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Abstract—In ontology-mediated querying, description logic
(DL) ontologies are used to enrich incomplete data with domain
knowledge which results in more complete answers to queries.
However, the evaluation of ontology-mediated queries (OMQs)
over relational databases is computationally hard. This raises the
question when OMQ evaluation is efficient, in the sense of being
tractable in combined complexity or fixed-parameter tractable.
We study this question for a range of ontology-mediated query
languages based on several important and widely-used DLs,
using unions of conjunctive queries as the actual queries. For
the DL ELHI⊥, we provide a characterization of the classes
of OMQs that are fixed-parameter tractable. For its fragment
ELHdr

⊥ , which restricts the use of inverse roles, we provide a
characterization of the classes of OMQs that are tractable in
combined complexity. Both results are in terms of equivalence
to OMQs of bounded tree width and rest on a reasonable
assumption from parameterized complexity theory. They are
similar in spirit to Grohe’s seminal characterization of the
tractable classes of conjunctive queries over relational databases.
We further study the complexity of the meta problem of deciding
whether a given OMQ is equivalent to an OMQ of bounded tree
width, providing several completeness results that range from
NP to 2EXPTIME, depending on the DL used. We also consider the
DL-Lite family of DLs, including members that, unlike ELHI⊥,
admit functional roles.

I. INTRODUCTION

An ontology-mediated query (OMQ) is a database query
enriched with an ontology that contains domain knowledge
[11], [13], [14]. Adding the ontology serves the purpose of
delivering more complete answers to queries and of enriching
the vocabulary available for querying. Ontologies are often
formulated in description logics (DLs), a family of ontology
languages that has emerged from artificial intelligence, un-
derlies the OWL 2 recommendation for ontology languages
on the web, and whose members can be seen as decidable
fragments of (two-variable guarded) first-order logic [4]. The
actual queries in OMQs are typically conjunctive queries
(CQs), unions of CQs (UCQs), or fragments thereof, query
languages that are at the heart of relational databases [1].

An OMQ language is a pair (L,Q) with L an ontology
language and Q a query language [13]. Depending on the
OMQ language chosen, the computational cost of evaluating
OMQs can be high. Both the combined complexity and the
data complexity of OMQ evaluation have received consider-
able interest in the literature, where data complexity means
that the OMQ is fixed while the database is treated as an
input, in line with the standard setup from database theory.
The combined complexity ranges from PTIME [8], [9], [12]

to at least 2EXPTIME [21], [31], [34]. Regarding the data
complexity, there is an important divide between DLs that
include negation or disjunction and induce CONP-hardness,
and DLs that do not [16], [20], [27], [29]. Studying the data
complexity of the former has turned out to be closely related to
the complexity of constraint satisfaction problems (CSPs) [13].

In this paper, we explore the frontiers of two important
notions of OMQ tractability, PTIME combined complexity
and fixed-parameter tractability (FPT) where the parameter
is the size of the OMQ. We believe these to be more realistic
than PTIME data complexity given that ontologies can get
large. In fact, hundreds or thousands of logical statements are
not unusual in real world ontologies, and this can even go
up to hundreds of thousands in extreme but important cases
such as SNOMED CT [40]. However, there are only few OMQ
languages that have PTIME combined complexity or are FPT
without imposing serious restrictions on the shape of the query
or the ontology. An example for the former is (ELHdr⊥ ,AQ)
where ·dr stands for domain and range restrictions and AQ
refers to the class of atomic queries of the form A(x), A a
concept name; this result is implicit in [32]. An example for
FPT is (ELHI⊥,AQ); we are not aware of this being stated
explicitly anywhere, but it is not too hard to prove using stan-
dard means. Both ELHdr⊥ and ELHI⊥ are widely used DLs
that underpin profiles of the OWL 2 recommendation [36].
One should think of the former as an important DL without
negation and disjunction, and of the latter as an important
DL in which basic reasoning problems such as subsumption
are still in PTIME. Note that the unrestricted use of CQs and
UCQs rules out both of the considered complexities since
(U)CQ-evaluation is NP-complete in complexity and W[1]-
hard, thus most likely not fixed-parameter tractable [24].

A remarkable result by Grohe precisely characterizes the
(recursively enumerable) classes of CQs over schemas of
bounded arity that can be evaluated in PTIME [25]: this is
the case if and only if for some k, every CQ in the class
is equivalent to a CQ of tree width k, unless the assumption
from parameterized complexity theory that FPT 6= W[1] fails.
Grohe’s result also establishes that PTIME complexity and
FPT coincide for evaluating CQs. A generalization to UCQs
is in [17], more details are given in Sections II and III.

Our main contribution is to establish the following, under
the widely-held assumption that FPT 6= W[1]:

1) a precise characterization of classes of OMQs from
(ELHI⊥,UCQ) for which evaluation is in FPT as those978-1-7281-3608-0/19/$31.00 c©2019 IEEE



classes in which each OMQ is equivalent to an OMQ of
bounded tree width (Section IV);

2) a precise characterization of classes of OMQs from
(ELHdr⊥ ,UCQ) that admit PTIME evaluation as those
classes in which each OMQ is equivalent to an OMQ
of bounded tree width (Section V),

where an OMQ has bounded tree width if the actual query in
it has. Regarding Point 1, we also observe that the runtime
of the FPT algorithm can be made single exponential in the
parameter. In Point 2, we work under the assumption that the
ontology does not introduce relations beyond those admitted in
the database; such additional relations are introduced to enrich
the vocabulary available for querying, bearing a similarity
to views in relational databases [30]. Given that ELHdr⊥ is
a fragment of ELHI⊥, Points 1 and 2 imply that PTIME
complexity and FPT coincide in (ELHdr⊥ ,UCQ). To prove
the ‘upper bound’ of Point 2, we use existential pebble games
adapted in a careful way to OMQs. For the rather non-trivial
‘lower bound’, we build on Grohe’s result. Here, the fact that
OMQs can introduce additional relations results in serious
challenges; in fact, several fundamental techniques that are
standard in relational databases must be replaced by more
subtle ones.

Related to our second main result, it has been shown in
in [12] that whenever Q is a class of CQs that can be evaluated
in PTIME, then the same is true for OMQs from (ELH,Q).
In particular, Q might be the class of CQs of tree width
bounded by some k. Our tractability results are stronger than
this: adding an ontology can lower the complexity of a (U)CQ
and it is in fact not hard to see that there are classes of OMQs
from (EL,CQ) that can be evaluated in PTIME, but the class of
CQs used in them cannot. In our characterizations, equivalence
to an OMQ Q of bounded tree width includes the case that
Q uses a different ontology than the original OMQ. We also
show, however, that in most of the studied cases there is no
benefit in changing the ontology. More loosely related studies
of the combined complexity of OMQs in which the ontology
is formulated in fragments of ELHI⊥ such as DL-LiteR and
DL-LiteRhorn, important in ontology-based data integration, and
where the queries have bounded tree width are in [8], [9].

We further study the complexity of the meta problem of
deciding whether a given OMQ is equivalent to an OMQ of
bounded tree width (Section VI). Decidability is needed for
the characterizations described above, but we also consider
this question interesting in its own right. Our results range
from Πp

2 between (DL-LiteR,CQ) and (DL-LiteRhorn,UCQ)
via EXPTIME between (EL,CQ) and (ELHdr⊥ ,UCQ) to 2EX-
PTIME between (ELI,CQ) and (ELHI⊥,UCQ); all these
are completeness results. As an important special case, we
consider the full database schema, meaning that the ontology
cannot introduce additional relations. There, the complexity
drops considerably, to NP, NP, and EXPTIME, respectively.
The case of the full schema is also interesting because it admits
constructions that are close to the case of relational databases,
such as (a suitably adapted version of) retracts. We remark
that when the schema is full, the problems studied here are

closely related to the evaluation of (U)CQs of bounded tree
width over relational databases with integrity constraints [6].
However, the constraints languages considered there are differ-
ent from ontology languages and the connection breaks when
the schema is not full.

Finally, we take a first glimpse at ontology languages that
include a form of counting, more precisely at DL-LiteF , in
which some binary relations can be declared to be partial
functions (Section VII). This turns out to be closely related
to the evaluation of UCQs over relational databases in the
presence of key dependencies, as studied by Figueira [23]. We
show that evaluating OMQs that are equivalent to an OMQ of
tree width bounded by some k is in FPT and even in PTime
when k = 1, and that the meta problem of deciding whether
an OMQ belongs to this class is decidable in 3EXPTIME and
NP-complete when k = 1. In this part, we assume the full
database schema and Boolean queries. For the case k > 1, we
additionally assume that the ontology cannot be changed.

Most of the proof details are deferred to the appendix,
available at http://www.informatik.uni-bremen.de/tdki.

II. PRELIMINARIES

A. Databases and Queries

Databases. Let NC, NR, and C be countably infinite sets
of concept names, role names, and constants, respectively. A
database D is a finite set of facts of the form A(a) and r(a, b)
where, here and in the remainder of the paper, A ranges over
NC, r ranges over NR, and a, b range over C. We denote by
dom(D) the set of constants used in D and sometimes write
r−(a, b) ∈ D in place of r(b, a) ∈ D. A schema S is a set of
concept and role names. An S-database is a database that uses
only concept and role names from S. Note that as usual in the
context of DLs, databases can only refer to unary and binary
relations, i.e., concept and role names, but not to relations
of higher (or lower) arity. We shall sometimes consider also
infinite databases and then say so explicitly.

A homomorphism from database D1 to database D2 is a
function h : dom(D1) → dom(D2) such that A(h(a)) ∈ D2

for every A(a) ∈ D1, and r(h(a), h(b)) ∈ D2 for every
r(a, b) ∈ D1. We write D1 → D2 if there is a homomorphism
from D1 to D2. For a database D and tuple (or set) a of
constants, we write D|a to denote the restriction of D to facts
that involve only constants from a.

Conjunctive Queries. A conjunctive query (CQ) is of the
form q = ∃yϕ(x,y), where x and y are tuples of variables
and ϕ(x,y) is a conjunction of atoms of the form A(x) and
r(x, y) with x, y variables. We call x the answer variables
of q, y the quantified variables, and use var(q) to denote x∪y.
We take the liberty to write α ∈ q to indicate that α is an atom
in q and sometimes write r−(x, y) ∈ q in place of r(y, x) ∈ q.
We neither admit equality atoms nor constants in CQs, but all
results in this paper remain valid when both are admitted.

Every CQ q can be seen as a database Dq by dropping the
existential quantifier prefix and viewing variables as constants.
A homomorphism from q to a database D is a homomorphism



from Dq to D. We write D |= q(a) and call the tuple of
constants a an answer to q on D if there is a homomorphism
h from q to D with h(x) = a, x the answer variables of q.
Moreover, q(D) denotes the set of all answers to q on D.

A union of conjunctive queries (UCQ) q is a disjunction
of one or more CQs that all have the same answer variables.
Answers to a UCQ q are defined in the expected way, and so
is q(D). The arity of a (U)CQ q is defined as the number
of answer variables in it, and we use the term Boolean
interchangeably with ‘arity zero’.

A homomorphism from a CQ q1(x) to a CQ q2(x) is a
homomorphism h from Dq1 to Dq2 such that h(x) = x. We
write q1 → q2 if such a homomorphism exists. For a CQ q
and tuple (or set) z of variables, the restriction q|z of q to the
variables in z is defined in the expected way (it might involve
a change of arity).

Tree Width. The evaluation problem for CQs takes as input
a CQ q(x), a database D, and a candidate answer a, and asks
whether a ∈ q(D). While in general the evaluation problem for
CQs is NP-complete, it becomes tractable for CQs of bounded
tree width [18]. The notion of tree width of a CQ, which is
central to our work, is introduced next.

A tree decomposition of an undirected graph G = (V,E)
is a triple D = (VD, ED, µ) where (VD, ED) is an undirected
tree and µ : VD → 2V a function such that
•
⋃
t∈VD

µ(t) = V ;
• if {v1, v2} ∈ E, then v1, v2 ∈ µ(t) for some t ∈ VD;
• for every v ∈ V , the subgraph of (VD, ED) induced by

the vertex set {t ∈ VD | v ∈ µ(t)} is connected.
The width of D is maxt∈VD

|µ(t)|−1 and the tree width of G
is the smallest width of any tree decomposition of G.

Each database D is associated with an undirected graph
(without self loops) GD, its Gaifman graph, defined as fol-
lows: the nodes of GD are the constants in D and there is an
edge {a, b} iff D contains a fact that involves both a and b.
Each CQ q is associated with the directed graph Gq = GDq .
We can thus use standard terminology from graph theory for
databases and CQs, e.g. saying that a database D is connected
and speaking about the tree width of D (when D contains no
binary facts, we define its tree width to be 1). There is an
exception, though. The tree width of a CQ q = ∃yϕ(x,y)
is defined in a more liberal way, namely as the tree width of
Gq|y (and 1 if q|y contains no binary atoms). For every k ≥ 0,
a CQk is a CQ of tree width at most k and a UCQk is a union
of CQks with the same answer variables.

B. Description Logics and Ontology-Mediated Queries

Concepts and Ontologies. We introduce several widely used
description logics, see [4] for more details. An ELI⊥-concept
is formed according to the syntax rule

C,D ::= A | > | ⊥ | C uD | ∃r.C | ∃r−.C.

An expression r− is an inverse role and a role is a role name
or an inverse role. As usual, we identify (r−)− with r. An
EL⊥-concept is an ELI⊥-concept with no inverse roles.

>I = dom(I) ⊥I = ∅
AI = {d | A(d) ∈ I} rI = {(d, e) | r(d, e) ∈ I}

(C uD)I =CI ∩DI (r−)I = {(e, d) | r(d, e) ∈ I}
(∃r.C)I = {d ∈ dom(I) | ∃e : (d, e) ∈ rI ∧ e ∈ CI}

Fig. 1. Semantics of ELI⊥-concepts

An ELHI⊥-ontology is a finite set of ELI⊥-concept in-
clusions of the form C v D, with C,D ELI⊥-concepts,
and role inclusions of the form r v s, with r, s roles. In the
name ELHI⊥, the letter H indicates that role inclusions are
admitted, I indicates that inverse roles are admitted, and ·⊥ in-
dicates that the ⊥-concept may be used. It should thus also be
clear what we mean by an EL-ontology, an ELH⊥-ontology,
and so on. An ELHdr⊥ -ontology is an ELH⊥-ontology that
additionally admits range restrictions ∃r−.> v C with r a
role name and C an EL⊥-concept. Note that ·dr stands for
domain and range restrictions, where domain restrictions are
simply EL⊥-concept inclusions of the form ∃r.> v C. We
assume without loss of generality, and without further notice,
that the ⊥-concept occurs only in concept inclusions of the
form C v ⊥, where C does not contain ⊥.

Semantics. The semantics of ontologies is defined based
on interpretations, relational structures that interpret only
relations of arity one and two. We choose a presentation
here that is slightly nonstandard, but equivalent to the usual
one [4]: an interpretation is a finite or infinite database I with
dom(I) 6= ∅. Each ELI⊥-concept C and role r is associated
with an extension CI , resp. rI , according to Figure 1.

An interpretation I satisfies a concept inclusion C v D if
CI ⊆ DI , and a role inclusion r v s if rI ⊆ sI . It is a model
of an ELHI⊥-ontology O if it satisfies all the inclusions in O,
and of a database D if D ⊆ I. A database D is consistent with
O if D and O have a common model.

Note that standard reasoning tasks, e.g., the consistency of a
given database with a given ontology, are in PTIME in ELHdr⊥
and EXPTIME-complete between ELI⊥ and ELHI⊥ [4].
Note also that all the DLs defined above can be translated into
(two-variable guarded) first-order logic in a standard way [4].

Ontology-Mediated Queries. An ontology-mediated query
(OMQ) takes the form Q = (O,S, q) with O an ontology, S
a schema (which indicates that Q will be evaluated over S-
databases), and q a query. The arity of Q is the arity of q. We
write Q(x) to emphasize that the answer variables of q are x.
When S = NC∪NR, then we denote it with Sfull and speak of
the full schema. It makes perfect sense to use a non-full schema
S while referring to concept and role names from outside S
in both the ontology O and query q. In fact, enriching the
schema with additional symbols is one main application of
ontologies in querying [3]. This is similar to the distinction
between extensional and intensional relations in Datalog [1].

Consider an OMQ Q(x) and an S-database D. A tuple a ∈
dom(D)|x| is an answer to Q on D, written D |= Q(a), if
I |= q(a) for all models I of D and O. We write Q(D) for
the set of answers to Q on D.



An OMQ Q = (O,S, q) is empty if, for all S-databases D
consistent with O, there is no answer to Q on D, i.e., Q(D)
is empty. Let Q1, Q2 be OMQs, Qi = (Oi,S, qi) for i ∈
{1, 2}. Then Q1 is contained in Q2, written Q1 ⊆ Q2, if
Q1(D) ⊆ Q2(D) for all S-databases D. Further, Q1 and Q2

are equivalent, written Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1.
We use (L,Q) to refer to the OMQ language in which the
ontology is formulated in L and where the actual queries are
from Q, e.g., (EL⊥,CQ) and (ELHI⊥,UCQ). As usual, we
write |O| for the size of a syntactic object O such as an OMQ,
an ontology, or a conjunctive query, that is, the number of
symbols needed to write O where concept names, role names,
variables names, and the like count as one.

The Chase. The chase is a widely used tool in database
theory that allows us, whenever a database is consistent with
an ELHI⊥-ontology O, to construct a universal model of D
and O that enjoys many good properties; cf., [1], [33].

Let O be an ELHI⊥-ontology. Intuitively, the chase of D
with respect to O, denoted chO(D), is the potentially infinite
interpretation I that is obtained in the limit of recursively
applying the following two rules on D, based on the inclusions
in O:

1) if a ∈ CI , C v D ∈ O, and D 6= ⊥, then add D(a) to I;
2) if (a, b) ∈ rI and r v s ∈ O, then add s(a, b) to I.

In Rule 1, ‘add D(a) to I’ means to add to I a finite tree-
shaped database that represents the ELI-concept D, identify-
ing its root with a. For example, the concept Au∃r.(Bu∃s.>)
corresponds to the database {A(a), r(a, b), B(b), s(b, c)}. Our
chase is oblivious, a formal definition can be found in the
appendix. We sometimes apply the chase directly to a CQ q,
implicitly meaning its application to the database Dq . The
following lemma summarizes the main properties of the chase.

Lemma 1. Let D be a database and Q = (O,S, q) an OMQ
from (ELHI⊥,UCQ). Then

1) D is inconsistent with O iff there is an a ∈ dom(chO(D))
and a C v ⊥ ∈ O such that a ∈ CchO(D);

2) Q(D) = q(chO(D)), if D is consistent with O;
3) chO(D)→ I via a homomorphism that is the identity on

dom(D), for every model I of D and O;
4) the tree width of D and of chO(D) are identical.

C. Parameterized Complexity

We study the evaluation problem for OMQs (defined below)
both in terms of a traditional complexity analysis and in terms
of its parameterized complexity; cf., [24]. A parameterized
problem over an alphabet Σ is a pair (P, κ), with P ⊆ Σ∗

a decision problem and κ a parameterization of P , that is, a
PTIME computable function κ : Σ∗ → N. A prime example is
p-CLIQUE, where P is the set of all pairs (G, k) with G an
undirected graph that contains a k-clique and κ(G, k) = k.

A problem (P, κ) is fixed-parameter tractable (fpt) if there
is a computable function f : N → N and an algorithm that
decides P in time |x|O(1) ·f(κ(x)), where x denotes the input.
We use FPT to denote the class of all parameterized problems
that are fpt. Notice that FPT corresponds to a relaxation of

the usual notion of tractability: a problem in PTIME is also
in FPT, but the latter class also contains some NP-complete
problems.

An fpt-reduction from a problem (P1, κ1) over Σ1 to a
problem (P2, κ2) over Σ2 is a function ρ : Σ∗1 → Σ∗2 such
that, for some computable functions f, g : N→ N,

1) x ∈ P1 iff ρ(x) ∈ P2, for all x ∈ Σ∗1;
2) ρ(x) is computable in time |x|O(1) ·f(κ1(x)), for x ∈ Σ∗1;
3) κ2(ρ(x)) ≤ g(κ1(x)), for all x ∈ Σ∗1.
An important parameterized complexity class is W[1] ⊇

FPT. Hardness for W[1] is defined in terms of fpt-reductions.
It is believed that FPT 6= W[1], the status of this problem
being comparable to that of PTIME 6= NP. Hence, if a pa-
rameterized problem (P, κ) is W[1]-hard then (P, κ) is not
fpt unless FPT = W[1]. A well-known W[1]-hard problem is
precisely p-CLIQUE [19].

III. OMQ EVALUATION AND SEMANTIC TREE-LIKENESS

A. OMQ Evaluation

The main concern of this work is the evaluation problem
for classes of OMQs Q, defined as follows:

PROBLEM : EVALUATION(Q)
INPUT : An OMQ Q = (O,S, q(x)) from Q,

an S-database D, a tuple a ∈ dom(D)|x|

QUESTION : Is it the case that a ∈ Q(D)?

We are particularly interested in classifying the complexity
of EVALUATION(Q) for all subsets Q of an OMQ language
(L,Q) of interest, where we view the latter as a set of OMQs.

We are also interested in the parameterized version of this
problem, with the parameter being the size |Q| of the OMQ Q,
as customary in the database literature [37], which we call p-
EVALUATION(Q). In particular, if p-EVALUATION(Q) is in
FPT, then it can be solved in time |D|O(1) · f(|Q|), for a
computable function f : N → N. In general, the evaluation
problem for CQs is NP-hard, and its parameterized version
W[1]-hard [37]. Therefore, the same holds for the OMQ
evaluation problem.

Proposition 1. For any of the DLs L introduced above,
1) EVALUATION(L,CQ) is NP-hard;
2) p-EVALUATION(L,CQ) is W[1]-hard.

The above hold even when the ontology is empty.

On the other hand, CQ evaluation is tractable if restricted
to CQs of tree width bounded by k, for any k. As established
by Bienvenu et al., this positive behavior extends to OMQ
evaluation in (ELH,CQk) [12], and it is not hard to extend
their result to (ELHdr⊥ ,UCQk). We refrain from giving details.

Proposition 2. EVALUATION(ELHdr⊥ ,UCQk) is in PTIME for
each fixed k ≥ 1.

Adding inverse roles, however, destroys this property. In
fact, evaluation is EXPTIME-complete already in (ELI,CQ),
with the lower bound being a consequence of the fact that
the subsumption problem in ELI is EXPTIME-hard [5]. Even



with inverse roles, however, evaluating OMQs in which the
actual queries are of bounded tree width is still fixed-parameter
tractable.

Proposition 3. p-EVALUATION(ELHI⊥,UCQk) is in FPT,
for any k ≥ 1, with single exponential running time in the
parameter.

B. Semantic Tree-likeness for OMQs

Recall that CQs q and q′ over schema S are equivalent
if q(D) = q′(D), for every S-database D. Grohe’s Theorem
establishes that, under the assumption FPT 6= W[1], the
classes of CQs that can be evaluated in PTIME over S-
databases are precisely those of bounded tree width modulo
equivalence. Also, fixed-parameter tractability does not add
anything to standard tractability in this scenario.

Theorem 1 (Grohe’s Theorem [25]). Let Q be a recursively
enumerable class of CQs over a schema S. The following are
equivalent, assuming FPT 6= W[1]:
• the evaluation problem for CQs in Q is in PTIME;
• the evaluation problem for CQs in Q is in FPT;
• there is a k ≥ 1 such that every q ∈ Q is equivalent to

a CQ q′ in CQk.

Interestingly, the notion that characterizes tractability in this
case, namely, being of bounded tree width modulo equiv-
alence, is decidable. Recall that a retract of a CQ q is a
homomorphic image q′ of q that is also equivalent to q, and a
core of q is a maximum retract of it, i.e., a retract that admits
no further retractions [26]. It can be proved that a CQ q is
equivalent to a CQ q′ in CQk, for k ≥ 1, iff the core of q is
in CQk. This problem is NP-complete, for each k ≥ 1 [18].
There is also a natural generalization of this characterization
and of Theorem 1 to the class of UCQs [17].

At this point, it is natural to ask whether it is possible
to obtain a characterization of the classes of OMQs that
can be efficiently evaluated, in the style of Theorem 1 and,
in particular, whether a suitably defined notion of “being
equivalent to a query of small tree width” for OMQs exhausts
tractability or FPT for OMQ evaluation, as is the case in
Grohe’s Theorem. The following definition introduces such
a notion. Notice that equivalence is applied no longer on the
level of the (U)CQ, but to the whole OMQ.

Definition 1 (UCQk-equivalence). Let L be one of the DLs
introduced above. An OMQ Q = (O,S, q) from (L,UCQ)
is UCQk-equivalent if there exists an OMQ Q′ = (O′,S, q′)
from (L,UCQk) such that Q ≡ Q′. If even O = O′, then we
say that Q is UCQk-equivalent while preserving the ontology.

Likewise, we define CQk-equivalence and CQk-equivalence
while preserving the ontology. In informal contexts, we may
refer to (U)CQk-equivalence as semantic tree-likeness. We
denote by (L,Q)≡Q′k

, where Q,Q′ ∈ {CQ,UCQ}, the class
of OMQs from (L,Q) that are Q′k-equivalent. For example,
(ELHI⊥,CQ)≡UCQk

is the restriction of (ELHI⊥,CQ) to
OMQs that are equivalent to an OMQ from (ELHI⊥,UCQk).

q : x1 A1

x2A2

x3 A3

x4 A4

r

r r

r

q′ : x1 A1

x2A2

x3 A3

x4 A4

r

r

r

Fig. 2. CQs for Example 1

Example 1. We first illustrate that the ontology can have an
impact on tree width. To this end, consider the OMQ Q1 =
(O1,Sfull, q) from (EL,CQ) given by

O1 = {A2 v A4}
q() = r(x2, x1) ∧ r(x4, x1) ∧ r(x2, x3) ∧ r(x4, x3)∧

A1(x1) ∧A2(x2) ∧A3(x3) ∧A4(x4),

see also Figure 3. Then q is a core of tree width 2, and thus not
equivalent to a CQ of tree width 1. Yet Q is from (EL,CQ)≡CQ1

as it is equivalent to the OMQ (O1,Sfull, q|{x1,x2,x3}) in which
the CQ has tree width 1.

We next show that the schema can have an impact as well.
This is in a sense trivial as every OMQ based on the empty
schema has tree width 1. The following example is more
interesting. Let Q2 = (O2,Sfull, q) where

O2 = { B1 v A1, B2 v A1,

∃r.B1 v A4, B2 v A3 }.

Then it is not hard to see that Q2 is not in (ELHI⊥,CQ)≡UCQ1
.

If, however, the concept name A1 is omitted from the schema,
then Q2 is equivalent to the OMQ (O2,Sfull \{A1}, q′) where

q′() = r(x2, x1) ∧ r(x4, x1) ∧ r(x4, x3)∧
A1(x1) ∧A2(x2) ∧A3(x3) ∧A4(x4)

and thus in (EL,CQ)≡CQ1
. To see this, take a homomorphism h

from q′ to I = chO2
(D) for any Sfull\{A1}-database D. Then

h(x1) ∈ BI1 or h(x1) ∈ BI2 . In the former case, we obtain
from h a homomorphism from q to I by setting h(x4) =
h(x2), in the latter case we set h(x3) = h(x1).

In general, CQk-equivalence and UCQk-equivalence do
not coincide, i.e., sometimes it is possible to rewrite into a
disjunction of tree-like CQs, but not into a single one.

Proposition 4. In (ELI,CQ), the notions of CQ1-equivalence
while preserving the ontology and UCQ1-equivalence while
preserving the ontology do not coincide.

On the other hand, CQk-equivalence and UCQk-equivalence
coincide in (ELIH⊥,UCQ), for all k ≥ 1, when we restrict
our attention to the full schema (see Corollary 2 below).

A Characterization of Semantic Tree-likeness. We provide
a characterization of when an OMQ Q is UCQk-equivalent.
But first we need some auxiliary terminology.

A CQ q is a contraction of a CQ q′ if it can be obtained
from q′ by identifying variables. When an answer variable x is
identified with a non-answer variable y, the resulting variable
is x; the identification of two answer variables is not allowed.



Let Q = (O,S, q) ∈ (ELHI⊥,UCQ) and k ≥ 1. The UCQk-
approximation of Q is the OMQ Qa = (O,S, qa), where qa
denotes the UCQ that consists of all contractions of a CQ
from q of tree width at most k. By construction, Qa ⊆ Q,
and in this sense Qa is an approximation of Q from below.
The following result gives two central properties of Qa, in
particular that it is the best possible such approximation.

Theorem 2. Let Q be an OMQ from (ELHI⊥,UCQ), k ≥ 1,
and Qa the UCQk-approximation of Q. Then

1) Q(D) = Qa(D) for any S-database D of treewidth ≤ k;
2) Q′ ⊆ Qa for every Q′ ∈ (ELHI⊥,UCQk) with Q′ ⊆ Q.

Let Q = (O,S, q). The proof of Point 1 uses the fact that
a homomorphism from q to chO(D) gives rise to a collapsing
of q whose tree width is not larger than that of D. For Point 2,
we ‘unravel’ the input database into a database of tree width
at most k and apply Point 1.

We obtain the following key corollary; ‘3⇒ 2’ and ‘2⇒ 1’
are immediate, while ‘1⇒ 3’ follows from Theorem 2.

Corollary 1. Let Q be an OMQ from (ELHI⊥,UCQ) and
k ≥ 1. The following are equivalent:

1) Q is UCQk-equivalent;
2) Q is UCQk-equivalent while preserving the ontology;
3) Q is equivalent to its UCQk-approximation.

In (ELHI⊥,UCQ), the notion of UCQk-equivalence thus
coincides with UCQk-equivalence while preserving the on-
tology. Moreover, Corollary 1 implies decidability of UCQk-
equivalence since OMQ containment is decidable in the OMQ
languages considered in this paper [7]. This is further elabo-
rated in Section VI.

Full Schema. We now study the case of OMQs based on
the full schema, which admits constructions that are close to
the case without ontologies. Recall that in the latter case, a CQ
is equivalent to a CQk iff its core has tree width at most k.
The core, in turn, is defined as the maximum retract. When
ontologies are added, there is no longer an equivalent of the
core that enjoys good properties. We show, however, that when
the schema is full, we can develop a notion of maximum
retracts (whose definition involves the chase) such that, for
the purposes of this paper, any maximum retract can play the
role that the core plays in the case without ontologies.

Let q(x) be a CQ and O an ELHI⊥-ontology. An O-
retraction on q is a homomorphism h from q to chO(q) such
that h is the identity on x and on all variables in the range
of h. We use ran+(h) to denote the range of h extended
with all those x ∈ var(q) such that some fresh constant in
the subdatabase of tree width 1 that the chase has generated
below x is in the range of h. When h is an O-retraction on q,
then the restriction qh of q to ran+(h) is an O-retract of q.

Let Q = (O,Sfull, q). A rewriting of Q is an OMQ Q′ =
(O,Sfull, q

′) where q′ can be constructed as follows:
1) choose an O-retract qh of q and set q′ = qh;
2) for each C v D ∈ O and x ∈ CDq ∩ dom(q′), let qC be

C viewed as a CQ using fresh variables and add qC to
q′, identifying x with the root of qC .

We say that Q′ is based on qh. We call Q′ a full rewriting if
qh has no proper O-retract, that is, the only such retract is qh
itself.

In what follows, we show that full rewritings of OMQs can
play the role that the core plays for CQs without an ontol-
ogy when analyzing semantic tree-likeness. We first observe,
however, that full rewritings need not be unique.

Example 2. Let Q = (O,Sfull, q) with O = {A v ∃r.B, B v
A u ∃r.B} and q() = ∃x∃y (A(x) ∧ r(x, y) ∧ B(y)). Then
both q1() = ∃xA(x) and q2() = ∃xB(x) are O-retracts
of q. Moreover, both (O,Sfull, q1) and (O,Sfull, q

′
2) are full

rewritings of Q, where q′2 = ∃x (A(x) ∧B(x)).

We observe next that an OMQs is equivalent to any of its
rewritings.

Lemma 2. Let Q = (O,Sfull, q) be an OMQ from
(ELHI⊥,CQ) and Q′ = (O,Sfull, q

′) a rewriting of Q. Then
Q ≡ Q′.

We now establish the main property of rewritings: an OMQ
from (ELHI⊥,CQ) based on the full schema is UCQk-
equivalent iff some or all of its rewritings (which is equivalent)
fall into (ELHI⊥,CQk). In this sense, rewritings behave like
a core for CQs without an ontology.

Theorem 3. Let Q = (O,Sfull, q) be a non-empty OMQ from
(ELHI⊥,CQ) and k ≥ 1. The following are equivalent:

1) Q is UCQk-equivalent;
2) Q has a rewriting that falls within (ELHI⊥,CQk);
3) some full rewriting of Q falls within (ELHI⊥,CQk);
4) all full rewritings of Q fall within (ELHI⊥,CQk).

The interesting part of the proof is ‘1 ⇒ 4’. It works
by showing that if Q′ = (O,S, q′) ∈ (ELHI⊥,UCQk) is
equivalent to Q and Qf = (O,S, qf ) is a full rewriting of Q,
then there is an injective homomorphism from qf to chO(Dp)
for some CQ p in the UCQ q′, and thus the tree width of qf
is bounded by that of q′. We obtain the following corollary.

Corollary 2. In (ELHI⊥,CQ) based on the full schema,
CQk-equivalence and UCQk-equivalence coincide, for k ≥ 1.

IV. FIXED-PARAMETER TRACTABILITY

The aim of this section is to establish the following theorem.

Theorem 4. For any recursively enumerable class of OMQs
Q ⊆ (ELHI⊥,UCQ), the following are equivalent, unless
FPT = W[1]:

1) p-EVALUATION(Q) is in FPT;
2) Q ⊆ (ELHI⊥,UCQ)≡UCQk

for some k ≥ 1.

If either statement is false, p-EVALUATION(Q) is W[1]-hard.

We remark that Theorem 4 also covers OMQs where the on-
tology is formulated in DL-LiteRhorn, introduced in Section VI.
Below, we state the two directions of Theorem 4 as separate
theorems, starting with the much simpler ‘2⇒ 1’ direction.



Theorem 5. p-EVALUATION((ELHI⊥,UCQ)≡UCQk
) is in

FPT, for any k ≥ 1, with single exponential running time
in the parameter.

The above follows from Corollary 1, which states that an
OMQ from (ELHI⊥,UCQ)≡UCQk

is equivalent to its UCQk-
approximation Qa ∈ (ELHI⊥,UCQk), and Proposition 3.

Now for the rather non-trivial ‘1⇒ 2’ direction, which we
consider a main achievement of this paper.

Theorem 6. Let Q ⊆ (ELHI⊥,UCQ) be a recursively
enumerable class of OMQs such that, for any k ≥ 1, Q 6⊆
(ELHI⊥,UCQ)≡UCQk

. Then p-EVALUATION(Q) is W[1]-hard.

As stated in Theorem 1, Grohe established a characterization
of those classes of Boolean CQs that can be evaluated in
PTIME combined complexity [25], a special case of The-
orem 4 where ontologies are empty and schemas are full.
The ‘lower bound part’ of Grohe’s proof is by fpt-reduction
from p-CLIQUE, a W[1]-hard problem. We prove Theorem 6
by following the same approach, carefully reusing a central
construction from [25]. For k, ` ≥ 1, the k × `-grid is the
graph with vertex set {(i, j) | 1 ≤ i ≤ k and 1 ≤ j ≤ `} and
an edge between (i, j) and (i′, j′) iff |i − i′| + |j − j′| = 1.
A minor of an undirected graph is defined in the usual way,
see, e.g., [25]. When k is understood from the context, we use
K to denote

(
k
2

)
. The following is what we use from Grohe’s

proof.

Theorem 7 (Grohe). Given an undirected graph G = (V,E),
a k > 0, and a connected S-database D such that GD contains
the k ×K-grid as a minor, one can construct in time f(k) ·
poly(|G|, |D|) an S-database DG such that:

1) there is a surjective homomorphism h0 from DG to D
such that for every edge {a, b} in the Gaifman graph of
DG: s(a, b) ∈ DG iff s(h0(a), h0(b)) ∈ D for all roles s;

2) G contains a k-clique iff there is a homomorphism h from
D to DG such that h0(h(·)) is the identity.

A careful analysis of [25] reveals that the proof given
there establishes Theorem 7 without the ‘such that’ part of
Condition (1), which we need to deal with role inclusions.
That part, however, can be attained by first suitably switching
from the original schema to a schema that is based on sets of
relations from the original one, then applying Grohe, and then
switching back.

To avoid overly messy notation, we first prove Theorem 6
for the case where Q ⊆ (ELHI⊥,CQ) consists only of
Boolean OMQs. In the appendix, we explain how to extend
the proof to the non-Boolean case, and from CQs to UCQs.

For the fpt-reduction from p-CLIQUE, assume that G is
an undirected graph and k ≥ 1 a clique size, given as an
input to the reduction. By Robertson and Seymour’s Excluded
Grid Theorem, there is an ` such that every graph of tree
width exceeding ` contains the k × K-grid as a minor [38].
By our assumption on Q, we find an OMQ Q = (O,S, q)
from Q such that Q /∈ (ELHI⊥,CQ)≡UCQ`

. Since the choice
of Q is independent of G and since it is decidable whether

an OMQ from (ELHI⊥,CQ) belongs to (ELHI⊥,CQ)≡UCQ`

by Theorem 11 in Section VI, we can simply enumerate the
OMQs from Q until we find Q.

Let Qa be the UCQ`-approximation of Q. Note that any S-
database D with D |= Q and D 6|= Qa must be of tree width
exceeding ` since Qa is equivalent to Q on S-databases of tree
width at most ` by Theorem 2. Thus D contains the k×K-grid
as a minor, which enables the application of Theorem 7. We
could find such D by brute force enumeration and then hope to
show that DG |= Q iff there is a homomorphism h from D to
DG such that h0(h(·)) is the identity and thus, by Theorem 7,
iff G contains a k-clique. This would in fact be easy if O was
empty and S was full since then we could assume D to be
isomorphic to q, but neither of this is guaranteed. As we show
in the following, however, it is possible to construct D in a
very careful way so that its relational structure is sufficiently
tightly linked to q to enable the reduction.

A. The Construction of the Database

Injective homomorphisms are an important ingredient to
identifying D since they link a CQ much closer to a database
than non-injective homomorphisms. In fact, a main idea is to
construct D such that for some contraction qc of q: if qc maps
to chO(DG) but only in terms of injective homomorphisms,
then the same is true for qc and chO(D).

For a database D and a Boolean CQ p, we write D |=io p
if D |= p and all homomorphisms h from p to D are injective.
Here, ‘io’ stands for ‘injectively only’. We start with a simple
observation.

Lemma 3. If D |= p, for D a potentially infinite database
and p a CQ, then D |=io pc for some contraction pc of p.

Let q1, . . . , qn be the maximal connected components of q.
For 1 ≤ i ≤ n, let Qi = (O,S, qi). We can assume w.l.o.g.
that Qi 6⊆ Qj for all i 6= j because if this is not the case, then
we can drop the component qj from q and the resulting OMQ
is equivalent to Q. Since Q /∈ (ELHI⊥,CQ)≡UCQ`

, it is clear
that Qw /∈ (ELHI⊥,CQ)≡UCQ`

for some w, with 1 ≤ i ≤ n.
From now on, we use Qa to denote the UCQ`-approximation
of Qw (rather than of Q), which we also compute as part of
the reduction.

To achieve the desiderata for D mentioned above, we next
identify an S-database D such that D |= Qw and D 6|= Qa and,
additionally, if chO(D) |=io qc for a contraction qc of qw, then
there is no ‘less constrained’ contraction that does the same,
even in databases that homomorphically map to D. Here a
contraction qc of qw is less constrained than a contraction q′c
of qw, written qc ≺ q′c, when q′c is a proper contraction of qc.
We write qc � q′c when qc ≺ q′c or qc = q′c.

Lemma 4. There is an S-database D such that the following
conditions are satisfied:

1) D |= Qw and D 6|= Qa;
2) if chO(D) |=io qc, for qc a contraction of qw, then there

is no S-database D′ and contraction q′c of qw such that
D′ → D, chO(D′) |=io q′c, and q′c ≺ qc.



Proof. Since Q /∈ (EL,CQ)≡UCQ`
and Qa ⊆ Qw, we find an S-

database D0 such that D0 |= Qw, but D0 6|= Qa. The database
D0 does not necessarily satisfy Condition 2, though. We thus
replace it by a more suitable database D, which we identify in
an iterative process. Start with D = D0 and as long as there
are an S-database D′ and contractions qc, q′c of q such that
chO(D) |=io qc, D′ → D, chO(D′) |=io q′c, and qc is a proper
contraction of q′c, replace D by D′.

It is clear that the resulting D satisfies Condition (2).
Condition (1) is satisfied as well: we have chO(D) |=io qc for
some contraction qc of qw, thus D |= Qw; further, D → D0

and D0 6|= Qa yield D 6|= Qa. We prove in the appendix that
this iterative process terminates.

The conditions in Lemma 4 are decidable. It can be shown
that it suffices to consider databases D′ of a certain ‘pseudo
tree shape’ (c.f. [7]) which enables a reduction to satisfiability
of monadic second-order logic (MSO) sentences on trees.

Lemma 5. Given an S-database D and an OMQ Q from
(ELHI⊥,CQ), it is decidable whether Conditions 1 and 2
from Lemma 4 hold.

Let D0 be the S-database from Lemma 4. Since the proper-
ties of D0 are independent of G, and due to Lemma 5, we can
find D0 by enumeration. However, D0 is still not as required
and needs to be manipulated further to make it suitable for the
reduction. We start with some preliminaries about unravelings.

For each a ∈ dom(D0), let Da0 be the unraveling of D0

into a database of tree width 1 starting at a, defined in the
appendix. The proof of the following lemma is omitted.

Lemma 6. D0 |= (O,S, p)(a) iff Da0 |= (O,S, p)(a) for all
unary CQs p with Dp of tree width one.1

Of course, Da0 can be infinite. By compactness, however,
there is a finite Da ⊆ Da0 such that Lemma 6 is satisfied
for all (finitely many) p that use only symbols from O and q
and satisfy |p| ≤ max{|O|, |q|}. For brevity, we say that Da
satisfies Lemma 6 for all relevant CQs. We can find Da by
constructing Da0 level by level and deciding after each such
extension whether we have found the desired database, by
checking the condition in Lemma 6 for all relevant CQs.

Now for the further manipulation of D0. We show that D0

can be replaced with a database D+ that is more closely linked
to qw than D0 is. For every D ⊆ D0, let D+ denote the result
of starting with D and then disjointly adding a copy of Da,
identifying the root of this copy with a, for each a ∈ dom(D).
For what follows, choose D ⊆ D0 minimal such that D+ |=
Qw. Note that D contains only binary facts of the form r(a, b)
with a 6= b, but no unary facts of the form A(a) or r(a, a)
since the latter can be made part of Da. We can find D by
considering all subsets of D0.

Lemma 7.
1) D+ satisfies Conditions 1 and 2 of Lemma 4;

1Note that this is a stricter requirement than p being of tree width 1 because
answer variables are omitted from tree decompositions.

2) D has tree width exceeding `.

By Point 2 of Lemma 7 and choice of `, we have that
D contains the k × K-grid as a minor. We can thus apply
Theorem 7 to G, k, and D, obtaining an S-database DG
and a homomorphism h0 from DG to D such that Points 1
and 2 of that theorem are satisfied. Recall that q1, . . . , qn
are the maximal connected components of q, giving rise to
OMQs Q1, . . . , Qn, and that Qi 6⊆ Qj for all i 6= j. As a
consequence, for each i 6= w we can choose an S-database Di
with Di |= Qi and Di 6|= Qw. Let

1) D+
G be obtained by starting with DG and then disjointly

adding, for each a ∈ dom(DG), a copy of Dh0(a)

identifying the root of this copy with a;
2) D∗G be obtained by further disjointly adding
D1, . . . ,Dw−1,Dw+1, . . . ,Dn.

The fpt reduction of p-CLIQUE consists then in computing Q
and D∗G from G and k ≥ 1.

B. Correctness of the Reduction

We show in the subsequent lemma that D∗G |= Q if and
only if G has a k-clique. For a CQ p, we use nt(p) to denote
the result of removing all ‘dangling trees’ from p, where trees
might include reflexive loops and multi-edges and ‘nt’ stands
for ‘no trees’. Formally, nt(p) is the maximal subset of p
(viewed as a set of atoms) such that there is no articulation
point x ∈ var(p) that separates nt(p) into components p1, p2
with p2 of tree width 1. It should be clear that nt(p) is uniquely
defined when p is connected and contains a non-tree part, that
is, the tree width of p exceeds 1.

Lemma 8. G has a k-clique iff D∗G |= Q.

Proof. The ‘only if’ direction is easy. If G has a k-clique,
then D → DG by Point 2 of Theorem 7. It is straightforward
to extend a witnessing homomorphism to one from D+ to
D+
G, and thus D+ → D+

G. Consequently, D+ |= Qw implies
D+
G |= Qw. By construction of D∗ it holds that D∗G |= Q.
For the ‘if’ direction, assume that D∗G |= Q. By choice of

the components in D∗ \D+, this means that D+
G |= Qw. Then

chO(D+
G) |= qw and by Lemma 3, we find a contraction qc

of qw such that chO(D+
G) |=io qc. We have DG → D via the

homomorphism h0 from Theorem 7 and it is straightforward to
extend h0 so that it yields chO(D+

G) → chO(D+). It follows
that chO(D+) |= qc. Thus we find a contraction q′c of qc
such that chO(D+) |=io q′c. We must have qc = q′c since D+

satisfies Condition 2 of Lemma 4, via Lemma 7. Let h be a
homomorphism from qc to chO(D+

G). Then the composition
h0(h(·)) is a homomorphism from qc to chO(D+). Since
chO(D+) |=io qc, this homomorphism must be injective. Let g
be its restriction to the variables in nt(qc).2

The range of g must fall into dom(D) since g is injective:
if the range of g involved an element from a tree width 1 part
of chO(D+), added by the transition from D to D+ or by the

2This is uniquely defined since qc is clearly connected and, moreover, has
tree width exceeding ` because D+ 6|= Qa and thus qc is not a CQ in the
UCQ qa in Qa.



chase, then because of the injectivity of g this gives rise to
an articulation point in nt(qc) that separates nt(qc) into two
components q1, q2 with Gq2 a tree, but such an articulation
point does not exist. Moreover, the elements of chO(D+) that
have not been added by the ·+-construction or by the chase
are precisely those in dom(D).

Moreover, g must satisfy a certain ontoness condition re-
garding the subset D of chO(D+). When we speak of an edge
in D, we mean an edge e = {a, b} ⊆ dom(D) in the Gaifman
graph of D. We say that g maps an atom r(x, y) ∈ nt(qc) to
e if {g(x), g(y)} = {a, b}. It can be verified that
(†) for every edge e in D, there is an atom in nt(qc) that g

maps to e.
Assume to the contrary that g maps no atom in nt(qc) to an
edge {a, b} ∈ D. We show in the appendix that, then the
database D1 obtained from D by removing all binary facts
that involve a and b is such that D+

1 |= Q, contradicting the
choice of D.

We are now ready to finish the proof. At this point, we know
that g is a restriction of h0(h(·)), that it is injective, and that
its range is a subset of dom(D). In fact, the range of g must
be exactly dom(D), by (†) and since D contains only binary
facts. As a consequence, the inverse h−0 of h0 is an injective
total function from dom(D) to dom(chO(D+

G)). We next argue
that its range actually falls within dom(DG), that is, it does
not hit any tree width 1 parts of chO(D+

G), added by the ·+-
construction or by the chase. Any constant from dom(D) oc-
curs in a fact of the form r(a, b). By the ontoness condition (†),
g maps some atom r(x, y) ∈ nt(qc) to the edge {a, b} in D.
But then chO(D+

G) must contain the fact r(h(x), h(y)) and,
moreover, {h(x), h(y)} = {h−0 (a), h−0 (b)}. But r(h(x), h(y))
cannot be in any of the tree width 1 parts of chO(D+

G): since
h is injective, this would give rise to an articulation point in
nt(qc) that separates nt(qc) into two components q1, q2 with
Gq2 a tree. With {h(x), h(y)} = {h−0 (a), h−0 (b)}, we obtain
h−0 (a), h−0 (b) ∈ dom(DG) as desired.

Thus, h−0 is a function from dom(D) to dom(DG). We
show that it is a homomorphism from D to DG, and
thus Point 2 of Theorem 7 yields that G contains a k-
clique, finishing the proof. Let r(a, b) ∈ D. By the on-
toness condition (†), we have that g maps some atom
s(x, y) ∈ nt(qc) to the edge {a, b}. We have already argued
that {h(x), h(y)} = {h−0 (a), h−0 (b)} ⊆ dom(DG). Since
s(h(x), h(y)) ∈ chO(D+

G) and {h(x), h(y)} ⊆ dom(DG),
there must be some fact s′(h(x), h(y)) ∈ DG. By the ‘such
that’ part of Point 1 of Theorem 7 and since {h(x), h(y)} =
{h−0 (a), h−0 (b)}, we have r(a, b) ∈ DG.

We explain in the appendix how to extend the above
proof to the case where OMQs need not be Boolean, which
essentially amounts to choosing also concrete answers along
with databases, and then removing and reading the constants
from the answers at the right places in the proof. We also
explain how to extend the proof from CQs to UCQs. A
difficulty lies in identifying a connected component of some
CQ in the UCQ q that can play the role of qw in the original

proof, despite the presence of the other disjuncts in q. We
overcome this be viewing q as a disjunction of conjunctions of
connected CQs and rewriting q into an equivalent conjunction
of disjunctions of connected CQs.

V. PTIME COMBINED COMPLEXITY

The aim of this section is to establish the following theorem.

Theorem 8. For any recursively enumerable class of OMQs
Q ⊆ (ELHdr⊥ ,UCQ) based on the full schema, the following
are equivalent, unless FPT = W[1]:

1) EVALUATION(Q) is in PTIME combined complexity;
2) p-EVALUATION(Q) is in FPT;
3) Q ⊆ (ELHdr⊥ ,UCQ)≡UCQk

for some k ≥ 1.
If either statement is false, p-EVALUATION(Q) is W[1]-hard.

The ‘1 ⇒ 2’ direction is trivial. For showing ‘2 ⇒ 3’, ob-
serve that Q ⊆ (ELHI⊥,UCQ). Thus, by Theorem 6 and the
hypothesis FPT 6= W[1], Q ⊆ (ELHI⊥,UCQ)≡UCQk

. There-
fore, for every Q ∈ Q, there exists Q′ ∈ (ELHI⊥,UCQk)
such that Q ≡ Q′. Since, by Corollary 1, UCQk-equivalence
coincides with UCQk-equivalence while preserving the ontol-
ogy, we can assume that Q′ ∈ (ELHdr⊥ ,UCQk). This implies
that Q ∈ (ELHdr⊥ ,UCQ)≡UCQk

. It thus remains to address the
‘3⇒ 1’ direction, that is, to prove the following.

Theorem 9. EVALUATION((ELHdr⊥ ,UCQ)≡UCQk
) based on the

full schema is in PTIME combined complexity, for any k ≥ 1.

Evaluating an OMQ (O,S, q) from (ELHdr⊥ ,UCQ) is the
same as evaluating every OMQ (O,S, p), p a CQ in q, and
taking the union of the answer sets. To establish Theorem 9, it
thus suffices to prove that EVALUATION((ELHdr⊥ ,CQ)≡UCQk

)
based on the full schema is in PTIME.

We do this by using a suitable form of existential pebble
game. Such games are also employed in the case of CQ
evaluation over relational databases, that is, in the special
case of Theorem 9 when the ontology is empty [18], [25].
In that case, the game is played on the CQ q and the input
database D, details are given later. When the ontology O
is non-empty, a natural idea is to play the pebble game
on q and chO(D) instead, which can be shown to give the
correct result. However, chO(D) need not be finite. There is a
way to compute in polynomial time a finite representation of
chO(D) [32], but using that representation in place of chO(D)
requires to rewrite q in a way that might increase the tree width
and as a consequence there is no guarantee that the resulting
game delivers the correct result. We thus start by giving a novel
characterization of answers to OMQs from (ELHdr⊥ ,CQ) that
is tailored towards being verified by existential pebble games.

A. Characterization of OMQ Answers

We require several definitions and preliminaries.
Let q be a CQ. A database D is a ditree if the directed

graph (dom(D), {(a, b) | r(a, b) ∈ D}) is a tree. Note that
multi-edges are admitted while reflexive loops are not. We
say that q is a homomorphic preimage of a ditree if there is
a homomorphism from q to a ditree database D. Consider the



CQ q′ obtained from q by exhaustively identifying variables
x1 and x2 whenever there are atoms r(x1, y) and s(x2, y). It
can be verified that q is a homomorphic preimage of a ditree if
and only if Dq′ is a ditree. This also means that it is decidable
in PTIME whether a given q is a homomorphic preimage of a
ditree. If this is the case, then Dq′ is initial among all ditrees
D that q is a homomorphic preimage of, that is, Dq′ admits a
homomorphism to any such D. We use dtreeq(x0) to denote
Dq′ viewed as a CQ, constants corresponding to variables, in
which the root constant is the only answer variable x0 and
all other variables are quantified. If q is not a homomorphic
preimage of a ditree, then dtreeq is undefined.

A pair of variables x, y from q is guarded if they are linked
by an edge in the Gaifman graph of Dq . Let Gq2 be the set of
all guarded pairs of variables from q. For every (x, y) ∈ Gq2
with y quantified and for every i ≥ 0, define reachi(x, y) to
be the smallest set such that

1) x ∈ reach0(x, y) and y ∈ reach1(x, y);
2) if z ∈ reachi(x, y), i > 0, and r(z, u) ∈ q, then u ∈

reachi+1(x, y);
3) if y ∈ reachi+1(x, y) and r(z, y) ∈ q, then z ∈

reachi(x, y).
Moreover, reach(x, y) =

⋃
i reach

i(x, y). A guarded pair
(x, y) is ∃-eligible if q|reach(x,y) is a homomorphic preimage
of a ditree. We use dtree(x,y) as a shorthand for dtreeq|reach(x,y)

.
Informally, (x, y) being ∃-eligible means that in a homo-

morphism h from q to chO(D), for some database D and
some ELHdr⊥ -ontology O, atoms r(x, y) ∈ q can ‘cross the
boundary’ between D and the part of chO(D) generated by the
chase in the sense that h(x) ∈ dom(D) and h(y) is mapped
to a constant that was introduced by the chase. Note that the
chase generates only structures that are ditrees.

Let Q = (O,Sfull, q) be an OMQ from (ELHdr⊥ ,CQ) and
let D be an S-database that is consistent with O. We now
define the central notion underlying the announced character-
ization, called D-labeling of q, which (partially) represents a
homomorphism from the CQ q to chO(D).

An ∃-MCC is a subquery p ⊆ q that constitutes a maximally
connected component of q and contains only quantified vari-
ables. For an S-database D, we use ch−O(D) to denote the re-
striction of chO(D) to the constants in dom(D). A D-labeling
of q is a function ` : var(q)→ dom(D)∪{∃}∪(Gq2×dom(D))}
such that the following conditions are satisfied:

1) `(x) ∈ dom(D) for every answer variable x;
2) the restriction of ` to the variables in V := {x | `(x) ∈

dom(D)} is a homomorphism from q|V to ch−O(D);
3) if r(x, y) ∈ q and `(y) ∈ dom(D), then `(x) ∈ dom(D);
4) if (x, y) ∈ Gq2, `(x) ∈ dom(D), `(y) /∈ dom(D), then

a) (x, y) is ∃-eligible,
b) D |= (O,S, dtree(x,y))(`(x)), and
c) `(y) = ((x′, y′), `(x)) where x′ ∈ reach0(x, y) and
y′ ∈ reach1(x, y);

5) if r(x, y) ∈ q and `(x) = ((x′, y′), a), then `(y) = `(x);
6) if r(x, y) ∈ q, `(y) = ((x′, y′), a), and y /∈

reach0(x′, y′), then `(x) = `(y);

7) if r(x, y) ∈ q, `(y) = ((x′, y′), a), and y ∈
reach0(x′, y′), then `(x) = a;

8) if q′ is an ∃-MCC of q such that `(x) /∈ dom(D) for every
variable x in q′, then q′ is a homomorphic preimage of
a ditree and D |= (O,S,∃x0 dtreeq′).

A D-labeling of q represents a homomorphism h from q to
chO(D) with the following conditions. If `(z) = a ∈ dom(D),
then h(z) = a. If `(z) = ∃, then z is in an ∃-MCC of q and
mapped to a constant generated by the chase. Finally, if `(z) =
((x, y), a), then (the same is true or) h(x) = a ∈ dom(D),
h(y) is a constant generated by the chase, and h(z) is in the
tree-shaped sub-database of chO(D) rooted at h(y).

Lemma 9. For every a ∈ dom(D)|x|, D |= Q(a) iff there is
a D-labeling ` of q(x) such that `(x) = a.

Note that Conditions 1 to 8 can all be verified in polyno-
mial time, essentially because the evaluation of OMQs from
(ELHdr⊥ ,CQ) is in PTIME when the actual CQ is tree-shaped;
this is implicit in [32], see also [12].

Lemma 10. For an OMQ Q = (O,S, q) from (ELHdr⊥ ,CQ),
an S-database D, and a mapping ` : var(q) → dom(D) ∪
{∃}∪ (Gq2× dom(D))}, the problem of deciding whether ` is
a D-labeling of q is in PTIME.

B. Existential Pebble Games

We now describe the polynomial time algorithm for evaluat-
ing OMQs from (ELHdr⊥ ,CQ)≡UCQk

based on the full schema,
first recalling the existential k + 1-pebble games from [18],
in a form that does not make pebbles explicit. The game
is played between two players, Spoiler and Duplicator, on
a CQ q(x), a database D, and a candidate answer a. The
positions are pairs (V, h) that consist of a set V of quantified
variables from q of size at most k + 1 and a mapping
h : V ∪x→ dom(D) such that h(x) = a. The initial position
is (∅, ∅). In each round of the game, Spoiler chooses a new
set V of size at most k + 1. Then Duplicator chooses a new
mapping h : V → dom(D) such that if (V ′, h′) was the
previous position, then h(x) = h′(x) for all x ∈ V ∩ V ′.
Spoiler wins when h is not a homomorphism from q|V to D.
Duplicator wins if she has a winning strategy, that is, if she
can play forever without Spoiler ever winning. It is known
that when q is of tree width bounded by k, then Duplicator
has a winning strategy if and only if there is a homomorphism
from q to D. This remains true if q is equivalent to a CQ
of tree width bounded by k. The existence of a winning
strategy for Duplicator can be decided in polynomial time by a
straightforward elimination procedure: start with the set of all
positions, exhaustively eliminate those from which Duplicator
loses in one round, and then check whether (∅, ∅) has survived.

Now let Q = (O,Sfull, q) be an OMQ from (ELHdr⊥ ,CQ),
D an S-database, and a a candidate answer. To decide whether
D |= Q(a), we can assume that D is consistent with O
since this property is decidable in polynomial time (implicit
in [32]) and the result is clear on inconsistent databases. By
Lemma 9, it suffices to find a D-labeling of q. This is achieved



by a version of the existential k + 1-pebble game in which
positions take the form (V, `) where V is as before and ` is a
mapping from V ∪ x to dom(D) ∪ {∃} ∪ (Gq2(q)× dom(D))
such that `(x) = a. The moves of Spoiler and Duplicator are
as before. Spoiler wins if ` is not a D-labeling of q|V and
the winning condition for Duplicator remains unchanged. The
existence of a winning strategy for Duplicator can be decided
in polynomial time by the same elimination procedure because,
by Lemma 10, it can be decided in polynomial time whether a
given mapping ` is a D-labeling. The following can be proved
in the same way as without ontologies, see [18], [25].

Lemma 11. If q is of tree width at most k, then Duplicator
has a winning strategy if and only if there is a D-labeling of q.

The remaining obstacle on the way to prove Theorem 9 is
that q needs not be of tree width k. It would be convenient
to play on a full rewriting of q instead, which by Theorem 3
is of tree width bounded by k. However, we have no way of
computing a full rewriting in PTIME. The solution is to first
extend q with additional atoms as in the second step of the
construction of rewritings in Section III and to then play on
the resulting CQ q′. It can be shown that this gives the correct
result because when (O,Sfull, qf ) is a full rewriting of Q, then
qf must syntactically be a subquery of q′.

VI. DECIDING SEMANTIC TREE-LIKENESS

We study the complexity of deciding whether a given OMQ
is UCQk-equivalent. Apart from ELHI⊥ and its fragments
introduced in Section II, we also consider the additional
fragments DL-LiteR and DL-LiteRhorn, which are prominent in
ontology-based data integration [2], [15].

A basic concept is a concept name or of one of the forms
>, ⊥, ∃r.>, and ∃r−.>. A DL-LiteRhorn-ontology is a finite set
of statements of the form

B1 u · · · uBn v B r v s r v s− r1 u · · · u rn v ⊥

where B1, . . . , Bn, B range over basic concepts and
r, s, r1, . . . , rn range over role names. A DL-LiteR-ontology O
is a DL-LiteRhorn-ontology such that whenever B1u · · ·uBn v
B ∈ O, then n = 1 or B = ⊥.

A. Non-full Schema

We first concentrate on the case where the schema is non-
full. The next result provides lower bounds.

Theorem 10. For any k ≥ 1, UCQk-equivalence is
1) EXPTIME-hard in (EL,CQ);
2) 2EXPTIME-hard in (ELI,CQ);
3) Πp

2-hard in (DL-LiteR,CQ).
The same lower bounds apply to CQk-equivalence, both while
preserving the ontology and in the general case.

Point 1 is proved by reduction from the problem whether
a given OMQ (O,S, A(x)) from (EL⊥,CQ) is empty (as
defined in Section II), which is known to be EXPTIME-
hard [3]. Point 2 is shown by reducing the word problem of an
exponentially space bounded alternating Turing machine M ,

with work alphabet of size at least k + 1, to the complement
of (U)CQk-equivalence. Our reduction carefully makes use of
a construction from [7], where it is shown that containment
in (ELI,CQ) is 2EXPTIME-hard. For Point 3 we provide a
reduction from ∀∃-QBF, building on and extending an NP-
hardness proof for the combined complexity of (a restricted
version of) query evaluation in (DL-LiteR,CQ) on databases
of the form {A(a)} given in [28].

The next result establishes matching upper bounds.

Theorem 11. For any k ≥ 1, UCQk-equivalence is
1) in EXPTIME in (ELHdr⊥ ,UCQ);
2) in 2EXPTIME in (ELHI⊥,UCQ);
3) in Πp

2 in (DL-LiteRhorn,UCQ).

The proof rests on Corollary 1, that is, we compute
the UCQk-approximation Qa of the input OMQ Q and
check whether Q ⊆ Qa (the converse holds uncondition-
ally). It was shown in [7] that OMQ containment is EXP-
TIME-complete in (ELH⊥,CQ) and 2EXPTIME-complete in
(ELHI⊥,CQ) and in [10]. that OMQ-containment is Πp

2-
complete in (DL-LiteRhorn,CQ). These results extend to the
OMQ languages in Points 1 and 2 of Theorem 11. We
show that with a bit of care we can obtain the same overall
complexities despite the fact that the UCQ in Qa consisting
of exponentially many (polynomial size) CQs.

B. Full Schema

We now focus on the special case of the full schema, where
the complexity of deciding semantic tree-likeness turns out to
be identical to that of query evaluation.

Theorem 12. For any k ≥ 1, and OMQs based on the full
schema, (U)CQk-equivalence is complete for

1) NP between (EL,CQ) and (ELHdr⊥ ,UCQ);
2) EXPTIME between (ELI,CQ) and (ELHI⊥,UCQ);
3) NP between (DL-LiteR,CQ) and (DL-LiteRhorn).

The NP lower bounds are inherited from the case where
the ontology is empty [18], while the EXPTIME lower bound
is proved by a reduction from the subsumption problem in
ELI [5]. The upper bounds rest on Theorem 3, that is, given
an input OMQ Q = (O,S, q) we first extend q to a CQ q′

based onO as in the second step of the construction of retracts,
then guess a subquery q′′ of q′, and finally check whether
Q ⊆ (O,S, q′′). This yields the upper bounds in Theorem 12
as containment of two OMQs that share the same ontology
and are based on the full schema trivially reduces to OMQ
evaluation, which is of the stated complexities [28], [32], [35].

VII. DEALING WITH FUNCTIONAL ROLES

Until now we considered description logics that do not
admit functional roles, an important feature for ontology
modeling. Here we take a first look, focussing on DL-LiteF as
a basic yet prominent such DL [15]. While a main observation
is that functional roles result in serious technical complications
for tree widths exceeding one, we are also able to obtain some



interesting initial results. Throughout the section, we focus on
Boolean CQs (BCQs).

Recall that a basic concept is a concept name or of one of
the forms >, ⊥, ∃r.>, and ∃r−.>. A DL-LiteF -ontology is a
finite set of statements of the form

B1 v B2 B1u· · ·uBn v ⊥ r1u· · ·u rn v ⊥ (funct r)

where B1, . . . , Bn range over basic concepts and r1, . . . , rn, r
range over role names. An interpretation satisfies (funct r) if
whenever (d, e1) ∈ rI and (d, e2) ∈ rI , then e1 = e2.

In the DL-LiteF case, our problems are tightly related to
the semantic tree-likeness of BCQs over relational databases
in the presence of key dependencies studied by Figueira [23].
We argue in the appendix that the results of [23] can easily
be generalized to unions of BCQs (UBCQ). This entails
an interesting statement about DL-LiteF= , the fragment of
DL-LiteF that admits only functionality assertions, but no
inclusions of any kind.

Theorem 13 (Figueira). For OMQs from (DL-LiteF=,UBCQ)
based on the full schema, UBCQk-equivalence while preserv-
ing the ontology is in 2EXPTIME, for any k ≥ 1. Moreover, an
equivalent OMQ from (DL-LiteF=,UBCQk) can be constructed
in double exponential time (if it exists).

The above result relies on a sophisticated argument based on
tree walking automata. It is open whether the 2EXPTIME upper
bound is optimal. The best known lower bound is NP, from
the case without functionality assertions [18].

We now use Theorem 13 to obtain results for DL-LiteF .
Let (DL-LiteF ,UBCQ)≡,poUBCQk

denote the class of OMQs from
(DL-LiteF ,UBCQ) that are UBCQk-equivalent while preserv-
ing the ontology.

Theorem 14. For any k ≥ 1,
1) p-EVALUATION((DL-LiteF ,UBCQ)≡,poUBCQk

) based on the
full schema is in FPT.

2) For OMQs from (DL-LiteF ,UBCQ) based on the full
schema, UBCQk-equivalence while preserving the ontol-
ogy is in 3EXPTIME.

The proof of Theorem 14 uses first-order rewritability.
For a DL-LiteF -ontology O, let O= be the set of function-
ality assertions in O. We show that every OMQ Q from
(DL-LiteF ,UBCQ) can be rewritten into a UBCQ rew(Q)
such that, for every database D that satisfies O=, Q(D) =
rew(Q)(D). Further, our rewriting procedure preserves the
tree width, that is, for every Q ∈ (DL-LiteF ,UBCQk),
rew(Q) ∈ UBCQk. We obtain the following.

Lemma 12. Fix k ≥ 1. For an OMQ Q = (O,Sfull, q) ∈
(DL-LiteF ,UBCQ) the following are equivalent:

1) Q is UBCQk-equivalent while preserving the ontology;
2) (O=,Sfull, rew(Q)) is UBCQk-equivalent while preserv-

ing the ontology.

Since the UBCQ rew(Q) can be constructed in time single
exponential in the size of Q [15], Theorem 14 is a consequence
of Theorem 13 and Lemma 12.

As already observed in [6], [23], the case k = 1, is more
well-behaved than the general case. The main reason is the
fact that the chase procedure for DL-LiteF= , which identifies
terms according to the functionality assertions in the ontology,
preserves tree width 1 in the sense that when a database D is of
tree width 1, then so is chO(D). This fails for tree widths larger
than 1. It has, in fact, been observed by Figueira (Lemma 4.3
in [23]) that when starting with a database of tree width k > 1,
then the chase can arbitrarily increase the tree width even if
O consists only of a single functionality assertion.

By exploiting the above property, we can strengthen The-
orem 14 for the case k = 1, using an approach that does
not rely on Theorem 13. In fact, we show that every OMQ
Q = (O,S, q) from (DL-LiteF ,UBCQ) can be rewritten
in polynomial time into an OMQ Q′ = (Ov,S, q′), where
Ov denotes the result of removing from O all functionality
assertions, such that Q is UBCQ1-equivalent iff Q′ is; the
proof of the latter again involves first-order rewritability. This
allows us to apply results from previous sections, in particular
Corollary 1, Theorem 8, and Theorem 12.

Theorem 15.
1) In (DL-LiteF ,UBCQ), UBCQ1-equivalence coincides

with UBCQ1-equivalence while preserving the ontology.
2) EVALUATION((DL-LiteF ,UBCQ)≡UBCQ1

) based on the
full schema is in PTIME.

3) For OMQs from (DL-LiteF ,UBCQ) based on the full
schema, UBCQ1-equivalence is NP-complete.

The upper bounds in Theorems 14 and 15 extend to DL-
LiteFhorn in a straightforward way, that is, to the extension of
DL-LiteF with statements of the form B1 u · · · u Bn v B.
Moreover, Theorem 15 extends to the non-Boolean case.

VIII. CONCLUSION

An intriguing open problem that emerges from this paper is
whether Theorem 8 can be generalized to the case where the
schema is not required to be full, that is, whether OMQ eval-
uation is in PTIME in (EL,CQ)≡UCQk

and modest extensions
thereof such as (ELHdr⊥ ,UCQ)≡UCQk

. Note that the companion
Theorem 4 does not assume the full schema. Related to this
seems to be the problem whether CQk-equivalence coincides
with UCQk-equivalence in (EL,CQ); recall that this is not the
case in (ELI,CQ) by Proposition 4.

Being a bit more adventurous, one could be interested in
classifying PTIME combined complexity within (ELI,CQ)
and related languages, and in classifying PTIME combined
complexity and FPT for DLs with functional roles, existential
rule languages such as (frontier-)guarded rules, and DLs that
include negation and disjunction such as ALC and SHIQ.
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APPENDIX

TECHNICAL LEMMAS AND CONSTRUCTIONS

We give some fundamental lemmas and technical construc-
tions used in proofs throughout the paper. The following facts
about homomorphisms, databases, and OMQs are well-known,
see for example [13].

Lemma 13. Let D1 and D2 be databases, h a homomor-
phism from D1 to D2, and Q = (O,S, q) an OMQ from
(ELHI⊥,UCQ). Then

1) if D2 is consistent with O, then so is D1;
2) if D1 |= Q(a), then D2 |= Q(h(a)) for all tuples a over

dom(D1).

The chase. We next introduce a version of the well-known
chase procedure, see for example [33]. The constants in
chO(D) that are not in D are called fresh.

Let O be an ELHI⊥-ontology. Consider the following
two chase rules that extend an interpretation I based on the
inclusions in O:

1) if a ∈ CI , C v D ∈ O, and D 6= ⊥, then add D(a) to I;
2) if (a, b) ∈ rI and r v s ∈ O, then add s(a, b) to I.

In Rule 1, ‘add D(a) to I’ means to add to I a finite database
that represents the ELI-concept D, identifying its root with
a. For example, the concept A u ∃r.(B u ∃s.>) corresponds
to the database {A(a), r(a, b), B(b), s(b, c)}.

Let D be a database. The chase of D with O, denoted
chO(D), is the potentially infinite interpretation that is ob-
tained as the limit of any sequence I0, I1, . . . , where
• I0 = D,
• Ii+1 is obtained from Ii by applying both chase rules in

all possible ways, and
• rule application is fair, which intuitively means that if

an assertion C v D with D 6= ⊥, or r v s in O is
not satisfied at some point during the construction of the
chase, then eventually it will be satisfied.

Since our chase is oblivious, that is, Rule 1 adds a D(a) to Ii
even if a ∈ DIi , the result of all these sequences is identical
up to isomorphism.

Containment under full schema. The following lemma
characterizes containment between OMQs based on UCQs and
the full schema. It is an extension of a classic lemma for
containment of UCQs [39].

Lemma 14. Let Qi = (Oi,Sfull, qi) ∈ (EL⊥,UCQ), i ∈
{1, 2}. Then Q1 ⊆ Q2 iff for every CQ q′1 in q1 such that Dq′1
is consistent with O1, there is a CQ q′2 in q2 q′2 → chO2

(q′1).

Unravelings. We next describe the unraveling of a database
into a (potentially infinite) database of bounded tree width. Let
D be a database and k ≥ 1. The k-unraveling of D is obtained
as the limit of a (potentially) infinite sequence of databases
D0,D1, . . . . Along with this sequence, we define additional
sequences (V0, E0, µ0), (V1, E1, µ1), . . . and π0, π1, . . . such
that (Vi, Ei, µi) is a tree decomposition of Di of width at most
k and πi is a function from dom(Di)→ dom(D) such that for

each v ∈ Vi we have that πi|µi(v) is an isomorphism between
Di|µi(v) and an induced subdatabase of D. The initial database
D0 is empty and V0 consists of a single vertex v with µ0(v) =
∅. For each i ≥ 0, we obtain Di+1, (Vi+1, Ei+1, µi+1), and
πi+1 by extending Di, (Vi, Ei, µi), and πi as follows: for every
v ∈ Vi that is a leaf in the tree (Vi, Ei) and every non-empty
subdatabase D′ of D with dom(D′) ≤ k+ 1, add a successor
v′ of v; as µi+1(v′), use the isomorphic copy of D′ obtained
by replacing a ∈ dom(D′) with b ∈ µi(v) if πi(b) = a and
with a fresh constant otherwise. These renamings also define
πi+1, in the obvious way. Let Du, (V,E, µ), and π be the
limits of the constructed sequences. It is clear that (V,E, µ)
is an (infinite) tree decomposition of D of width at most k.

For a tuple a over dom(D), we define the k-unraveling of
D up to a, denoted Dua , to be the database obtained by starting
with the unraveling D|ua of the restriction D|a of D to those
facts that do not involve a constant from a and then adding
the following facts:

1) all facts from D that involve only constants from a;
2) for every r(a, b) ∈ D with {a, b} ∩ a = {a} and every

c ∈ dom(D|ua) with π(c) = b, the fact r(a, c);
3) for every r(b, a) ∈ D with {a, b} ∩ a = {a} and every

c ∈ dom(D|ua) with π(c) = b, the fact r(c, a).

The following lemma summarizes the main properties of k-
unravelings.

Lemma 15. Let D be a database, k ≥ 1, a ∈ dom(D)n, and
Dua be the k-unraveling of D up to a. Then

1) Dua → D via a homomorphism that is the identity on a;
2) chO(Dua) → chO(D) via a homomorphism that is the

identity on a, for all ELHI⊥-ontologies O;
3) D is consistent with O iff Dua is consistent with O, for

all ELHI⊥-ontologies O;
4) D |= Q(a) iff Dua |= Q(a), for all OMQs Q from

(ELHI⊥,UCQk).

Proof. (1) The function π : dom(D|ua) → dom(D|a) intro-
duced during the construction of D|ua is a homomorphism from
D|ua to D|a. We can extend π to a homomorphism π′ from
Dua to D by setting π(a) = a for all a ∈ a.

(2) We argue that π can be extended to a homomorphism f
from chO(Dua) to chO(D) that is the identity on a. For every
b ∈ dom(Dua), let (chO(Dua))b be the subdatabase of chO(Dua)
induced by the constants from dom(chO(Dua)) which are
reachable from b in the Gaifman graph of chO(Dua) and are
not from dom(Dua) (except for b). That is, (chO(Dua))b is the
anonymous part of the chase that ‘starts’ at b. To prepare for
the proofs of Points (3) and (4), we take care that f satisfies
the following additional properties:

1) f is surjective;
2) a ∈ CchO(Du

a ) iff f(a) ∈ CchO(D) for all a ∈
dom(chO(Dua)) and ELI-concepts C;

3) for every b ∈ dom(Dua), (chO(Dua))b and (chO(D))h(b)
are isomorphic, with f |−dom((chO(D))h(b))

being a bijective
homomorphism from (chO(D))h(b) to (chO(Dua))b.



Let I0, I1, . . . and J0,J1, . . . be the chase sequences for
the construction of chO(Dua) and chO(Da), respectively. We
construct f0, f1, . . . , each fi being a homomorphism from
Ii to Ji such that Properties 1-3 above are satisfied (with
chO(Dua) replaced by Ii and chO(D) replaced by Ji).

To start, set f = π. It can be verified that Properties 1-3
hold for the base case, where I0 = Dua and J0 = Da. For
i > 0, we make a case distinction regarding which of the two
chase rules is applied. In case of Rule 1, it is straightforward
to extend fi−1 to the freshly introduced constants in Ii, and
to verify that Properties 1 to 3 above are still satisfied. In case
of Rule 2, it is not even necessary to extend fi−1.

The desired homomorphism f is obtained as
⋃
i fi.

(3) The ‘only if’ direction follows from Point 1 and
Lemma 13. For the ‘if’ direction, we exploit Property 2 of the
homomorphism f constructed in the proof of Point 2 above:
for every concept inclusion C v ⊥ in O′, there exists some
a ∈ dom(chO(Dua)) with chO(Dua) |= C(a) iff there exists
some b ∈ dom(chO(Da)) with chO(Da) |= C(b).

(4) The ‘if’ direction follows from Point 1 and Lemma 13.
For ‘only if’, let D |= Q(a), with Q = (O,S, q). If D is

inconsistent with O, then Dua is inconsistent as well by Point 3,
and thus Dua |= Q(a).

Assume that D is consistent with O. Since D |= Q(a),
there is a homomorphism h from some CQ p(x) in q to
chO(D) such that h(x) = a. It suffices to show that there is a
homomorphism g from p(x) to chO(Dua) such that g(x) = a.
We assume w.l.o.g. that p is connected (otherwise we can treat
one maximal connected component at a time).

We distinguish between two cases. In the first case, the
range of h does not contain any constant from D. In this
case p is Boolean and it maps completely into the anonymous
part of chO(D). Then, there must be some b ∈ dom(D) such
that the image of p under h is a subdatabase of (chO(D))b.
Let b′ ∈ dom(Dua) be such that f(b′) = b, where f is the
homomorphism described at Point 2 above. Note that such a
b′ always exists as f is surjective. Then, from Property 3 of
f mentioned at Point 2 above, it follows that (chO(D))b →
(chO(Dua))b′ via the homomorphism f |−dom((chO(D))h(b))

. Then
f |−dom((chO(D))h(b))

◦h is a homomorphism from p to chO(Dua).
If the range of h does contain some constant from dom(D),

let z be the set of those variables z of var(p) for which h(z) ∈
dom(D|a). If z is not empty, let (V ′, E′, µ′) be some tree
decomposition of p|z of width at most k (as z cannot contain
any answer variable, p|z has tree width at most k). Also let
(V,E, µ) be the tree decomposition of width k of D|ua resulting
from the construction of D|ua . We proceed inductively on each
bag from V ′, starting with an arbitrary bag v′. We have that the
image of v′ under h is a subdatabase D′ of D of size at most
k+1. Then, there must be some v ∈ V such that the restriction
of D|ua to µ(v) is isomorphic to D′ (by construction of D|ua)
and f |−dom(D′) is a homomorphism from D′ to that restriction.
We set g(z) = f |−dom(D′)(h(z)), for every z ∈ µ′(v′).

At each subsequent induction step, we consider all bags
which intersect with a given bag v′ ∈ V ′ and extend g

accordingly (this is possible due to the fact that (V ′, E′, µ′)
has width at most k).

We next define g(z) = h(z), for every variable y ∈ var(p)
for which h(y) ∈ a. Note that at this point, g is defined on all
variables y from var(p) for which h(y) ∈ dom(D). Further
on, g has the property that f(g(y)) = h(y), for every such
variable y. The remaining variables from var(p) are mapped
by h into the ‘existential part’ of chO(D). By exploiting the
above mentioned property of g and using a technique similar to
the one employed in the case where all variables from p were
mapped into the existential part of the chase, we can extend
g to a full homomorphism from p(x) to chO(D|ua) such that
g(x) = a.

We also need a slightly different version of unraveling a
database D into a database of tree width 1, which we introduce
next. The difference to the unravelings above is that we choose
a constant a ∈ dom(D) at which to start the unraveling.

For a constant a ∈ dom(D), the 1-unraveling of D at a
is defined similarly to the 1-unraveling of D except that we
start the construction with the (potentially empty) restriction
of D to facts that involve only the constant a, with the
tree decomposition (V0, E0, µ0) where V0 contains a single
vertex v with µ0(v) = {a} rather than µ0(v) = ∅, and with
the function π0 that is the identity on a.

PROOFS FOR SECTION III

Proposition 3. p-EVALUATION(ELHI⊥,UCQk) is in FPT,
for any k ≥ 1, with single exponential running time in the
parameter.

Proof. (sketch) Let the following be given: an OMQ Q =
(O,S, q) from (ELHI⊥,UCQk), an S-database D0, and a
candidate answer a ∈ dom(D0).

Our algorithm consists of three different steps. We start with
some preliminaries. We assume w.l.o.g. that the ontology is in
normal form, that is, all concept inclusions in it are of one of
the forms

> v A, A v ⊥, A1uA2 v A, ∃r.A v B, A v ∃r.B

where A,B,A1, A2 range over concept names and r ranges
over roles. It is well-known that every can be converted into
normal form in linear time with the resulting ontology being
equivalent up to the introduction of fresh concept names [4].

An extended database is a database that might additionally
contain concept facts of the form C(a) with C an ELI-
concept. An interpretation I satisfies a concept fact C(a) if
a ∈ CI . It is a model of an extended database B if I is a
model of all facts in B, including the concept facts. We write
B,O |= C(a) if every model of B and O satisfies C(a). With
sub(O), we denote the set of all subconcepts of concepts that
occur in O. For ELI⊥-concepts C,D, we write O |= C v D
if CI ⊆ DI for all models I of O. Whether O |= C v D
can be decided in single exponential time [4].



Step 1. We exhaustively apply the following chase rules,
starting with the database D = D0 and producing a sequence
of extended databases:

1) if C1(a), . . . , Cn(a) ∈ D, O |= C1 u · · · u Cn v C with
C ∈ sub(O), and C(a) /∈ D, then add C(a) to D;

2) if r(a, b), C(b) ∈ D, ∃r.C v D ∈ O, and D(a) /∈ D,
then add D(a) to D;

3) if r(a, b) ∈ D, r v s ∈ O, and s(a, b) /∈ D, then add
s(a, b) to D.

It is clear that no chase rule is applicable after at most
polynomially many steps. From now on, we use D to refer
to the extended database resulting from the chase. It is not
difficult to show the following.

Claim. For all a ∈ dom(D0) and C ∈ sub(O), D0,O |= C(a)
iff C(a) ∈ D.

Therefore, if D contains a concept fact of the form ⊥(a),
then D0 is inconsistent with O and we can answer ‘true’.
Otherwise, D0 is consistent with O.

Step 2. A type is a subset t ⊆ sub(O). For each inter-
pretation I and a ∈ dom(D), the type realized at a in I is
tIa = {C ∈ sub(O) | a ∈ CI}. For types, t1, t2, we write
O |= t1  t2 if every model of O that realizes t1 also
realizes t2. For every role r, we write O |=max t1 v ∃r.t2 if
O |= t1 v ∃r.t2 and t2 is maximal with this property regarding
set inclusion. It is not hard to see that both O |= t1  t2 and
O |=max t1 v ∃r.t2 can also be decided in single exponential
time. For example, the former is equivalent to B,O′ |= A(a)
where B is the extended database {C(a) | C ∈ t1}, O′ is O
extended with u t2 v ⊥, and A is a fresh concept name.

In Step 2, we first extend D as follows: for every a ∈
dom(D), every type t with O |= tDa  t, and every C ∈ t,
add C(at). Note that this extension relies on Step 1 to make
explicit the types of the constants in dom(D0). We then apply
the following chase rule exactly |q| times:
(∗) for every a ∈ dom(D) and every role r and type t such

that O |=max tDa v ∃r.t and there is no b ∈ dom(D) with
r(a, b) ∈ D and tDb ⊇ t, add r(a, b) and C(b) for every
C ∈ t, with b a fresh constant.

This second chase generates a tree of depth up to |q| below
each constant from dom(D0) and we again denote the result
with D. If we chased forever rather than only |q| steps,
we would obtain a (potentially infinite) universal model of
D0 and O. The truncated version D constructed here is not
universal, but every neighborhood of diameter at most |q| in
the universal model is also present in D, due to the extension
of D carried out before starting the second chase. Thus,
D0 |= Q(a) iff there is a homomorphism from q(x) to D
with h(x) = a iff D |= q(a) in the standard sense of relational
databases.

Step 3. Apply the polynomial time algorithm for evaluating
CQs of tree width bounded by k (see Theorem 1) to q and D.

The correctness of the algorithm follows from what was
said above. Regarding the overall running time, it is not hard

to see that |dom(D)| ≤ |D0| + |D0| · |O||q| and thus |D0| ≤
p(|D0|·|O||q|), p a polynomial. Since the check in Step 3 needs
only polynomial time, this gives the desired 2p(|Q|) · p(|D0|)
bound on the running time where p is again a polynomial.

Proposition 4. In (ELI,CQ), the notions of CQ1-equivalence
while preserving the ontology and UCQ1-equivalence while
preserving the ontology do not coincide.

Proof. Let Q = (O,S, q) be an OMQ from (ELI, CQ) with:

O = {B1 v A1 B1 u ∃r−.B4 v A3

B2 v A2 B2 u ∃r.C1 v A4

B3 v A3 ∃r.B3 u C2 v A4

B4 v A4 B4 u ∃r.C3 v A2

C1 v A1 ∃r.C1 u C4 v A2

C2 v A2 C2 u ∃r.B1 v A4

C3 v A3 ∃r.C3 uB2 v A4

C4 v A4 C4 u ∃r.B3 v A2},
S = {B1, B2, B3, B4, C1, C2, C3, C4, r}.

and q the CQ from Example 1.
Then Q is UCQ1-equivalent, but not CQ1-equivalent

while preserving the ontology. We have that Q ≡
(O,S,∃x1∃x2∃x3∃x4 (ϕ1 ∨ ϕ2)), where:

ϕ1 = r(x2, x1)∧r(x2, x3)∧A1(x1)∧A2(x2)∧A4(x2)∧A3(x3)

and

ϕ2 = r(x2, x1)∧r(x4, x1)∧A1(x1)∧A3(x1)∧A2(x2)∧A4(x4).

To see that Q is not CQ1-equivalent while preserving the
ontology, assume the contrary. Then, there exists some OMQ
Q′ = (O,S, q′) with q′ from CQ1 such that Q ≡ Q′. Let

D1 = {r(b2, b1), r(b2, b3), r(b4, b3), r(b4, b1),

B1(b1), B2(b2), B3(b3), B4(b4)}
D2 = {r(c2, c1), r(c2, c3), r(c4, c3), r(c4, c1),

C1(c1), C2(c2), C3(c3), C4(c4)}.

Then D1 |= Q and D2 |= Q. Thus D1 |= Q′ and D2 |= Q′ and
consequently chO(D1)×chO(D2) |= q′ where ‘×’ denotes the
direct product. It can be verified that chO(D1)× chO(D2) is
isomorphic to Dq . As q′ is from CQ1, it follows that Duq |= q′,
where Duq is the 1-unraveling of Dq , that is,

Duq = {C1(x1), C2(x2), C3(x3), C4(x4), C1(x5), . . .

r(x2, x1), r(x2, x3), r(x4, x3), r(x4, x5), . . .}

Let Qu = (O,S, qu), qu a Boolean CQ such that Dqu = Du
q .

Then, Qu ⊆ Q′ ≡ Q and Q ⊆ Qu. Thus, Q ≡ Qu. Now
consider the database

D12 = {r(x2, x1), r(x2, x3), r(x4, x3), r(x4, x5), . . . ,

B1(x1), B2(x2), B3(x3), B4(x4),

C1(x5), C2(x6), C3(x7), C4(x8),

B1(x9), . . . ,

. . . }



We have that D12 |= Qu, but D12 6|= Q – contradiction.

Theorem 2. Let Q be an OMQ from (ELHI⊥,UCQ), k ≥ 1,
and Qa the UCQk-approximation of Q. Then

1) Q(D) = Qa(D) for any S-database D of treewidth ≤ k;
2) Q′ ⊆ Qa for every Q′ ∈ (ELHI⊥,UCQk) with Q′ ⊆ Q.

Proof. Let Q = (O,S, q) and Qa = (O,S, qa). For Point 1,
further let D be an S-database of tree width at most k. We can
assume that D is consistent with O. We have Qa(D) ⊆ Q(D)
by construction of Qa, independently of the tree width of D.
For the converse, let a ∈ Q(D). By Lemma 1, we find a
CQ p(x) in q and a homomorphism h from p to chO(Dua)
with h(x) = a. Let p̂(x) be the contraction of p obtained by
identifying any two variables z1 and z2 with h(z1) = h(z2).
Since D has tree width at most k, by Lemma 1 so has
chO(Dua). Consequently, also p̂ has tree width at most k and
thus is a CQ in qa. It follows that a ∈ Qa(D).

For Point 2, let Q′ = (O′,S, q′). Take an S-database D such
that D |= Q′(a). We can assume that D is consistent with O.
Consider Dua , the k-unraveling of D up to a. Lemma 15 yields
Dua |= Q′(a) and consequently Dua |= Q(a). From Point 1,
we thus get Dua |= Qa(a). By Lemma 15, there is also a
homomorphism g from chO(Dua) to chO(D) with h(a) = a.
Lemma 13 yields D |= Qa(a) as required.

Before proceeding to the proof of Theorem 3, we provide
some preliminary results. First of all, the main purpose of
Step 2 in the definition of the notion of rewriting of O is to
deal with the fact that O-retracts are defined with respect to the
chase of the original query rather than the resulting O-retract.
It enables the following basic lemma.

Lemma 16. Let Q = (O,Sfull, q) be an OMQ from
(ELHI⊥,CQ) and Q′ = (O,Sfull, q

′) a rewriting of Q based
on the O-retract qh. Then h is a homomorphism from q
to chO(q′).

Proof. By definition of O-retracts, h is a homomorphism
from q to chO(q) such that all variables from ran+(h) are
also in qh, thus in q′. Due to Step 2 in the construction of q′,
for each x ∈ ran+(h), we have x ∈ CDq iff x ∈ CDq′ for
all concepts C that occur on the left-hand side of a concept
inclusion in O. Using the definition of the chase, the following
is easy to verify:

Claim. If D1,D2 are databases, ai ∈ Di for i ∈ {1, 2}
and a1 ∈ CD1 iff a2 ∈ CD2 for all concepts C that
occur on the left-hand side of a concept inclusion in O, then
the subdatabase of tree width 1 that the chase generates in
chO(D1) below a1 is isomorphic to the one that it generates
in chO(D2) below a2.

Consequently, h is a homomorphism from q to chO(q′).

We prove next that an OMQs is in fact equivalent to any of
its rewritings.

Lemma 2. Let Q = (O,Sfull, q) be an OMQ from
(ELHI⊥,CQ) and Q′ = (O,Sfull, q

′) a rewriting of Q. Then
Q ≡ Q′.

Proof. Let Q′ be based on the O-retract qh.

‘Q ⊆ Q′’. Assume that D |= Q(a). We can assume w.l.o.g.
that D is consistent with O. Then there is a homomorphism g
from q(x) to chO(D) with g(x) = a. Since qh is a sub-
query of q, g also demonstrates that D |= Qh(a) where
Qh = (O,Sfull, qh). Further, we can extend g to show that
D |= Q′(a). Let C v D ∈ O and x ∈ CDq . Then a fresh copy
qC of C viewed as a CQ was added to qh in the construction
of q′, identifying x with the root of qC . But since x ∈ CDq ,
we must have g(x) ∈ CD. As a consequence, we can extend
g to qC .

‘Q′ ⊆ Q’. Assume that D |= Q′(a). We can assume w.l.o.g.
that D is consistent with O. Then there is a homomorphism g
from q′(x) to chO(D) with g(x) = a. It is possible to extend
g to a homomorphism from chO(q′) to chO(D) by inductively
following the applications of the chase rules. By Lemma 16,
h is a homomorphism from q to chO(q′). Composing h with g
yields a homomorphism h′ from q(x) to chO(D) with h′(x) =
a and thus D |= Q(a).

Theorem 3. Let Q = (O,Sfull, q) be a non-empty OMQ from
(ELHI⊥,CQ) and k ≥ 1. The following are equivalent:

1) Q is UCQk-equivalent;
2) Q has a rewriting that falls within (ELHI⊥,CQk);
3) some full rewriting of Q falls within (ELHI⊥,CQk);
4) all full rewritings of Q fall within (ELHI⊥,CQk).

Proof. ‘3⇒ 2’ and ‘2⇒ 1’ are immediate, and so is ‘4⇒ 3’
since a full rewriting clearly always exists. We show ‘1⇒ 4’.
For q a CQ we say that we first q is fully O-retracted if it
has no proper O-retract. We first establish the following claim
about the surjectivity of homomorphisms from q to chO(q)
when q is fully O-retracted.

Claim. Let q be a CQ and O an ELHI⊥-ontology such that q
is fully O-retracted, and let h be a homomorphism from q(x)
to chO(q) with h(x) = x. Then ran+(h) = var(q).

Proof of claim. Assume to the contrary that ran+(h) ( var(q).
We can extend h to a homomorphism h′ from chO(q) to
chO(q) by inductively following the application of the chase
rule. Let n = |var(q)| and let g be the n!-fold composition
of h′ with itself, restricted to var(q). It can be verified
that g is a homomorphism from q to chO(q) that is the
identity on all answer variables and variables in its range,
thus an O-retraction. Moreover, ran+(h) ( var(q) implies
ran+(g) ( var(q) and thus g induces a proper O-retract of q.
This contradicts the fact that q is fully O-retracted, and thus
the claim is established.

Now assume that Q = (O,Sfull, q) ∈ (ELHI⊥,CQ) is
UCQk-equivalent. By Corollary 1, this is witnessed by an
equivalent OMQ Q′ = (O,Sfull, q

′) from (ELHI⊥,UCQk).
Since Q is non-empty, so is Q′ and we can assume w.l.o.g.



that Dp is consistent with O for any CQ p in q′. Let
Qf = (O,Sfull, qf ) be any full rewriting of Q. Assume w.l.o.g.
that q, q′, and qf all have the same answer variables x. By
Lemma 2, Qf and Q′ are equivalent and by Lemma 14 and
since Dq′ is consistent with O, there must be a CQ p in q′

and homomorphisms
• h1 from qf to chO(p) with h1(x) = x and
• h2 from p to chO(qf ) with h2(x) = x.

We can extend h2 to a homomorphism from chO(p) to
chO(qf ), by inductively following the applications of the chase
rules. Let h denote the composition h2 ◦h1. By the claim, we
must have ran+(h) = var(q). As a consequence, h1 must be
injective. But p has tree width at most k, and consequently
so has chO(p). It thus follows from h1 being injective that qf
also has tree width at most k.

PROOFS FOR SECTION IV

Theorem 7 (Grohe). Given an undirected graph G = (V,E),
a k > 0, and a connected S-database D such that GD contains
the k ×K-grid as a minor, one can construct in time f(k) ·
poly(|G|, |D|) an S-database DG such that:

1) there is a surjective homomorphism h0 from DG to D
such that for every edge {a, b} in the Gaifman graph of
DG: s(a, b) ∈ DG iff s(h0(a), h0(b)) ∈ D for all roles s;

2) G contains a k-clique iff there is a homomorphism h from
D to DG such that h0(h(·)) is the identity.

Proof. A careful analysis of [25] reveals that the proof
given there establishes Theorem 7 without the ‘such that’
condition in Point 1. That condition, however, can easily be
attained as follows. Assume that G, k, and D are given.
First rewrite D into a new schema S′ that consists of the
concept names in S and a fresh role name rR for every set
R ⊂ {r, r− | r role name in S}, by replacing every maximal
set {r0(a, b), . . . , rn(a, b)}, r1, . . . , rn (potentially inverse)
roles, with the fact rr0,...,rn(a, b). Then apply Theorem 7
without the ‘such that’ condition in Point 1, obtaining D′G
and h0. Now revert back D′G to schema S in the obvious
way. It can be verified that the resulting database DG and h0
satisfy Conditions 1 and 2, also with the ‘such that’ condition
in Point 1.

Lemma 3. If D |= p, for D a potentially infinite database
and p a CQ, then D |=io pc for some contraction pc of p.

Proof. We can find pc by the following iterative process: start
with pc = p and then exhaustively take a homomorphism h
from pc to chO(D) and if h is not injective, replace pc with the
contraction p′c of pc induced by h, that is, identify quantified
variables y1 and y2 if h(y1) = h(y2). Clearly, this process
must terminate since the number of variables in pc decreases
with each step.

Lemma 4. There is an S-database D such that the following
conditions are satisfied:

1) D |= Qw and D 6|= Qa;

2) if chO(D) |=io qc, for qc a contraction of qw, then there
is no S-database D′ and contraction q′c of qw such that
D′ → D, chO(D′) |=io q′c, and q′c ≺ qc.

Proof. It remains to argue that the iterative process described
in the main part of the paper terminates. For an S-database
B let QB denote the set of contractions qc of qw such that
chO(B) |=io qc. The partial order ‘�’ lifts to sets Q1,Q2 of
contractions of q in the obvious way: Q1 � Q2 if for every
qc ∈ Q1, there is a q′c ∈ Q2 with qc � q′c. As usual, we write
Q1 ≺ Q2 if Q1 � Q2 and Q1 6� Q2.

Observe that whenever D is replaced by D′ in the iterative
process, then QD′ ≺ QD:

1) QD′ � QD: Let qc ∈ QD′ . Using D′ → D, one can prove
that chO(D′) → chO(D), following the applications of
the chase rules. From chO(D′) |= qc, we thus obtain
chO(D) |= qc. By Lemma 3, we find a q′c with qc � q′c
and chO(D) |=io q′c, thus q′c ∈ QD.

2) QD 6� QD′ : Assume that D was replaced by D′ because
of the contractions qc and q′c with chO(D) |=io qc,
chO(D′) |=io q′c and q′c � qc. Then qc ∈ QD. We show
that there is no q′′c ∈ QD′ with qc � q′′c . Assume to the
contrary that there is such a q′′c . Then chO(D′) |=io q′′c
and thus there is a homomorphism h from q′′c to chO(D′).
We also have qc → q′′c and q′c → qc via a non-injective
homomorphism since qc is a proper contraction of q′c. By
composition, we obtain a non-injective homomophism h′

from q′c to chO(D′), in contradiction to q′c ∈ QD′ .
Note that ‘�’ is a partial order on the contractions of qw.
It remains to note then that when ‘≺’ is interpreted on sets
of contractions is trivially well-founded. This is because ≺ is
strict and there are only finitely many contractions of qw.

Lemma 5. Given an S-database D and an OMQ Q from
(ELHI⊥,CQ), it is decidable whether Conditions 1 and 2
from Lemma 4 hold.

Proof. Condition 1 is decidable since OMQ evaluation is. For
Condition 2, we first show that it suffices to look at databases
D′ of a certain restricted shape called pseudo trees [7] and
then argue that this enables a reduction to the satisfiability of
MSO sentences on trees. An alternative for the second step
is a reduction to the emptiness problem of alternating tree
automata, which we conjecture to deliver a 2EXPTIME upper
bound.

Pseudo trees. A database D is a pseudo tree if it is the union
of databases D0, . . . ,Dm that satisfy the following conditions:

1) D1, . . . ,Dm are of tree width one;
2) dom(Di) ∩ dom(Dj) = ∅, for 1 ≤ i < j ≤ k;
3) Di ∩ D0 is a singleton for 1 ≤ i ≤ k.

The width of D is |dom(D0)|.

Claim. The condition in Point 2 of Lemma 4 is equivalent
to the same condition when ‘S-database D′’ is replaced with
‘pseudo tree S-database D′ of width at most |qw|.

Proof of claim. Assume that if chO(D) |=io qc, qc a con-
traction of qw, and that there is an S-database D′ and a



contraction q′c of qw such that D′ → D, chO(D′) |=io q′c,
and q′c ≺ qc. Let h be an (injective) homomorphism from q′c
to chO(D′). Construct a pseudo tree database D′′ as the union
of the restriction D0 of D to the range of h and the databases
D1, . . . ,Dm which are the 1-unravelings of some constant a
from D0. It can be verified that D′′ → D′, thus D′ → D.
Moreover, chO(D′′) |=io q′c. We have thus replaced D′ with
the pseudo tree database D′′.

Reduction to MSO. It thus suffices to decide the existence
of a pseudo-tree database that satisfies the conditions for D′
in Point 2 of Lemma 4. Let Σ be a finite alphabet. A Σ-
labeled tree takes the form (T, `) where T ⊆ S∗, S a set of
any cardinality, is closed under prefixes and ` : T → Σ is a
node labeling function. The satisfiability problem for monadic
second-order logic (MSO) on Σ-labeled trees is decidable. It
is not hard to encode pseudo-tree S-databases into Σ-labeled
trees for an appropriately chosen Σ, see [7]. Note that the
entire D0-component can be encoded as a single node label
since it contains only boundedly many constants. Further, it
is possible to express the conditions for D′ in Point 2 of
Lemma 4 as MSO sentences. This is technically very closely
related to the tree automata constructions in [7]. We refrain
from going into technical detail.

Lemma 7.
1) D+ satisfies Conditions 1 and 2 of Lemma 4;
2) D has tree width exceeding `.

Proof. For Condition 1 of Lemma 4, it is clear thatD+ |= Qw.
Further, recall that D0 6|= Qa. It is straightfoward to show that
D+ → D0 and thus also D+ 6|= Qa.

For Condition 2 of Lemma 4, assume to the contrary that
there are an S-database D′ and contractions qc, q′c of qw such
that chO(D+) |=io qc, D′ → D+, chO(D′) |=io q′c, and q′c ≺
qc. We use a case distinction:
• chO(D0) |=io qc.

From D′ → D+ and D+ → D0, we obtain D′ → D0.
This together with chO(D0) |=io qc and chO(D′) |=io q′c
yields a contradiction to D0 satisfying Condition 2 of
Lemma 4.

• chO(D0) 6|=io qc. From chO(D+) |=io qc and D+ →
D0, we obtain chO(D0) |= qc. By Lemma 3, there is a
contraction q′c of qc with chO(D0) |=io q′c. But then we
must have q′c = qc as otherwise we obtain a contradiction
to D0 satisfying Condition 2 of Lemma 4 (instantiated
with D = D′ = D0). Contradiction.

Now for Point 2 of Lemma 7. From the fact that D+ 6|= Qa
and that Qa is equivalent to Q on S-databases of tree width
at most `, we obtain that the tree width of D+ exceeds `. But
by construction of D+, the tree width of D+ cannot be higher
than that of D.

Lemma 8. G has a k-clique iff D∗G |= Q.

Proof. By what was said in the main body of the paper, it
remains to prove that

(†) for every edge e in D, there is an atom in nt(qc) that g
maps to e.

In fact, assume to the contrary that g maps no atom in nt(qc)
to some edge {a, b} ∈ D. We argue that, then the database D1

obtained from D by removing all binary facts that involve a
and b is such that D+

1 |= Q, contradicting the choice of D. It
suffices to show that there is a homomorphism h1 from qc to
chO(D+

1 ). We obtain h1 by manipulating the homomorphism
h0(h(·)) from qc to chO(D+) in a suitable way. If h0(h(·))
does not map any atom in qc to {a, b}, then there is nothing
to do. Otherwise, iterate over all atoms r(x, y) ∈ qc that are
mapped to {a, b}. Then r(x, y) /∈ nt(qc), that is, this atom
must be in a part of qc that is of tree width 1. Assume w.l.o.g.
that h0(h(x)) = a and that y is a successor of x in that part,
that is, y is further away from the root than x; the cases that
h0(h(x)) = b and/or x is a successor of y can be treated
analogously and the case that x = y cannot occur since D
contains no facts of the form r(c, c). Let qy be the tree width 1
subquery of qc rooted at y. Since h0(h(·)) is injective, none of
the atoms in qy is mapped to {a, b}. In D+

1 , a copy of the tree
width 1 database Da has been added, the root identified with
a. We can use h0(h(·)) to (re)define h1 for all variables in qy .
Informally, whenever h0(h(z)) is (a copy of) c ∈ dom(D0) in
D+ for any variable z from qy , then we can choose for h1(z)
a corresponding copy of c in the mentioned copy of Da in
D+

1 . This establishes (†).

A. Non-Boolean OMQs

We next consider the case where Q ⊆ (ELHI⊥,CQ) might
contain non-Boolean OMQs. We start with a lemma which
strengthens the result from Point (1) of Theorem 2 and whose
proof follows from the proof of the same theorem:

Lemma 17. Let Q be an n-ary OMQ from (ELHI⊥,UCQ),
k ≥ 1, and Qa the UCQk-approximation of Q. Then for every
S-database D and n-tuple a over dom(D) such that D|a is
of tree width k, it is the case that: D |= Q(a) iff D |= Qa(a).

Let Q = (O,S, q) /∈ (ELHI⊥,UCQ)≡UCQ`
of arity n.

Instead of considering the maximal connected components of q
as in the Boolean case, we consider the connected components
q1, . . . , qp of the Boolean CQ q|y, where y are the quantified
variables of q. For each i, let q+i be the restriction of q to the
variables x ∪ var(qi). Note that it is not guaranteed that all
variables from x occur in some atom of q+i . We nevertheless
assume that the answer variables of q+i are exactly x, which
can be achieved e.g. by admitting dummy atoms of the form
adom(xi) where adom is assumed to be true for all constants
in the input database. Also, let Qi = (O,S, q+i ).

As Q = (O,S, q) /∈ (ELHI⊥,UCQ)≡UCQ`
, it must

be the case that there is some w such that Qw /∈
(ELHI⊥,UCQ)≡UCQ`

. Let q−(x) =
∧

1≤i6=w≤p q
+
i and Q− =

(O,S, q−). It can be assumed that Q 6≡ Q− (otherwise Q
could be replaced by Q−). Let D− be a database such that
D− |= Q−(a), but D− 6|= Q(a), for some tuple a over
dom(D−). Then D− 6|= Qw(a). We assume w.l.o.g. that all
constants in a are distinct. If this is not the case, we can



duplicate constants from dom(D−) to obtain a tuple with
distinct elements which is an answer to Q−.

Let Qa = (O,S, qa) be the `-approximation of Qw.
Furthermore, let B be a database such that B |= Qw(b), but
B 6|= Qa(b) for some tuple b over dom(B). We can assume
again w.l.o.g. that all constants in b are distinct and also that
the domains of D− and B are disjoint. This also means that
we can rename b as a in B and obtain that: B |= Qw(a), but
B 6|= Qa(a).

For a contraction qc(x) of q, a database D, and an a ∈
dom(D)|x|, we write D |=io qc(a) if all homomorphims h
from qc to D with h(x) = a are injective. We also use again
a modified version of Lemma 4, established by the same proof.

Lemma 18. Let Q = (O,S, q) be an OMQ from
(ELHI⊥,CQ) and D an S-database with D |= Q(a). Then
there is an S-database D′ such that the following conditions
are satisfied:

1) D′ → D, D′ |= Q(a) and
2) if chO(D′) |=io qc(a), qc a contraction of q, then it is not

the case that there is an S-database D′′ and a contraction
q′c of q such that D′′ → D′, chO(D′′) |=io q′c(a), and
q′c ≺ qc.

We consider now the database D0 obtained from Lemma 18
when Q is assumed to be Qw, D to be B and a to be itself. We
consider subsets D of D0 and construct D+ as in the Boolean
case. We take such a D which is subset-minimal with the
property that D+ |= Qw(a). As D+ → D0, D0 → B and
B 6|= Qa(a), it follows that D+ 6|= Qa(a). Further on, from
Lemma 17 it follows that (D+)a has tree width exceeding `.
From the construction of D+ it follows that the tree width
of D|a exceeds `, so it must contain the k × K grid as a
minor. We apply Theorem 7 to D|a and obtain a new database
(D|a)G and a homomorphism h0 from (D|a)G to D|a such
that Points 1 and 2 of that theorem are satisfied. We construct
a new database DG by reattaching the a-part of D to (D|a)G
as follows:
• for every atom A(a) ∈ D with a ∈ a, we add A(a) to

(D|a)G;
• for every atom R(a1, a2) ∈ D with a1, a2 ∈ a, we add
R(a1, a2) to (D|a)G;

• for every atom R(a, b) or R(b, a) in D with a ∈ a and
b ∈ dom(B′), and every b′ ∈ dom((D|a)G) such that
h0(b′) = b we add R(a, b′) or R(b′, a) to (D|a)G;

It can be checked that DG maps into D with an extension
of the homomorphism h0 with the identity homomorphism on
a. We construct D+

G as in the original proof and than let D∗G
be the union of D− and D+

G. It can be shown then that G has
a k-clique iff D∗G |= Q(a).

B. From CQs to UCQs

We next explain how to extend the proof from CQs to
UCQs, that is, to the case where Q ⊆ (ELHI⊥,UCQ).
Let Q = (O,S, q) /∈ (ELHI⊥,UCQ)≡UCQ`

. Note that q
is a disjunction of conjunctions of connected Boolean CQs

(conCQs, for short), and that we can find an equivalent
conjunction of disjunctions of conCQs q′. The conjuncts of
q′ = q1 ∧ · · · ∧ qn are disjunctions (unions) of connected
Boolean CQs (UconCQs, for short). Let Qi = (O,S, qi), for
1 ≤ i ≤ n. We can assume w.l.o.g. that Qi 6⊆ Qj for all
i 6= j. Also, some Qv must be non-equivalent to its UCQ`-
approximation. In the remainder of the proof, the UconCQs
q1, . . . , qv−1, qv+1, . . . , qn play exactly the role of the conCQs
q1, . . . , qw−1, qw+1, . . . , qn in the original proof. Let us look
more closely at the UconCQ qv . Let qv = p1 ∨ · · · ∨ pm and
let Pi = (O,S, pi) for 1 ≤ i ≤ m. We can assume w.l.o.g.
that Pi 6⊆ Pj for all i 6= j. We also replace any pi with its
UCQ`-approximation pai whenever the OMQ

P ai := (O,S, p1 ∨ · · · ∨ pi−1 ∨ pai ∨ pi+1 ∨ · · · ∨ pm)

is equivalent to Qv . Since Qv is not equivalent to its UCQ`-
approximation, these assumptions imply that there is a w such
that Pw 6⊆ P aw. Let Pa be the UCQ`-approximation of Pw.
Since Pw 6⊆ P aw, there must be an S-database D such that D |=
Pw, D 6|= P a, and D 6|= Pi for all i 6= w. In the remainder of
the proof, the conCQ pw plays the role of the conCQ qw in
the original proof. We next observe that the proof of Lemma 4
actually establishes a slightly stronger result, namely that for
every OMQ Q∗ from (ELHI⊥,CQ) over schema S and every
S-database D with D |= Q∗, there is an S-database D′ such
that D′ → D, D′ |= Q∗, and Condition 2 of Lemma 4 is
satisfied (with Qw replaced by Q∗).

For the remaining proof, we start with the database D0 that
is obtained as D′ when invoking the strengthened lemma with
Q = Pw and the database D that we had identified before.
Then, D0 |= Pw, and from the fact that D0 → D, it follows
that: D0 6|= P a, and D0 6|= Pi, for every i, with i 6= w. The
rest of the proof goes through with essentially no change.

PROOFS FOR SECTION V

Towards a proof of Lemma 9, we first characterize answers
to OMQs based on a weaker form of D-labelings. Arguably,
these are more intuitive, but also less ‘local’ than the D-
labelings defined in Section V.

A weak D-labeling of q is a function ` : var(q)→ dom(D)∪
{∃} such that the following conditions are satisfied:

1) `(x) ∈ dom(D) for every answer variable x;
2) the restriction of ` to the variables in V := {x | `(x) ∈

dom(D)} is a homomorphism from q|V to ch−O(D);
3) if r(x, y) ∈ q and `(y) ∈ dom(D), then `(x) ∈ dom(D);
4) if (x, y) ∈ G2, `(x) ∈ dom(D), and `(y) = ∃, then

a) (x, y) is ∃-eligible;
b) D |= (O,S, dtree(x,y))(`(x)); and
c) `(x) = `(x′) for all x′ ∈ reach0(x, y).

5) if q′ is an ∃-MCC of q such that `(x) /∈ dom(D) for every
variable x in q′, then q′ is a homomorphic preimage of
a ditree and D |= (O,S,∃x0 dtreeq′).

Lemma 19. Let D be an S-database that is consistent with
O and a ∈ dom(D)|x|. Then D |= Q(a) iff there is a weak
D-labeling ` of q(x) such that `(x) = a.



Proof. (sketch) ‘if’. Assume that ` is a weak D-labeling
of q(x) such that `(x) = a. To show that D |= Q(a), it
suffices to construct a homomorphism h from q to chO(D)
with h(x) = a. We start by putting h(x) = `(x) whenever
`(x) ∈ dom(D). Next, consider every (x, y) ∈ G2 such
that `(x) ∈ dom(D) and `(y) = ∃. We extend h to all
variables in reach(x, y) by using the homomorphism from
q|reach(x.y) to dtree(x,y) (existence guaranteed by definition of
∃-eligible) and the homomorphism from dtree(x,y) to chO(D)
that maps the root of dtree(x,y) to `(x) (existence guaranteed
by Condition 4b). It remains to treat all ∃-MCCs q′ of q. Here,
we combine the homomorphism from q′ to dtreeq′ and from
dtreeq′ to chO(D) (existence guaranteed by Condition 5). It
can be verified that h is indeed a homomorphism.

‘only if’. Assume that D |= Q(a). Then there is a homomor-
phism h from q to chO(D) with h(x) = a. For all variables
x in q, define

`(x) =

{
h(x) if h(x) ∈ dom(D);

∃ otherwise.

It can be verified that ` is a weak D-labeling of q with `(x) =
a. For Condition 4, one uses that when (x, y) ∈ G2, `(x) ∈
dom(D), and `(y) = ∃, then there is a homomorphism from
q|reach(x,y) to the database that the chase has generated below
`(x), which takes the form of a ditree with multi-edges; this
shows that (x, y) is ∃-eligible. Condition 4b then follows from
the choice of dtree(x,y).

The problem with weak D-labelings is that Condition 4c is not
yet sufficiently ‘local’, that is, the variables x and x′ mentioned
there can be arbitrarily far apart in a tree decomposition of
q. This is rectified in (non-weak) D-labelings as defined in
Section V. We are now ready to prove correctness of the
characterization of OMQ answers in terms of the latter.

Lemma 9. For every a ∈ dom(D)|x|, D |= Q(a) iff there is
a D-labeling ` of q(x) such that `(x) = a.

Proof. (sketch) ‘if’. Assume that there is a D-labeling ` of
q(x) such that `(x) = a. Let `′ be obtained from ` by setting
`′(x) = ∃ iff `(x) /∈ dom(D). It suffices to show that `′ is a
weak D-labeling of q. The only condition that is not immediate
is Condition 4c of weak D-labelings. So assume that (x, y) ∈
G2, `(x) ∈ dom(D), and `(y) = ∃. Let x′ ∈ reach0(x, y). By
Condition 4c of D-labelings, `(y) = ((x′′, y′′), `(x)) where
x′′ ∈ reach0(x, y) and y′′ ∈ reach1(x, y). By Conditions 5
to 7 of D-labelings and since it can be easily proved that
reachj(x, y) = reachj(x′′, y′′) for all j, we obtain `(x′) =
`(x) as required.

‘only if’. Assume that D |= Q(a). Then there is a homomor-
phism h from q to chO(D) with h(x) = a. For each variable
z such that h(z) /∈ dom(D) and there is an (x, y) ∈ G2 for
which h(x) ∈ dom(D), h(y) /∈ dom(D), Conditions 4a and 4b
of D-labelings are satisfied, and z ∈ reach(y), choose such an

(x, y), and denote it with (uz, vz) For all variables x in q,
define

`(x) =


h(x) if h(x) ∈ dom(D);

((uz, vz), h(uz)) if h(x) /∈ dom(D)

and uz, vz are defined
∃ otherwise.

It can be verified that ` is a D-labeling of q with `(x) = a.

Theorem 9. EVALUATION((ELHdr⊥ ,UCQ)≡UCQk
) based on the

full schema is in PTIME combined complexity, for any k ≥ 1.

Proof. Let Q = (O,Sfull, q) be from (ELHdr⊥ ,CQ)≡UCQk
,

Qf = (O,Sfull, qf ) a full rewriting of Q, D the input database
that is consistent with O, and a a candidate answer. By
Theorem 3, qf is of tree width bounded by k. Ideally, we
would like to play the modified game on qf and answer ‘yes’
if Duplicator has a winning strategy for any of these CQs.

However, we do not have a full rewriting in our hands as
we have no way of computing one in PTIME. To solve this
problem, we first extend q as follows: for each variable x in
q and each concept inclusion C v D ∈ O with Dq |= C(x),
x viewed as a constant, take a fresh copy qC of C viewed
as a CQ and add qC to q, identifying x with the root of qC .
Note that Q is equivalent to Q+ = (O,Sfull, q

+) and that by
construction, qf syntactically is a subquery of the resulting
CQ q+. We play the modified game on q+ rather than on qf .

We have to argue that Duplicator has a winning strategy
on q+ iff D |= Q(a). The ‘if’ direction is clear since
D |= Q(a) implies D |= Q+(a), thus Lemma 9 yields a D-
labeling ` of q+ with `(x) = a, and ` clearly gives rise to a
winning strategy for Duplicator on q+. Conversely, a winning
strategy for Duplicator on q+ also gives such a strategy on
any subquery of q+, such as qf . Thus, there is a D-labeling `
of qf , which means that D |= Qf (a) and thus D |= Q(a).

PROOFS FOR SECTION VI

Theorem 10. For any k ≥ 1, UCQk-equivalence is
1) EXPTIME-hard in (EL,CQ);
2) 2EXPTIME-hard in (ELI,CQ);
3) Πp

2-hard in (DL-LiteR,CQ).
The same lower bounds apply to CQk-equivalence, both while
preserving the ontology and in the general case.

Proof. Point 1 is proved by reduction from the following
problem: given an OMQ of the form Q = (O,S, A(x)) with
O formulated in EL⊥, is Q empty? For Q to be empty there
must be no S-database D that is consistent with O and which
satisfies D |= Q(a) with a ∈ dom(D). This problem is known
to be EXPTIME-hard [3].

We start with the case k = 1, that is, we consider
UCQ1-equivalence and CQ1-equivalence, the latter both while
preserving the ontology and in the general case. We use the
same reduction for all three cases and afterwards explain how
to generalize to k > 1.

Let Q = (O,S, A(x)) be as stated above. Reserve fresh
concept names B,B1, B2 and a fresh role name r. Let O∗ be
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Fig. 3. CQ for k = 2

obtained from O by replacing every concept inclusion of the
form C v ⊥ with C v B. Now define

O′ = O∗ ∪ {∃s.B v B | s role name in O} ∪
{B v A u ∃r.(B1 uB2 u ∃r.>)}

S′ = S ∪ {r,B1, B2}
q(x) = ∃y1∃y2∃z A(x) ∧ r(x, y1) ∧ r(x, y2) ∧B1(y1) ∧

B2(y2) ∧ r(y1, z) ∧ r(y2, z)

and set Q′ = (O′,S′, q).

Claim. Q is empty iff Q′ is (U)CQ1-equivalent (while pre-
serving the ontology or not).

For (the contrapositive of) ‘if’, assume that Q is non-empty
and take an S-database D0 that is consistent with O and
satisfies D0 |= A(a). Glue to a in D0 a copy of q without
the atom A(x) and call the resulting S′-database D. Clearly,
D |= Q′(a). Let Dua be the 1-unraveling of D up to a. Then
Dua 6|= Q′(a) since the copy of q that we have glued to D0

has been ‘broken’ by unraveling, B1, B2 do not occur in O∗,
and the concept inclusion B v A u ∃r.(B1 u B2 u ∃r.>) in
O′ cannot fire since consistency of D0 with O and Lemma 15
imply that O derives B at a in Dua . But by Lemma 15, no
OMQ from (ELHI⊥,UCQ1) can distinguish a in D from a
in Dua . Consequently, Q′ is not UCQ1-equivalent.

For ‘only if’, assume that Q is empty. We show that Q′

is equivalent to (O′,S′, B(x)) and thus CQ1-equivalent while
preserving the ontology. The containment (O′,S′, B(x)) ⊆ Q′
is immediate by construction of Q′. For the converse, let D
be an S′-database with D |= Q′(a). This clearly implies that
O derives A at a in D. Since Q is empty, this is only possible
when B is also derived at a. Thus D |= (O′,S′, B(x))(a).

Sketch for UCQk-case, k > 1. The main properties of
CQ q in the above proof are that it is of tree width at
least k + 1, homomorphically maps into a directed tree (that
can be generated by an EL-concept), and does not admit a
homomorphism to its k-unraveling. To achieve the same for
k > 1, we can use as q the undirected k + 2-clique whose
vertices we assume w.l.o.g. to be {1, . . . , k + 2}, orient each
edge {i, j} in the direction from i to j if i < j, subdivide
each edge (i, j) into j − i edges by introducing intermediate
points, represent directed edges as r-atoms, add the atom
A(1), and finally label each vertex with a different concept
name Bi, i ≥ 1. For the case k = 2, the resulting CQ is
displayed in Figure 3. The reduction can then be adapted by

replacing q as described, replacing B1, B2 in S′ with the
set of all fresh concept names Bi in q, and replacing the
concept A u ∃r.(B1 u B2 u ∃r.>) on the right-hand side of
the concept inclusion in the second line of the definition of O′
with some EL-concept C such that a ∈ CI implies I |= q(a)
for all interpretations I. Such a concept can be obtained by
identifying all vertices that are reachable from vertex 1 in
exactly i steps, for each i. In the example case k = 2, it takes
the form

A uB1 u ∃r.(B2 uB3 uB4 u ∃r.(B5 uB6 uB7 u ∃r.B8)).

In the proof of the ‘if’ direction of the claim, 1-unravelings
are replaced with k-unravelings. Note that q does not admit
a homomorphism to its k-unraveling: since q has tree width
at least k + 1, such a homomorphism would have to be
non-injective and thus the k-unraveling of q would have to
comprise atoms Bi(x), Bj(x) for some i, j with i 6= j.

Now for Point 2 of Theorem 10. The following was estab-
lished in the proof of Theorem 48 in [7].

Theorem 16. Let M = (Q,Σ,Γ, q0,∆) be an exponentially
space bounded alternating Turing machine and let k = |Γ|−1.
Given an input w to M , one can construct in polynomial time
a Boolean OMQ Qw = (Ow,Sw, qw) from (ELI,CQ) such
that for a selected concept name A∗ /∈ Sw, the following
conditions are satisfied:

1) M accepts w iff there is an Sw-database D and an a ∈
dom(D) such that D |= (Ow,Sw, A∗(x))(a) and D 6|=
Qw;

2) qw is connected, uses only symbols from Sw, is of tree
width k, and not equivalent to any CQ of smaller tree
width;

3) the restriction of chOw
(Dqw) to symbols in Sw is Dqw .

We remark that tree width is not explicitly mentioned in [7].
However, the CQ qw constructed there contains a subquery
p whose Gaifman graph contains as a minor the complete
balanced bipartite graph Kk+1,k+1 with exactly one adjacent
edge dropped from each vertex. It is not hard to verify that
such a graph has degeneracy at least k, thus tree width at least
k. Moreover, the Gaifman graph of p is a core, thus p is not
equivalent to a CQ of tree width smaller than k.

Let k ≥ 1. We can choose M = (Q,Σ,Γ, q0,∆) to have
a 2EXPTIME-hard word problem and satisfying |Γ| > k + 1.
We reduce the word problem for M , as follows. Let w be an
input to M , and let Qw = (Ow,Sw, qw) be as in Theorem 16.
Define q(x) = A∗(x)∧ qw where x is a fresh variable and let
Q = (Ow,Sw, q).

Claim M accepts w iff Q is not (U)CQk-equivalent (while
preserving the ontology or not).

For ‘only if’, assume that M accepts w. By Point 1 of
Theorem 16, there is an Sw-database D0 and an a ∈ dom(D0)
such that D0 |= (Ow,Sw, A∗(x))(a) and D0 6|= Qw. Let D
be the disjoint union of D0 and Dqw . Then D |= Q(a). Now



assume to the contrary of what is to be shown that Q is UCQk-
equivalent. Then Q is equivalent to its UCQk-approximation
Qa = (Ow,Sw, qa). Clearly, we can remove from qa any
CQ in which the variable x from q is identified with any
other variable, without compromising equivalence or altering
tree width. Thus each CQ in qa takes the form A∗(x) ∧ q′w
where q′w is a contraction of qw. Since qw is connected, so
is q′w. Let Q′a be the Boolean OMQ (Ow,Sw, q′a) where
q′a consists of the q′w-parts of the CQs in qa. Clearly, Q′a
is just the UCQk-approximation of Qw. From D |= Q(a)
and D0 6|= Qw, we thus obtain D |= Qa and D0 6|= Q′a.
Consequently, Dqw |= Q′a. Since qw and thus q′w uses only
symbols from Sw and by Point 3 of Theorem 16, this implies
that there is a homomorphism from q′w to qw. This means
that q′w is equivalent to qw, but q′w is of tree width k, in
contradiction to Point 2 of Theorem 16.

For ‘if’, assume that M does not accept w. By Point 1
of Theorem 16, D |= (Ow,Sw, A∗(x))(a) implies D |= Qw
for any Sw-database D and a ∈ dom(D). Consequently, Q is
equivalent to (Ow,Sw, A∗(x)) and thus CQ1-equivalent while
preserving the ontology.

We finally address Point 3 of Theorem 10. It is proved
in [10] that containment in (DL-LiteR,CQ) is Πp

2-complete.
However, it is rather unclear how to utilize the hardness proof
given in that paper for our purposes. We instead give a direct
proof by reduction from ∀∃-QBF, building on and extending
an NP-hardness proof for the combined complexity of (a re-
stricted version of) query evaluation in (DL-LiteR,CQ) given
in [28]. To make the presentation more digestible, we first
show that containment between unary OMQs (O,S, C(x))
and (O,S, q(x)), where O is a DL-LiteR-ontology and C a
conjunction of concept names, is Πp

2-hard.
Thus let ϕ = ∀x∃y (C1∨· · ·∨C`) be a sentence of ∀∃-QBF

where each C1, . . . , C` is a clause. Further let x = x1 · · ·xn
and y = y1 · · · ym. Let the DL-LiteR-ontology O contain the
following:

Ti v Xi for 1 ≤ i ≤ n
Fi v Xi for 1 ≤ i ≤ n
Ti v Cj if xi ∈ Cj
Fi v Ci if ¬xi ∈ Cj
Li v ∃r.(Li+1 u Yi+1) for 0 ≤ i ≤ m
Li v ∃r.(Li+1 u Y i+1) for 0 ≤ i ≤ m
Yi v ∃r−.C+

j if yi ∈ Cj
Y i v ∃r−.C+

j if ¬yi ∈ Cj
C+
i v Ci for 1 ≤ i ≤ `

C+
i v ∃r−.C+

i for 1 ≤ i ≤ `

where, as usual in DL-LiteR, A v ∃r.(B1 u · · · uBn) abbre-
viates A v ∃r0.>, r0 v r, ∃r−0 .> v B1, . . . ,∃r−0 .> v Bn,
where r0 is a fresh role name. Set

S = {L0, T1, . . . , Tn, F1, . . . , Fn}

and define the CQ q(x0) to be as follows, all variables
except x0 existentially quantified:

r(x0, x1) ∧ · · · ∧ r(xm−1, xm) ∧
C1(z10) ∧ r(z10 , z11) ∧ · · · ∧ r(z1m−1, xm) ∧

· · ·
C`(z

`
0) ∧ r(z`0, z`1) ∧ · · · ∧ r(z`m−1, xm).

Let Q1 = (O,S, X1(x) ∧ · · · ∧ Xn(x)) and Q2 = (O,S, q).
Then we have the following, which implies Πp

2-hardness of
the containment question mentioned above.

Claim 1. Q1 ⊆ Q2 iff ϕ is true.

Proof of claim. For the ‘if’ direction, assume that Q1 ⊆ Q2.
Let π be a truth assignment for the variables x. We have
to show that π can be extended to the variables in y such
that C1 ∨ · · · ∨ C` is satisfied. Let Dπ be the S-database that
contains the fact Ti(a) if π(xi) = 1 and Fi(a) if π(xi) = 0.
Clearly, Dπ |= Q1(a), and thus Dπ |= Q2(a), that is, there is
a homomorphism h from q to chO(Dπ) with h(x0) = a. It is
easy to see that chO(Dπ) takes the form of a binary tree of
depth m with root a in which every path p corresponds to a
truth assignment πp to the variables in y, and vice versa: the
node on level i is labeled with (exactly one of) Yi or Y i and
πp(yi) = 1 iff the former is the case. By construction of q,
the variable xm of q must be mapped to the final node of a
path p, and we extend π with πp. It can be verfied that the
use of the concept names Cj in O and q imply that π satisfies
all clauses from the QBF.

For the ‘only if’ direction, assume that ϕ is true. Let D be
an S-database with D |= Q1(a). We produce a homomorphism
h from q to chO(D) such that h(x0) = a. Since D |= Q1(a)
and X1, . . . , X` /∈ S, we must have Ti(a) or Fi(a) (or both)
in D for 1 ≤ i ≤ n. Let πD be a truth assignment such
that πD(xi) = 1 implies Ti(a) ∈ D and πD(xi) = 0 implies
Fi(a) ∈ D. Since ϕ is true, we can extend πD to a truth
assignment to y such that all clauses are satisfied. Thus truth
assignment identifies a path in chO(D) in the subtree database
rooted at a. Then h can map the variables x0, . . . , xm from
q to that path. Since all clauses are satisfied, the remaining
paths in q can also be mapped.

We next modify the Πp
2-hardness proof just given so that it

applies to UCQk-equivalence in (DL-LiteRhorn,CQ). Fix some
k ≥ 1. We would like to reuse essentially the same CQ as
before, but now we have to make sure that it is of tree width
exceeding k. To achieve this, we mix in the CQ from the
proof of Point 1 of Theorem 10 that we had obtained by
starting with the k+2-clique based on vertices {1, . . . , k+2},
orienting each edge {i, j} in the direction from i to j if i < j,
subdividing each edge (i, j) into j − i edges by introducing
intermediate points, representing directed edges as r-atoms,
and finally labeling each vertex with a different concept name
Bi, i ≥ 1. All variables are unquantified, that is, the resulting
CQ p is just a set of atoms. By identifying all vertices that
are reachable from vertex 1 in exactly i steps, for each i, we



obtain a path-shaped contraction of p that can be represented
as an EL-concept

C = C1 u ∃r.(C2 u ∃r.(C3 u · · · u ∃r.Ck+2) · · · )

such that a ∈ CI implies I |= p(a) for all interpretations I.
Let O be the ontology from the previous reduction extended
by the following concept inclusions:

Ii v Ci u ∃r.Ii+1 for 1 ≤ i ≤ k + 1

Ik+2 v L0

B v Ci for 1 ≤ i ≤ `
B v ∃r.B
B v ∃r−.B

Let S consist of {I1, T1, . . . , Tn, F1, . . . , Fn, r, B} and all
concept names Bi introduced in the construction of the CQ
p. Assume that the variable in p that corresponds to vertex 1
from the original clique is x0 and the vertex that corresponds
to vertex k+2 is xk+1. Define the CQ q(x0) to be as follows,
all variables except x0 existentially quantified, w = m+k+2:

I1(x0) ∧X1(x0) ∧ · · · ∧Xn(x0) ∧
p ∧
r(xk+1, xk+2) ∧ · · · ∧ r(xw−1, xw) ∧
C1(z10) ∧ r(z10 , z11) ∧ · · · ∧ r(z1w−1, xw) ∧

· · ·
C`(z

`
0) ∧ r(z`0, z`1) ∧ · · · ∧ r(z`w−1, xw).

Claim 2. Q = (O,S, q) is UCQk-equivalent iff ϕ is true.

In fact, it can be verified that Q is equivalent to (O,S, q′) if
ϕ is true, where q′ is the CQ that consists of the first line of
the definition of q. Conversely, if ϕ is false, then consider the
following CQ, viewed as a database D:

I1(x0) ∧X1(x0) ∧ · · · ∧Xn(x0) ∧ p ∧B(xk+1).

It is easy to see that D has tree width k + 1 and that D |=
Q(x0), x0 meaning the constant of the same name in D here.
It can also be verified that the k-unraveling D′ of D is such
that D′ 6|= Q(x0). Together with Corollary 1 and Theorem 2,
this implies that Q is not UCQk-equivalent.

In the following proof, we are going to make use of
complexity results for OMQ containment from the literature.
Recall that, in this paper, Q1 ⊆ Q2 with Qi = (Oi,S, qi)
if Q1(D) ⊆ Q2(D) for all S-databases D including those
that are inconsistent with O1 or O2. In the literature on
containment, in contrast, it is common to consider only those
D that are consistent with both O1 and O2. We refer to
this as consistent containment. In the proof that follows,
the actual queries are UCQs and O1 and O2 are the same
ontology O. In this case, the gap between containment and
consistent containment is unproblematic since we can reduce
containment to consistent containment in polynomial time, as
follows. Let O′ be obtained from O by

1) replacing every CI C v ⊥ with C v B

2) adding > v A
where A and B are fresh concept names. Moreover, if x =
x1 · · ·xn are the answer variables in q1 and q2 (which we can
w.l.o.g. assume to be identical), then let q′i be obtained from
qi by adding as an additional disjunct the CQ A(x1) ∧ · · · ∧
A(xn)∧∃y B(y), for i ∈ {1, 2}. It can be shown that Q1 ⊆ Q2

if (O′,S, q′1) is consistently contained in (O′,S, q′2). A crucial
observation is that every S-database is consistent with O′.

Theorem 11. For any k ≥ 1, UCQk-equivalence is
1) in EXPTIME in (ELHdr⊥ ,UCQ);
2) in 2EXPTIME in (ELHI⊥,UCQ);
3) in Πp

2 in (DL-LiteRhorn,UCQ).

Proof. Points 1 and 2 are proved in a uniform way. By
Corollary 1, it suffices to construct the UCQk-approximation
Qa = (O,S, qa) of the input query Q = (O,S, q), and
check whether Q ⊆ Qa (the converse containment holds by
construction of Qa). An approach based on alternating tree
automata has been used in [7] to show that OMQ contain-
ment is EXPTIME-complete in (ELH⊥,CQ) and 2EXPTIME-
complete in (ELHI⊥,CQ). It is an easy exercise, and does
not require any new ideas, to extend this approach from
CQs to UCQs, and from ELH⊥ to ELHdr⊥ . Applying the
resulting decision procedures for containment as a black box,
we obtain a 2EXPTIME upper bound for (ELHdr⊥ ,UCQ) and a
3EXPTIME upper bound for (ELHI⊥,UCQ). To lower these
bounds by one exponential, we have to address the fact that
qa has exponentially many disjuncts (each of polynomial size).
This requires another minor change in the decision procedure
for containment, exploiting that every collapsing of a CQ in
qa is also a collapsing of q. We give more details in what
follows.

The central relevant statement from [7] is as follows.

Theorem 17. For every OMQ Q = (O,Σ, q) from
(ELHI⊥,CQ) with q Boolean, there is a two-way alternat-
ing parity tree automaton AQ that accepts a (|O| · |q|)-ary
Σε∪ΣN -labeled tree (T, L) iff it is proper, D(T,L) is consistent
with O, and D(T,L) |= Q. AQ has at most 2p(|q|+log(|O|)) states,
and at most p(|q|+ |O|) states if O is an ELHdr⊥ -ontology, p
a polynomial. It can be constructed in time polynomial in its
size.

Here, Σε ∪ ΣN are suitable alphabets such that, among
other things, a Σε ∪ ΣN -labeled tree (T, L) represents an
(almost) tree-shaped database D(T,L). The term ‘proper’ refers
to a technical condition that need not bother us here. The
construction of the automaton AQ from Theorem 17 relies on
the notion of forest decompositions, which partitions a query
into a center part and several tree-shaped parts.

A forest decomposition of q is a tuple F =
(q0, q1, x1, . . . , qk, xk, µ) where (q0, q1, . . . , qk) is a partition
of (the atoms of) a contraction of q, x1, . . . , xk are variables
from q0, and µ is a mapping from var(q0) to a fixed set of
constants dom0 such that the following conditions are satisfied
for 1 ≤ i, j ≤ k;



1) q0 is non-empty;
2) qi is weakly tree-shaped with root xi, that is, Gq is a tree

(multi-edges allowed);
3) var(qi) ∩ var(q0) = {xi};
4) var(qi) ∩ var(qj) ⊆ var(q0) if i 6= j;
5) qi contains no atom A(xi);
6) xi has a single successor in qi.

The central property of forest decompositions is then as
follows.

Lemma 20. Let O be an ELHI⊥-ontology, (T, L) a proper
Σε∪ΣN -labeled tree, C the part of D(T,L) represented by the
root vertex of T , and q a Boolean connected CQ. Then the
following are equivalent:

1) there is a homomorphism h from q to chO(D(T,L)) whose
range has a non-empty intersection with dom(C);

2) there is a forest decomposition F = (q0, q1, x1, . . . ,
qk, xk, µ) of q such that
• µ is a homomorphism from q0 to chO(D(T,L)) whose

range falls within dom(C);
• there is a homomorphism hi from qi to chO(D(T,L))

such that hi(xi) = µ(xi), for 1 ≤ i ≤ k.

In the construction of AQ, the transition relation contains a
disjunction over all forest decompositions of the input query q.
We, however, are not interested in the CQ qa rather than
in q. But this is easy to achieve: instead of using all forest
decompositions of q in the mentioned disjunction, we use all
forest decompositions of a CQ from qa. Because of the use of
contractions in the definition of forest decompositions, each
such decomposition is also a forest decomposition of q, and
consequently no further modifications of the construction are
required.

For Point 3, we again have to check whether Q ⊆
Qa = (O,S, qa). It was shown in [10] that containment in
(DL-Litehorn,CQ) is Πp

2-complete and the proof extends to
(DL-LiteRhorn,UCQ). It thus again remains to deal with the fact
that qa consists of exponentially many CQs (of polynomial
size). We sketch the proof of a Σp2 upper bound for checking
non-containment, that is Q 6⊆ Qa. We will make use of
the fact that OMQ evaluation in (DL-LiteRhorn,UCQ) is NP-
complete [15], [22].

A pair (D,a) with D an S-database and a a tuple over
dom(D) is a witness for Q 6⊆ Qa if D |= Q(a) and
D 6|= Qa(a). It is observed in [10] that it suffices to consider
witnesses (D,a) where the number of constants in D is
bounded by |q|·(|Σ|+1). To decide whether Q 6⊆ Qa, we guess
a witness (D,a) of such dimension. We then verify in NP that
D |= Q(a), co-guess a CQ p from qa, and verify in CONP
that D 6|= (O,S, p)(a). With co-guessing a CQ p′ in qa, we
mean to co-guess an equivalence relation on q that represents
variable identifications, to then produce p′ in polynomial time,
and to verify in polynomial time that it has tree width k (note
that k is fixed). The overall algorithm clearly runs in Σp2, as
desired.

Theorem 12. For any k ≥ 1, and OMQs based on the full
schema, (U)CQk-equivalence is complete for

1) NP between (EL,CQ) and (ELHdr⊥ ,UCQ);
2) EXPTIME between (ELI,CQ) and (ELHI⊥,UCQ);
3) NP between (DL-LiteR,CQ) and (DL-LiteRhorn).

Proof. The NP lower bounds are inherited from the case
where the ontology is empty [18], while the EXPTIME lower
bound is proved by a reduction from the subsumption problem
in ELI, namely given an ELI-ontology O and concept names
A,B, is A subsumed by B w.r.t. O (written O |= A v B),
that is, is AI ⊆ BI in every model I of O? This problem is
known to be EXPTIME-complete [5]. We start with the case
k = 1. Thus, let O, A, and B be as stated. Define

O′ = O ∪ {B v ∃r.(B1 uB2 u ∃r.>)}
q(x) = ∃y1∃y2∃z A(x) ∧ r(x, y1) ∧ r(x, y2) ∧B1(y1) ∧

B2(y2) ∧ r(y1, z) ∧ r(y2, z)

where r is a fresh role name, and set Q = (O′,Sfull, q). Notice
the similarity of this construction to the proof of Point 1 of
Theorem 10.

Claim. O |= A v B iff Q is (U)CQ1-equivalent.

For the ‘if’ direction, it suffices to note that when O 6|= A v B
then Q is a full rewriting of itself. For the ‘only if’ direction,
from O |= A v B it follows that Q = (O′,Sfull, A(x)) is a
full rewriting of Q. The generalization to the case k > 1 is as
in the proof of Point 1 of Theorem 10, details are omitted.

Let us focus on the upper bounds. We first argue that instead
of proving the results for (ELHdr⊥ ,UCQ), (ELHI⊥,UCQ),
and (DL-LiteRhorn,UCQ), it suffices to establish them for the
corresponding OMQ languages based on CQs. In fact, we
can assume w.l.o.g. that, when an OMQ Q = (O,Sfull, q)
is given as input and q(x) =

∨
1≤i≤n pi, then the OMQs

Qi = (O,Sfull, pi), 1 ≤ i ≤ n, are pairwise incompa-
rable regarding containment. The reason is that, when the
schema is full, OMQ containment trivially reduces to OMQ
evaluation, which means that containment in (ELHdr⊥ ,CQ)
and (DL-LiteRhorn,CQ) is in NP, and in EXPTIME in
(ELHI⊥,CQ) [28], [32], [35]. We can thus remove a disjunct
pi from q if there is a pj , j < i, such that Qj ⊆ Qi. We can
also assume that Dpi is consistent with O, for 1 ≤ i ≤ n, since
otherwise we can remove the disjunct pi and if all disjuncts
are removed then Q is trivially UCQk-equivalent; moreover,
checking consistency of Dpi with O also reduces easily to
OMQ evaluation.

Claim. Q is UCQk-equivalent iff every Qi is.

Proof of claim. For the non-trivial ‘only if’ direction, assume
that Q is UCQk-equivalent and let Q′ = (O,Sfull, q

′) be an
equivalent OMQ with q′ from UCQk. Consider some Qi.
Clearly, Qi ⊆ Q′ implies Dpi |= Q′(x) where the answer
variables x of pi are viewed as constants. But then Dpi |= Q′′

where Q′′ = (O,Sfull, p
′) for some CQ p′ in q′, and thus

Qi ⊆ Q′′. Since Q′′ ⊆ Q, we can argue analogously that



Q′′ ⊆ Qj for some j. Thus Qi ⊆ Qj implies that i = j
since otherwise Qi and Qj would be comparable regarding
containment. But then Qi is equivalent to Q′′ and thus CQk-
equivalent. This finishes the proof of the claim.

It thus suffices to prove upper bounds for UCQk-equivalence
in (ELHdr⊥ ,CQ), (ELHI⊥,CQ), and (DL-LiteRhorn,CQ). All
these bounds are established in a uniform way. Assume that
the OMQ Q = (O,Sfull, q) is given where q is a CQ. We first
check whether Q is empty (using a containment check) and if
it is then we return that Q is UCQk-equivalent. Otherwise, Dq
must be consistent with O. We then extend q to a CQ q′ as
follows, paralelling Step 2 in the construction of rewritings:
for each C v D ∈ O and x ∈ CDq , add a fresh copy qC of
C viewed as a CQ and add qC to q, identifying x with the
root of qC . We then guess a subquery q′′ of q′ of tree width
at most k and check whether Q is equivalent to (O,Sfull, q

′′).
Equivalence can be implemented as two containment checks;
see above for the relevant complexities.

If we are able to guess correctly, then clearly Q is UCQk-
equivalent. Conversely, if Q is UCQk-equivalent, then by
Theorem 3 there is a full rewriting Q′ = (O,Sfull, p) of Q
with p ∈ CQk. It is easy to verify that p is a subquery of q′.

It can be verified that in all the considered cases, the above
procedure yields the stated upper bounds.

PROOFS FOR SECTION VII

The result that we can immediately inherit from [23] is the
following that talks about BCQs:

Theorem 18 (Figueira). For OMQs from (DL-LiteF=,BCQ)
based on the full schema, BCQk-equivalence while preserving
the ontology is in 2EXPTIME, for any k ≥ 1. Moreover, an
equivalent OMQ from (DL-LiteF=,BCQk) can be constructed
in double exponential time (if it exists).

We need to show that the above result can be stated for
UBCQs (Theorem 13 in the main body of the paper). To this
end, we establish the following technical result.

Lemma 21. Consider an OMQ Q = (O,Sfull, q) from
(DL-LiteF ,UBCQ). The following are equivalent:

1) Q is UBCQk-equivalent while preserving the ontology.
2) For each q′ in q, (i) (O,Sfull, q

′) is BCQk-equivalent
while preserving the ontology, or (ii) there exists q′′ in q
such that (O,Sfull, q

′) ⊆ (O,Sfull, q
′′).

Proof. (1) ⇒ (2). By hypothesis, there exists a UBCQk q̂
such that (O,Sfull, q) ≡ (O,Sfull, q̂). Consider an arbitrary
BCQ q′ in q. Since (O,Sfull, q) ⊆ (O,Sfull, q̂), we get that
there exists p in q̂ such that (O,Sfull, q

′) ⊆ (O,Sfull, p). But
since (O,Sfull, q̂) ⊆ (O,Sfull, q), we get that there exists p′ in
q such that (O,Sfull, p) ⊆ (O,Sfull, p

′). Therefore,

(O,Sfull, q
′) ⊆ (O,Sfull, p) ⊆ (O,Sfull, p

′),

where p belongs to q̂ and p′ belongs to q. We consider two
cases: q′ = p′, which implies that (O,Sfull, q

′) ≡ (O,Sfull, p),
and condition (i) holds since p is from BCQk, and q′ 6= p′ but
since (O,Sfull, q

′) ⊆ (O,Sfull, p
′) condition (ii) holds.

(2)⇒ (1). This direction is clear.

It is easy to verify that Theorem 13 follows from Theo-
rem 18 and Lemma 21.

Lemma 12. Fix k ≥ 1. For an OMQ Q = (O,Sfull, q) ∈
(DL-LiteF ,UBCQ) the following are equivalent:

1) Q is UBCQk-equivalent while preserving the ontology;
2) (O=,Sfull, rew(Q)) is UBCQk-equivalent while preserv-

ing the ontology.

For showing the above lemma, we first need to establish the
following technical lemma:

Lemma 22. Let Q = (O,Sfull, q) ∈ (DL-LiteF ,UBCQ). Then
there is a UBCQ rew(Q) such that for every database D that
satisfies O=, D |= Q iff D |= rew(Q). Furthermore, if q ∈
UBCQk for some k ≥ 1, then rew(Q) ∈ UBCQk.

Proof. We start with introducing some useful notions. Let q
be a BCQ. A BCQ p ⊆ q is a tree in q with root x if x ∈
var(q) is an articulation point that separates q into components
q′, p with p of the form r(x, y) ∧ ϕ(y) where ϕ(y) is a tree
with root y. Let at be an atom of the form A(x), S(x, z), or
S(z, x) with z a fresh variable. For an ontology O, we say
that at O-generates p if {at},O |= p(x) where the variables
in at, including x, are viewed as constants in the database
{at}. Moreover, p is O-generatable if there is an atom that
O-generates p. Further, at detachedly O-generates a BCQ p
if {at},O |= p and p is detached O-generatable if there is an
atom that detachedly O-generates p.

Now let Q = (O,Sfull, q) ∈ (DL-LiteF ,UBCQ) as in the
lemma. We define rew(Q) to be the disjunction of all BCQs
that can be obtained in the following way:

1) choose a BCQ p in q, a contraction p′ of p, and a set S
of trees in p′ and are O-generatable, and remove those
trees from p′;

2) if for the resulting BCQ p′′, Gp′′ is not a minor of Gp,
then stop;

3) otherwise, for each pt ∈ S choose an atom at that O-
generates pt and add at;

4) choose a set of maximal connected components of the
resulting BCQ that are detachedly O-generatable, for
each such component choose an atom at that detachedly
O-generates it, and add at.

With this definition of rew(Q), the “Furthermore” part of the
lemma is trivially satisfied since the class of structures of tree
width k is minor closed [24] and the additional modifications
in Steps 3 and 4 clearly cannot increase tree width. It thus
remains to show the following.

Claim. For every database D that satisfies O=, D |= Q iff
D |= rew(Q).

The ‘if’ direction is easy to show using the construction of
rew(Q), we omit details. For the ‘only if’ direction, let D be
a database that satisfies O= and such that D |= Q. Then there
is a CQ p in q and a homomorphism h from p to chO(D).
We show how to use h to guide the choices in Steps 1 to 4



above so as to obtain a BCQ q̂ in rew(Q) such that h can be
extended to a homomorphism from q̂ to chO(D).

Let V2 denote the set of pairs (x1, x2) ∈ var(p)2 such that
h(x1) = h(x2) ∈ dom(D) and, additionally, p contains atoms

r1(y1, y2), . . . , rn−1(yn−1, yn) (†)

such that y0 = x1, yn = x1, and h(yi) /∈ dom(D)
for 1 < i < n. In Step 1, we choose as p′ the contraction
of p that is obtained by identifying x1 and x2 whenever
(x1, x2) ∈ V2. We further choose as S be the set of all trees
pt(x) = r(x, y) ∧ ϕ(y) in p′ such that h(x) ∈ dom(D) and
h(y) /∈ dom(D). We must then have h(z) /∈ dom(D) for
all z ∈ y as otherwise x would have been identified with
some variable in y. By the construction of chO(D), there
must thus be a fact F in D such that {F},D |= pt(h(x)).
As a consequence of this and the semantics of DL-Lite, we
find an atom at of the form A(x), S(x, z), or S(z, x), with
z a fresh variable, such that at O-generates pt and h extends
to a homomorphism from {at} to D. By the former, pt is
O-generatable.

Let p′′ be the result of removing all trees in S from p′. We
next argue that p′′ is a minor of p and thus we do not stop
in Step 2. We work with the definition of minors from [24],
that is, an undirected graph G1 is a minor of an undirected
graph G2 if G1 can be obtained from a (not necessarily
induced) subgraph of G2 by contracting edges. We start with
the subquery p∗ of p that is the result of

1) taking the restriction of p to all variables y such that
h(y) ∈ dom(D) or y is in a maximal connected com-
ponent of p all of whose variables are mapped by h to
outside of dom(D) and then

2) adding back a path of the form (†) for all (x1, x2) ∈ V2.
Clearly, Gp∗ is a subgraph of Gp. We can obtain p′′ from p∗

by contracting all edges in Gp∗ that are induced by the paths
that have been added back. Thus p′′ is a minor of p.

The choices in Steps 3 and 4 can also be guided by h. We
have already argued that all pt ∈ S are O-generatable, and
that we can find replacing atoms at that are ‘compatible with
h’, which we choose in Step 3. For Step 4, we choose those
maximal connected components all of whose variables h maps
to outside of dom(D). By construction of chO(D), for every
such component there must be an atom at of one of the three
relevant forms that detachedly O-generates it and such that h
extends to a homomorphism from {at} to D.

Let p̂ be the CQ generated by guiding Steps 1 to 4 with
h as described above. By construction, we clearly find an
extension h′ of h to the fresh variables in p̂ such that h′ is a
homomorphism from p̂ to D. Thus, D |= rew(Q).

We can now give the proof of Lemma 12.

Proof. (1)⇒ (2). By hypothesis, there exists an OMQ Q′ =

(O,Sfull, q
′) from (DL-LiteF ,UBCQk) such that Q ≡ Q′. By

Lemma 22, we can conclude that

(O=,Sfull, rew(Q)) ≡ (O=,Sfull, rew(Q′)).

By Lemma 22, rew(Q′) ∈ UBCQk, and (2) follows.

(2)⇒ (1). By hypothesis, there is q′ ∈ UBCQk such that

(O=,Sfull, rew(Q)) ≡ (O=,Sfull, q
′).

By Lemma 22, Q ≡ (O=,Sfull, rew(Q)). It is not diffi-
cult to show that (O=,Sfull, rew(Q)) ≡ (O,Sfull, rew(Q)),
which implies that Q ≡ (O,Sfull, rew(Q)). It is also easy
to verify that (O,Sfull, rew(Q)) ≡ (O,Sfull, q

′). Therefore,
Q ≡ (O,Sfull, q

′), and (1) follows since q′ ∈ UBCQk.

Theorem 15.
1) In (DL-LiteF ,UBCQ), UBCQ1-equivalence coincides

with UBCQ1-equivalence while preserving the ontology.
2) EVALUATION((DL-LiteF ,UBCQ)≡UBCQ1

) based on the
full schema is in PTIME.

3) For OMQs from (DL-LiteF ,UBCQ) based on the full
schema, UBCQ1-equivalence is NP-complete.

Before giving the proof of the above result, we first present
the reduction of UBCQ1-equivalence in (DL-LiteF ,UBCQ)
to UBCQ1-equivalence in (DL-Lite,UBCQ) announced in the
paper, where DL-Lite denotes the DL obtained from DL-LiteF

after dropping the functionality assertions.
For a UBCQ q, we use idF (q) to denote the result of

contracting each BCQ in q in a minimal way such that the
functionality assertions in F are respected. It is important to
observe that if q is of tree width 1, then so is idF (q). This is
not the case for any higher tree width.

Lemma 23. Let Q = (O,Sfull, q) be an OMQ from
(DL-LiteF ,UBCQ). On databases that are consistent withO=,
Q is equivalent to any of the following: (Ov,Sfull, q),
(O,Sfull, idO=(q)), (Ov,Sfull, idO=(q)).

Lemma 24. Let Q = (O,Sfull, q) be an OMQ from
(DL-LiteF ,UBCQ). There exists a UBCQ q′ such that

1) Q is equivalent to (O=,Sfull, q
′);

2) (∅,Sfull, q
′) is equivalent to (Ov,Sfull, q

′);
3) If q ∈ UBCQk for some k ≥ 1, then q′ ∈ UBCQk.

Proof. Let Qv = (Ov,Sfull, q) and assume that q′ =
rew(Qv) is the UBCQ provided by Lemma 22.

Then Point 1 is satisfied. Indeed, if D is inconsistent with
O=, then D |= Q and D |= (O=,Sfull, q

′). Otherwise, D |= Q
iff D |= Qv (by Lemma 23) iff D |= q′ (by Lemma 22).

For Point 2, it suffices to show that (Ov,Sfull, q
′) ⊆

(∅,Sfull, q
′). Assume that D |= (Ov,Sfull, q

′). Then there
is a homomorphism h from q′ to chOv(D). Let D′ be the
restriction of D to the constants in the range of h. By
construction, D′ |= q′. Thus D′ |= Qv, that is, there is a
homomorphism g from q to chOv(D′). Since D′ is a subset of
chOv(D), there is also a homomorphism from q to chOv(D).
We obtain that D |= Qv, and thus D |= (∅,Sfull, q

′).
Point 3 follows from Lemma 22.

Now for the reduction. Let Q1 = (O,Sfull, q1) be an OMQ
from (DL-LiteF ,UBCQ), and let Q2 = (Ov,Sfull, q2), where
q2 = idO=(q). We can show the following.



Lemma 25. Q1 is UBCQ1-equivalent iff Q2 is UBCQ1-
equivalent. Moreover, if Q2 is equivalent to Q′2 =
(Ov,Sfull, q

′
2) with q′2 ∈ UBCQ1, then Q1 ≡ (O,Sfull, q

′
2).

Proof. The ‘if’ direction is implied by the “Moreover” part.
To prove the “Moreover” part, assume that Q2 is equivalent
to Q′2 = (Ov,Sfull, q

′
2) with q′2 ∈ UBCQ1. We have to show

that Q1 and Q′1 = (O,Sfull, q
′
2) give the same answers on

all databases D. If D is inconsistent with O, then D |= Q1

and D |= Q′1. If D is consistent with O=, then D |= Q1 iff
D |= Q2 by Lemma 23. Moreover, D |= Q2 iff D |= Q′2 iff
D |= Q′1, the latter by Lemma 23.

For the ‘only if’ direction, assume that Q1 is equivalent
to an OMQ Q′1 from (DL-LiteF ,UBCQ1). By Lemma 24, we
can assume Q′1 to be of the form (O=,Sfull, q

′
1) with all BCQs

in q′1 of tree width 1. We can assume w.l.o.g. that
(∗) Dp satisfies all functionality assertions in O=, for each

BCQ p in q1.
In fact, we can achieve (∗) by replacing each BCQ p in q′1 with
idO=(p) which preserves tree width 1 and, by Lemma 23, is
also equivalence preserving regarding Q′1.

We now show that Q′2 = (∅,Sfull, q
′
1) is equivalent to Q2.

‘⊆’. Let D be a database with D |= Q′2. Then there is a
homomorphism from some BCQ p in q′1 to D. Clearly Dp |=
Q′2 and by construction of Q′2, this implies Dp |= Q′1 and
thus also Dp |= Q1. By (∗), Dp satisfies all the functionality
assertions in O=. By Lemma 23, we thus have Dp |= Q2.
Since there is a homomorphism from Dp to D, this yields
D |= Q2 as required.

‘⊇’. Let D be a database with D |= Q2. Then there
is a homomorphism from some BCQ p in q2 to chOv(D).
Clearly, we have Dp |= Q2. By construction of q2, Dp
satisfies all the functionality assertions in O=. Lemma 23
thus yields Dp |= Q1 and, consequently, Dp |= Q′1. Since
Dp satisfies all the functionality assertions in O=, this means
Dp |= Q′2. The homomorphism from p to chOv(D) yields
D |= (Ov,Sfull, q

′
1). By Point 2 of Lemma 24, this implies

D |= Q′2, as required.

We can now give the proof of Theorem 15.

Proof. Point 1 follows from the “Moreover” part of Lemma 25
and Corollary 1.

To prove Point 2, assume that an OMQ Q = (O,Sfull, q)
from (DL-LiteF ,UBCQ)≡UBCQ1

is given as an input, along with
a database D. We can check in PTIME whether D is consistent
with O=. If it is not, then we answer ‘true’. Otherwise, by
Lemma 23 it suffices to evaluate (Ov,Sfull, q) in place of Q.
This OMQ, however, is from (DL-Lite,UBCQ)≡UBCQ1

and thus
we can invoke Theorem 8.

The upper bound in Point 3 is an immediate consequence
of Lemma 25 and Point 3 of Theorem 12. The lower bound
is inherited from the case where the ontology is empty.


