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Learning Driven Coarse-to-Fine Articulated Robot Tracking

Christian Rauch1, Vladimir Ivan1, Timothy Hospedales1, Jamie Shotton2, Maurice Fallon3

Abstract— In this work we present an articulated tracking
approach for robotic manipulators, which relies only on visual
cues from colour and depth images to estimate the robot’s
state when interacting with or being occluded by its environ-
ment. We hypothesise that articulated model fitting approaches
can only achieve accurate tracking if subpixel-level accurate
correspondences between observed and estimated state can be
established. Previous work in this area has exclusively relied
on either discriminative depth information or colour edge cor-
respondences as tracking objective and required initialisation
from joint encoders. In this paper we propose a coarse-to-fine
articulated state estimator, which relies only on visual cues
from colour edges and learned depth keypoints, and which
is initialised from a robot state distribution predicted from
a depth image. We evaluate our approach on four RGB-D
sequences showing a KUKA LWR arm with a Schunk SDH2
hand interacting with its environment and demonstrate that this
combined keypoint and edge tracking objective can estimate the
palm position with an average error of 2.5cm without using any
joint encoder sensing.

I. INTRODUCTION

Traditional robot manipulation requires a precisely mod-
elled articulated robot arm with accurate position and torque
sensing to execute trajectories with high precision. This
approach has been most successful in industrial automotive
manufacturing but typically does not use any exteroception.
In this work we focus on visually-driven manipulation where
the scene is understood through visual object detection and
fitting and the articulated robot arm is tracked visually. Many
compliant robot arms suffer from structure bending and are
not millimetre-precise while in some industrial scenarios
manipulators are entirely devoid of sensing such as in nuclear
decommissioning [1]. In these scenarios the vision-only
manipulator tracking would be useful.

We explore model-based articulated arm tracking based
entirely on RGB-D cameras passively detecting the arm.
The goal is to determine the configuration of the robot arm
model which best matches the observed state. One particular
challenge is that a variety of different joint configurations
can lead to visually similar observations. We are motivated
by the work of [2], [3], [4] (in the field of human body
tracking) to develop model fitting approaches which lever-
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Fig. 1. Grasping in a cluttered environment. Top left: colour image,
top right: colourised depth image of the manipulator and objects in the
scene with the background removed. The combined tracking of keypoints
(yellow/green, bottom left) and edges (blue, bottom right) enables precise
tracking (red) during a grasping task even when parts of the manipulator
are occluded. While keypoints provide sparse but stable visual cues for the
fingers, edges provide pixel-accurate estimation of the upper arm. No joint
encoder sensing was used here.

age learned discriminative information to fit kinematically
plausible states to the observed data.

Approaches such as [5] and [6] use 2D keypoint estima-
tion to predict the 2D pixel location of joints but do not
leverage the kinematic and visual information provided by
the manufacturer’s 3D model of the robot. This kinematic
information is only learned indirectly from a large training
set and therefore needs to be explicitly enforced using an
additional kinematic solver. Although keypoints can provide
reliable constraints for the kinematic solver, they are only
sparsely distributed. We therefore propose to use additional
dense edge correspondences as a second tracking objective.
These two objectives are visualised in Figure 1 for a cluttered
environment. While edges provide densely distributed pixel-
accurate correspondences, they are impaired by textured ob-
jects and are therefore unreliable as a sole tracking objective,
in which case keypoints provide more stable cues.

Local optimisation algorithms leverage gradient informa-
tion which, for kinematic models, can be easily obtained
by differentiating the forward kinematics of the articulated
model. However, initialising such a local optimisation solely
from visual observations is challenging due to the visual
ambiguity of shape symmetric robot links and the large
range of possible joint motions. We therefore consider many
possible candidates for initialising the optimisation. These



candidates are drawn from a coarse robot state distribution
that is predicted from a single depth image. Sampling from
this distribution allows us to consider many candidates and
select that one that provides the best visual cues.

In summary, we contribute:
1) a tracker initialisation strategy using a coarse joint

position distribution predicted from a depth image
2) a combined tracking objective that uses stable and

pixel-accurate cues from colour and depth images in a
single unified framework

The combination of these stages makes our proposed tracking
approach independent from joint encoder sensing and con-
secutively refines the state from the initially sampled config-
uration via keypoint tracking until the basin of convergence
for pixel-accurate edge correspondences is reached.

We show that, while keypoints already provide a good
performance for tracking a manipulator, the additional inte-
gration of edges can reduce the end-effector tracking error
to 2.5cm for grasping scenarios.

II. RELATED WORK

A large corpus of work [7], [8], [9], [1] has investigated
visual tracking for robotic manipulation in recent years.
Visual tracking approaches ought to be able to mitigate
effects such as linkage elasticity or joint encoder inaccuracies
and ought to enable a more precise manipulation accuracy
and a more holistic representation of the manipulation scene,
including the manipulandum and obstacles in the scene.

Joint distribution prediction: Inspired by previous work
on predicting the state of an articulated model from images
in [2], [10], we propose to predict a distribution over the
articulated state space of a robot manipulator. Similar to
[2], we represent this distribution as discretised bins. Instead
of training discrete state regressors for each of these bins,
we propose to directly sample from the distribution that
is represented by these bins. Compared to the discrete
states provided by the retrieval forest in [10], our proposed
sampling approach provides continuous interpolated samples
from the state space and hence also includes samples that are
not exactly part of the training set.

Visual features: Different sparse and dense visual features
have been used in tracking literature to establish correspon-
dences between the observed and estimated state of a 3D
model. Early work in this area used dense features like
colour image edges [11], [1], [12] and depth images [9].
These correspondences are based on the local appearance
of the estimated state and change with each iteration of the
optimisation. This results in many local minima which can
be mitigated by introducing discriminative information [13].

Sparse keypoint features, learned from data, are commonly
used for human pose estimation [5], [6] and used to es-
timate the skeleton configuration from 2D images. These
approaches do not resolve 3D ambiguity, nor do they provide
the exact visual representation that is required for robotic
grasping tasks. An additional 3D pose estimation stage
[14] can regress from these keypoint locations to 3D joint
coordinates. As proposed in [15], we resolve the ambiguity

when mapping between a 2D keypoint to 3D pose by using a
line of sight constraint and the camera intrinsics to constrain
the optimisation state space.

Due to their stability, we propose to rely on keypoint track-
ing as the base objective. After initial optimisation, we then
switch to dense but pixel-level accurate edge correspondence
for accurate registration. Compared to our previous work
[13], which used pixel-wise depth image segmentation as
visual cues, the 2D keypoints proposed in this paper can be
located behind occlusions (see Figure 1) while texture/colour
edges provide sharper contours than the imprecise edges in
typical depth images.

Kinematic optimisation: Model fitting approaches, such as
[9], [12], [4], rely on accurate models to find the optimal
state that is kinematically and visually plausible. While
global optimisation methods are less prone to local minima,
they are also more difficult to tune and are computationally
expensive. Local optimisation approaches on the other hand
are well established and make use of gradient information
to quickly converge to a minimum. We use the optimisation
toolbox EXOTica [16], which provides a modular way to
exchange solvers and objectives, to fit our robot model using
the keypoint and edge objectives. Inspired by [17], we first
optimise the kinematic chain from the base of the robot to the
palm or wrist, before optimising the smaller finger links. This
makes sure that the optimisation of fingers, which have less
visual features and are more likely occluded, is initialised
from a reasonable state.

III. METHOD

A. Overview

To find kinematically plausible robot configurations which
match the observed depth image, we propose a coarse-to-
fine inverse kinematic optimisation in three stages (Figure 2).
First, we sample from a predicted distribution of joint values
to propose a set of possible initial configurations (Section III-
C). These coarse samples are tested in the second stage to
select the sample which minimises the keypoint tracking
objective on the first image in a sequence. In the third
stage, we minimise the combined keypoint and edge objec-
tive (Section III-F) consecutively on a sequence of images
(Section III-G). All three stages use visual cues that we
extract from the depth image using a multitask convolutional
neural network (Section III-B).

B. Multitask Prediction

Predicting the joint position distributions and keyoint
heatmaps is done in parallel on a depth image. Since these
tasks share depth image features, they are commonly trained
in a multitask setup (Figure 3). In our architecture, we use a
ResNet-34 [18] to extract 256 feature maps that are used
by the task specific branches. As the type of a keypoint
relates to the link it belongs to, we train an additional
segmentation task to segment the depth image into robot
links and background.

The segmentation and keypoint heatmaps provide infor-
mation in the image space about pixels being occupied by
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Fig. 2. An overview of the sources of information extracted from an
observed RGB-D image pair. From left to right, they provide increasingly
detailed visual cues for the tracking system.
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Fig. 3. Our approach uses multitask prediction to obtain segments,
keypoints and joint estimates from a single depth image. All three tasks
use the same depth features extracted by a ResNet-34 [18].

a link or a 2D keypoint, respectively. The feature maps
are therefore individually upscaled by 3 × 3 transposed
convolutions to 128 task specific feature maps of a quarter
of the original depth image resolution. For the segmentation
this is followed by a regular 2D 3 × 3 convolution and a
softmax layer for providing the probabilities for the NL = 18
robot links, the background and the object (20 classes in
total). To reuse information about the location of links for the
keypoint localisation, we concatenate the upscaled heatmap
features with the segmentation features and apply 3× 3 2D
convolution with a sigmoid activation.

The 22 3D keypoints are manually placed on the surface
of the 18 links. During training, they are transformed via the
true state into the camera frame and projected onto the 2D
image plane. 2D Gaussians with σ = 3px are centred on
each of the 22 keypoint pixel locations to obtain the final
heatmaps [5]. An additional background heatmap is created
to represent the probability of a pixel not being assigned to
any keypoint. During prediction, we can only recover the
line of sight from camera origin to the 2D keypoint on the
image plane. This ambiguity is resolved during optimisation
of point-to-line distances in a subsequent stage.

The third branch provides a joint state distribution to
initialise the optimisation, and the 6D robot pose as support.
Since a regular regression of the joint state only provides
the state vector itself without a confidence measure, we train
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Fig. 4. Example distribution (orange) and samples (green) of a lower arm
joint position, predicted and sampled from an image of the occluded bottle
sequence (Figure 8). The distribution shows two strong modes at 1.2rad and
−1.8rad since the link has a similar visual appearance at half rotations.

the network to predict a distribution of joint states. For each
of the NJ = 15 joint positions, we place a 1D Gaussian
with σ = 0.1rad on the true joint position. This Gaussian
is then discretised in the value range [−π, π)rad into 60
bins which results in a resolution of 6deg ≡ 0.1rad. All
discretised joint positions are serialised into a single vector
R900×1 (15 × 60) and then reshaped into a matrix R15×60

containing the score values of discretised joint positions.
After prediction we can treat the scores of each joint as a
probability distribution function (PDF) from which we can
sample joint states. Since we are sampling from a continuous
distribution, the resolution of the discretised bins does not
directly affect the sampled states, as long as it is small
enough to represent multiple modes of the joint positions.

The inference for all tasks takes 0.07s per image.

C. Sampling of Initial Configuration

Robotic joints have a large range of possible joint po-
sitions and configurations that are far away in joint space
can lead to the same global end-effector pose with very
similar local appearance. Trying to directly predict the joint
position from a single depth image is therefore an ambiguous
task. Although we provide a single-mode 1D Gaussian joint
position distribution as training target, it is likely that a multi-
modal distribution is predicted for visually similar appearing
configurations of a link (Figure 4).

Since the mean or the strongest mode of such a distribution
might not correspond to the observed link state, we propose
to sample independently from each joint’s distribution to
initialise the optimisation several times. To obtain samples
from the PDF represented by the score bins, we linearly
interpolate the cumulative sum of the bin scores, which
provides the cumulative distribution function (CDF), and
sample uniformly in U(0, 1) from the inverse CDF.

D. Training

The segmentation, keypoint localisation and joint distri-
bution prediction is trained on approximately 125000 syn-
thetically rendered depth images in the manner described in
our previous work [13]. These synthetic images show the
robot at different configurations sampled from a wide range
of states where the palm is inside the camera frustum. As
proposed in [19], we randomly select one of 30 objects and



place the object at a random pose inside the hand to simulate
interaction with a manipulandum. We do not discriminate
between these 30 objects, but treat them as a single object.

During training we minimise a weighted cross entropy
for the segmentation task, the mean absolute error on the
keypoint heatmaps and the mean squared error on the discre-
tised joint scores. The cross entropy is weighted by median
frequency balancing to increase the classification accuracy
for smaller links such as the middle finger and finger tip.

E. Tracking Objective

The observed robot state is provided by the colour and
depth images, and the predicted keypoints and joint position
distribution. The estimated robot state is initially provided by
the sampled configurations and thereafter from the optimisa-
tion on consecutive image frames. The visual representation
of the estimated state is obtained by rendering the link
meshes at their estimated pose.

The objective for the optimisation is to minimise the
distance between observed 2D keypoints and edges and
their corresponding estimated visual 3D representation. Since
the depth of these keypoints and edges cannot be fully
determined, e.g. a keypoint might be occluded, the objective
is formulated using the line of sight.

The line of sight l of a 2D keypoint or 2D edge pixel is
the ray that passes the camera origin and the 2D point on the
image plane. These lines are defined in the camera frame and
obtained via back-projection using the camera intrinsics. The
start of this ray ls can be constrained using corresponding
depth information. The previously defined link keypoints
and the link meshes are transformed from the link to the
camera frame at each optimisation iteration and provide the
corresponding estimated 3D visual representation.

Given the 3D line of sight l and a corresponding 3D point
p, the projection of p on l, pv

t = min

(
0,− (ls − p) · l

‖l‖2

)
(1)

pv = ls + tl (2)

is the point on the line closest to p. The vector

dv = pv − p (3)

points from the estimated 3D point to its corresponding
observed 3D point in the camera frame. dv is the tracking
objective for keypoints and edges which is to be minimised.
We will denote this objective as Point-to-Line (P2L) task.

1) Keypoints: For each predicted heatmap, we select the
pixel with the highest score and its associated depth reading
to obtain the line of sight l. The corresponding 3D keypoint
is transformed from its local coordinate frame to the camera
frame via forward kinematics during the optimisation. The
P2L keypoint correspondences are established per observed
image frame and stay constant during optimisation.

2) Edge Pixels: Estimated edge pixels are related to
their closest observed edge pixel by computing a distance
transform on the Canny [20] edges of the observed colour
image. The estimated edge pixels and its 3D coordinate are

provided by rendering the estimated state in the image frame.
We iterate through these edge pixels and assign them to
the closest observed edge pixel if the angle between their
normals is smaller than 8 degree, i.e. if they point roughly
in the same direction. This is similar to the orthogonal
line search proposed in [12]. The edge-to-edge association
provides multiple P2L tasks per link, which are updated at
each iteration by rendering the new estimated state. To make
these objectives more robust, we reject keypoints with scores
smaller than 0.5 and reject edges pixels with more than 5cm
distance.

F. Resolving Robot State Ambiguity

Each P2L task minimises the distance dv between the
observed line of sight rays in the camera frame and their cor-
responding 3D points p in the link frame (after transforming
them into the same camera frame using the estimated joint
configuration) with respect to the robot state q. The gradient
of this task is derived using the chain rule:

∂dv

∂q
=

(
∂p

∂q
· l

‖l‖2

)
l− ∂p

∂q
. (4)

∂p
∂q is given by the kinematic Jacobian Jkin(q) ∈ R3×6+NJ ,
i.e. by differentiation of forward kinematics, where
Ji,j =

∂pi

∂qj
with i ∈ [1, 3] (task space φ) and j ∈ [1, 6+NJ ]

(robot state space q), and NJ the number of joints.
The keypoint and edge correspondences provide NT P2L

tasks for each of the NL links. The gradients
(

∂dv,t

∂q

)
and

directions (dv,t) of these tasks (t ∈ [1, NT ]) are averaged
per link l and objective type:

JP2L,l =
1

NT,l

NT,l∑
t

∂dv,t

∂q
(5)

φP2L,l =
1

NT,l

NT,l∑
t

dv,t . (6)

Since the tasks are shared among the keypoint (k) and edge
(e) objective, their relative contribution is weighted by a link
specific weight α ∈ {0, 1} and a global weight w ∈ {0, 1}:

Jopt,l = αkJP2L,l,k + weαeJP2L,l,e (7)
φl = αkφP2L,l,k + weαeφP2L,l,e . (8)

The weights α are used to switch the tracking objective
between keypoints (αk = 1, αe = 0) and edges (αk = 0,
αe = 1) individually per link. The weight we is used to
globally add or remove the edge tracking objective.

The distances are minimised iteratively with respect to q

qi+1 = qi + J†optφ (9)

using the pseudo-inverse J†opt ∈ R6+NJ×3NL of all stacked
Jopt and the stacked P2L distances φ ∈ R3NL×1.

Since the root link of the robot is rotational symmetric
and often not observed in the depth image, we use the true
6D camera pose and do not optimise these state variables.



G. Tracking Pipeline

The tracking operates on a continuous sequence of depth
and colour images. It is initialised once at the beginning by
sampling 50 configurations from the predicted distribution
(Section III-C) and selecting the state with the smallest key-
point objective (Section III-E.1), i.e. the forward kinematics
state with the smallest average Euclidean distance between
the 3D keypoints and their corresponding line of sight. The
optimisation is then initialised at each new image pair using
the previous solution and iterates for 10 iterations (0.37s).

The tracking objectives are switched at run time for each
link individually. A link switches from keypoint to edge
tracking (αk = 0, αe = 1), if all of its keypoint distances
are closer than 2cm (‖dv‖ ≤ 0.02) and vice versa. Finger
links always use the keypoint objective.

We initially only track the arm and palm and switch to full
tracking when the upper links’ keypoint error is smaller than
2cm, and switch back to arm and palm tracking when this
error becomes larger than 3cm. This low and high threshold
have been chosen to minimise hysteresis.

IV. EVALUATION

We evaluate our tracking approach using a Kuka LWR4
7 DOF arm with a Schunk SDH2 7 DOF end-effector,
which is observed by a fixed Asus Xtion PRO LIVE RGB-D
camera. For further details on the experimental setup we refer
to [13]. We evaluate our tracking approach on four sequences
that show grasping of different objects and occlusions.

A. Sampling Robot States

First we will qualitatively evaluate the first stage of
our proposed pipeline, which proposes initial robot joint
configurations using the predicted distributions described
in Section III-C. Figure 5 shows snapshots of two track-
ing sequences, each with three sampled configurations. For
these visualisations, we sampled 50 configurations from the
predicted distribution and automatically selected the three
configurations with the smallest average edge-to-edge dis-
tance. These configurations coarsely align with the observed
state and demonstrate that the predicted distribution provides
reasonable robot states to initialise the local optimisation.

B. Tracking

We apply the proposed tracking approach on the four
sequences as described in Section III-G. To evaluate the
contribution of edge tracking, we apply tracking once with
we = 0 (keypoint-only objective) and we = 1 (combined
keypoint and edge objective) with the same sampled starting
state. Apart from we, we use the same configuration for
all sequences. Figures 6 to 9 report the position tracking
error against forward kinematics for a forearm link and the
palm (fifth and ninth link in the kinematic chain), with two
snapshots of the sequence overlaid with contours of the state
estimated using the combined keypoint and edge objective.

By using edges as an additional objective, the average
palm position error in the non-occluded grasping sequences
(Figures 6 and 7) has reduced from 3.7cm to 2.7cm and

Fig. 5. Sampling from the joint position distribution. Left: colour image
of the observed scene, Middle: depth image from which we predict the
joint position distribution, Right: observed edges (blue) overlaid with the
contours of three sampled configurations (green, orange, yellow).

3.1cm to 2.5cm, respectively. Although the occluded bottle
sequence (Figure 8) shows an improved tracking perfor-
mance of the forearm link, this is not propagated to the palm.

In the grasping behind occlusions sequence (Figure 9),
which is the most challenging of our sequences since it
contains distractions of both types (manipulandum and oc-
clusion), we are still able to track the palm with an average
position error of 4.5cm, which is less than half of the
palm length (9.38cm). The keypoint-only baseline performs
slightly better in this case.

In summary, our proposed tracking approach is able to
reliably track an occluded manipulator in grasping scenes,
without making any assumptions on the presence of objects
or the availability of joint encoder readings. This solves a
common problem of articulated tracking approaches, which
often need to be initialised from a known robot state. Our
approach is therefore more generally applicable to scenarios
where direct access to the robot is not available.

V. CONCLUSION

We presented a robotic manipulator tracking approach
that solely relies upon visual cues to initialise tracking. It
consecutively updates the estimated state using a combi-
nation of colour edge and depth keypoint correspondences.
The proposed deep multitask network learns common depth
image features that can efficiently be used in parallel for
the coarse initialisation and the keypoint tracking objective.
Dense colour image edges are then further used to refine
the estimated state. Our approach only requires an accurate
kinematic and visual model to generate training data and to
provide the estimated visual representation during tracking.
No real robot data was required to train the network.
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Fig. 7. Grasping bottle. Using additional edge objective reduces average
position error from 2.7cm to 2.3cm (forearm) and 3.1cm to 2.5cm (palm).

We evaluated our approach on four sequences showing
the grasping of different objects and varying occlusions, and
found that the additional edge tracking objective improves
tracking of grasping scenes compared to only keypoint
tracking. Even in cases with strong distractions from a
textured manipulandum and occlusions, which our previous
approach cannot handle, we are able to purely visually track
the palm with a position error of less than half its size.
We note that we used the same tracking parameters for
the sequences with and without occlusions and recommend
tuning of the combination of the objectives depending on
the expected amount of occlusions. In future work, we will
investigate alternative dense correspondences like histogram
of oriented gradients (HOG) to provide more robust pixel-
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Fig. 8. Occluded bottle. Using additional edge objective reduces average
position error for the forearm from 3.1cm to 2.1cm but increases the palm
position error from 2.6cm to 2.8cm.
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Fig. 9. Grasping Alpen box behind occlusion. The additional edge objective
impairs tracking (average palm position error increased from 4.3cm to
4.5cm), when strong visual distractions are present.

level correspondences.

The proposed prediction of a joint position distribution
provides samples that are sufficient to initialise tracking,
but the discrete bin scores and their interpolated PDF are
predicted and sampled independently which makes this sam-
pling approach inefficient. The camera pose is currently not
part of the predicted and sampled robot state distribution and
is therefore assumed given and static. In future work we will
investigate methods for sampling a holistic robot state that
can additionally be used during tracking to detect tracking
loss and reinitialise the tracker.
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