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Single-shot Foothold Selection and Constraint Evaluation for Quadruped

Locomotion

Dominik Belter1, Jakub Bednarek1, Hsiu-Chin Lin2, Guiyang Xin2, Michael Mistry2

Abstract— In this paper, we propose a method for select-
ing the optimal footholds for legged systems. The goal of
the proposed method is to find the best foothold for the
swing leg on a local elevation map. First, we evaluate the
geometrical characteristics of each cell on the elevation map,
checks kinematic constraints and collisions. Then, we apply
the Convolutional Neural Network to learn the relationship
between the local elevation map and the quality of potential
footholds. During execution time, the controller obtains the
qualitative measurement of each potential foothold from the
neural model. This method evaluates hundreds of potential
footholds and checks multiple constraints in a single step
which takes 10 ms on a standard computer without GPU.
The experiments were carried out on a quadruped robot
walking over rough terrain in both simulation and real robotic
platforms.

I. INTRODUCTION

Locomotion in challenging terrain requires careful selec-

tion of footholds. The robot should select stable support

for each foot to avoid slippages and falls. This strategy is

crucial when the robot needs to deal with highly irregular

terrain. A challenging example is maneuvering in extreme

environments such as a mine, or the aftermath of a natural

disaster where the robot can find only a few acceptable

footholds. A poor foothold selection method means that

the robot may fall and cannot execute the mission.

In contrast, other types of locomotion assume that the

robot walks dynamically on rough terrain and stabilizes

its posture using fast control algorithms and compliant

legs [1], [2]. Stable locomotion relies on the capability of

the controller to cope with disturbances (e.g. slippages)

resulting from unstable footholds. However, this approach

is only efficient on moderately rough terrain and it will fail

when the robot has to face extreme environments such as

a mine, or the aftermath of a natural disaster.

To efficiently navigate in a more extreme environment,

perception systems are required to detect high obstacles

so the robot can avoid them while walking [3]. A full

3D model of the environment can be obtained using

terrain mapping methods, such as OctoMap [4], Normal

Distribution Transform Occupancy Maps (NDT-OM) [5], or

elevation map [6], [7]. Among all of the above, elevation
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Fig. 1. The foothold selection problem for a quadruped robot. The
region of the elevation map below the i -th leg is evaluated to find the
best foothold. Each candidate position of the foot has to be kinematically
feasible and collision-free.

map sufficiently represents the terrain, guarantees quick

access to each cell, and can be directly transformed to

grayscale image to feed the Convolutional Neural Net-

work [8] which we use in this research.

The problem of foothold selection is presented in Fig. 1.

The robot evaluates the region (elevation map) to select

the best foothold that fulfills a set of kinematics (e.g.,

workspace limit, self-collision, etc) and environmental

constraints (e.g., avoiding sharp edges). In the classical

approach, all constraints are verified sequentially by the

controller of the robot during walking [9]. On the other

hand, online optimization is time-consuming and not

feasible for real-time control.

In this research, we propose a computationally efficient

solution for foothold selection. We applied a neural net-

work to learn a model (off-line) that maps the properties

of the terrain to the quality of a potential foothold while

excluding footholds which are risky or kinematically in-

feasible. During execution time, we efficiently predict the

quality of a potential foothold from the learned model.

The proposed method is verified on a quadruped robot

walking over rough terrain, in both simulation and real

robot platforms.

II. RELATED WORK

The problem of foothold selection is similar to the prob-

lem of multi-finger grasping and was studied widely by

the robotics community. Recent development in this field

includes the method which use local geometrical prop-

erties of the objects to find the acceptable positions of

the fingertips on the object’s surface [10]. The grasp con-



figurations are trained from real examples. The collision

and kinematic constraints are taken into account during

the inference procedure. Recently, deep neural network,

such as the Convolutional Neural Networks (CNN) gained

high popularity in robotics applications. In grasp, the

CNN is applied to select feasible grasp and robotics finger

positions on the object’s surface using point cloud [11] or

depth images [12].

Most approaches for the foothold selection are based

on the local features computed for the terrain surface,

such as the inclination of the terrain, roughness, and local

curvature from the elevation maps [13]. These features

are provided to the input of the simple neural network

which was trained on the data provided by human experts.

Another approach takes the elevation map and estimates

a probability map that is related to the capability of each

cell to provide stable support for the robot’s feet [14].

The StarlETH robot is equipped with the haptic device

on the feet, which explores and evaluates the potential

footholds without human supervision [15]. The HyQ robot

focuses more on the reflexes which stabilize the robot [16],

but it also uses visual information about the terrain to

avoid risky footholds [17]. The robot corrects the nominal

foothold positions according to the output from the visual

pattern classifier applied on the terrain patches.

Great progress in the field of autonomous legged lo-

comotion on rough terrain was done on the quadruped

robot LittleDog [18]. The authors proposed a terrain scorer

which computes the spatial relationship between a con-

sidered point and its neighboring points and then rejects

points which are located on edges, large slope, the base

of a cliff, or inside of a hole.

A learning-based method was proposed to evaluate

terrain templates based on the human demonstration [19].

The terrain scorer approach is also adapted in [20],

where the weights of geometric features of the terrain

are obtained during training and then used for the foot-

steps planning. Very recently, the CNN classifier for the

footholds has been proposed [21].

The foothold selection method for a six-legged robot is

represented by the method implemented on the Lauron IV

robot [22]. The foothold selection module considers points

around initial foothold and takes into account elevation

credibility, the mean height, and the height variance of

the cells. The six-legged Messor robot learns which points

on the elevation map can provide stable support from

simulation data [9]. Then, the trained Gaussian Mixture

is used to select the footholds in the RRT-based motion

planner [23]. The kinematic and self-collision constraints

are also taken into account. However, this process signif-

icantly slow-downs the foothold selection process.

A. Approach and Contribution

In this paper, we propose a novel method to evaluate

potential footholds for the quadruped robot in a single

step using CNN. We collect data for training the network

using the kinematic model of the robot, elevation map

Li

MiMi

Ni

W

Fig. 2. Center of the local map Mi used for foothold selection is located
below the i -th leg joint Li . The foothold selection algorithm considers
also the nominal position of the foot Ni .

of rough terrain and a reference foothold scorer [9]. The

learnt network implicitly stores information about the

kinematic and collision model of the leg and rejects

footholds which are outside the workspace. The main

contributions of this paper include the following:

1) We are the first who show that the CNN can be used

to evaluate geometrical properties of the potential

footholds and simultaneously consider all kinematic

constraints which are related to the model of the

robot. Comparing to formal work which optimizes

constraints on-line, this significantly reduces the

online computational time.

2) A transfer learning approach that learns a model

from data gathered in the simulation. With this ap-

proach, we provide a sufficient number of examples

to train a neural network without the need for using

the real robot. We also show that the obtained neural

model is successfully transferred to the real robot.

III. FOOTHOLD SELECTION MODULE

We propose a foothold selection module to evaluate po-

tential footholds which are inside the local map extracted

from the global elevation map.

A. Problem Definition

A global map is an elevation map built online by the robot

and aligned with the world coordinate system W , where

the center of this map is the center of the robot projected

on the ground. The size of the global map is 6×6m and

the size of each cell is 2×2 cm.

A local map is a subset of the global elevation map

where the center Mi is a point below the hip joint of the

considered leg (presented in Fig. 2). The size of the local

map, which is 40×40 cells, covers the kinematic range of

the leg.

A nominal foothold Ni is the desired position of the

foot for a given step length and assuming that the robot

is walking on flat terrain. Lastly, a potential foothold is a

cell inside of the local map.



Our goal is to select an optimal foothold from a set

of potential footholds online using the information from

the local map that satisfies the following constraints.

First, the robot should avoid selecting footholds on sharp

edges and/or steep slopes because they are potentially

risky. Second, the selected foothold should be within the

kinematic limit of the robot (inside the workspace of the

leg). Also, the robot should avoid self-collisions and check

whether the thigh or shank collides with the terrain.

B. Dataset

Training a model from the robot is expensive, time-

consuming, and dangerous since sensor data is prone to

noise. Thus, we took the transfer learning approach, where

data are gathered in simulation but used on the real robot.

To train the neural network we collect the samples on

the 12×12m elevation map presented in Fig. 3. The map

was created offline by composing maps obtained during

various experiments on the robot. We also added the flat

region, steps with various height, concavities, and bumps

to increase the variation of foothold examples.

Since the robot is symmetrical, we train the models for

the right legs and adapt it for the left legs. To this end,

we have to flip horizontally the input terrain map and

after inference, we flip horizontally the obtained cost map.

Therefore, we only need to collect data for two legs and

train two separate models.

To generate training data, we randomly select the po-

sition of the robot on the map (horizontal position and

distance to the ground). The orientation of the robot on

the horizontal plane (yaw angle) is randomly selected

from four main orientations: n ·
Π

2
, for n = 0,1,2,3. For the

obtained pose of the robot, we compute the pose of the

i -th leg and extract a 40×40 local map. For each cell of the

map, we quality the cost of a foothold c f ∈ [0,255] based

on a set of constraints. This quantity is first evaluated

based on the following hard constraints:

1) kinematic range of the leg: If the given position of

the foot is outside the workspace of the considered

leg, we set the cost to the maximal value c f = 255,

and we do not check other constraints.

2) self-collisions and collision with the ground: We use

Flexible Collision Library [24] to determine whether

there is any collision between any pairs of rigid

bodies and with the ground, except the collision

between the foot and the terrain. A foothold is

rejected (i.e., c f = 255) if there is a collision, and

we do not check further.

If a given potential foothold is collision-free and the foot is

within leg’s workspace, the quality of selecting a foothold

is evaluated using the following evaluation criteria:

1) kinematic margin: The kinematic margin ck is the

distance between the current position of the foot

and the border of the workspace. The maximal value

of ck means that the leg has the maximal motion

range. The ck value is normalized.
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Fig. 3. Elevation map created offline to collect data for training the
neural network.

2) terrain cost: The terrain cost cm evaluates the prop-

erty of the local map. We use the same cost function

with the hexapod Messor robot [9] since both robots

have a similar hemispherical foot. The cm value is

normalized.

Finally, we compute the final cost of the considered

foothold c f and scale the cost to the range [0,255]:

c f =
ck +2 · cm

3
·255. (1)

For each cell, we repeat the above procedure and save

the input (elevation map) and the output (terrain cost).

We collected 20000 training pairs for each leg.

Examples of training data are presented in Fig. 4. The

first two columns present the computed cost maps for

the flat terrain. In this case, the output depends on the

leg’s workspace and the kinematic margin. The distance

between the terrain and the robot is larger on the map in

Fig. 4a than in Fig. 4b. The output cost map also differs.

The obtained cost maps (Fig. 4f and Fig. 4g) represents the

horizontal cross-section over the workspace of the robot’s

leg. The yellow cells represent positions of the foot which

are outside the workspace and are inaccessible for the

robot (c f = 255). Collisions, the edges on the obstacles or

slopes also increase significantly the cost of footholds and

the neural network classifies them as inaccessible (yellow

color). The red cells correspond to acceptable footholds. In

the following examples in Fig. 4c–e the terrain is irregular

and we can observe how the workspace of the robot is

limited by the terrain shape.

C. Convolutional Neural Network

We aim to learn a mapping between the features extracted

from a local elevation map and the quality of potential

footholds. In this work, we choose Convolutional Neural

Network (CNN), since this architecture runs in real-time

on machines without GPUs.

Because CNN is much more efficient in solving classifi-

cation than regression, we discretize the terrain costs into

C different classes. In this work, C is set to 14 since it is

sufficient to distinguish between weak and good footholds

and we can easily provide a sufficient number of training

samples for each class.

The proposed CNN architecture is an Efficient Residual

Factorized ConvNet (ERF) first introduced in [25]. The
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Fig. 4. Example training data: local elevation maps (a,b,c,d,e), and corresponding terrain cost (f,g,h,i,j) (red color – acceptable footholds, yellow
– unacceptable footholds). Note that both subfigures a and b represent flat terrain but elevation is different. Thus, the acceptable region (red area
which corresponds to the leg’s workspace) obtained from the neural network is different in subfigures f and g.
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Fig. 5. Model of the ERF network. Light blue blocks represent
downsampling, dark blue - upsampling by transposed convolution and
white blocks show residual layers. Numbers below blocks describes the
number of feature maps used in specific levels. C denotes the number
of classes (14 in the current implementation).

characteristics of this model is the modification of the

residual layer [26] called residual non-bottleneck 1D layer.

The 2D convolution with a 3×3 filter is replaced by two

2D convolutions with filters shape 3×1 and 1×3. This

approach reduces the number of variables and complexity.

The ERF model is shown in Fig. 5. First, the input

data is processed twice by downsampling blocks. The

downsampling blocks are created from the concatenation

of the max pooling and 2D convolution with a 3×3

filter and a stride of 2. The concatenation is followed

by the activation function. Then, five residual layers and

another downsample block are added. The output of the

encoder part is processed by eight residual layers which

are interwoven with different dilation rate applied to the

convolutions. The decoder part of the model consists of

two series of convolutional upsampling and two residual

layers. The upsampling is performed by transposing con-

volution with a stride of 2. The output of the model is

produced by upsampling convolution with 2×2 filters and

strides of 2, where the number of filters is equal to the

number of classes. The Activation function used in each

nonlinear layer is a rectified linear unit (ReLU).

The optimized objective of the model is composed of

Leg Accuracy [%] IoU

front leg 82.61 49.9
rear leg 82.61 49.88

TABLE I

ACCURACY AND INTERSECTION OVER UNION (IOU) OBTAINED ON

VALIDATION SET FOR FRONT AND REAR LEG MODELS

cross-entropy loss and regularization loss. In the training

dataset, the most examples are provided for the class

which represents footholds inaccessible for the robot. To

handle unbalanced data, the cross-entropy is additionally

weighted [27] based on the frequency of occurrence.

Namely, the weight of the i th class wi is defined by

wi =
1

log(c +pi )
(2)

where c = 1.08 is a constant and pi is a probability of the

occurrence of the i th class in the entire training dataset.

We use the method presented in [28] for training the

model with an initial learning rate of 5e-4. Additionally,

the exponential decay was applied after each epoch to the

learning rate with a factor of 0.98. Because of the nature

of the training examples, we can’t use any of the known

data augmentation methods.

In order to measure the quality of models accuracy, an

Intersection over Union (IoU) metrics were calculated. The

learning process took place in 500 epochs. The results

obtained by two ERF models for front and rear legs are

shown in Tab. I. The IoU value is higher than 82%. Note

that, this value does not represent directly the quality of

the foothold selection module. Although the learnt model

misclassifies 22% of the footholds, most of the errors

are between neighboring classes, which is not a crucial

problem. For example, if the foothold is classified as a

class number 13 instead of the class number 14 it is still

considered as a very weak foothold.

D. Inference procedure

The inference procedure is presented in Fig. 7. In the

first step, we get submap from the global map built by



a b

Fig. 6. Environment configuration during experiment with the ANYmal robot on stairs (a) and on rough terrain (b) in the Gazebo simulator. Blue
lines represent feet trajectories.

the robot. The obtained map is aligned with the world

coordinate system W but our neural network uses the

elevation map which is aligned with the robot coordinate

system. Thus, we rotate the obtained local map by the

current orientation of the robot on the horizontal plane

(yaw angle). Some information about cells at the corners

is lost during this rotation, therefore, we take a slightly

larger map for rotation purpose. Before rotation, the size

of the local map is 51×51 cells and after rotation, we crop

the map to size 40×40 cells.

In the next step, we convert the obtained elevation

map to the image. To this end, we compute the distances

between the i -th leg coordinate system Li and each cell

of the map. We use 8-bit grayscale images as an input

to the network so the obtained distance values are fitted

into range 0–255. We use a constant normalization factor

(0.85 m) for each leg of the robot. The obtained image

which represents the terrain patch around the consider

leg is the input to the neural network model.

The network classifies each pixel on the image, and

the cost at each pixel corresponds to the cost of taking

that foothold. The example inference results for the input

image representing stairs are presented in Fig. 7. The

pixels which are located on the edges between steps on

the output image are brighter which means that the robot

should avoid these footholds. At the same stage of the

inference procedure, we compute the distance from the

nominal foothold dn . Then, we compute the final cost

cfinal for each pixel (foothold):

cfinal = c f +k ·dn , (3)

where c f is the cost computed by the neural network and

k is the constant value which determines the influence of

the distance from the nominal foothold on the final cost

of the potential foothold. In the experiments presented in

the paper the k value is set to 140. We compute the final

cost cfinal for each pixel on the image (c.f. Fig. 7) and we

find the minimal value. Then, the pixel with the minimal

cost in image coordinates is converted into the 3D point

in the world coordinate system. The obtained value is sent

to the controller which executes the motion for the given

foothold.

Extract local
elevation Map

Convert to the
normalized image

CNN inference
Compute the

nominal foothold
distance to the

Find the minimal cost

Fig. 7. Foothold selection procedure on the local elevation map

IV. RESULTS

First experiments are performed in the Gazebo simulator.

We verified the proposed foothold selection method on

the ANYmal robot walking on stairs (Fig. 6a) and on

rough terrain (Fig. 6b). The robot uses a simulated Intel

RealSense D435 RGB-D sensor to build a map of the

environment [7]. We use the controller presented in [29]

to plan the foot trajectories above the obstacles, estimate

the state of the robot and execute planned trajectories.

We only replaced the foothold selection model.

The example inference results are presented in Fig. 8.

We provide the terrain patches extracted from the global

elevation map, the distance between potential footholds

and the nominal foothold, and the output from the CNN.

It is clearly visible from the result obtained on the stairs

that the robot avoids placing its feet on the edges. These

regions are classified by the neural network as risky

and rejected by the foothold selection module. Similar

behavior can be observed in the results obtained on rough

terrain. In this case, the obstacles are more irregular. For

both patches obtained on rough terrain, the region in the

center of the workspace has a similar cost. In this case, the

distance from the nominal foothold plays an important
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Fig. 8. Example inference results obtained during the experiment on
stairs (a,b,c) and on rough terrain (d,e). The stairs and rough terrain are
presented in Fig. 6a and Fig. 6b, respectively.

role. The selected foothold is close to the nominal foothold

but still on the position with acceptable foothold cost

predicted by the CNN.

We also compare our method with the foothold se-

lection method proposed in [29]. The average foothold

selection time for [29] is 3.44 ms per 10 samples, while

our method produces the output in 151.93 ms (the CNN

inference takes 10 ms on the Intel CPU i7-2640M and

the rest of the time is consumed by getting data from

the global elevation map and preparing input data for

the CNN). Although our method may not be the most

time efficient one, we outperform the previous work in

the choice of footholds. We validated both methods on a

stair with 8 steps, each step is 0.18 m high and 0.29 wide.

In average, the robot reached 5 steps (in 10 trials) using

our method while the robot failed after 2.6 steps using

method from [29]. Note that, the failures in both methods

are not caused by improper foothold selection but by the

stability controller. In all unsuccessful cases, the robot

fails because of the lack of stability. Our method performs

better because it takes into account the workspace of the

leg and selects footholds which are far from the border of

the leg’s workspace. As a result, the posture of the robot

is more stable during walking.

To demonstrate the benefit of learning a model instead

of optimizing all constraints online, we compared our

method with the method proposed in [9]. We applied the

method from [9] to the ANYmal robot and we evaluated

the same constraints. Instead of using CNN we use the

kinematic model of the robot to check the workspace

of the legs and we use Flexible Collision Library [24] to

detect collisions. In this case, the foothold evaluation in

the 40×40 window takes 2008.81 ms which is more than

10 times slower than the proposed application of CNN.

a

b

c

Fig. 9. Experiment with the ANYmal robot on the rough terrain mockup
(a): example terrain patches (b) and CNN output (c)

In contrast to previous work based on manually com-

puted features of the terrain [13], the method based

on CNN extracts features automatically from data. Our

method evaluates 1600 potential footholds and checks

constraints in a single inference step. In contrast to pre-

vious work, our new approach only needs approximately

10 ms on the CPU to infer from the input elevation map.

Finally, we performed the experiments on the real robot

walking over a customized rough terrain consists of 12

blocks with different slopes and orientation. The robot

should avoid stepping on the tips or the edges. The

example results are presented in Fig. 9. The obtained

elevation map (Fig. 9b) is less accurate than the map

obtained in the simulation experiments due to noise, but

the robot can still identify risky edges and place its feet

on the stable positions (see supplementary video).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel foothold selection

method for legged systems. In contrast to methods known

from the literature, the proposed method learns a model

that evaluates the terrain patches and checks all con-

straints in a single step. The time complexity for the

inference is significantly reduced. With the proposed

method, the robot avoids placing its feet on the edges or

steep slopes. The neural network also implicitly takes into

account the kinematic range of the leg and detects self-

collisions and collisions with the ground. The proposed

foothold selection module is integrated with the controller

of the robot. In the simulation and experiments with the

real robot, we present the properties and the efficiency of

the proposed method.

In the future, we plan to use the neural network to

optimize simultaneously the foothold position and the

posture of the robot.
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