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1 Motivation

The notion of a walk around a graph is both natural and useful. The walker
may follow any available edge, with nodes and edges being revisited at any
stage. However, in some settings, walks that backtrack—leave a node and then
return to it on the next step—are best avoided. The concept of restricting
attention to non-backtracking walks has arisen, essentially independently, in
a wide range of seemingly unrelated fields, including spectral graph theory
[2,13,14], number theory [31], discrete mathematics [4,29], quantum chaos
[27], random matrix theory [28], stochastic analysis [1], applied linear algebra
[30] and computer science [25,33]. Non-backtracking has more recently been
considered in the context of matrix computation, where it has been shown
to form the basis of effective algorithms in network science for community
detection, centrality and alignment, [3,10,16,18,20,21,23,32]. We note that
non-backtracking walks have typically been studied on undirected networks,
but the definition continues to make sense in the directed case.

For network science applications, non-backtracking can be imposed at very
little extra cost and offers quantifiable benefits: centrality measures can avoid
localization [3,10,20] and discover key influencers [21,32], and community
detection algorithms perform optimally on the stochastic block model [18].
In terms of classical random walks on a graph, it is also known that non-
backtracking enhances mixing [1].

Given that the PageRank algorithm [22] computes the steady state of a par-
ticular (teleporting) random walk, it is therefore natural to ask whether there
is any scope for designing and analysing a non-backtracking analog. We empha-
size that the PageRank philosophy has been extended well beyond the WWW
into a diverse range of areas including bioinformatics, bibliometrics, business,
chemistry, neuroscience, social media, and sports [9], where non-backtracking
may be a natural requirement. In particular, PageRank-like measures have
been extensively used in transport modelling; see, for example, [6,26]. In this
setting it is reasonable to assume that a vehicle will not immediately head
back to the same road junction, train station or bus stop.

In this work, we therefore consider the following general questions:

– What is an appropriate non-backtracking version of PageRank?
– Can the imposition of non-backtracking lead to a different node ranking?
– Is there an efficient way to implement such an algorithm?

At the core of our analysis is the Hashimoto matrix, which arises when we
work on the dual graph, or line graph. It is interesting to note a connection with
the space syntax approach in the analysis of road networks, where edges in a
graph represent crossroads and nodes are the streets [7]. This representation is
the dual of the more intuitive setting where edges represent roads and nodes
are intersections; however, in [26] the authors argue that “the dual graphs
carry more information than the corresponding primal graph.”

The material is organized as follows. In Section 2 we describe background
material on PageRank. Section 3 gives a transposition of standard PageRank



Non-backtracking PageRank 3

to the dual space and verifies the equivalence of the two formulations. Sec-
tion 4 defines and analyzes a new non-backtracking analog. In particular, we
show that, even for undirected graphs, non-backtracking generally leads to a
different ranking of the nodes. In Section 5 we derive a computable description
of the new measure and show how to exploit the structure and sparsity of the
Hashimoto matrix. In Section 6 we comment on some numerical experiments
performed on road networks. Section 7 gives some conclusions.

2 Background

Let A = (aij) ∈ R
n×n be the adjacency matrix of an unweighted, weakly

connected, directed graph with n nodes and m̃ directed edges. We further
assume that there are no multiple edges linking nodes in the network. Under
these assumptions, aij = 1 if there is an edge from node i to node j, otherwise
aij = 0. A node that has no outgoing links is called a dangling node. We use
the common approach of removing dangling nodes by modifying the adjacency
matrix; all-zeros rows in A are replaced by all-ones rows [15]. This corresponds
to adding n edges from each dangling node to all the nodes in the network,
itself included.

Let G = (V,E) be the graph obtained once these edges have been added
to the original network in order to remove dangling nodes. In the remainder of
the paper, we shall work on this network. Let W = A+χ1T be its adjacency
matrix, where χ is the indicator vector for the set containing the dangling
nodes in the original digraph. Here, 1 ∈ R

n denotes the vector of all ones, and
we will sometimes write 1n when its dimension may be in doubt. We let k
be the number of dangling nodes in the original network, so the new graph G
contains m := m̃+ kn edges among n nodes.

Let d = (di) = W1 be the vector of out-degrees for the nodes in the graph
represented by W , i.e., let di be the number of edges leaving node i in G. We
will denote by D the diagonal matrix whose diagonal entries are Dii = di for
all i. Since all the nodes have positive out-degree, D is invertible.

We assume that the edges have been labelled in some arbitrary order
{e}me=1. We also use the notation i → j to denote an edge from node i to
node j and i → ⋆ to denote an edge that starts from node i. We then define
the matrices L,R ∈ R

m×n as follows:

Lei =

{
1 if e has the form i → ⋆
0 otherwise

and

Rej =

{
1 if e has the form ⋆ → j
0 otherwise.

In words Lei records whether edge e starts at node i, and Rej records whether
edge e ends at node j. The matrices L and R will be referred to as the source
matrix and target matrix, respectively. It is readily seen that W = LTR and
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D = LTL. Moreover, the matrix RTR is diagonal with the in-degree of the
nodes as its diagonal entries.

Remark 1 If W = A and the original network contained no dangling nodes,
then D would still be invertible, but RTR might not be invertible as the
network may contain source nodes ; that is, nodes with no incoming links. On
the other hand, if the original graph contained at least one dangling node,
so that W 6= A, then its removal would also remove any source node, thus
making RTR invertible as well.

As discussed in the original work [22], the PageRank algorithm may be
motivated from two different perspectives: (a) the long-term behavior of a web
surfer who randomly follows outgoing links and occasionally teleports (jumps)
to a random page, and (b) the outcome of an iterative voting procedure where
a page votes for pages that it follows, with more important pages given more
influence.

From the random surfer viewpoint, the PageRank vector x may be defined
as the stationary distribution of a Markov chain that is constructed from a
random walk on the graph plus teleporting:

PTx = x, (1)

where P = αD−1W + (1 − α)1vT is row stochastic and ‖x‖1 = 1, [9]. Here,
WTD−1 is column-stochastic, α ∈ (0, 1), and v ≥ 0 is such that ‖v‖1 = 1.
The matrix F = 1vT is sometimes referred to as the teleportation matrix and
v the teleportation distribution vector [9] or personalization vector [19]. The
scalar α is known as the teleportation parameter [5,9] or amplification factor
[34].

Based on the voting procedure, we may equivalently define the PageRank
vector as the normalized version, x = x̃/‖x̃‖1, of the non-negative solution to
the following linear system:

(I − αWTD−1)x̃ = (1− α)v. (2)

To see that these two formulations of the PageRank problem are equivalent,
starting from (1) we have

x = PTx = αWTD−1x+ (1− α)v(1Tx) (3)

and (2) follows by rearranging the terms and noting (1Tx) = 1. In our work,
the random walk interpretation will be used as the basis for a non-backtracking
extension.

In the following, for simplicity, we use the original uniform teleporting
distribution vector v = 1

n
1, so that (1) rewrites as

(αWTD−1 +
(1− α)

n
11T )x = x, (4)

and (2) rewrites as

(I − αWTD−1)x̃ =
(1− α)

n
1. (5)
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Let us briefly recall here that if we let DA be the diagonal matrix whose
diagonal entries are (DA)ii = (A1)i and if we use the symbol † to denote the
Moore-Penrose pseudo-inverse of a matrix [12], then the solution to the linear
system

(I − αATD†
A)x =

(1− α)

n
1 (6)

is strictly related to the solution of the PageRank problem, i.e., to the solution
of (5). Indeed, let us first recall that, since the matrix ATD†

A ≥ 0 is column-

substochastic, i.e., it is such that 1TATD†
A ≤ 1T , the problem of finding the

non-negative solution to the linear system (6) is usually referred to as the
pseudo-PageRank problem. Moreover, the following result holds.

Theorem 1 [8, Theorem 4.2] The PageRank vector x solution to (5) is ob-
tained by normalizing the solution x to the pseudo-PageRank problem (6):

x =
x

‖x‖1

This theorem shows that, in order to compute the PageRank vector x one can
solve the pseudo-PageRank problem and then normalize the solution. There-
fore, underlying every pseudo-PageRank system there is a true PageRank prob-
lem.

In the following section we show that PageRank can be reformulated in
the dual space, where edges in G play the role of nodes in the new network.
This reformulation then leads to a natural non-backtracking extension.

3 Moving to the dual space

Let us consider the “line graph” associated with the network represented by
W . We will us a calligraphic font to denote matrices associated with the line
graph. In the line graph, nodes are edges in the original network G and there is
a connection between two edges if the endpoint of the first is the source point
of the second. Let W ∈ R

m×m be the adjacency matrix of the line graph, i.e.,
the matrix whose entries are:

(W)i→j,k→l = δjk,

where δjk is the Kronecker delta. It is easily proved that W = RLT . Let us
define the diagonal matrix D whose diagonal entries are the entries of the
vector W1. This stores the “out-degree” of each edge in the network, i.e., the
number of edges leading out of the current edge. Therefore, an edge i → j,
has out-degree in the line graph coinciding with the number of edges leaving
node j, i.e., the out-degree dj of node j. We are assuming that the network
does not contain dangling nodes, so W1 > 0 and D is invertible.

Our immediate goal is to define a PageRank vector in the dual space,
i.e., the edge space, as the solution of a linear system involving W that, once
projected, will allow us to retrieve the PageRank vector x defined earlier in
the primal space. This forms the basis of the non-backtracking version that
we develop in Section 4.
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3.1 Formulation of edge PageRank

We will define the transition matrix for edge PageRank in terms of the matrices
W, D and an appropriately defined teleportation matrix F . The new transition
matrix will then have the form:

P = αD−1W + (1− α)F ,

where we must specify the form of F . Some care is needed in the construction of
F to ensure that the original PageRank vector can be recovered—the essential
point is that jumping to an edge at random does not correspond to jumping
to a node at random, when the graph is not regular. To proceed, we note that
each edge in the original graph may be mapped to the node that it points to.
Let N be the number of nodes in the network that have positive in-degree,
i.e., the number of nodes in the network that are not source nodes. We then
define our teleportation matrix as

F =
1

N
1πT

where π = R(RTR)†1 is the vector that associates to each edge the inverse of
the in-degree of its endpoint. Here the symbol † denotes the pseudo-inverse of
the diagonal matrix RTR; indeed, as pointed out in Remark 1 if the network
contains a source, i.e., a node with zero in-degree, then the matrix RTR is not
invertible. It is worth stressing that, however, π > 0 even when the network
contains a source, thanks to the premultiplication by R that is used to assign
to each edge the inverse of the in-degree of its endpoint (that is thus positive,
since there is at least the particular edge that points to it). Since ‖π‖1 = N ,
it holds that F1 = 1. Moreover, we know that D−1W1 = 1. Therefore, the
invariant measure x̂ ≥ 0 such that ‖x̂‖1 = 1 satisfies

PT x̂ = x̂.

After some algebraic manipulation, the above equation rewrites as

(I − αWTD−1)x̂ = (1− α)
π

‖π‖1
. (7)

These two expressions translate PageRank from the node space to its dual. We
have not yet shown that these expressions are equivalent to the ones described
in Section 2. In order to do so, we first need to describe how to project x̂ back
to the node space. This can be done by pre-multiplying the vector x̂ by RT .
The projected non-negative vector z := RT x̂ can be easily seen to have unit
1-norm.

Our goal is now to show that z = x, thus deriving equivalence between the
new formulations of PageRank and (4)–(5). Let us first prove two preliminary
results.

Lemma 1 In the above notation, D−1RD = R.
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Proof Entrywise it holds

(D−1RD)ej =

{ 1
dj
dj if e = ⋆ → j

0 otherwise
= Rej .

Lemma 2 In the above notation, LTD−1R = WD−1.

Proof Left-multiplying by LT the relation in Lemma 1 and using W = LTR
it follows that LTD−1RD = W , thus the conclusion, since D is invertible.

Theorem 2 In the above notation, if a network does not contain a source
node, then for all α ∈ (0, 1) we have

(I − αWTD−1)−1 = RT (I − αWTD−1)−1R(RTR)−1.

Proof The result can be proved by using the facts that WT = LRT and
WT = RTL, and appealing to Lemmas 1 and 2:

(I − αWTD−1)−1

= I + αLRTD−1 + α2L(RTD−1L)RTD−1 + α3L(RTD−1L)2RTD−1 + · · ·

= I + αLRTD−1 + α2L(D−1WT )RTD−1 + α3L(D−1WT )2RTD−1 + · · ·

= I + αL
[
I + αD−1WT + α2(D−1WT )2 + · · ·

]
RTD−1,

where the first equality holds because ρ(WTD−1) = 1 > α, and thus

(I − αWTD−1)−1 =
∞∑

k=0

αk(WTD−1)k.

Therefore,

RT (I − αWTD−1)−1R(RTR)−1

= I + αRTL
[
I + αD−1WT + α2(D−1WT )2 + · · ·

]
RTD−1R(RTR)−1

= I +
[
αWTD−1 + α2(WTD−1)2 + · · ·

]
RTR(RTR)−1

and hence the conclusion.

The following corollary is then immediate.

Corollary 1 When the network does not contain a source node, the edge
PageRank vector in (7) projects to the original PageRank vector in (3); that
is, RT x̂ = x.

Proof Using Theorem 2 and π = R(RTR)−11 we have

x =
(1− α)

n
(I − αWTD−1)−11 =

(1− α)

‖π‖1
RT (I − αWTD−1)−1

π = RT x̂,

where we have used the fact that N = n and thus ‖π‖1 = n.
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We now describe in detail what happens when the network contains s =
n−N ≥ 1 source nodes. We will show that the edge and node based systems
are not equivalent. It is worth pointing out that we are tacitly assuming that
the original network did not contain dangling nodes. If this was not the case,
then the removal of the dangling nodes would have also removed the source
nodes; see Remark 1.

The adjacency matrix of the network containing s source nodes, which we
assume to be nodes 1, . . . , s without loss of generality, can be described as

W = A =




0s,s S

0N,s W̃


 ,

where S ∈ R
s×N describes the edges leaving source nodes to target non-source

nodes in the network and W̃ is the adjacency matrix of the graph obtained
by removing nodes 1, . . . , s and all the edges leaving them. Moreover, it holds
that

D =

[
DS

D̃

]
,

where the diagonal matrix DS is such that (DS)ii = (S1)i is the out-degree

of the ith source node, for i = 1, . . . , s and D̃ is the diagonal matrix such that
(D̃)ii = (W̃1)i for i = 1, 2, . . . , N . The diagonal matrix RTR of in-degrees is
no longer invertible, since nodes 1, . . . , s have no incoming links and thus zero
in-degree. An easy computation shows that

(I − αWTD−1)−1 =




Is 0s,N

Y (I − αW̃T D̃−1)−1




with Y = α(I − αW̃T D̃−1)−1STD−1
S . It thus follows that

x = β (I − αWTD−1)−11 = β

[
1s

⋆

]
,

where β = (1−α)
n

.
On the other hand, it is easily checked following a reasoning similar to the

one outlined in the proof of Theorem 2 that if we use the matrix defined in
the edge space and then project, we obtain:

z = β RT (I − αWTD−1)−1R(RTR)†1 = β

[
0s

⋆

]
,

and therefore z 6= x and we cannot extend the statement in Theorem 2 by
simply replacing (RTR)−1 with (RTR)† if the network contains at least one
source node.
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In order to overcome this minor issue, we use a slightly less intuitive ap-
proach and, instead of mapping each edge to its endpoint, we map it to its
start point. With this convention, the matrix D = LTL of out-degrees is al-
ways invertible, even in the pathological case of a network containing one or
more source nodes but no dangling nodes. Using as personalization vector

υ = L(LTL)−11 = LD−11

which now has ‖υ‖1 = n, and projecting with LT instead of RT , Theorem 2
rewrites as follows.

Theorem 3 In the above notation, for all α ∈ (0, 1) we have

(I − αWTD−1)−1 = LT (I − αWTD−1)−1LD−1.

Proof The result can be proved using the fact that WT = LRT , the fact that
ρ(WTD−1) = 1 > α and Lemma 2:

LT (I − αWTD−1)−1LD−1

= LT
[
I + αWTD−1 + α2WTD−1WTD−1 + · · ·

]
LD−1

= I + LT
[
αL(RTD−1L) + α2L(RTD−1L)2 + · · ·

]
D−1

= I + LT
[
αLD−1WT + α2LD−1WTD−1WT + · · ·

]
D−1

= I + αWTD−1 + α2WTD−1WTD−1 + · · ·

= (I − αWTD−1)−1.

We then have the following general corollary.

Corollary 2 After the network has been preprocessed to eliminate dangling
nodes (if any), the projected solution via L to PageRank in the edge space

(I − αWTD−1)x̂ =
(1− α)

n
LD−11.

is equivalent to standard PageRank described in (5), i.e., LT x̂ = x.

Proof A proof follows immediately from Theorem 3.

4 The non-backtracking framework

In this Section we want to exploit the definition of PageRank in the dual space
to describe a PageRank-like system in the non-backtracking framework. Recall
that a walk is said to be backtracking if it contains at least one instance of
i → j → i, where i, j are two nodes in the network connected by reciprocated
edges. Let B ∈ R

m×m be the matrix whose entries are

Bi→j,k→ℓ = δjk(1− δiℓ).
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This matrix has a 1 in position (i → j, k → ℓ) if the two edges are consecutive
(i.e., if j = k) but they do not form a backtracking walk (i.e., if i 6= ℓ). We
will refer to this matrix as the non-backtracking edge-matrix or the Hashimoto
matrix [11]. If we let ◦ represent the Schur product, i.e., the entry-wise product,
between two matrices, then the Hashimoto matrix can be described as B =
W −W ◦WT . Even though this matrix is built after all dangling nodes have
been removed from the network, it is still possible for it to have zero rows.
This happens when some of the nodes have no outgoing links, apart from
exactly one reciprocated edge. Let us assume that there is one node of this
type in the network, node i, connected to node j through a reciprocated edge.
If the random walker reaches node i using the edge j → i, then it will not be
able to leave this node without backtracking; therefore, the row corresponding
to the edge j → i only contains zeros. We will refer to edges of this type
as dangling edges. Thanks to Theorem 1 we do not need to correct for the
presence of these edges in the Hashimoto matrix in order to compute the non-
backtracking version of PageRank in the edge space. Indeed, a rescaled solution
to the pseudo-PageRank problem formulated with B will be the solution to the
PageRank problem, where the zero rows in the matrix B have been replaced
with the vector υ

T = (LD−11)T . We note that this correction has the effect
of allowing backtracking in this very special circumstance.

In the following we will assume that there are no dangling edges in the
graph; the remainder of this section can be adapted to the case where such
edges existed.

To finalize the description of the transition matrix that will allow us to
compute the non-backtracking version of PageRank, we need to describe the
teleportation matrix. Here we must make a choice: should we allow backtrack-
ing during a teleportation step? In this work we allow such behavior on the
basis that the original PageRank philosophy is to make teleportation inde-
pendent of the network topology. (Further, we note that teleportation in the
original PageRank algorithm allows a step of the form i → i even when the
graph has no loops, violating the classical definition of a walk. Hence, telepor-
tation can be regarded as a separate process, independent of the underlying
random walk.) We also note that backtracking due to teleportation will be
an extremely low probability event in large networks, which are the ones of
interest in this context. We therefore use

F =
1

n
1υT

with υ = LD−11. Recall that ‖υ‖1 = n.

We can now define for 0 < α < 1 the matrix P = αD−1B + (1−α)
n

1υT ,
where now D is the diagonal matrix whose diagonal entries are the entries of
the vector B1. Since we assume that there are no dangling edges, B1 > 0 and
we have that P1 = 1; therefore, the PageRank vector in the dual space will be
the unit 1-norm, non-negative vector ŷ that solves the following linear system

(I − αBTD−1)ŷ =
(1− α)

n
υ. (8)
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In order to then derive a nodal measure, we need to project ŷ onto the
node space; following Theorem 3, we use the matrix LT :

y := LT ŷ. (9)

This vector will be non-negative and will have unit 1-norm, since L1 = 1 and
‖ŷ‖1 = 1. Therefore, we can define the non-backtracking PageRank-like vector
as follows.

Definition 1 Let B be the Hashimoto matrix of a directed graph with no
dangling nodes or dangling edges. Let D be the diagonal matrix whose diagonal
entries are the entries of the vector B1, and let L be the source matrix of the
graph. For all 0 < α < 1 we define the non-backtracking PageRank-like vector
as the non-negative, unit 1-norm vector y := LT ŷ, where ŷ ≥ 0 with ‖ŷ‖1 = 1
solves the the linear system (8), for υ = L(LTL)−11.

Before commenting on the features of this new measure, let us point out
that the new PageRank problem (8) is equivalent to the eigenproblem

PT ŷ = ŷ,

where P = αD−1B + (1−α)
n

1υT and ‖ŷ‖1 = 1, in line with the equivalent
formulations (5) and (4) for standard PageRank.

Definition 1 allows us to introduce the non-backtracking aspect in PageR-
ank. As we will see below, there are situations in which the newly introduced
measure and standard PageRank return vectors that are the same or induce
the same ranking. However, in applications where backtracking is best avoided,
the two measures may differ, as we shall see in Section 6.

Let us now briefly discuss the case where the two measures behave simi-
larly. It has been proved in [17] that for an undirected graph with nodes all
having at least degree two (so that there are no dangling edges), the steady
state of P = D−1W coincides with that of P = D−1B, once the latter has
been projected in the node space via LT : so standard PageRank and the new
non-backtracking PageRank-like measures are the same in the absence of tele-
portation. In other words, in this case where every edge is reciprocated and
no teleportation is allowed, this result tells us that the long-term frequency
of visits to a particular node during a random walk does not change when
non-backtracking is imposed—the nodes benefit from non-backtracking pre-
cisely in proportion to their original PageRank score. Intuitively, nodes given
higher PageRank scores are accessible through many different traversals, and
hence are less reliant on backtracking walks than nodes given lower PageRank
scores. We now show that this result carries over to the case where we allow
teleporting, for a special class of graphs.

Theorem 4 Let W be the adjacency matrix of an undirected k-regular graph,
with k ≥ 2. For any α ∈ [0, 1], let us define the matrices P = αD−1B +
(1−α)

n
1υT and P = αD−1W + (1−α)

n
11T , where D is the diagonal matrix
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whose diagonal entries are the entries of the vector B1, and υ = LD−11.
Then, if we let PT ŷ = ŷ and PTx = x, with ‖x‖1 = ‖ŷ‖1 = 1, it holds that

LT ŷ = x

where L is the source matrix associated with W .

Before proving the result, let us recall that in the case of undirected net-
works every undirected edge is considered as a pair of directed edges when
building the matrices W and B.

Proof When α = 1 the result follows from [17]. If α = 0, then from the

description of P and P it follows that x = (1−α)
n

1, and ŷ = (1−α)
n

υ. The
conclusion then follows from the definition of υ and the fact that D = LTL.

Let us now consider the case of α ∈ (0, 1). The eigenproblems PTx = x
and PT ŷ = ŷ can be reformulated as two linear systems:

(I − αWD−1)x =
(1− α)

n
1

and

(I − αBTD−1)ŷ =
(1− α)

n
υ,

where we have exploited the fact that WT = W . Let us work on these indi-
vidually. Concerning the first, we know that, since the graph is k-regular with
k ≥ 2, then W1 = k1 and consequently D−1 = k−1I. Therefore, it is easily
checked that

x =
(1− α)

n

∞∑

r=0

αr

kr
W r1 = n−11.

Concerning the second linear system, we have that B1 = (k− 1)1 and D−1 =
(k−1)−1I, since for every edge one can proceed using all the k edges adjacent
to it, except for its reciprocal. In addition, we also have that BT1 = (k − 1)1
due to the fact that the graph is k-regular. From the description of D above
and the fact that L1 = 1, we have that υ = k−11. Therefore,

ŷ =
(1− α)

kn

∞∑

r=0

αr

(k − 1)r
(BT )r1 = (kn)−11.

The conclusion then follows from the fact that each node is the source of
exactly k edges, and thus LT ŷ = n−11 = x.

We now show with a small example that without the hypothesis of regular-
ity the two steady states are no longer related in general when α ∈ (0, 1). For
α = 0, 1 the conclusion still follows from an easy computation and from [17].
Let us consider the graph represented in Figure 1, where we have represented
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Fig. 1 Small example of undirected network for which LT ŷ 6= x

each undirected edge as a pair of directed edges pointing in opposite directions.
With this ordering of nodes and vertices, the source matrix reads

LT =




1 0 1 1 0
1 1 0 0 0
1 1 0 0 1
1 1 0 0 0


 .

From the symmetries in the graph it follows that, when working on the nodes,
the entries of the PageRank vector x = (xi) are such that x1 = x3 and x2 = x4;
exploiting those symmetries when working on the edges, it follows that the
non-backtracking PageRank-like vector ŷ = (ŷi) will have ŷ1 = ŷ3 = ŷ6 = ŷ8,
ŷ2 = ŷ4 = ŷ5 = ŷ7 and ŷ9 = ŷ10. Using these relationships, the linear systems
of interest may be solved to give

x1 =
3(1 + α)

4(3 + 2α)
x2 =

3 + α

4(3 + 2α)
,

and

ŷ1 =
α2 + 2α+ 3

12(α2 + 2α+ 2)
, ŷ2 =

α2 + 3α+ 2

12(α2 + 2α+ 2)
,

ŷ9 =
α2 + α+ 1

6(α2 + 2α+ 2)
.

The entries of y := LT ŷ are then

y1 = y3 =
2α2 + 4α+ 3

6(α2 + 2α+ 2)

y2 = y4 =
α2 + 2α+ 3

6(α2 + 2α+ 2)
.

It is easily verified that y1 = x1 and y2 = x2 if and only if α = 0, 1; hence
the result in Theorem 4 does not hold for α ∈ (0, 1). We stress, however, that
the ranking is preserved: nodes 1 and 3 rank first, while 2 and 4 rank second.
The next example shows that this is not a universal behavior of the newly
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1 2

4 35

6

Fig. 2 Small example of network for which the rankings induced by x and y are different
for all α ∈ (0, 1].

introduced measure, as we will also see experimentally in Section 6. Let us
consider the network with n nodes whose adjacency matrix is

W =




0 1 1
1 0 1
0 1 0 1

0 1
. . .

. . .

. . . 1
1 0




.

In Figure 2 we illustrate the case n = 6. It can be proved analytically that when
there is no teleporting and α = 1, the standard PageRank vector x = (xi) is
such that x1 = x2 = x3 > x4 = x5 · · · = xn. This can be also be argued from
first principles by considering the long-time frequency with which nodes are
visited. After node 4 has been reached, a walk always continues with nodes 5,
6, . . . , n, which explains why x4 = x5 = · · · = xn. A visit to node 1 is equally
likely to be followed by a visit to nodes 2 or 3. A visit to node 2 is equally likely
to be followed by a visit to nodes 1 or 3. A visit to node 3 is equally likely to be
followed by a visit to node 2 or (after passing through 4, 5, . . . , n) node 1. Hence
x1 = x2 = x3, and this value exceeds the other frequencies. On the other hand,
the new measure is such that y1 = y3 > y2 = y4 = y5 = · · · = yn. Here, in the
absence of backtracking the same argument explains why y4 = y5 = · · · = yn.
The key difference now is that a visit to nodes 1 or 3 can no longer be followed
by a visit to node 2 if node 2 was used on the previous step. So, in the long
term, although node 2 receives more visits than nodes 4, 5, . . . , n it loses out
to nodes 1 and 3. Therefore the rankings derived from the two measures are
different. The same conclusion holds when we take teleportation into account;
in this situation similar arguments show that x1 > x2 = x3 > x4 > · · · > xn

and y1 > y3 > y2 > y4 > y5 > · · · > yn.

Before moving on to the numerical tests on real-world networks, we discuss
in the next section how to implement the most expensive operation performed
by an iterative solver when solving (8): matrix-vector multiplications involving
BT .
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5 On the computation of BTv

The Hashimoto matrix B built from a directed network may be very large,
especially if the original graph was large to begin with and contained several
dangling nodes. Indeed, to remove such nodes one needs to add n edges to the
network for each dangling node. While performing this correction to the graph
in the node space corresponds to a low rank modification of the adjacency ma-
trix A, it corresponds to adding n rows and columns to the non-backtracking
edge-matrix for each of the dangling nodes originally present in the digraph.

In the following we describe how to label the edges in the network in order
to highlight the structure and sparsity of B and exploit such features in the
computations. The notation adopted will be as follows:

– n is the total number of nodes in the digraph;
– k is the number of dangling nodes;
– m̃ is the number of edges before the correction of the dangling nodes, i.e.,

the number of edges in the graph associated with A;
– K ≤ m̃ is the number of edges in the graph represented by A that point

to the dangling nodes.

We will assume that the non-dangling nodes are labelled as {1, 2, . . . , n − k}
and the remaining k nodes {n − k + 1, . . . , n} are the dangling nodes. Let
us further assume that the m̃ − K edges that do not point to the dangling
nodes in the graph are labelled as {1, 2, . . . , m̃−K} so that the remaining K
edges {m̃−K+1, . . . , m̃} are those pointing to the dangling nodes. With this
labelling, the matrix A will have the following structure:

A =

[
A11 A12

0k,n−k 0k,k

]

where A11 ∈ R
(n−k)×(n−k) is the adjacency matrix of the graph obtained by re-

moving the dangling nodes and the edges pointing to them and A12 ∈ R
(n−k)×k

describes the edges pointing to the dangling nodes from the non-dangling nodes
in the network. We then have that the source and target matrices of A, that
we will denote by L(A) and R(A), respectively, have the following structure:

L(A) =

[
L1 0m̃−K,k

L2 0K,k

]
∈ R

m̃×n

and

R(A) =

[
R1 0m̃−K,k

0K,n−k R2

]
∈ R

m̃×n,

where L1, R1 ∈ R
(m̃−K)×(n−k), L2 ∈ R

K×(n−k), and R2 ∈ R
K×k.

After the correction of the dangling nodes, the adjacency matrix associated
with the new graph G will be W = A + χ1T with χ =

∑n
i=n−k+1 ei, where
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ei ∈ R
n is the ith vector of the standard basis of Rn. The source and target

matrices associated with W are

L = L(W ) =




L(A)

1n ⊗∆T


 and R = R(W ) =




R(A)

In ⊗ 1k


 ,

where

∆ = [en−k+1| · · · |en] =



0n−k,k

Ik


 ∈ R

n×k.

With this ordering of the nodes and edges, the edge matrix W = RLT has
the form

W =




R1L
T
1 R1L

T
2 0 0

0 0 1T
n−k ⊗R2 1T

k ⊗R2

LT
1 ⊗ 1k LT

2 ⊗ 1k 0 0

0 0 1T
n−k ⊗ Ik ⊗ 1k 1T

k ⊗ Ik ⊗ 1k




and thus the matrix BT involved in the computations is

BT =




L1R
T
1 − S1 0 L1 ⊗ 1T

k 0

L1R
T
2 0 (L2 ⊗ 1T

k )− S2 0

0 (1n−k ⊗RT
2 )− ST

2 0 1T
n−k ⊗ Ik ⊗ 1k

0 1k ⊗RT
2 0 (1T

k ⊗ Ik ⊗ 1k)− S4


 ,

where the matrices S1, S2, S4, which effect the removal of W ◦WT from W =
B +W ◦WT , have the form

S1 = (L1R
T
1 ) ◦ (L1R

T
1 )

T ,

S2 = (L2 ⊗ 1T
k ) ◦ (1

T
n−k ⊗R2),

S4 = (1T
k ⊗ Ik ⊗ 1k) ◦ (1

T
k ⊗ Ik ⊗ 1k)

T .

We note that S1 and S4 are square and symmetric, whilst S2 is rectangular, in
general. All three matrices contain at most one element equal to one in each
row. We show below that, because they are highly structured, we do not need
to explicitly form the matrices S2 and S4 in order to compute their action on
a vector.

Let us describe the matrices S2 ∈ R
K×k(n−k) and S4 ∈ R

k2×k2

in more
detail. From the structure of (L2 ⊗ 1T

k ) and (1T
n−k ⊗ R2) it can be deduced

that the ones in the matrix S2 are found in position (e, (i − 1)k + j), where
e ∈ {m̃ − K + 1, . . . , m̃} is the label of the edge i → n − k + j that points
from a certain node i ∈ {1, 2, . . . , n − k} to a dangling node (n − k + j) for
j ∈ {1, 2, . . . , k}. Similarly, the matrix S4 = (1T

k ⊗ Ik⊗1k)◦ (1k⊗ Ik⊗1T
k ) has

a one in position ((i− 1)k+ j, (j − 1)k+ i) for all i, j = 1, 2, . . . , k. Therefore,
pre-multiplying a vector by these matrices corresponds to accessing certain
entries of the vector.
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In order to compute the non-backtracking PageRank vector, we can either
solve a sparse linear system or use the power method to obtain the non-
trivial eigenvector associated with the eigenvalue 1. In either case, we need to
implement a matrix-vector product involving BT and a rescaled vector v :=
D†v. The rescaling can be performed at each iteration once the column sums
of BT have been computed. Recall that we do not need to remove zero rows
from B, equivalently, columns from BT as it is well known that the solution to
the pseudo-PageRank problem (solve while retaining the zero columns in BT )
only differ from the solution to the PageRank problem (solve after “correcting”
the zero columns) by a positive multiplicative constant; see Theorem 1. Let
v = D†v = [qT , rT , sT , tT ]T ≥ 0 be a non-zero vector with q ∈ R

m̃−K ,

r ∈ R
K , s ∈ R

k(n−k), and t ∈ R
k2

. Then, at each step, we compute

BTv =




L1R
T
1 q− S1q+ (L1 ⊗ 1T

k )s

L2R
T
1 q+ (L2 ⊗ 1T

k )s− S2s

(1n−k ⊗RT
2 )r− ST

2 r+ (1n−k ⊗ Ik ⊗ 1T
k )t

(1k ⊗RT
2 )r+ (1k ⊗ Ik ⊗ 1T

k )t− S4t




=




L1(R
T
1 q)− S1q+ L1ŝ

L2(R
T
1 q) + L2ŝ− S2s

1n−k ⊗ (RT
2 r)− ST

2 r+ 1n−k ⊗ t̂

1k ⊗ (RT
2 r) + 1k ⊗ t̂− S4t




where (ŝ)i =
∑k

j=1 s(i−1)k+j and (t̂)i =
∑k

j=1 t(i−1)k+k.

6 Numerical experiments

We now present numerical results to compare the performance of non-backtracking
PageRank in Definition 1 with standard PageRank. We perform our tests on
four road networks corresponding to the cities of Birmingham (UK), Philadel-
phia (USA), Austin (USA), and the Federal State of Hesse (Germany). The
data is available in [24]. Here, the edges represent roads and nodes represent
road intersections (primal graph).

We computed both the new measure and standard PageRank as the solu-
tion of a linear system; see equations (5) and (8). For both problems we used
the MATLAB implementation of the linear solver GMRES without restart
and we gave as input a function handle that describes the matrix multiplica-
tion BT (D−1v) and WT (D−1v) for vectors v of appropriate size. Both these
functions were implemented exploiting the structure of the matrices B (see
Section 5) and W = A+ χ1T .

We used the default setting of 10−6 for the tolerance in the stopping crite-
rion and allowed for a maximum of 100 iterations. We select α = 0.75 for the
teleporting parameter. Properties of the networks used in the tests are sum-
marized in Table 1, where we report the number of nodes, n, the number of
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Table 1 Description of the dataset

n k m̃ K M s δ

FS of Hesse 4660 1 6674 1 245 1 0.19
Austin 7388 4 18956 4 405 3 0.88
Philadelphia 13389 0 40003 0 178 0 0.94
Birmingham 14639 0 33937 0 1346 6 0.76

dangling nodes, k, the number of source nodes, s = n−N , the number, m̃, of
edges in the network represented by A, and the number, K, of edges pointing
to the dangling nodes. Moreover, we report the number, M , of dangling edges
in the network and the fraction of edges in the graph that have a reciprocal:

δ := 1
T (A◦AT )1

m̃
. So, for example, the value δ = 0.19 for the Federal State of

Hesse indicates that 81% of the road connections are one-way only. All exper-
iments were performed using MATLAB Version 9.4.0.813654 (R2018a) on an
HP EliteDesk running Scientific Linux 7.5 (Nitrogen), a 3.2 GHz Intel Core i7
processor, and 4 GB of RAM.

In Figure 3 we scatter plot the new measure (NBT PR edge), projected as
in (9), against standard PageRank (PR node). The measures show a strong
overall linear correlation; the Pearson’s correlation coefficients are ρ = 0.94
for the Federal State of Hesse, ρ = 0.90 for both Austin and Philadelphia, and
ρ = 0.81 for Birmingham. However, it is readily seen that the two measures
do not completely agree on the rankings. Indeed, the intersection of the sets
containing the IDs of the top ten ranked nodes according to the two measures
for Birmingham, the Federal State of Hesse, Austin and Philadelphia contain
8, 3, 5 and 6 elements, respectively. It is beyond the scope of this paper to
determine which measure is returning the most meaningful results, since there
is no ground truth for comparison. However, it may be argued that the non-
backtracking version of the measure is the best fit for road networks since, as
we mentioned in the introduction, the concept of non-backtracking walks is
consistent with the typical behavior of a driver or a pedestrian traversing a city.
It is notable that for all four scatter plots the low-ranked nodes are assigned
the same score by non-backtracking PageRank, whilst they are being assigned
different values by the classic version of the algorithm. A further analysis of
the data showed that the nodes falling in this class are exactly M + s and
correspond to the s source nodes and the M reciprocated leaves (i.e., nodes
that have only one incoming link that is the reciprocal of their only outgoing
edge) in the original graph associated with A.

We now turn to computation time and the number of iterations required
to achieve convergence of GMRES. Table 2 shows the results. We see that
standard PageRank requires slightly fewer iterations than its non-backtracking
counterpart. However, the total computation time for non-backtracking PageR-
ank, including pre-processing time to build the matrices L1, R1, S1, L2 and
R2, is significantly smaller than for standard PageRank. We attribute this sur-
prising result to the fact that the sparsity and structure of the matrix B can
be exploited by the iterative solver.
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Fig. 3 Scatter plot of the standard PageRank (PR node) vector x in (5) versus the non-
backtracking PageRank-like vector (NBT PR edge) y in (9) both computed with α = 0.75.

Table 2 Timings (in seconds) and number of GMRES iterations to compute the PageRank
ranking vector defined at (5) and its non-backtracking version (8).

PageRank NBT PageRank
time iter. time pre-proc. iter

FS of Hesse 6.39e-01 38 1.04e-01 6.85e-03 38
Austin 1.39 31 9.67e-02 9.07e-02 32
Philadelphia 4.71 28 1.27e-01 4.09e-01 30
Birmingham 5.18 29 6.46e-02 2.10e-01 31

Finally, in Figure 4 we display the evolution of the computation time re-
quired to achieve convergence of GMRES for the two algorithms as we let
the teleportation parameter α vary, as well as the evolution of the Pearson’s
correlation coefficient between the two vectors for the city of Birmingham.
Here we let α = 0.1, 0.25, 0.3, 0.5, 0.75, 0.85, 0.99. Table 3 reports the number
of iterations required to achieve convergence. Similar results were obtained for
the other networks and are therefore omitted. We see from the upper plot of
Figure 4 that the newly introduced measure is computed more quickly than
the measure we are comparing with, while Table 3 shows that the number
of iterations required by GMRES to achieve convergence is comparable. Note
that when α = 0.99, in both cases GMRES iterated the maximum allowed
number of times without achieving convergence. This follows from the fact
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Fig. 4 Top: evolution of timings (in seconds) required to compute the vectors x and
y for different choices of the damping parameters α = 0.1, 0.25, 0.3, 0.5, 0.75, 0.85, 0.99.
Bottom: evolution of Pearson’s correlation coefficient between x and y for α =
0.1, 0.25, 0.3, 0.5, 0.75, 0.85, 0.99.

Table 3 Number of iterations required to achieve convergence of GMRES.

α 0.1 0.25 0.3 0.5 0.75 0.85 0.99

PR node 5 8 9 15 29 45 -
NBT PR edge 6 9 10 16 31 47 -

that both systems become ill-conditioned as α → 1. The lower plot of Figure 4
shows that the correlation between the two measures decreases as the value
of α increases. This may be explained by the fact that reducing the frequency
of teleporting emphasizes the difference between the two underlying types of
walk.

In summary, for the networks studied here, using the ideas from Sections 4
and 5 we can incorporate non-backtracking into PageRank in order to obtain
a distinct node ranking at reduced computational cost.

7 Conclusions

In this work we showed how to extend the definition of the PageRank algorithm
to a non-backtracking framework by using the dual representation of a network
and the Hashimoto matrix. We proved that the elimination of backtracking
has no effect on the results in the case of undirected, regular networks, but
also showed by example that non-backtracking can affect the ranking for the
generic case of non-regular networks. We described explicitly how to exploit
structure and sparsity in order to compute the new PageRank measure and
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showed through numerical experiments using real world transport networks
and a GMRES solver that the computational cost is not increased. Future
work will focus on (i) further tests on networks from a range of application
fields, (ii) development of customized iterative methods for the structured
linear systems that arise, (iii) non-backtracking personalized PageRank via a
nonuniform teleportation distribution vector.
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