotent: for every truth value τ , it must
hold that τ ∧ τ ∧ τ = τ ∧ τ , and likewise for ∨. In Boolean
logic, we expect these connectives to be idempotent (i.e., τ ∧
τ = τ ) but logics like L6v satisfy this weaker condition.
Theorem 2. Let FO(L) be FO based on a many-valued prop-
ositional logic L in which the connectives ∧ and ∨ are weakly
idempotent, and assume that every atomic FO(L) formula is
captured by BFO under some (mixed) semantics. Then every
FO(L) formula is captured by BFO under the same seman-
tics.

To apply this result to the previously considered semantics,
we need to capture atomic formulae, under these semantics,
in BFO. This is possible for all of them.
Proposition 1. Atomic formulae are captured by BFO under
Boolean, unification, and null-free semantics.

Finally, this tells us that any mixed semantics (as well as
the pure versions, that is, Boolean, null-free, and unification
semantics) coupled with any propositional many-valued logic
like L3v or L6v (as long as it has weakly idempotent conjunc-
tion and disjunction) is no more powerful than the standard
Boolean semantics over t and f.



Using this result, we can clarify the question about the ex-
pressive power of the logic that underlies real-life database
applications that use incomplete information.

The Logic of SQL
We finally apply the above observation to SQL’s logic. We
explain that it corresponds to a L3v-based FO with an extra
connectives that allows one to collapse truth values f and u
into one, but it still has no more power than BFO. Thus, even
though SQL designers were justified in choosing Kleene’s
logic as the propositional logic for reasoning about incom-
plete information, they overlooked the fact that, when con-
sidered within FO, such a logic does not add any expressive
power.

Most database texts will claim that the core of SQL is first-
order logic FO. This was certainly true in the early stages of
SQL design, as it grew out of relational calculus, which is
just another name for FO. But then the language gained many
features, in particular null values, leading to more complex
underlying logics. These logics are still not well understood,
as the formalization of SQL mainly took a different route via
relational algebra, which is the procedural counterpart of FO.

We start with the basic fragment of relational languages
that has the power of FO, operating on databases whose val-
ues come from a set Const of constants. SQL uses a single
null value, denoted here by NNN. Now we add it; how should the
logic change to capture this extension? It depends on who is
asked to produce such an extension.

A logician’s approach. If the domain is extended by a sin-
gle constant, we simply consider FO over Const ∪ {NNN} with
a unary predicate null( ) that is only true in NNN. The interpre-
tation of = is simply syntactic equality, that is, NNN is equal to
itself, and not equal to any element of Const. In other words,
the logic is the usual BFO, with atomic formulae interpreted
under the Boolean semantics. It would thus be seen, by a lo-
gician, as an overkill to introduce a many-valued logic to deal
with just one extra element of the domain. Nonetheless, this
is what SQL did.

SQL approach: a textbook version. The usual explana-
tion of the logic behind SQL is that it adds a new truth value
u to account for any comparisons involving nulls. In other
words, the underlying propositional logic is Kleene’s, and the
semantics is mixed: Boolean for relational atoms and null-
free for equality. We refer to this mixed semantics as the SQL
semantics.

SQL approach: what really happens. While the textbook
approach comes close to describing the logic of SQL, it over-
looks one important aspect: in an SQL query, the conditions
in the WHERE clause are evaluated using Kleene’s logic, but
only the tuples that evaluated to t are kept. To capture this in
logic, we need a propositional operator that collapses f and
u into f. Such an operator does exist in propositional many-
valued logics [Bochvar, 1981] and it is known as an assertion
operator: ↑p for a proposition p evaluates to t if p evaluates
to t, and to f otherwise. Kleene’s logic with the assertion op-
erator is denoted by L↑

3v.

Even though these logics use different sets of truth values,
it only matters when formulae evaluate to true, as this deter-
mines the output of queries. To this end, we say that two log-
ics are true-equivalent if there are translations between their
formulae such that each formula, and its translation, evalu-
ate to t in the same models. Then, with respect to the truth
value t, there is no difference between the logics that attempt
to model SQL’s behavior.

Theorem 3. The following predicate logics:

• BFO under the Boolean semantics,

• FO(L3v) under the SQL semantics, and

• FO(L↑
3v) under the SQL semantics,

are true-equivalent.

Thus, the most natural logical approach to adding the null
value to the language does not miss any expressiveness of the
more complex solutions based on many-valued logics.

Conclusions
To conclude, let us revisit history. Handling incomplete infor-
mation by logical languages is an important topic, especially
in data management. All commercial database systems that
speak SQL offer a solution based on a three-valued proposi-
tional logic that is lifted then to full predicate logic. This so-
lution was heavily criticized in the literature, but at the level
of the chosen propositional logic.

We proposed a principled approach to justifying a proper
logic for handling incomplete information, which resulted in
a six-valued logic L6v. However, taking into account the
needs of SQL query evaluation (e.g., distributivity laws), the
largest fragment of L6v that does not break traditional eval-
uation and optimization strategies is Kleene’s logic L3v, pre-
cisely the one chosen by SQL.

However, even though the SQL designers were justified in
their choice of Kleene’s logic, they neglected to consider the
impact that lifting it to full predicate logic would have. We
showed that it leads to no increase in expressive power; had
this been known to the SQL designers, perhaps other choices
would have been considered too.

But does this mean that we should abandon many-valued
logics of incomplete information? Most likely not: while the
theoretical complexity of formulae that result from eliminat-
ing many-valuedness is the same as that of original many-
valued formulae, their practical complexity (i.e., if imple-
mented as real life database queries) is likely to be different.
This is mainly due to the fact that 40 years of research on
query evaluation and optimization had one particular model
in mind, and that model used a many-valued logic. However,
the observations we made here might have an impact on the
design of new languages, since avoiding many-valued logics
for handling incompleteness is now an option.
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