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Abstract Subhorizontal lake shorelines allow a geodynamic test of the size and extent of a hypothesized
paleolake in central Tibet, the East Qiangtang Lake (EQL), during the last interglacial period (marine isotope
stage (MIS) 5e). Reconstructions based on relict lake deposits suggest that the EQL would have been
~400 m deep and over ~66,000 km2. Models of flexural rebound driven by lake recession predict that
shorelines near the EQL center, at the present-day location of Siling Co, would have rebounded 60–90 m
above their initial elevation. New 36Cl chronology of the highest relict shorelines around Siling Co indicates
that they reflect lake levels between 110 and 190 ka. These shorelines, however, are presently >300 m
below their predicted elevations, implying a substantially smaller water load. Our results reveal that the
expansion of Tibetan lakes during MIS 5e was relatively limited. Instead, individual lakes were supplied by
river networks, much as they are today.

1. Introduction

The internally drained, high elevation regions of the central Tibetan Plateau retain hundreds of saline lakes
[Zhang et al., 2014], the basins of which are decorated by flights of relict shorelines that attest to more exten-
sive lake systems in the recent geological past [Avouac et al., 1996; Gasse et al., 1991]. In recent years, a wealth
of new chronologies from paleoshoreline deposits reveals that most of these lakes experienced highstand
conditions in the early part of the Holocene [Hudson et al., 2015; Rades et al., 2015; Shi et al., 2015] possibly
in response to increased monsoonal precipitation [Hudson and Quade, 2013]. The Holocene highstand
shorelines lie between 50 and 100m above present lake levels [Hudson et al., 2015; Rades et al., 2015; Shi et al.,
2015], although in some hydrologically isolated basins in western Tibet, Holocene shorelines can be found up
to ~250 m above modern lakes [e.g., Avouac et al., 1996].

In contrast, remnants of paleoshoreline features and lacustrine deposits have been found at relatively high
elevations around Nam Co, a large lake situated along the southeastern margin of the internally drained
region of Tibet (Figure 1). The height of these deposits relative to water divides has led to the hypothesis that
a single great lake once occupied the interior of the plateau [e.g., Shao et al., 2013; Zhu et al., 2004]. This lake
system, referred to as the East Qiangtang Lake (EQL), is inferred to have reached a shoreline elevation of
~4860 m, implying a surface area exceeding 66,000 km2 and water depths>300–400 m in the central basins
(Figures 1 and S1 in the supporting information). Although chronologic control on these lake deposits is
sparse, uranium-series dating of carbonate-rich material suggests deposition between ~40 ka and ~120 ka
[Shao et al., 2013; Zhu et al., 2004].

The spatial extent of shorelines and deposits associated with the hypothesized EQL is not established.
Lacustrine deposits observed at elevations near the inferred lake margin (~4860 m) are found only in close
proximity to themodern basin of Nam Co (locations T and G, Figure 1). Therefore, correlation to ancient lacus-
trine deposits in other lake basins throughout Tibet is largely inferential [Shao et al., 2013]. Although recon-
naissance studies suggest that pre-Holocene shoreline features and deposits exist in other basins [Kong et al.,
2011], it remains unknown whether these shorelines represent a single EQL. Moreover, previous attempts to
reconstruct the extent of lake systems at the ~4860 m level did not consider the possibility that lithospheric
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flexure associated with changes in water load may have warped shorelines away from their original
horizontal [e.g., Bills et al., 1994a], complicating direct comparison of shorelines based on elevation alone.

To test the hypothesis of a formerly extensive lake similar to the EQL, we conducted analyses of deflection
and rebound associated with loading and removal of water in the EQL basin. We compare the predicted
elevation distribution of shorelines in the present day to new observations of shoreline height around
Siling Co, near the center of the EQL basin (Figure 1). Because previous work had not identified these highest
shorelines near Siling Co, we undertook direct dating of several well-preserved beach platforms and deposits
using depth profiles of cosmogenic 36Cl concentrations in beach gravels. Collectively, these data allow us to
place bounds on the height of the lake level around Siling Co during marine isotope stage (MIS) 6 to 5e and
provide a direct test of the hypothesis of a single continuous paleolake on the Tibetan Plateau.

2. Background

Two primary observations led to the proposition of a single expansive EQL [Zhu et al., 2002, 2004]. First,
stratified lacustrine deposits with a U-Th age of 115.9 ± 12.1 ka from CaCO3 in clay and silt [Zhu et al.,
2004] at the Tajiguri and Ganmanong sites (labeled as “G” and “T” in Figure 1, respectively) above Nam Co
are found at 4857 m in elevation (based on a leveling survey), ~150 m above the 2009 lake level [Zhang et al.,
2011a]. Comparably high shorelines are also found in lake basins near Nam Co [Zhao et al., 2011; Zhu et al.,
2002]. Second, the low position of a water divide (~100 m lower than the highest lacustrine deposits) located
west of the Nam Co basin would potentially provide a connection between the Nam Co and the Siling Co
basins (Figure 1). However, there have been few tests of this hypothesis, and paleoshorelines associated with
the EQL previously have not been evaluated for this purpose.

The modern Siling Co sits in a broad depression that would have been near the center of the hypothesized
EQL (Figure 1). Within the Siling Co basin, Holocene shorelines are recognized up to 50m above the 2010 lake
level (4543 m) [Meng et al., 2012a; Shi et al., 2014, 2015]. The highest of these, referred to as the Lingtong
shoreline, sits at 4594 m (Figure 1) and represents a period of time from ~6–4 ka when Siling Co was at its

Figure 1. Geomorphic setting of the study area. (a) The map shows the location of our study region in Tibet, (b) The map
showing the proposed lake extents of the East Qiangtang lake (EQL, white polygon) at ~116 ka [Zhu et al., 2004] and of
the modern lakes (blue polygon) [Zhang et al., 2011b]. The red cross marks the lowest positions of water divides. T and G
show locations of lacustrine sites previously found and used to define the EQL. Bracketed blue numbers show modern
lake levels from Google Earth or Zhang et al. [2011b].
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Holocene highstand [Shi et al., 2015]. Remnants of even higher shorelines have been observed above this
level, ranging up to ~4640 m in elevation [Li et al., 2009; Meng et al., 2012b]. However, their age and signifi-
cance were previously unknown. In this study, we evaluate the age of these relict shorelines around Siling Co
to test whether they are consistent with the EQL hypothesis.

3. Methods

Our approach combines modeling lithospheric flexure in response to the loading and unloading of a lake, the
same size of the EQL, with surveying and dating of the highest relict shorelines around Siling Co. We model
the predicted elevations of EQL highstand shorelines using a forward elastic flexural model that approxi-
mates the response of a lithosphere with a uniform elastic thickness (Te) ranging from 20 to 30 km, values that
have been previously determined for the Nam Co/Siling Co region [Jordan and Watts, 2005; Shi et al., 2015]
(see details in the supporting information [Brotchie and Silvester, 1969; Nakiboglu and Lambeck, 1983;
Watts, 2001]). We anchor the lake level to the elevation at the Ganmanong site (G in Figures 1 and 2), where
lacustrine sediments of ~116 ka in age are present at 4860 m [Zhu et al., 2004], and estimate the total water
volume that would have existed in the absence of any surface deflection (Figure S1). We then calculate the
deflection (or rebound) of the crust that would have been induced by this EQL water load (or its removal),
recalculate the water volume, and repeat the deflection calculation. We repeat this several times until we
reach a constant result. This iterative approach (see supporting information) enables us to reconstruct the
EQL lake level and volume at MIS 5e, relative to the Ganmanong site.

In the Siling Co basin, we mapped relict shoreline features, including wave-cut scarps, beach ridges and
platforms, and associated lacustrine deposits above the Holocene Lingtong highstand from high-resolution
(0.5 m) satellite imagery and detailed field investigation. We selected the highest beach deposits with the
greatest degree of preservation for surveying in the field by differential GPS [Meng et al., 2012a]. For three
of the best preserved of these beach complexes, including the highest shoreline features, we quantified
the time since abandonment of the depositional platforms by evaluating the concentration of cosmogenic
36Cl in depth profiles [Marrero et al., 2016a, 2016b]. We selected both limestone (CRN1 and CRN5) and feld-
spar (CRN3) target materials to minimize effects of thermal neutron production (Figures 3 and S2). Bulk
densities of the samples were determined in the field by dividing the masses of single chunks of samples
by their volumes. We weighed the samples using a hanging scale with a precision of 0.01 kg. We measured
their volumes in a graduated cylinder with a precision of 0.01 liter (see detailed description in the supporting
information) [Blake and Hartge, 1986]. The 36Cl samples were chemically prepared at the NewMexico Institute
of Mining and Technology and the Dalhousie University, and the isotope ratios were measured at Purdue
Rare Isotope Measurement Laboratory. Details of the field sampling, laboratory, and analytical protocols
are described in the supporting information [Anderson et al., 1996; Aruscavage and Campbell, 1983; Aumer,
2010; Dep et al., 1994; Desilets et al., 2006; Dunne et al., 1999; Elmore and Phillips, 1987; Elsheimer, 1987;
Gosse and Phillips, 2001; Lifton et al., 2014; Marrero, 2009, 2012; Muzikar et al., 2003; Phillips et al., 2003;
Schimmelpfennig et al., 2009; Stone et al., 1996; Wei et al., 2002; Yang et al., 2008].

4. Results
4.1. Prediction of the EQL Size and Shoreline Elevations

Our results show that the depth of the EQL water load between the inferred elevation of the EQL highstand
(4860 m) and present lake levels would have reached up to 400 m (Figure S1). Removal of such a load from
the lithosphere would induce significant flexural rebound and doming of any horizontal datum (Figure 2).
Thus, for elastic thicknesses of 20–30 km [Jordan andWatts, 2005; Shi et al., 2015], we expect shorelines devel-
oped near the center of the EQL to have been deflected upward by ~60–90 m (Figures 2a and 2b). The model
results also indicate that the elevation of the surface of the EQL, anchored to deposits at the Ganmanong site
(G in Figure 3b), would have been ~4830–4835 m elevation during MIS 5e. In terms of present-day elevations,
because of the flexural rebound, our reconstructions suggest that any paleoshorelines developed around
central Siling Co would, at present, be 45–65 m higher than equivalent paleoshorelines at Nam Co, depend-
ing on variations in the elastic thicknesses (Figure 3c).

The general pattern of flexural rebound driven by changes in surface loads requires that the shorelines near
present-day Siling Co would have been deflected by greater amounts than those at Nam Co (Figure 2). In fact,
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Figure 2. Calculation of expected shoreline elevations considering the crustal rebound induced by the lake unloading of
the hypothesized East Qiangtang Lake (EQL). (a and b) The map pattern and contours (10 m interval) of the crustal
rebound with crustal elastic thickness (Te) of 20 km and 30 km [Shi et al., 2015] for central Tibet, respectively. Numbers
within the contours denote the magnitude of the rebound in meters. (c) The amount of crustal rebound along the profiles
shown in Figures 2a and 2b. Also shown here is comparison of expected versus observed shoreline elevations at
Ganmanong and Tajiguri sites around Nam Co.
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Figure 3. Geomorphology and chronology of highest shorelines around current Siling Co and paleolakes. (a) The map
shows the lake extent of Siling Co at ~4636 m defined by the highest shorelines (red polygon), at ~4602 m (blue poly-
gon), the Holocene Lingtong highstand (yellow polygon), and at modern time (light blue polygon). Also shown here are
several groups of shorelines and sample locations and ages. (b) Cosmogenic 36Cl depth profiles of CRN-1, CRN-3, and
CRN-5. The solid curves represent model-predicted depth profile 36Cl concentrations that best fit the measured con-
centrations. The gray shading shows the uncertainties of the depth profile concentrations with 95% confidence interval.
The contour plots in each panel show the solutions frommethodology of “maximum a posterior” (MAP) based on Bayesian
inversion for ages, erosion rates, and inheritance of the shoreline deposits.
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even if the elastic thickness were much greater than 20–30 km [Shi et al., 2015], reducing the magnitude of
flexural rebound, the observed paleoshoreline elevations around Siling Co would still lie below predicted
values. Although this result does not include the possibility of spatial variations in the rigidity of Tibetan litho-
sphere [e.g., Chen et al., 2015], unless such a variation was implausibly abrupt, we would expect a rebound
pattern which to first order would be similar to that shown in Figure 2. We also do not consider the timescales
associated with viscoelastic rebound, as this will not impact the final distribution of shoreline elevation.
Finally, our result does not include any possible displacements along the active faults in the region [e.g.,
Shi et al., 2014; Taylor et al., 2003]. Of particular significance is the normal fault along the southeast side of
the Nyainqentanglha Shan (Figure 1). Rebound of the footwall block of the east facing fault systemmay drive
a west directed tilt that could influence the position of shorelines around Nam Co. Similarly, changes in the
extent of alpine glaciers in the range itself could also be a local source of surface loading/unloading. However,
we expect both of these possibilities to yield relatively small magnitude deflections, limited in their proximity
to the Nyainqentanglha Shan. In fact, Holocene shorelines around Nam Co exhibit no variations in elevation
that might be expected to result from local deflections [England et al., 2013;Wallis et al., 2010], and thus, we
consider that to first order, our calculation of the expected lithospheric rebound is reasonable.

4.2. Age of High Shorelines at Siling Co

We dated paleoshorelines in the Siling Co basin to test the potential for correlation of shorelines around the
EQL (Figure 1). Our modeling of paleoshoreline deflection suggests that former lake shorelines at this location
would have experienced the greatest deflection from their initial elevations (Figure 2). Mapping of shoreline
features shows that relict beach platforms and wave-cut shoreline scarps above the Holocene Lingtong high-
stand [Shi et al., 2015] are sporadically preserved around Siling Co (Figure 3a). Many of the best preserved,
highest, paleoshoreline remnants are located in the area between Siling Co and Bange Co and atop the
northern peninsula of Siling Co (Figure 3a). Notably, the highest paleoshorelines we observed around
Siling Co are at 4636 m.

We collected three depth profiles of beach gravels (Figures 3a and S2a–S2c) from these highest shorelines
and analyzed samples for cosmogenic 36Cl exposure dating. One sample (CRN-5) was collected from a relict
shoreline spit at 4596 m, immediately above the Holocene highstand shorelines (Figure 3 and Table S2),
whereas the other two samples (CRN-1 and CRN-3) were collected from higher shorelines at 4601 m and
4636 m (the highest), respectively (Table S2). In general, all three depth profiles exhibit decreasing 36Cl
concentrations with depth that are reasonably described by an exponential, related to the attenuation of
the secondary cosmic ray (fast nucleon) flux (Figure 3b). Profiles CRN-1 and CRN-5 yield very narrow bounds
on both the age (within 10% at 2σ, Figure 3) and postdepositional erosion rate, consistent with our observa-
tions of intact preservation of the stratigraphy at the sites. Profile CRN-3, in contrast, has fewer samples near
the top of the profile; this leads to larger uncertainties in surface erosion and therefore 36Cl inheritance and
deposit age. Overall, these sample concentrations appear to be consistent with a deposit with uniform inheri-
tance that has remained relatively stable since deposition.

Modeling of the three depth profiles results in ages that range from 110 to 190 ka (Figure 3 and Table S2).
The lowest elevation profile, CRN-5 (4596 m in elevation) has the youngest age of 114 ± 4 ka (Figure 3 and
Table S2), suggesting that this tombolo formed during last interglacial time period, MIS 5e [Lisiecki and
Raymo, 2005]. The other two samples, CRN-1 and CRN-3, have ages of 175 ± 8 ka and 179 ± 16 ka, respec-
tively; both of these are within the MIS 6 glacial period, suggesting that Siling Co reached even greater
extents (up to 4636 m, present elevation) during the glacial period.

Shorelines at similar elevations (~4590 m) have been previously dated at Bange Co (Figures 1 and 3), a small
lake adjacent to Siling Co [Zhao et al., 2011]. Dating of carbonate material via U series yielded a 230Th age of
167 ± 22 ka. The consistency of this result to our dating at the CRN-1 profile, at similar elevation (~4602 m,
175 ± 8 ka), suggests that the ages are reliable. Importantly, our results confirm that the highest shorelines
at Siling Co formed during MIS6-5e, during the same time period as the hypothesized East Qiangtang
Lake. In fact, the 36Cl profile age of 114 ± 4 ka at the CRN-5 site (4596 m, Figure 3 and Table S3) is nearly
the same as the U-Th age (116 ± 12 ka) of lacustrine deposits found at ~4860 m around Nam Co [Zhu et al.,
2004]. This suggests that the shorelines in Siling Co and Nam Co formed contemporaneously, but at very
different elevations.
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4.3. Implications for the East Qiangtang Lake Hypothesis

Our new observations and chronology from the highest shorelines around Siling Co are inconsistent with
the model predictions of rebound of shorelines developed around a single large lake (Figure 4a). In terms
of the present-day elevations, the flexural response of an elastic lithosphere to changes in water load

Figure 4. Lake distribution in central Tibet at modern time and during MIS 5e, proposed in this study. (a) Comparison
between the predicted shoreline positions under the EQL hypothesis and observed shoreline elevations, relative to the
EQL highstand at ~4860 m, along the topographic profile A-A0 (see location in Figure 4b). Also shown here is the chrono-
logic correlation of shorelines and lacustrine deposits around Nam Co [Zhu et al., 2004] and Siling Co (this study). Digital
numbers show the sample ages (ka). (b) The spatial distribution, proposed in this study, of paleo-Siling Co at 4636 m ele-
vation and paleo-Nam Co at ~4860 m elevation, during MIS 5e.
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predicts that MIS 5e shorelines around central Siling Co should sit 45–65 m higher than equivalent
shorelines around Nam Co (Figure 2c). For example, the model predicts that shorelines at the CRN-5 site
should presently lie at ~4920 m for Te = 20 km or ~4900 m for Te = 30 km. These predictions are greater
than ~300 m above their present elevation (Figure 4a). Given that the chronology of both sets of
shorelines suggests contemporaneous formation during MIS 5e, we conclude that any flexural rebound
driven by changes in surface load would have to be much smaller in magnitude. That is, our results
are difficult to reconcile with the hypothesis of a single, continuous lake in central Tibet during the
late Pleistocene.

5. Discussion

Our study highlights the challenges of reconstructing paleoshorelines around ancient basins. The flexural
response of the lithosphere to surface loads is a well-understood phenomenon [Bills et al., 1994a, 2007,
1994b; England et al., 2013; Gilbert, 1890; Hampel and Hetzel, 2006; Shi et al., 2015], but it is not always
applied when attempting to correlate geomorphic features. In the case of the EQL, previous research
determined the height and extent of the lake based on the presence of shorelines at its very southeastern
margin, near the present-day location of Nam Co. Both sites are approximately equidistant from the
centroid of mass of the expected water load (Figure 2), and our flexural models demonstrate that they
would be expected to have been deflected by similar amounts [England et al., 2013; Shi et al., 2016].
That is, they are expected to sit at similar elevations today (sites T and G, Figure 2). However, the greatest
deflections and rebound are expected to occur near the center of the EQL, at the present-day location of
Siling Co.

Our results from geomorphology, chronology, and deflections of the high paleoshorelines around Siling Co
suggest that Siling Co and Nam Co were isolated lake basins during MIS 5e. The highest paleoshorelines with
elevations around Siling Co between 4595 and 4636 m record the maximum extent of the paleo-Siling Co
(color-coded polygons in Figure 4b). The extent of the paleo-Nam Co during MIS 5e (Figure 4b) appears to
have been restricted to the Nam Co basin itself. It is possible that the lake extended to a farther western outlet
(“V” in Figure 4b) in the narrow U-shaped Mugqu-Ring Co valley (Figure S4), but our results require that the
lake did not extend to the Siling Co basin. Therefore, an alternative hypothesis for forming paleo-Nam Co at
~4860 m elevation is that the Nam Co drainage may have been dammed by temporary blockage, such as
glacial moraines or a landslide, during the MIS 5e-6 periods.

The distribution of isolated, smaller lakes, instead of a single, unified giant lake within central Tibet, has
important implications for the hydrologic balance and hence paleoclimate conditions during MIS 5e.
Interestingly, the similarity of lake levels during MIS 5e (~4595 m), as indicated by the CRN-5 depth profile
(Figures 3 and 4a), in the central peninsula to maximum lake levels during the early Holocene (Lingtong high-
stand at ~4594 m) [Shi et al., 2015]], suggests the possibility of similar extents of Siling Co during these two
time periods (Figure 3a) and points to a potentially similar control on the lake level. Because the lake surface
area is a determining factor in the water balance of the lake systems [e.g., Benson and Paillet, 1989], similar
lake extents may simply suggest hydrologic balances during these two interglacial time periods. However,
study of alternative explanations is also warranted.

6. Conclusions

Analysis of lithospheric flexure owing to the lake unloading and new shoreline data around Siling Co in cen-
tral Tibet enables us to evaluate the size and extent of a hypothesized lake, proposed to occupy much of the
central Tibetan Plateau during MIS 5e. Models of the flexural response of the lithosphere to these surface
loads suggest that EQL shorelines at the lake center near present-day Siling Co are expected to be found
45–65 m higher than those around the lake margin near present-day Nam Co. However, new chronologic
constraints of the highest paleoshorelines around Siling Co yield ages between 110 and 190 ka, indicating
that they developed in MIS 6-5e, yet these relict shorelines are found more than 300 m lower than the
EQL-expected, flexure-adjusted, elevations. Such a large discrepancy between the expected and observed
shoreline elevations very likely invalidates the hypothesis of EQL in central Tibet during MIS 5e. Instead,
our results suggest that Siling Co and Nam Co were local lake systems that were either isolated or connected
by fluvial networks during MIS 5e.
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