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Measuring the Likelihood of Numerical Constraints

Marco Console , Matthias Hofer , Leonid Libkin
University of Edinburgh

Abstract
Our goal is to measure the likelihood of the satis-
faction of numerical constraints in the absence of
any prior information. Intuitively, the likelihood of
x > y is 0.5, if we know nothing about x and y. We
study expressive constraints, involving arithmetic
and complex numerical functions, and even quan-
tification over numbers. Such problems arise in
processing incomplete data, or estimating the like-
lihood of conditions in programs without a priori
bounds on variables.
We show that for constraints on n variables, the
proper way to define such a measure is as the limit
of the part of the n-dimensional ball that consists
of points satisfying the constraints, when the ra-
dius of the ball increases. We prove that the ex-
istence of such a limit is closely related to the no-
tion of o-minimality from model theory. For exam-
ple, for constraints definable with the usual arith-
metic and exponentiation, the likelihood is well de-
fined, but adding trigonometric functions is prob-
lematic. We then look at computing and approx-
imating such likelihoods for order and linear con-
straints. We prove an impossibility result for ap-
proximating with multiplicative error, even for or-
der constraints. However, as the likelihood is a
number between 0 and 1, an approximation scheme
with additive error is acceptable, and we give such
a scheme for arbitrary linear constraints.

1 Introduction
Our goal is to measure the likelihood of numerical constraints
without having any additional knowledge such as a probabil-
ity distribution. A constraint over n variables can be seen
as a map '(x̄) : Rn ! {0, 1} or a subset '(Rn

) = {ā 2
Rn | '(ā) = 1} of tuples in Rn satisfying the constraint.
To express them, we can use standard arithmetic operations
+,�, ·,÷, and even more complex ones such as ex, lnx. For
example, x2

< y < e

x is a constraint, and we can even ex-
tend the language with quantifiers and write constraints such
as 9z (ez · x = z · y2).

For a constraint '(x̄), we would like to measure how likely
it is to be satisfied. If we are only interested in a bounded

subset of Rn, we can just compute the volume of the inter-
section of '(Rn

) with that subset. Without explicit bounds,
if we have a probability distribution p(x̄) on Rn, this likeli-
hood is just the expected value of ', i.e.,

R
Rn '(x̄)p(x̄)dx̄.

But what happens when we have neither explicit bounds nor
a probability distribution? Since there is no uniform distribu-
tion over the entire Rn, we would like to, instead, estimate the
“portion” that '(Rn

) cuts from Rn, and view it as the likeli-
hood of '. But while it is intuitively clear that a tautological
constraint like 1 > 0 is likelier than x � 1 which in turn is
likelier than x = 0, how do we formally explain this?

The motivation for these questions comes from several dif-
ferent areas. One is program analysis, whose relationship
with constraint solving is discussed in [Gulwani et al., 2008].
Likelihoods of a branch being taken, and more generally, of
an execution path of a program, have been associated with
volumes of certain sets in Rn ([Ma et al., 2009]). This cor-
respondence only works when there are explicit bounds on
input variables (and thus volumes are finite). However, ad
hoc bounds on variables can affect likelihoods drastically. To
reason about execution paths without such bounds, we need to
estimate likelihoods of arbitrary constraints over Rn. Another
motivating example comes from running queries on incom-
plete data, i.e., data with explicit markers saying that some
values are unknown (e.g., nulls in databases). If we want to
estimate the likelihood of answers to queries over such data,
we need to estimate the likelihood of conditions specified in
queries. This is useful for estimating how close an answer
is to certainty, as was shown in [Libkin, 2018]. That work,
however, only considered equality constraints, while database
queries often use more complex conditions. How to estimate
the likelihood of these conditions is yet to be defined. The
third motivation comes from temporal constraint satisfaction
([Dechter et al., 1991]). If we are not interested in mere sat-
isfiability, but we want to estimate how likely the events de-
scribed by a temporal constraint network are, we need to esti-
mate the proportion of Rn that its constraints define. As a fi-
nal example, a continuous analog of weighted model counting
for propositional formulae ([Chavira and Darwiche, 2008])
was proposed in [Belle et al., 2015]. The idea behind it is to
compute volumes of sets of continuous parameters of mod-
els; but these volumes must be finite and hence parameters
bounded. To lift this restriction, one would need to replace
such volumes by measures of likelihoods of unbounded sets.
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Figure 1: Illustration to the examples in the introduction

Thus, the question we are addressing is not only mathemat-
ically natural, but also relevant in several different scenarios.
We now look at a few examples to indicate that the question
is not trivial. Start with a simple constraint x � y over R2. It
seems quite obvious that if we know nothing about x and y,
its likelihood is 1/2. But what about x � 2y? On a quick re-
flection one realizes that nothing changes: for x � y we had
symmetry along the y = x line, and now we have symmetry
along the y = x/2 line, so the likelihood is still 1/2.

But now change things a bit and consider '(x, y) =

(x � 2y) ^ (x, y � 0). If we consider an explicit bound
�r  x, y  r, for some r > 0, then this constraint cuts
1
16 -th of the square [�r, r]

2, see Fig. 1 (a). More precisely,
�('(R2

) \ [�r, r]

2
)/�([�r, r]

2
) =

1
16 , where �(·) refers to

the Lebesgue measure (area in 2d, volume in 3d).
This looks like a sensible way of defining the proportion

we are interested in, until we apply a simple isometry trans-
formation which should not change the value. In this case,
rotate '(R2

) anticlockwise � degrees where � = ⇡/4 �
arctan(1/2)/2. For the new set C

�

, shown in Fig. 1 (b), we
have �(C

�

\[�r, r]

2
)/�([�r, r]

2
) = (1�tan(�))/4 6= 1/16.

So, considering identical bounds [�r, r] along both axes does
not work well.

What if we use the radius r ball Bn

r

instead? This looks
like a better idea: in this case, �('(R2

) \ B

2
r

)/�(B

2
r

) =

arctan(1/2)/2⇡, see Fig. 1 (c). In fact every rotation or an
isometry in general, applied to '(R2

) (for instance, one re-
sulting in C

�

) will give us the same result.
Thus, using balls to measure the likelihood leads to more

intuitive results. However, in the previous example we were
lucky as the ratio did not depend on the radius r. This is
not always so: consider a slight modification of ', namely
'

0
(x, y) = (x � 2y) ^ (x, y � 1), see Fig. 1 (d). Then

�('

0
(R2

) \ B

2
r

)/�(B

2
r

) = arctan(1/2)/2⇡ � 1/⇡r

2. How
do we get rid of the dependence on the radius? The idea,
similarly to what is done in the study of asymptotic be-
havior of properties defined by logical sentences ([Spencer,
2010]) is to consider the limit as r increases. In this case
lim

r!1 �('

0
(R2

) \ B

2
r

)/�(B

2
r

) = arctan(1/2)/2⇡. Intu-
itively, the change from x, y � 0 to x, y � 1 affects a very
small portion of the set defined by '0, and can be disregarded.

This now seems to be a proper way to define the likeli-
hood, and indeed this is what we shall do. However, there
is a caveat: do we know that the limit always exists? In
fact it does not: consider a new constraint '00

(x) saying that

2

2k  |x|  2

2k+1 for some k 2 N. In this case, as we shall
formally prove later, the limit does not exist, and there seems
to be no good way of defining the likelihood (in fact the like-
lihood will be oscillating in the [

1
3 � ",

2
3 � "] interval, with

decreasing " as k increases).
These simple examples show that the question of defining

the likelihood of numerical constraints is far from trivial and
several questions need to be answered.

• How do we define it properly? The examples seem to
indicate that the ball behaves better than the cube. Note
that those were defining sets kāk2  r and kāk1  r

for the Euclidean norm k·k2 and the infinity norm k·k1.
But there are many other norms one could consider.

• How do we know that the limit exists and the likelihood
of a constraint is well defined?

• If the limit does exist and the likelihood is well defined,
can we compute it? If it is not a rational number, like
arctan(1/2)/2⇡ in the example, can we approximate it,
and how efficiently can we do so?

We answer these questions and establish the following re-
sults. First, we formally define the likelihood µ(') for nu-
merical constraints ' and show that this can only be properly
done when one considers the Euclidean norm k · k2.

We then address the question of existence of the limit. We
prove that it exists for arbitrary constraints definable in the
first-order theory of the structure hR,+, ·, exi. In particu-
lar such constraints can use +, ·,�,÷, e

x

, lnx. This relies
on deep results in logic, related to the notion of o-minimal
structures ([Van den Dries, 1998]). O-minimality states that
subsets of R definable in first-order logic are finite unions of
intervals. This condition is violated by adding, for instance,
a predicate N(·) for natural numbers, or the sine function.
We prove that adding either a test for natural numbers, or any
trigonometric function leads to a situation when the limit does
not exist and the likelihood cannot be defined.

Finally, we look at computing and approximating such
likelihoods. Even in the simplest case of order constraints,
finding the exact likelihood is intractable. For linear con-
straints, the exact likelihoods, even for simplest constraints,
are usually irrational numbers, and thus need to be approx-
imated. We consider approximations of two standard kinds:
with multiplicative error, and with additive error, see [Mot-
wani and Raghavan, 1995]. We prove that the former does not
exist under widely held complexity-theoretic assumptions.



However, as we are approximating numbers between 0 and
1, approximation schemes with additive error are acceptable.
We present such a schema for arbitrary linear constraints.
Organization. Basic notations are given in Section 2. The
definition of the likelihood of constraints is given in Section 3.
Its existence is studied in Section 4. Complexity of comput-
ing and approximating likelihood is investigated in Section 5
for order constraints, and in Section 6 for linear constraints.
Conclusions are in Section 7.

2 Preliminaries
We use N, Z, Q, and R to denote natural, integer, ratio-
nal, and real numbers, and superscript n to denote n-tuples
of those, also referred to as (n-dimensional) points. For
each p � 1, the p-norm kāk

p

of ā 2 Rn is defined as
(

P
n

i=1 |ai|p)1/p. Furthermore, kāk1 = lim

p!1 kāk
p

=

max{|a1|, . . . , |an|}. If p is omitted, we implicitly assume
the Euclidean norm, i.e., p = 2 and kāk = kāk2. For c̄ 2 Rn

and r 2 R, the n-dimensional p-ball of radius r and center
c̄ is B

n

p,r

(c̄) = {ā 2 Rn | kā � c̄k
p

 r}. If p and c̄ are
omitted, we assume p = 2 and c̄ =

¯

0, i.e., Bn

r

= B

n

2,r(
¯

0).
If S ✓ Rn, we denote by �

n

(S) the n-dimensional
Lebesgue measure of S. When n is clear from the context,
we write �(S) for the n-dimensional Lebesgue measure of S.
The Lebesgue measure is the unique extension of the standard
notion of length, area and volume, in 1, 2 and 3 dimensions,
to the n-dimensional case.

Constraint languages We consider first-order languages
over structures on numbers, mainly the reals. Let ⌦ be the
vocabulary containing function and predicate symbols. Func-
tion symbols will be standard numerical functions such as
+, ·, ex, lnx, sinx, etc, and, likewise, predicates are the stan-
dard predicates, such as =, <, etc. Constants are viewed as
functions of arity zero. First-order formulae in the language
of ⌦ are defined in the standard way. Assume a countably in-
finite set VAR of symbols, called set of variables. Each vari-
able and each constant is a term. Then, if t1, . . . , tn are terms,
and f is a function symbol of arity n, f(t1, . . . , tn) is a term,
too. If P is a k-ary predicate symbol from ⌦, and t1, . . . , tk

are terms, P (t1, . . . , tk) is an atomic formulae. Furthermore,
if ' and  are formulae, ' _  ,' ^  ,¬' are formulae, as
are 9x' and 8x'. The definitions of bound and free vari-
ables are standard. We write t(x̄) and '(x̄) if the (distinct)
free variables of t and ' are x̄, and say that ' is of arity n (or
n-ary) if it contains exactly n distinct free variables.

Semantics for terms and formulae in FO(⌦) is defined with
respect to a structure M = hR,⌦i and an assignment ā 2 Rn

for free variables x̄ 2 VARn. For the value of a term, we
write t(ā). For example, given a term t(x, y) = e

x

+ y,
the value t(0, 1) is 2. We say that '(ā) is true in M when
it is satisfied under the standard first-order semantics. For
example, '(u, v, w) = 9x (u ·x ·x+v ·x+w = 0) is formula
in three free variables; '(a, b, c) is true iff b2 � 4ac � 0.

For a formula '(x̄) with x̄ 2 VARn, let ⌦
'

contain all the
function and predicate symbols used in '. Define

J'K = {ā 2 Rn | '(ā) is true in hR,⌦
'

i} .

Since we assume the standard semantics of numerical func-
tions and predicates, the above definition does not depend on
the exact vocabulary ⌦ of a structure as long as ⌦

'

✓ ⌦.
Indeed, then '(ā) is true in hR,⌦i iff it is true in hR,⌦

'

i.

3 Defining the likelihood
To define the likelihood of a constraint given by a formula
'(x̄) over hR,⌦i, we need, as explained in the introduction,
to estimate the portion of Rn occupied by J'K. We first look
at the well-defined portion of Bn

p,r

= {ā 2 Rn | kāk
p

 r}
occupied by J'K in the radius r ball (with respect to the k · k

p

norm), namely �(J'K \B

n

p,r

)/�(B

n

p,r

), and then consider its
asymptotic behavior as the bound r increases. This gives us
the following definition.
Definition 1. Let '(x̄) be a formula with n-free variables
over the vocabulary ⌦. The p-likelihood of ' is defined as:

µ

p

(') = lim

r!1

�(J'K \B

n

p,r

)

�(B

n

p,r

)

To answer the question which value p to choose, note that
we do not expect the measure to change when simple volume-
preserving transformations, such as rotations or reflections,
are applied to J'K. These in general fall in the class of isome-
tries, i.e., linear transformations given by orthogonal matrices
M that satisfy M

T

= M

�1 (i.e. the transpose of M equals
its inverse). Note that, as long as ⌦ contains + and ·, the
set MJ'K is definable in the structure hR,⌦i, i.e., there is a
formula M' such that JM'K = MJ'K.

We next show that the only norm, for which applying
isometries does not change the likelihood µ

p

, is the Eu-
clidean norm. More precisely, we say that the likelihood
µ

p

is well-behaved if, for every structure hR,+, ·, . . .i, ev-
ery formula '(x̄), and every orthogonal matrix M , we have
µ

p

(') = µ

p

(M'). Since µ
p

is defined as the limit, the equal-
ity means that, if one side of the equation exists, then so is the
other, and they are both equal.
Theorem 1. The likelihood µ

p

is well-behaved iff p = 2, i.e.,
only for the Euclidean norm.

Proof idea. For all orthogonal matrices M and measurable
sets Z ✓ Rn, we have �(Z) = �(MZ). However MB

n

p,r

=

B

n

p,r

does not hold for all orthogonal matrices M unless p =

2. Hence, in general, also M(S \ B

n

p,r

) 6= MS \ B

n

p,r

, for
p 6= 2. Therefore, �(S\Bn

p,r

) = �(M(S\Bn

p,r

)) 6= �(MS\
B

n

p,r

) for all orthogonal matrices M , unless p = 2.

In view of this, we now concentrate on µ2('), and simply
write µ('), omitting the subscript 2.

4 Existence of the likelihood
Due to the way the likelihood is defined, a very natural ques-
tion to ask is whether µ(') exists for all constraints ' defin-
able in hR,⌦i. We now show that the existence of the limit
in Definition 1 is closely related to the subsets of R definable
in hR,⌦i. In fact, the existence of these limits is closely re-
lated to the property of the structure known as o-minimality,
cf. [Van den Dries, 1998]. We use this to prove the existence



results for very expressive constraints that can use functions
such as +,�, ·,÷, e

x

, lnx and others. We then show that the
most common ways of violating o-minimality, such as adding
a test for natural numbers of trigonometric functions, lead to
situations where the limit does not exist.

Existence results The property of o-minimality states that
for every formula in one free variable '(x), the set '(R) ✓ R
is a finite union of intervals. This is easily seen to be true
for the real field hR,+, ·, 0, 1, <i. By quantifier-elimination
(cf. [Caviness and Johnson, 1998]), every formula '(x) is
equivalent to a Boolean combination of statements p1(x) >

0, . . . , p

m

(x) > 0, where all the p

i

s are polynomials. Poly-
nomials that are not identically zero have finitely many roots.
Let r1 < r2 < . . . < r

k

be all the roots of polynomials
p1(x), . . . , pm(x); then in each interval (r

i

, r

i+1), the truth
of ' cannot change.

We now consider an expansion of this structure, the ex-
ponential field hR,+, ·, exi. Let us briefly list what is de-
finable in FO(<,+, ·, ex), to understand the power of these
constraints. Constants 0 and 1 are definable as units of +

and ·; for example ⇣1(x) = 8y (y · x = y) defines 1. Ev-
ery natural number is definable by a formula ⇣

`

(x) = (x =

1 + . . . + 1), where the summation is taken ` times, and
every rational number n/m is definable too by ⇣

n/m

(x) =

9y9z (⇣
n

(y) ^ ⇣
m

(z) ^ x · z = y). Inverse operations �, ÷,
ln are definable (e.g., x� y = z iff x = y + z) and for every
rational s, the function s

x is definable since s

x

= e

ln s·x and
both ln and arbitrary rational numbers are definable. Defin-
ability of a partial function means that its graph is definable
by an FO formula.

A remarkable result by [Wilkie, 1996] showed that
hR,+, ·, exi is o-minimal. Thus, the set N is not definable in
it, nor are trigonometric functions sin and cos, as with them
one can define sets that are not finite unions of intervals.
Theorem 2. For every formula ' 2 FO(<,+, ·, ex), the like-
lihood µ(') exists.

Proof sketch. Given a formula '(x̄) where x̄ =

(x1, . . . , xn

), consider a new formula  (y, x̄) =

'(x̄) ^ kx̄k  y (the latter condition is definable with
+ and ·). Then  (r, ā) holds iff ā 2 J'K \ B

n

r

. For a fixed
" > 0, a formula �

"

(y, z) is an "-volume approximation
for  if for each r, there is v such that �

"

(r, v) holds,
and moreover, whenever �

"

(r, v) holds, it is the case that
|v � �( (r,Rn

))| < ", where  (r,Rn

) is the set of all
ā 2 Rn such that  (r, ā) holds.

Using finiteness of VC dimension of definable families in
o-minimal structures [Van den Dries, 1998], it was shown
in [Karpinski and Macintyre, 1997; Koiran, 1995] that "-
approximations of volume exists for every ". (In fact the re-
sults there even show that whenever |v��( (r,Rn

))| < "/4,
then �

"

(r, v) holds). Next we use the fact that o-minimal
functions admit definable Skolemization, i.e., there is a defin-
able function (a function with the definable graph) f

"

: R !
R such that �

"

(r, f

"

(r)) holds for every r.
Recall that �(Bn

r

) = c

n

·rn where c
n

= ⇡

n/2
/�(n/2+1).

Consider the function F

"

(r) = f

"

(r)/r

n, still definable.
Then |F

"

(r)� c

n

· �( (r,Rn

))/�(B

n

r

)|  "/r

n

. Since

�( (r,Rn

)) < �(B

n

r

), it tells us that F
"

is bounded when
r ! 1. From o-minimality, we know that for F

"

, as a de-
finable function, there exists r0 2 R such that F

"

is con-
tinuous and either monotonically increasing, or decreasing,
for all r > r0. Thus, lim

r!1 F

"

(r) exists, and therefore
by the above, lim

r!1 c · �( (r,Rn

))/�(B

n

r

) exists. This
means that µ(') = lim

r!1 �( (r,Rn

))/�(B

n

r

) exists.

The crucial ingredients of the proof are o-minimality and
definability of volume approximations. The latter works in
general for o-minimal expansions of the real field [Karpin-
ski and Macintyre, 1997], of which hR,+, ·, exi is the most
prominent example.

Theorem 2 merely establishes the existence of the limit, but
does not give a good approach to calculating it yet. Indeed, to
approximate the limit, one would need to explicitly construct
volume approximating formulae, and check their satisfiabil-
ity. There are two obstacles to this approach in general. First,
in the case of FO(<,+, ·, ex) formulae, their decidability is
not yet known: it was proved [Macintyre and Wilkie, 1996]
under the assumption that Schanuel’s conjecture – a major
unsolved problem in number theory – holds. For the case
when we have decidability of the real field hR,+, ·, <i, the
bounds for "-volume approximations can be huge: [Benedikt
and Libkin, 2002] showed how to construct approximating
formulae for very simple geometric shapes and " = 0.1 that
would involve over 1010 quantifiers. We shall propose a much
better behaved approximation scheme, but only for the linear
case, without multiplication.

Non-existence results O-minimality is the essential condi-
tion for proving the existence result. What happens without
o-minimality? Of course there are many ways to produce
structures that are not o-minimal, but it is known that any
expansion of the real field with nice functions, that is not o-
minimal, defines either the set of natural numbers or trigono-
metric functions. Specifically, the following was shown in
[Miller, 2011]. If we look at the expansion of hR,+, ·i with
functions f : R ! Rn that are solutions to f

0
(x) = Mf(x)

for some n ⇥ n matrix M , and the resulting expansion is
not o-minimal, then one of the following is definable in
this structure: either the set N, or the logarithmic spiral
{(ex · cos(ax), ex · sin(ax)) | x 2 R}. If the latter is added
to FO(<,+, ·, ex), then both sin and cos are definable.

In view of this, we consider non-o-minimal structures with
a predicate for natural numbers, or a trigonometric function,
and show that in them, the likelihood µ(') may not exist.

Theorem 3. Let N(·) be the unary predicate for natural num-
bers, and f any trigonometric function (sin, cos, tan, cot).
Then in both FO(+, ·,N) and FO(+, ·, ex, f) one can find
formulae ' such that µ(') does not exist.

Proof sketch. If unary predicate N is available, with + and
· one can define every computable predicate over N. Hence
one can define the following constraint: '(x) = 9k

�
(2

2k 
|x|) ^ (|x|  2

2k+1
) ^ N(k)

�
. Note that in one dimension,

B

1
r

= [�r, r] and �(B

1
r

) = 2r. Then one can show that
�(J'K \B

1
22k+i)/�(B

1
22k+i) = (1 + i)/3 + o(k

�1
) for i =

0, 1, proving that lim
r!1 �(J'K\B1

r

)/�(B

1
r

) does not exist.



If we have any trigonometric function among cos, tan, cot,
then in FO(+, ·) we can define sin(x). Next consider
'(x, y) = (y > 0) ^ (x > 0) ^ (y  x · sin(ln(x)). Then

�(J'K \B

2
r

)

�(B

2
r

)

=

⇢ 1
5⇡ + o(

1
r

) if r = e

(2m+1)⇡
,

1
5⇡e2⇡ + o(

1
r

) if r = e

(2m+2)⇡
,

for m 2 N. Thus lim
r!1

�(J'K\B

2
r)

�(B2
r)

does not exist.

5 Order constraints
We have seen that the likelihood µ(') exists for all the for-
mulae of FO(<,+, ·, ex), although the existence proof does
not lend itself to a natural algorithm for finding µ('). We
thus now look at concrete algorithms for simpler constraints,
starting with the basic case of FO(<). Our results indicate
hardness of the exact computation, thus motivating the need
to look for approximations. To start with, we make the fol-
lowing easy observation.
Proposition 1. If ' 2 FO(<), then µ(') is a computable
rational number.
Proof sketch. Consider '(x1, . . . , xn

). For each permutation
⇡ on {1, . . . , n}, let �

⇡

(x̄) be
V

in�1(x⇡(i) < x

⇡(i+1)). We
can check, using decidability of hR, <i, whether �

⇡

implies
'. Then µ(') is the number of all ⇡ satisfying this condition,
divided by n! (since orderings of variables in which two are
equal do not contribute to the n-dimensional measure).

We now address the exact complexity of computing µ(').
Since it is a number, we must deal with counting complex-
ity classes. Recall that #P is class of function problems that
count the number of solutions of an NP problem, cf. [Arora
and Barak, 2009]. Unless P = NP, problems which are hard
for this class are intractable. Using this, we obtain the follow-
ing lower bound for computing µ(') over FO(<).
Theorem 4. Computing µ(') for ' 2 FO(<) is #P-hard,
even for quantifier-free formulae in disjunctive normal form.

Proof sketch. We reduce from the #P-hard problem #DNF:
for a propositional formula ↵ in DNF over variables VAR(↵),
count the number #↵ of truth assignments that satisfy ↵. We
construct an FO formula '

↵

such that µ('
↵

) = f(#↵), and
both '

↵

and function f are polytime-computable. For this
sketch, we assume that constant symbols are allowed in '

↵

.
We assign to each v 2 VAR(↵) a distinct (numerical) vari-

able x 2 VAR. To define '
↵

, for every clause (l1, . . . , lm) of
↵, assume that the variable of each literal l

i

is v
i

and that x
i

is
the (numerical) variable assigned to v

i

. For each (l1, . . . , lm)

of ↵, the formula '
↵

contains a disjunct (a1^· · ·^am) where
each a

i

is equal to (x

i

> 0) if l
i

is a positive literal and a

i

is
equal to (x

i

< 0) if l
i

is a negative literal. Note that '
↵

is a
DNF formula with free variables x1, . . . , xn

. One can show
that µ('

↵

) equals the number of orthants where '
↵

is satis-
fied, divided by 2

n. The claim follows since µ('

↵

) · 2n can
be computed in polytime with respect to the size of ↵.

The decision version of the problem is intractable too.
Proposition 2. Deciding whether µ(') > 0 is NP-complete,
and deciding whether µ(') = 1 is CONP-complete for
quantifier-free formulae ' 2 FO(<).

Proof sketch. The construction in the previous proof shows
that a DNF formula ↵ is a tautology iff µ('

↵

) = 1, prov-
ing hardness. For membership, notice that for ' 2 FO(<),
µ(') > 0 (or equals one) iff some (every) strict linear order-
ing of the free variables of ' satisfies '. This linear ordering
can then be guessed and checked for satisfying '.

When problems are hard, especially counting problem, the
standard solution is to consider approximations. This is what
we do in the next section, for a more general class of con-
straints.

6 Linear constraints
We have seen that computing µ(') is hard for order con-
straints, which suggests that, as is common in such situations,
one approximates it instead. When we move to more expres-
sive linear constraints, i.e., FO(<,+), there is another com-
pelling reason for looking for approximations: numbers µ(')
may not be rational. In fact, for proving #P-hardness of com-
puting µ(') we needed a large number of variables, but in the
linear case, irrational values appear already with very simple
constraints over two variables.
Proposition 3. Let '

a

(x, y) be (y  ax) ^ (x � 0), where
a 2 Q. Then µ('

a

) is irrational unless a 2 {0,±1}.

Proof sketch. We have µ('

a

) = arctan(a)/2⇡ + 1/4. As-
sume arctan(a) = m⇡

n

for m,n 2 N, i.e., µ('
a

) 2 Q. Using
Euler’s formula we compute

�
cos(

m⇡

n

) ± i sin(

m⇡

n

)

�2n
=

e

±2⇡mi
= 1. Therefore cos(

m⇡

n

) ± i sin(

m⇡

n

) are algebraic
integers, i.e., roots of a polynomial with integer coefficients
and leading coefficient 1. Using closure of algebraic integers
under + and · we see that 4 cos2(m⇡

n

) is an algebraic integer,
and by trigonometry it equals 4/(a2 + 1). Since a 2 Q and
algebraic integers in Q are integers [Marcus, 1977], it means
4/(a

2
+ 1) 2 Z, which implies a = 0 or a = ±1.

For approximations, the standard notions of approx-
imations are fully-polynomial randomized approximation
schemes, FPRAS [Motwani and Raghavan, 1995]. For a
problem of computing a function f , it is a randomized al-
gorithm that takes an input I of f and " > 0, and, in time
polynomial in the size of I and 1

"

, produces a random vari-
able A(I, ") satisfying:

• P
�
|A(I, ")�f(I)|  "·f(I)

�
� 3

4 (multiplicative error,
in which case we refer to an FPRAS for the problem); or

• P
�
|A(I, ") � f(I)|  "

�
� 3

4 (additive error, in which
case we refer to an AFPRAS for the problem).

The constant 3/4 can be replaced by any number in (1/2, 1).
From the results presented in Proposition 2, we get, under
the widely held complexity-theoretic assumption that RP is
different from NP:
Corollary 1. There is no FPRAS for computing µ(') even
for order constraints from FO(<), assuming RP 6= NP.

In general, FPRAS is viewed as a preferred type of approx-
imation scheme, since there are no a priori bounds on the val-
ues f(I). But in our case µ(') 2 [0, 1], and in such cases AF-
PRAS provide a good notion of approximation. We now show



that such approximations exist for FO(<,+). Note that ev-
ery formula over FO(<,+,�, 0, 1) can be effectively trans-
formed, using Fourier-Motzkin elimination, into a quantifier-
free formula; such a transformation is polynomial in the for-
mula and exponential in the number of variables (assuming a
fixed quantifier alternation depth) [Weispfenning, 1988].

We thus assume that our linear constraints are quantifier-
free formulae in disjunctive normal form with rational co-
efficients. This subclass of FO(<,+) will be denoted by
DNF(<,+). Its formulae express unions of systems of linear
equalities an inequalities. For the input representation, we as-
sume that a formula is represented as the set of its disjuncts.
In turn, each system of linear inequalities will be represented
as a pair of a matrix and a vector in the usual way. Note that
computing µ(') remains #P-hard for formulae DNF(<,+),
as follows from Theorem 4. Thus, the assumption does not
simplify the task of finding an approximation scheme but in-
stead allows us to focus on the intrinsic source of complexity
of the problem. Our main result then states:
Theorem 5. There is an AFPRAS for computing µ(') for
' 2 DNF(<,+).

In the rest of the section we explain how our AFPRAS
works. We first need to set the computational model for the
algorithm. For problems of a geometric nature, it is standard
to use the RAM model of computation. In it, all the basic
arithmetic operations are performed in constant time. As it
is customary, we will also assume that the machine can uni-
formly at random select a real number in the range [0, 1] in
constant time (see, e.g., [Bringmann and Friedrich, 2010]).

Intuitively, to compute the likelihood of a formula ' 2
DNF(<,+) we need to examine the asymptotic behavior of
its disjuncts. A system of linear inequalities in n variables
(i.e., an n-dimensional polyhedron) can be represented as the
Minkowski sum of two sets: the convex hull conv(E) of a
finite set E ⇢ Rn, and the conic hull cone(C) of a finite set
C ⇢ Rn. This is due to the Minkowski-Weyl Theorem (see,
e.g., [Solodovnikov, 1980]). Of these two sets, the only one
that matters for the likelihood of' 2 DNF(<,+) is cone(C).
This is due to the fact that, at the limit, the finite diameter of
conv(E) will be eventually marginalized. Using this observa-
tion, we can prove the following statement. In what follows,
'̃ denotes the formula obtained from ' 2 DNF(<,+) by re-
placing each disjunct '

i

⌘ (Ax̄  ¯

b) with its homogeneous
version '̃

i

⌘ (Ax̄  ¯

0).
Lemma 1. For ' 2 DNF(<,+) we have µ(') = µ('̃).

Proof idea. To obtain '̃
i

from '

i

, we shift each individual
hyperplane of '

i

. These shifts preserve the slope of the hy-
perplanes, and thus the angles defining cone(C).

In light of Lemma 1, to compute the likelihood of ' 2
DNF(<,+) we focus directly on '̃. This observation makes
the problem much easier, as the following lemma proves.
Lemma 2. For an n-ary formula ' 2 DNF(<,+), we have
µ(') = �(J'̃K \B

n

1 )/�(B
n

1 ).

Proof idea. For an homogeneous system, cone(C) is cen-
tered in the origin. The ratio �(J'̃K \B

n

r

)/�(B

n

r

), then, does
not depend on the value of r.

Using Lemma 2, to estimate the value of µ(') we can pro-
ceed as follows. Given any " > 0, our goal is to produce a
value A(', ") such that P(|A(', ") � µ(')|  ") � 3

4 . To
this end, we model A(', ") as a (scaled) binomial random
variable A

s

as follows. Let (X
i

)1is

be a sequence of in-
dependent and identically distributed Bernoulli random vari-
ables over the measure space (B

n

1 ,F(B

n

1 )), where F(B

n

1 ) is
the standard Lebesgue �-algebra over B

n

1 . More precisely,
we require that X

i

(v̄) = 1 if and only if '(v̄) is true. Defin-
ing A

s

= (

P
s

i=1 Xi

)/s, we can prove the following.
Lemma 3. Let ' 2 DNF(<,+) and " 2 (0, 1]. Then, for
s � "

�2 the following inequality holds:
P(|A

s

� µ('))|  ") � 3/4

Using Lemma 3, we can obtain an AFPRAS for µ(')

as follows. First, observe that under the assumption of the
RAM model we can generate uniform samples from the n-
dimensional unit ball in time polynomial w.r.t. n (see, e.g.,
[Blum et al., 2016]). To estimate the value of µ within an
additive error " then, we can sample s = d"�2e such points
and compute the ratio of these points falling inside J'K. Al-
gorithm 1 formalizes this intuition.

Algorithm 1 apx-mes

Input: n-ary ' 2 DNF(<,+) and " > 0

Output: ⇠ 2 R such that P(|⇠ � µ('))|  ") � 3/4

1: count := 0; s = d"�2e;
2: for i = 1, . . . , s do
3: sample a point from Bn

1 .
4: if '̃(p̄) is true then count := count+ 1;

5: end for
6: return

�
count

s

�

Lemma 4. Algorithm 1 runs in time polynomial in the size of
' and 1/".

Lemma 3 and Lemma 4 together prove that Algorithm 1 is
an AFPRAS for the computation of the likelihood of formulae
in DNF(<,+), thus concluding the proof of Theorem 5.

7 Conclusions
We provided a framework for estimating likelihoods of nu-
merical constraints defining unbounded sets in Rn, showed
when such estimates exist, and explained how to approximate
them for linear constraints. There are several extensions of
the framework we would like to pursue. One is the exten-
sion of the approximation scheme to polynomial constraints.
Another direction is related to application of these estimate
in different areas, such as program analysis, querying incom-
plete data, and temporal constraint networks, outlined in the
introduction. Finally we would like to consider constraints
over Zn. We expect that our results will help estimate the
likelihood of constraints over integers, since for many bodies
(e.g., balls), the number of integer lattice points can serve as
an approximation of the volume.
Acknowledgments Work partly supported by EPSRC grants
M025268 and N023056.



References
[Arora and Barak, 2009] Sanjeev Arora and Boaz Barak.

Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

[Belle et al., 2015] Vaishak Belle, Andrea Passerini, and
Guy Van den Broeck. Probabilistic inference in hybrid
domains by weighted model integration. In IJCAI, pages
2770–2776, 2015.

[Benedikt and Libkin, 2002] Michael Benedikt and Leonid
Libkin. Aggregate operators in constraint query languages.
J. Comput. Syst. Sci., 64(3):628–654, 2002.

[Blum et al., 2016] Avrim Blum, John Hopcroft, and Ravin-
dran Kannan. Foundations of data science. Vorabversion
eines Lehrbuchs, 2016.

[Bringmann and Friedrich, 2010] Karl Bringmann and To-
bias Friedrich. Approximating the volume of unions and
intersections of high-dimensional geometric objects. Com-
put. Geom., 43(6-7):601–610, 2010.

[Caviness and Johnson, 1998] Bob Caviness and Jeremy
Johnson. Quantifier Elimination and Cylindrical Alge-
braic Decomposition. Springer, 1998.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan
Darwiche. On probabilistic inference by weighted model
counting. Artif. Intell., 172(6-7):772–799, 2008.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea
Pearl. Temporal constraint networks. Artif. Intell., 49(1-
3):61–95, 1991.

[Gulwani et al., 2008] Sumit Gulwani, Saurabh Srivastava,
and Ramarathnam Venkatesan. Program analysis as con-
straint solving. In PLDI, pages 281–292. ACM, 2008.

[Karpinski and Macintyre, 1997] Marek Karpinski and An-
gus Macintyre. Approximating the volume of general Pfaf-
fian bodies. In Structures in Logic and Computer Science,
A Selection of Essays in Honor of Andrzej Ehrenfeucht,
pages 162–173, 1997.

[Koiran, 1995] Pascal Koiran. Approximating the volume of
definable sets. In FOCS, pages 134–141, 1995.

[Libkin, 2018] Leonid Libkin. Certain answers meet zero-
one laws. In PODS, pages 195–207, 2018.

[Ma et al., 2009] Feifei Ma, Sheng Liu, and Jian Zhang. Vol-
ume computation for boolean combination of linear arith-
metic constraints. In CADE, pages 453–468, 2009.

[Macintyre and Wilkie, 1996] Angus Macintyre and Alex
Wilkie. On the decidability of the real exponential field.
In Kreiseliana, pages 441–467. A. K. Peters, 1996.

[Marcus, 1977] Daniel Marcus. Number Fields. Springer,
1977.

[Miller, 2011] Chris Miller. Expansions of o-minimal struc-
tures on the real field by trajectories of linear vector
fields. Proceedings of the American Mathematical Soci-
ety, 139(1):319–330, 2011.

[Motwani and Raghavan, 1995] Rajeev Motwani and Prab-
hakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[Solodovnikov, 1980] Aleksandr Solodovnikov. Systems of
Linear Inequalities. University of Chicago Press, 1980.

[Spencer, 2010] Joel Spencer. The Strange Logic of Random
Graphs. Springer, 2010.

[Van den Dries, 1998] Lou Van den Dries. Tame Topology
and o-minimal Structures, volume 248. Cambridge uni-
versity press, 1998.

[Weispfenning, 1988] Volker Weispfenning. The complexity
of linear problems in fields. J. Symb. Comput., 5(1/2):3–
27, 1988.

[Wilkie, 1996] Alex J Wilkie. Model completeness results
for expansions of the ordered field of real numbers by
restricted Pfaffian functions and the exponential func-
tion. Journal of the American Mathematical Society,
9(4):1051–1094, 1996.


	Introduction
	Preliminaries
	Defining the likelihood
	Existence of the likelihood
	Order constraints
	Linear constraints
	Conclusions

