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Abstract 

 Methods for using GWAS to estimate genetic correlations between pairwise combinations of traits have 

produced “atlases” of genetic architecture. Genetic atlases reveal pervasive pleiotropy, and genome-wide 

significant loci are often shared across a wide variety of social, behavioral, and psychiatric phenotypes. 

We introduce genomic structural equation modeling (Genomic SEM), a multivariate method for 

analyzing the joint genetic architectures of complex traits. Using formal methods for modeling covariance 

structure, Genomic SEM synthesizes genetic correlations and SNP-heritabilities inferred from GWAS 

summary statistics of individual traits from samples with varying and unknown degrees of overlap. 

Genomic SEM can be used to model multivariate genetic associations among phenotypes, identify 

variants with effects on general dimensions of cross-trait liability, boost power for discovery, and 

calculate more predictive polygenic scores. Finally, Genomic SEM can be used to identify loci that cause 

divergence between traits, aiding the search for what uniquely differentiates genetically correlated 

phenotypes. We demonstrate several applications of Genomic SEM, including a joint analysis of GWAS 

summary statistics from five genetically correlated psychiatric traits. We identify 27 independent SNPs 

not previously identified in the contributing univariate GWASs of the five traits. Five of these 27 

independent SNP have been reported in separate, published GWASs of the included traits. Polygenic 

scores derived from Genomic SEM consistently outperform polygenic scores derived from GWASs of the 

individual traits. Genomic SEM is flexible, open ended, and allows for continuous innovations in how 

multivariate genetic architecture is modeled. 
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Genomic Structural Equation Modeling 

 Genome-wide association studies (GWASs) are rapidly identifying loci affecting multiple social, 

behavioral, and psychiatric phenotypes.1,2 Moreover, using cross-trait versions of methods such as 

genomic-relatedness-based restricted maximum-likelihood (GREML)3 and LD-score regression (LDSC)4 

researchers have identified genetic correlations between diverse traits, e.g., age of first birth and risk of 

smoking,5 insomnia and psychiatric traits (e.g., schizophrenia),6 major depressive disorder and number of 

children,7 and educational attainment and cognitive performance.8 In fact, widespread pleiotropy appears 

to be the rule rather than the exception across psychiatric, cognitive, economic, and social indices. 

Although these findings are currently suggestive of constellations of phenotypes affected by shared 

sources of genetic liability, existing methods do not permit the causes of the observed genetic correlations 

to be investigated systematically. Here we introduce Genomic Structural Equation Modeling (Genomic 

SEM), a new method for modeling the multivariate genetic architecture of constellations of traits and 

incorporating genetic covariance structure into multivariate GWAS discovery. Genomic SEM is a flexible 

framework for formally modeling the genetic covariance structure of complex traits using GWAS 

summary statistics from samples of varying and potentially unknown degrees of overlap, in contrast to 

existing methods that model phenotypic covariance structure,9 with very specific applications,10 using raw 

data. Moreover, Genomic SEM allows for the specification and comparison of a range of different 

hypothesized multivariate genetic architectures, which improves upon existing approaches for combining 

information across genetically correlated traits to aid in discovery.11 

One powerful feature of Genomic SEM is the capability to model shared genetic architecture 

across phenotypes with factors that may be treated as broad genetic liabilities, and to compare the fit of 

different factor structures to the empirical data. When an appropriate model has been identified at the 

level of the genome-wide covariance structure, the researcher may incorporate individual SNPs into the 

model in order to identify variants with effects on general dimensions of cross-trait liability, boost power 

for discovery, and calculate more valid and predictive polygenic scores. Genomic SEM can also evaluate 

whether the multivariate genetic architecture implied by a specific model is applicable at the level of 

individual variants using developed estimates of heterogeneity. When certain SNPs only influence a 

subset of genetically correlated traits, a key assumption of other multivariate approaches is violated.11 

SNPs with high heterogeneity estimates can be flagged as likely to confer disproportionate or specific 

liability toward individual traits or disorders, can be removed when constructing polygenic risk scores, or 

studied specifically to understand the nature of heterogeneity. These heterogeneity estimates act as 

safeguards against false inference when considering a locus specific to one trait in its effect on a set of 

correlated traits. 
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We validate key properties of Genomic SEM with a series of simulations and illustrate the 

flexibility and utility of Genomic SEM with several analyses of real data. These include a joint analysis of 

GWAS summary statistics from five genetically correlated psychiatric case-control traits: schizophrenia, 

bipolar disorder, major depressive disorder (MDD), post-traumatic stress disorder (PTSD), and anxiety. 

We model genetic covariances among the traits using a general factor of psychopathology (p), for which 

we identify 27 independent SNPs not previously identified in the univariate GWASs, 5 of which can be 

validated based on separate GWASs. Polygenic scores derived using this p-factor consistently outperform 

polygenic scores derived from GWASs of the individual traits in out-of-sample prediction of psychiatric 

symptoms. Other demonstrations include a multivariate GWAS of neuroticism items, an exploratory 

factor analysis of anthropometric traits, and a simultaneous analysis of the unique genetic associations 

between schizophrenia, bipolar disorder, and educational attainment. 

 
Results 

Genomic SEM is a Two-Stage Structural Equation Modeling approach.12-14 In Stage 1, the 

empirical genetic covariance matrix and its associated sampling covariance matrix are estimated. The 

diagonal elements of the sampling covariance matrix are squared standard errors (SEs). The off-diagonal 

elements index the extent to which sampling errors of the estimates are associated, as may be the case 

when there is sample overlap across GWAS. In principle, these matrices may be obtained using a variety 

of methods for estimating SNP heritability, their genetic covariance, and their SEs. Here we use a novel 

version of LDSC that accounts for potentially unknown degrees of sample overlap by populating the off- 

diagonal elements of the sampling covariance matrix. The same strengths, as well as assumptions and 

limitations, that are known to apply to LDSC15,16 apply to its extension used here and to Genomic SEM. 

In Stage 2, a SEM is estimated by minimizing the discrepancy between the model-implied genetic 

covariance matrix and the empirical covariance matrix obtained in the previous stage. We highlight 

results from weighted least squares (WLS) estimation that weights the discrepancy function using the 

inverse of the diagonal elements of the sampling covariance matrix, and produces model SEs using the 

full sampling covariance matrix. In the Online Supplement, we report results from an alternative normal 

theory maximum likelihood (ML) estimation method. We evaluate fit with the standardized root mean 

square residual (SRMR), model 2, Akaike Information Criteria (AIC), and Comparative Fit Index (CFI; 

Online Method).13,17 

Genomic SEM can be employed as a tool for multivariate GWAS based on univariate summary 

statistics. First, the genetic covariance matrix and its associated sampling covariance matrix are expanded 

to include SNP effects. A Genomic SEM is then specified in which SNP effects occur at the level of a 

latent genetic factor defined by several phenotypes, at the level of the genetic component of each of 
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several (potentially genetically correlated) phenotypes, or some combination of the two. The Genomic 

SEM is then run once per SNP (or each set of SNPs, should the user incorporate multiple SNPs into a 

model) to obtain its effects within the multivariate system. 

We provide an index that quantifies the extent to which an observed vector—consisting of 

univariate regression effects of a given SNP on each of the phenotypes—can be explained by a common 

pathway model that assumes that the effects on the phenotypes are entirely mediated by the common 

genetic factor(s). In other words, the index enables the identification of loci that do and do not operate on 

the individual phenotypes exclusively by way of their associations with the common factor(s). Because of 

its intuitive and mathematical similarity to the meta-analytic Q-statistic used in standard meta-analyses to 

index heterogeneity of effect sizes18 we label this heterogeneity statistic, QSNP. QSNP is a 2-distributed test 

statistic with larger values indexing a violation of the null hypothesis that the SNP acts entirely through 

the common factor(s). 

 
Validation via Simulation 

Recovery of True Model and Population Parameters. We performed 100 runs of Genomic SEM on 

raw individual-level genotype data for which we simulated multivariate phenotypic data to conform to a 

single genetic factor model (a latent trait that partially causes 5 observed outcomes). Across the 100 

simulations Genomic SEM estimates closely matched the parameters specified in the generating 

population (Supplementary Fig. 1). Model SEs also closely matched the standard deviations of parameter 

estimates. We also compared fit statistics (CFI, AIC, and model 2) for the correctly specified common 

factor model and two deliberately misspecified models: (i) a model in which all indicators were 

constrained to have the same factor loading, and (ii) a model for which the loading of the third indicator 

was set to 0. As expected, results indicated that the common factor model matching the generating 

population was favored ≥ 99% of the time across model fit indices (Supplementary Fig. 2). 

 
Simulation of Partial Sample Overlap. One major benefit of Genomic SEM is that summary statistics can 

be used from samples with unknown degrees of sample overlap. We performed a simulation in order to 

verify that the inclusion of data from overlapping samples does not bias Genomic SEM parameter 

estimates or their standard errors. We simulated data for a single quantitative phenotype in 100,000 

participants, and subsequently split the sample into three subsamples of 60,000 participants each (with 

~66% pairwise overlap between the subsamples). We submitted each of the three subsamples to an 

independent GWAS, and used the three resulting sets of summary statistics as input for a Genomic SEM 

model, in which we specified the phenotype from each individual set of summary statistics as a different 

indicator of a common factor, onto which a SNP effect was specified. If sample overlap is not 
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appropriately accounted for, data are incorrectly treated as deriving from 180,000 participants (as opposed 

to 100,000 total participants), and we would expect the Z statistics for the SNP effects to be upwardly 

biased relative to those from a univariate GWAS applied directly to the single phenotype in the 100,000 

participants. As expected, we observed no such bias. A linear regression of estimates from the Genomic 

SEM model from the three overlapping samples of 60,000 participants each predicting univariate GWAS 

Z statistics in the complete sample of 100,000 participants revealed near perfect correspondence 

(unstandardized slope = 1.003, intercept = -.003). 

 
Confirmatory Factor Analysis of Genetic Covariance Matrices 

We provide two examples of confirmatory factor analysis (CFA) using Genomic SEM. In our first 

example, we fit a genetic factor model to psychiatric case-control traits. Recent findings indicate that the 

comorbidity across psychiatric disorders is captured by a latent, general psychopathology factor that is 

commonly known as the p-factor and is widely supported based on previous results.19-23 We tested for the 

presence of a single common genetic p-factor using Genomic SEM with European-only summary 

statistics for schizophrenia, bipolar disorder, major depressive disorder (MDD), post-traumatic stress 

disorder (PTSD), and anxiety (Table S1 for phenotypes and sample sizes). Model fit was adequate (2[5] 

= 89.55, AIC = 109.50, CFI = .848, SRMR = .212).1 Results indicated that schizophrenia and bipolar 

disorder loaded the strongest onto the genetic p-factor (Supplementary Fig. 3), a pattern of findings that 

closely replicates prior findings from twin/family studies.21 

In a second example, we tested for the presence of a single common genetic factor of neuroticism 

using summary statistics from 12 item-level indicators from UK Biobank (UKB; Table S1) as estimated 

using the Hail software.24 Model fit was good (2[54] = 4884.10, AIC =4932.11, CFI = .893, SRMR = 

.109). Results indicated strong positive loadings for all indicators (Supplementary Fig. 4). We used this 

single common factor model for both neuroticism and the p-factor when estimating SNP effects for 

discovery under the section SNP Effects, below. 

 
Exploratory Factor Analysis of a Genetic Covariance Matrix 

We provide two examples of how one might use exploratory methods to guide the specification of 

more nuanced factor models beyond a one factor model. In the first example, we submitted the LDSC- 

derived genetic correlation matrix of the 12 neuroticism items in UKB to exploratory factor analysis 

(EFA). The two- and three-factor solutions yielded interpretable factor loading patterns (Online 

 

1 For large samples, model 2 may be significant even when discrepancies between the model-implied genetic 

covariance matrix and the empirical LDSC-derived genetic variance matrix are trivial. Model 2 may be more useful 

as a means of comparing nested models than assessing absolute model fit. 
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Supplement). Based on these initial EFA results, follow-up CFAs (Supplementary Fig. 5) were specified 

using Genomic SEM (standardized loadings > .4 were retained; Table S2). The two-factor solution 

(2[53] = 2758.18, AIC = 2808.18, CFI = .940, SRMR = .077) and three-factor solution (2[51] = 

1879.31, AIC = 1933.31, CFI = .959, SRMR = .057) both provided excellent fit to the data and exceeded 

the fit of the single, common factor model. Consistent with the superior model fit indices for the two- and 

three-factor solutions, only 28 and 20 of the 69 QSNP hits from the single common factor model (described 

in further detail, under the SNP Effects section, below) continued to surpass genome-wide significance 

for the two- and three-factor models, respectively (Supplementary Fig. 6; Table S3). In addition, a GWAS 

of all HapMap3 SNPs for the two- and three-factor models revealed the average size of QSNP across all 

SNPs was largest for the common factor (2[1] = 1.68), followed by the two-factor (2[1] = 1.64), and 

three-factor model (2[1] = 1.51). Thus, heterogeneity indices of individual SNP effects in the GWAS 

data agree with fit statistics indexing the correspondence between the Genomic SEM-implied genetic 

covariance matrix and the empirical (LDSC-derived) covariance matrix, with both favoring the three- 

factor model of neuroticism. 

In the second example, EFA was applied to the LDSC-derived genetic correlation matrix for nine 

anthropometric traits from the EGG and GIANT consortia (Table S4). EFA results indicated that two 

factors explained 61% of the total genetic variance. Moreover, a heatmap of the genetic correlation matrix 

suggests two primary factors that index overweight and early life-growth phenotypes (Supplementary Fig. 

7). A follow-up CFA (Supplementary Fig. 8) within Genomic SEM was specified based on the EFA 

parameter estimates (standardized loadings > .25 were retained). The CFA showed good fit to the data 

(2[25] = 12994.71, AIC = 13034.71, CFI = .962, SRMR = .092). Results indicated highly significant 

loadings, and a small correlation between the two factors (rg = .10, SE = .03, p < .001). This indicates that 

early life physical growth is modestly associated with later life obesity traits via genetic pathways. 

 
Genetic Multivariable Regression (Replicating GWIS) 

Nieuwboer et al. (2016)25 use summary statistics for educational achievement (EA)26 and both 

schizophrenia and bipolar disorder27 to determine if genetic correlations with EA are driven by variation 

specific to either disorder. EA is genetically correlated with schizophrenia (rg = .148, SE = .050, p = .003) 

and bipolar disorder (rg = .273, SE = .067, p < .001). Using a method called genome-wide inferred 

statistics (GWIS), they find that the correlation of EA with schizophrenia unique of bipolar is small (rg = 

.040, SE = .082, p = .627), whereas the genetic correlation between bipolar unique of schizophrenia and 

EA is far less attenuated (rg = .218, SE = .102, p = .032). We use Genomic SEM with the aim of 

replicating these results using a conceptually similar, but statistically distinct, framework. We present this 
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example to demonstrate that Genomic SEM is not limited to factor analytic models, but can be used to 

construct and test an array of hypotheses using a general SEM approach. 

Using the same univariate GWAS summary statistics employed in the original application of 

GWIS, we used Genomic SEM to fit a structural multivariable regression model in which the genetic 

component of EA was simultaneously regressed onto the genetic components of schizophrenia and 

bipolar disorder. Fit indices are not reported as this was a fully saturated model (i.e., df = 0). Results 

confirmed the findings by Nieuwboer et al. (2016);25 the conditional standardized association between 

schizophrenia and EA was quite small (bg = -.016, SE = .096, p = .867), whereas there was a strong 

conditional standardized association between bipolar disorder and EA (bg = .283, SE = .113, p = .012; 

Supplementary Fig. 9). 

 
SNP Effects 

Common Factor Models. A powerful application of Genomic SEM is to include individual SNP effects in 

both the genetic covariance matrix and the sampling covariance matrix, in order to estimate the effect of a 

given SNP on the latent genetic factor(s). If the summary statistics are composed of M different SNPs, 

then M models are estimated to obtain genome-wide summary statistics for the latent factor. As an 

example of Genomic SEM used for multivariate GWAS, we incorporated SNP effects into the p-factor 

and neuroticism models presented above. LD-independent hits are defined below as r2 < .1 in a 500Kb 

window, with the exception of a 1Mb window for chromosomes 6 and 8. 128 independent loci were 

genome-wide significant for the p-factor (p < 5 × 10−8; Supplementary Figs. 10-11 for QQ-plot and 

Manhattan plot of univariate estimates; Supplementary Fig. 12, Figs. 1 and 2 for factor model and 

Manhattan plots). Of the 128 loci, 27 independent loci were not previously identified in any of the 

contributing univariate GWASs (Table 1, Table S5). Of these 27 loci, five loci were identified as either 

genome-wide significant or suggestive of significance (p < 1 × 10−5) in a separate, previously published 

GWAS of one of the five traits. 118 loci were genome-wide significant for neuroticism, with 38 loci not 

identified in the univariate item-level GWASs (Table S6). Plots of item-level effects for individual SNPs 

revealed high consistency in magnitude and direction for SNPs identified as genome-wide significant for 

the common factors (Supplementary Fig. 13). Although there is early lift-off in the QQ-plots for both 

common factors, LDSC analyses of the summary statistics produced by Genomic SEM indicated that 

results were not due to uncontrolled inflation for either the p-factor (intercept = .987, SE = .014) or 

neuroticism (intercept = .997, SE = .001). 

 
General Trends. Mean 2 statistics were higher for the Genomic SEM-derived summary statistics of 

common factors relative to univariate indicators (Table 1). It is important to note here that, whereas 
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Genomic SEM may boost power in many cases, this is not the primary purpose of the method. Rather, it 

is to identify the relationship between SNPs and observed phenotypes as meditated through a user- 

specified model and to concurrently evaluate the construct validity of said model. Inspecting the 

distribution of univariate p-values for the newly identified SNPs for the general factors indicated that 

these SNPs were generally characterized by relatively low p-values, albeit not low enough to cross the 

genome-wide significance threshold for any individual phenotype (Supplementary Figs. 14-15). 

 
QSNP Results. Results revealed 1 and 69 independent QSNP loci for the p-factor and neuroticism, 

respectively (Fig. 2; Supplementary Fig. 16 for QQ-plot). For neuroticism, significant QSNP estimates were 

obtained for SNPs that were highly significant for some traits but not others (Table S7; Supplementary 

Fig. 17). The association between p-values for SNP effects and QSNP estimates were minimal 

(Supplementary Fig. 18). Comparing the QSNP estimates for SNPs identified as significant for only the p- 

factor or neuroticism relative to SNPs identified as significant for one of the indicators, but not the 

common factor, indicated that the latter group of SNPs were characterized, as would be expected, by 

larger QSNP estimates (i.e., greater heterogeneity in individual effects; Supplementary Fig. 19). Intercepts 

from LDSC analyses of the QSNP statistics also indicated that results for the heterogeneity index were not 

attributable to inflation (p-factor: intercept = .978, SE = .009; neuroticism: intercept = .963, SE = .009). 

Slopes from the same LDSC analyses further indicated genetic signal in heterogeneity (p-factor: Z = 

13.65, p-value = 6.68E-42; neuroticism: Z = 30.23, p-value = 9.98E-201). 

 
Comparison to MTAG. Existing multivariate methods use summary statistics of genetically correlated 

phenotypes to boost power for discovery and prediction for a particular trait.11,28,29 We note that while this 

is only one application of Genomic SEM, a Genomic SEM common factor GWAS approach has already 

been shown by an independent research group to perform comparably to existing multivariate approaches 

for out-of-sample prediction.30 Moreover, as a flexible modeling framework, Genomic SEM may 

encompass other multivariate approaches. As a specific example, we show mathematically that Genomic 

SEM can be specified to satisfy the same moment conditions as multi-trait analysis of GWAS (MTAG11; 

see Online Supplement). Simulation results also revealed near perfect correspondence from a linear 

regression in which Z statistics from MTAG were used to predict those from a Genomic SEM specified to 

satisfy the MTAG moment conditions (Supplementary Fig. 20; unstandardized slope = .999, intercept = 

2.65E-4). 

 
Performance in Empirical Data under Controlled Missingness. We contrast estimates obtained from the 

common factor model of neuroticism described above with estimates for a GWAS with an imposed 
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missing structure. We first transformed the binary scale neuroticism items into a smaller number of 

quantitative scores. To do so, we created three parcels of neuroticism items consisting of 4 items each 

with scores ranging from 0 to 4, at which point it is appropriate to treat the parcel as continuous.31 Parcels 

were constructed based on the same EFA results described above and mirrored the composition of the 

three-factor model, with the exception that the irritability item was included with parcel 2 so as to have an 

equal distribution of 4 items per parcel. Of the 300,000 participants, 100,000 non-overlapping participants 

were removed from two of the three parcels for missing data models. The best powered results (indexed 

by mean 2 values) were for Genomic SEM of the individual neuroticism items presented above, 

indicating that construction of composite indices via averaging, though convenient, removes multivariate 

information that can otherwise be retained with Genomic SEM (Table S8). Genomic SEM analyses that 

incorporated supplemental information from parcels containing imposed missing data consistently 

outperformed GWAS of individual parcels with complete data, and performed nearly as well as analyses 

of complete data across all three parcels. Thus, inclusion of summary data from genetically correlated, 

phenotypes in Genomic SEM may boost power relative GWAS of the individual phenotypes, even when 

there is high sample overlap and sample sizes are uneven across phenotypes. 

 
Parcel Comparison of QSNP. Using the three constructed parcels without any missing data, the distribution 

of p-values was compared across SNPs with high (p < 5e-8) and low (p > 5e-3) QSNP estimates from the 

item-level Genomic SEM analysis of neuroticism for SNPs that were genome-wide significant in at least 

one of the parcels. These results indicated that, for SNPs with a higher QSNP for the common factor, there 

was more discordance of effect sizes among three lower-order factors relative to SNPs that produced 

lower heterogeneity estimates (Supplementary Fig. 21). The average difference between the highest and 

lowest –log10 p-values was 10.56 and 4.96 for high and low QSNP, respectively. This suggests that QSNP is 

appropriately indexing discordance in SNP level effects across genetically correlated indicators. 

 
Polygenic Prediction. We re-estimated the p-factor model using the summary statistics from the SCZ and 

MDD GWASs that did not overlap with the UKB dataset, in order to predict psychiatric symptoms in 

UKB (Supplementary Fig. 22 for phenotypic model). In order to produce a reliable set of targets for 

polygenic prediction, and to focus our analyses on construct validation, latent factors of psychiatric 

symptoms were specified as the out-of-sample targets. We compared the magnitude of out-of-sample- 

prediction for the p-factor PGSs predicting the phenotypic p-factor and factors of individual psychiatric 

domains relative to the prediction using PGSs derived from univariate summary statistics (Fig. 3, Table 

S9). The PGSs for the genetic p-factor predicted more variance in depression, psychotic experiences, 

mania, anxiety, PTSD and a phenotypic p-factor than any univariate PGS. 
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For neuroticism, univariate PGSs were constructed in data from the Generation Scotland study 

using summary statistics for the 12 neuroticism items, the Genomic SEM factor of items, the three 

neuroticism parcels, the Genomic SEM factor of parcels, and the neuroticism sum score. We used PGSs 

to predict a sum score composed of the same neuroticism items administered in UKB. We also calculated 

mean 2 values for each of these summary statistics, which we used to infer their relative power. Of all 

the summary statistics considered, summary statistics derived from a Genomic SEM analysis of a 

common factor of the neuroticism items produced both the largest mean 2 in the summary statistics and 

predicted the greatest variance in the out-of-sample phenotype (Fig. 4). In both cases, the superior 

performance of Genomic SEM analysis of the common factor of items relative to the sum score of the 

items is likely, in part, a reflection of the fact that the sum score in UKB was created using listwise 

deletion, resulting in a reduced sample size of 274,008. Conversely, Genomic SEM uses all available 

information from neuroticism items, with sample sizes of ~325,000 each. In more severe cases of sample 

non-overlap, we would expect even larger power benefits of Genomic SEM-derived summary statistics 

relative to individual items or sum scores. Indeed, in instances of minimal sample overlap, it is not 

possible to compute sum scores, but Genomic SEM can still be used to integrate data across phenotypes. 

 
Biological Annotation. The biological function of the SNPs related to the p-factor and neuroticism was 

examined using DEPICT.32 Table 1 presents the number of enriched gene sets, prioritized genes, and 

enriched tissues and cell types across the univariate statistics and common factors (Supplementary Tables 

S10-S18 for detailed output). Common factors produced far more informative results than the individual 

indicators. As expected, all of the tissue enrichment for the common factors was identified in the nervous 

system (Fig. 5). Neuroticism prioritized genes indicated a central role of synaptic activity (e.g., STX1B, 

NR4A2, PCLO), including glutamatergic neurotransmission (GRM3). The p-factor gene sets were largely 

characterized by communication between neurons (e.g., “dendrite development”, “dendritic spine”, 

“abnormal excitatory postsynaptic potential”). Biological annotation of QSNP statistics for neuroticism 

indicated that genes within the 69 loci related to neuroticism, but not through a single factor, include: 

GRIA1, a glutamate receptor subunit (i.e. involved in signaling is excitatory neurons) which has 

previously been related to schizophrenia,33 chronotype,34 and autism;35 and PCDH17, a gene involved in 

cellular connections in the brain that has been related to intelligence.36 

 
General Guidelines 

When implementing Genomic SEM, users should be aware of the limitations and assumptions of 

the method. First, because Genomic SEM is a method for modeling genetic covariance matrices, it relies 

on the same assumptions as the method used to estimate genetic covariances, and best practices for 
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implementing such methods should be followed. For example, when LDSC is used to construct the 

genetic covariance matrix, SNPs should not first be pruned for linkage disequilibrium, and summary 

statistics for different phenotypes should be obtained from ethnically homogeneous samples of similar 

ancestral backgrounds.4 With respect to selecting between competing models, users should take into 

account a variety of both absolute fit (e.g. SRMR and model 2) and relative fit indices (e.g. AIC and 2 

difference). We provide general standards for absolute model fit in the Method section. Finally, a formal 

power analysis should take into account specific characteristics of the summary data, the genetic 

architecture of the phenotypes, and the model to be specified. This can typically be achieved with 

simulation. Generally speaking, we would expect power to detect SNP effects on a common genetic 

factor to be high when the phenotypes composing the factor have high heritabilities, and high genetic 

correlations, sample sizes are larger and sample overlap is lower. That said, we still expect some power 

benefits relative to univariate GWAS when the constituent phenotypes are only moderately heritable 

and/or moderately genetically correlated and/or sample overlap is high. The choice of included summary 

statistics, phenotypes, and model(s) will of course depend on the researcher’s objectives and the model(s) 

to be specified. 

 
Discussion 

Applications of genome-wide methods to data from large scale population-based samples have 

uncovered clear evidence of pervasive shared genetic architecture across social, behavioral, and 

psychiatric traits. Genomic SEM is a novel method for modeling the multivariate genetic architecture of 

constellations of genetically correlated traits and incorporating genetic covariance structure into 

multivariate GWAS discovery. In contrast to methods9 that model phenotypic, rather than genetic 

covariance structure, and rely on raw data, Genomic SEM employs summary GWAS data to model 

genetic covariance structure. Genomic SEM is computationally efficient, accounts for potentially 

unknown degrees of sample overlap, and allows for flexible specification of covariance structure, such 

that several broad classes of structured covariance models can be applied. The Genomic SEM approach 

shares benefits of some existing approaches11 for boosting power by combining information across 

genetically correlated phenotypes. However, Genomic SEM uniquely allows one to compare different 

hypothesized genetic covariance architectures and to incorporate such architectures into multivariate 

discovery. Importantly, shared genetic liabilities across phenotypes can be explicitly modeled as factors 

that may be treated as broad genetic risk factors with equally broad downstream consequences. 

Multivariate genetic methods have existed for decades in the twin literature, with Martin and Eaves 

(1977)37 providing a framework for fitting structural equation models of genetic and environmental 

variance components in multivariate twin data. Genomic SEM can be used to reproduce multivariate 
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genetic models from the existing twin literature using GWAS summary data from unrelated individuals. 

Moreover, Genomic SEM offers new promise as a method that allows for the estimation and modeling of 

genetic covariance even among phenotypes for which phenotypic covariance cannot be estimated. 

Genomic SEM is not the only method for multivariate GWAS. Other methods, such as MTAG,11 

SHom/SHet,38 metaUSTAT,39 min-P,40 and TATES29 allow researchers to perform multivariate meta- 

analyses based solely on summary data. The methods can generally be divided into 2 distinct classes: 

methods which aggregate test statistics or effect sizes based on a model (Genomic SEM, SHom and 

MTAG) and those which efficiently select from the univariate p-values while taking care not to inflate 

Type-I error (min-P, TATES, and SHet). As we show with respect to MTAG, some models can be fit in 

the context of Genomic SEM. It is also conceivable that the approach of efficiently selecting the 

minimum p-value from a set of analyses while maintaining proper Type-I error control could be 

integrated within Genomic SEM. For instance, whereas TATES is currently applied to select the 

minimum p-value from a series of univariate analyses of correlated traits, the same analysis could be used 

to select the minimum p-value from a series of Genomic SEM models. With respect to multivariate 

GWAS, we argue the choices available are not mutually exclusive. With respect to other multivariate 

analyses of genome-wide data that go beyond multivariate GWAS discovery, the major alternatives to 

Genomic SEM that we are aware of are GWIS25 and GW-SEM.9 When considering linear relationships 

between traits, Genomic SEM is more flexible and user friendly than GWIS, and GW-SEM requires 

access to phenotypic data, which is a substantial limitation for many applications. 

In contrast to approaches that assume homogeneity of effects across SNPs, such as MTAG,11 

Genomic SEM includes diagnostic indices for its key assumptions, including a test for heterogeneity, 

QSNP, that can be applied at the level of the individual SNPs. This offers the unique ability to identify 

SNPs that confer specific risk to individual phenotypes, symptoms, or indicators. This question may be of 

particular interest as the large degrees of genetic overlap identified across phenotypes (e.g., bipolar 

disorder and schizophrenia) beg the question: what are the genetic causes of phenotypic divergence? 

Whereas previous GWASs have combined items tapping genetically-related phenotypes into a single 

score, or even combined cases with different diagnoses to obtain a shared genetic effect, Genomic SEM 

allows researchers to interrogate shared genetic effects between diagnoses or indicators, while 

concurrently testing for causes of divergence (i.e., loci that are related only to a specific phenotype, or 

subset of phenotypes, but not the more general liability). In the context of neuroticism, for example, we 

identified 69 loci that were significantly involved in one manifestation of neuroticism but whose effects 

were not shared through a common factor, offering novel evidence of biological heterogeneity in the 

etiology of a construct long thought to be unidimensional. Because Genomic SEM relies only on GWAS 
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summary data, it can be applied to a broad spectrum of traits, including social, economic, cognitive, and 

psychiatric outcomes. 
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Method 

Overview of Genomic SEM 

In Genomic SEM, the user specifies a multivariate system of regression and covariance 

associations involving the genetic components of phenotypes with one another and/or more general latent 

factors. These associations are represented by parameters that may be fixed or freely estimated, so long as 

the model is statistically identified (e.g., the number of freely estimated parameters does not exceed the 

number of nonredundant elements in the genetic covariance matrix being modeled). A set of parameters 

( ) is estimated such that the fit function indexing the discrepancy between the model-implied 

covariance matrix ∑(θ) and the empirical covariance matrix S is minimized. Model fit is considered good 

when ∑(θ) closely approximates S. 

 
Form of Structured Covariance Models 

Genomic SEM provides substantial user flexibility with respect to the particular SEM that is 

specified to produce the model-implied covariance matrix ∑(θ) that approximates the empirical 

covariance matrix, S. SEMs can be partitioned into two sets of equations, one describing the measurement 

model, and the other describing the structural model. In the measurement model, the genetic components 

of k “indicator” phenotypes are described as linear functions of a smaller set of m (continuous) latent 

variables, y= Λη + ε . In this equation, y is a k  1 vector of indicators, ε is a k  1 vector of residuals, η 

is an m 1 vector of latent variables, and  is a k  m matrix of factor loadings, i.e. regressions relating 

the latent variables to the set of indicators. In a typical application of Genomic SEM, each indicator is a 

function of exactly one of the latent variables (though this so-called “simple structure” restriction may be 

relaxed). In a confirmatory factor analysis (CFA) model, only the measurement model is specified, and 

the set of latent variables are allowed to freely covary. Thus, the model-implied covariance matrix of a 

CFA is Σ  = ΛΨΛ+Θ , where Ψ is an m × m latent variable covariance matrix and Θ is a k  k 

matrix of covariances among the residuals, ε. Typically, Θ is diagonal, which implies that indicators are 

mutually independent conditional on the set of latent variables. That constraint may be relaxed such that 

select pairs of indicators are allowed to covary over and above their associations via the latent variable 

structure (i.e., residual covariances are allowed). CFA models are typically used to assess the strength of 

relations between sets of indicators and their respective underlying latent variables, as well as to assess 

the fit of a measurement model to data. A well-fitting CFA model implies that the latent variable structure 

is able to account for the observed covariances among a set of indicator variables. 

When a theory aims to explain associations among latent variables, a structural model can be 

added to the measurement model to produce a full SEM. The structural model of a SEM relates latent 
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variables to each other via directed regression coefficients. It can be written in matrix notation as 

η = Βη + ζ, where B is an m × m matrix of regression coefficients that relate latent variables to each 

other and ζ is an m 1 vector of latent variable residuals. The model implied covariance matrix of 

observed variables is  Σ  = ΛI - B
-1 

Ψ I - B
-1 

Λ+Θ, where  I  is an  k  k  identity matrix.41 

Thus, in a full SEM, the empirical matrix is represented by a set of parameters that relate observed 

variables to latent variables, and relate latent variables to each other in a series of linear equations. 

 
Path Diagrams 

SEMs can be represented graphically as path diagrams representing regression and covariance 

relations among variables.42 In path diagrams, observed variables are represented as squares and 

unobserved (i.e., latent) variables are represented as circles. Regressions relationships between variables 

are represented as one-headed arrows pointing from the independent variable to the dependent variable. 

Covariance relationships between variables are represented as two-headed arrows linking the two 

variables. The variance of a variable (i.e., the covariance between a variable and itself), is represented as a 

two-headed arrow connecting the variable to itself. In Genomic SEM, we represent the genetic component 

of each phenotype with a circle, as the genetic component is a latent variable that is not directly measured, 

but is inferred from LDSC (it is the phenotype itself that is observed in the raw data that is used to 

produce the summary statistics). SNPs are directly measured, and are therefore represented as squares. 

When all elements in a SEM are represented in a path diagram, the diagram contains the full system of 

algebraic equations needed to estimate the full set of SEM parameters, , and produce the model-implied 

covariance matrix, ∑(θ). 

 
Stage 1 Estimation 

In Stage 1, the empirical genetic covariance matrix (SLDSC) and its associated sampling covariance 

matrix (VSLDSC) are estimated using our multivariable extension of LDSC. SLDSC is a  k  k symmetric 

matrix with SNP heritabilities on the diagonal and genetic covariances (σgi,gj) between phenotypes i and j 

off the diagonal. The genetic covariance between phenotypes i and j can be computed as the genetic 

correlation scaled relative to the total genetic variance of each of the two contributing phenotypes 

(themselves scaled to unit variances), 
gi, gj 

 r
gi, gj 

 . Thus, the genetic covariance matrix of 

order k has k
* 
 k k  1 / 2 nonredundant elements. It can be written as: 

h
2 
 h

2
 

i j 
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To produce unbiased SE estimates and test statistics, we require the asymptotic sampling 

covariance matrix, VSLDSC, of the LDSC estimates that is composed of all nonredundant elements in the 

SLDSC  matrix. Thus, it is a symmetric matrix of order k*, with  k
* k *  

 1 / 2  nonredundant elements. The 

diagonal elements of VSLDSC  are sampling variances, that is, squared SEs of the elements in SLDSC. The off- 

diagonal elements of VSLDSC  are sampling covariances that indicate the extent to which the sampling 

distributions of the variance and covariance estimates in SLDSC covary with one another, as would be 

expected when there is overlap among the samples from which the terms are estimated. This VSLDSC    matrix 

can be written as: 
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The diagonal elements of VSLDSC  are estimated using a jackknife resampling procedure in the 

bivariate version of LDSC that is currently available by its original developers.4,43 The LDSC function 

introduced in the GenomicSEM software package expands the jackknife procedure to the multivariable 

context in order to produce sampling covariances (which index dependencies among estimation errors) 

among the elements of SLDSC, needed to populate the off-diagonal elements of VSLDSC. 

 
Incorporation of Individual SNP Effects 

Several steps are needed to incorporate individual SNP effects into Genomic SEM. The first step 

requires that the inputted genetic covariance matrix be expanded to include covariances between the SNP 

h 
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and each of the phenotypes, g1 through gk, by appending a vector of SNP-phenotype covariances (SSNP) to 

SLDSC: 
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The sampling covariance matrix, VSFull, associated with this expanded SFull  covariance matrix 

includes a number of components. One block of this VSFull  matrix, VSLDSC, contains the sampling variances 

and sampling covariances of the latent genetic variances (SNP heritabilities) and genetic covariances, 

which are obtained from the multivariable LDSC approach introduced above. A second block of the VSFull 

matrix, VSSNP, is composed of the sampling covariance matrix of the SNP effects on the phenotypes. The 

SNP variance (derived from reference panel data) is treated as fixed, and its sampling variance and 

sampling covariance with all other terms are fixed to 0 (or to a very small value to facilitate 

computational tractability). The sampling covariances of the SNP-genotype covariances with one another 

are obtained using cross-trait LDSC intercepts (which represent sampling correlations weighted by 

sample overlap) after being rescaled relative to the sampling variances of the respective SNP-genotype 

covariances.11,44 A final block of the VSFull  matrix represents the sampling covariance of the SNP-genotype 

covariances with the genetic variances and genetic covariances. These are fixed to 0, as sampling 

variation of the SNP-genotype covariance is expected to be independent of the test statistics of all LD 

blocks except the one it occupies. Because the sampling variance of the heritabilities and genetic 

correlations derive from sampling variability in the test statistics within all of the LD blocks, their 

sampling covariances with a single SNP effect is expected to approach 0. In sum, the VSFull  matrix can be 

written in compact form as: 

V  
VSSNP 


SFull 

  
0 V 



 SLDSC  



Stage 2 Estimation 

In Stage 2, the genetic covariance matrix obtained in the previous stage, S, is used to estimate the 

parameters in a SEM. In this stage, we allow for both weighted least squares (WLS) and normal theory 

maximum likelihood (ML) estimators. WLS does not strictly require positive definite S and VS matrices, 
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but may still benefit from positive definiteness during optimization. ML estimation requires both S and VS 

to be positive definite. The GenomicSEM software package therefore smooths S and VS to the nearest 

positive definite matrices prior to Stage 2 estimation using the R function nearPD.45 

The fit function minimized in the diagonally weighted version of WLS estimation that is standard 

in the GenomicSEM software package is the following: 

F    s    D1 s    , 
WLS S 

 

where S and Σ(θ) have been half-vectorized to produce s and σ(θ) respectively, and DS is VS with its off- 

diagonal elements set to 0. We choose the diagonally weighted version of WLS because it is more 

tractable to implement for large (highly multivariate) matrices and is more stable than fully weighted 

WLS in finite samples.46,47 

ML estimation proceeds by minimizing the following fit function: 

F
ML    log    log S  trS

1   k 

where   is the covariance matrix implied by the set of parameter estimates. Note that, while the 

formulation of the ML fit function does not explicitly include a weight matrix, it is asymptotically 

equivalent to a more general formulation that is identical to the WLS fit function, with 

.5D 1  
1  D , where D

k is the duplication matrix of order k, in place of DS . Thus, the 

difference between ML and WLS estimation can be construed as a difference in weight matrices only. A 

comparison between ML and WLS results can be found in the Online Supplement (Supplementary Figs. 

23-27, Table S19). 

WLS estimation more heavily prioritizes reducing misfit in those cells in the S matrix that are 

estimated with greater precision. This has the desirable property of potentially decreasing sampling 

variance of the Genomic SEM parameter estimates, which may boost power for SNP discovery and 

increase polygenic prediction. However, because the precision of cells in the S matrix is contingent upon 

the sample sizes for the contributing univariate GWASs, WLS may produce a solution that is dominated 

by the patterns of association involving the most well powered GWASs, and contain substantial local 

misfit in cells of S that are informed by lower powered GWASs. In other words, WLS relative to ML may 

more heavily prioritize minimizing sampling variance of the parameter estimates in the so-called variance 

bias tradeoff.48 We expect that this will only occur when the model is overidentified (i.e., df > 0), such 

that exact fit cannot be obtained, and that divergence in WLS and ML estimates will be most pronounced 

when there is lower sample overlap and the contributing univariate GWASs differ substantially in power. 

ML estimation may be preferred when the goal is to most evenly weight the contribution of the univariate 

sample statistics. 
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Both WLS and ML fit functions will produce consistent estimates of the model parameters when 

the model is true.47 However, the “naïve” SEs and fit statistic produced in Stage 2 estimation will be 

incorrect, because neither estimator uses the full VS matrix in estimation. Thus, robust corrections must be 

applied to produce consistent estimates of SEs and test statistics. The correct sampling covariance matrix 

of the Stage Two, Genomic SEM parameter estimates (i.e., V ) can be obtained using a sandwich 

correction:13,47 

V    ̂ 
1
̂ 

1  

̂ 
1

V 
1
̂ ̂ 

1
̂ 

1

 

 

where   
LD( ) 

 






 

is the matrix of model derivatives evaluated at the parameter estimates ,  is the 

naïve Stage 2 weight matrix that takes its form depending on the estimation method used (WLS or ML), 

and VS is the sampling covariance matrix of S obtained using multivariable LDSC. 

It may not always be possible to obtain the full sampling covariance matrix, VS. For example, for 

highly sensitive data only the matrix S and the SEs of its elements may be available (i.e., the diagonal of 

VS). However, we note that when there is low sample overlap across the GWASs for each phenotype, off- 

diagonal elements of the sampling covariance matrix are small and pragmatically ignorable. Moreover, in 

other contexts with complete sample overlap, SE inflation of the SEM parameters estimated using 

diagonally-weighted versions of WLS has been estimated to be less than 8%9 without robustness 

corrections, and nil with robustness corrections.47 

 
Standardization and Scaling of Summary Statistics for Multivariate GWAS 

Typically, GWAS summary statistics for quantitative phenotypes are not reported in terms of 

covariances, but are reported as ordinary least squared (OLS) unstandardized regression coefficients, with 

the phenotypes standardized prior to analyses (i.e., the coefficients are standardized with respect to the 

outcome, but not the predictor). In order to transform these partially standardized regression coefficient 

(bSNP,P) of a SNP effect on phenotype P to a covariance, we multiply by the variance of scores on the 

SNP. The variance ( 2
 ) of scores (0, 1, 2) of a biallelic autosomal SNP is estimated as 2pq, assuming 

 

Hardy-Weinberg-Equilibrium, where p = the minor allele frequency (MAF) and q = 1-MAF, with the 

MAF typically obtained from a reference sample. As the latent genetic factors estimated in LDSC are 

scaled relative to unit-variance scaled phenotypes (by virtue of the SNP heritability estimates being 

placed on the diagonal of S), no further scaling is needed to transform this SNP-phenotype covariance 

into a SNP-genotype covariance. 
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When OLS regression coefficients and standard errors are provided from an analysis in which the 

phenotype has not been standardized prior to analyses, or only Z statistics or p-values (for which Z 

statistics can be readily obtained) are provided, the partially standardized regression coefficients and their 

standard errors can be obtained as Z 
b* 

SNP ,P , b
 

 

 
Z 

, and SE  
b

SNP,P 
, where b

*
 

 

SE * 

b
SNP ,P 

SNP,P bSNP ,P Z SNP ,P 

is equal to the regression coefficient for the OLS GWAS of the unstandardized phenotype. These derived 

partially standardized coefficients are then transformed into covariances by multiplying by the variance of 

scores on the SNP, as per above. 

When the GWAS summary statistics are reported for logistic regressions of liabilities for 

categorical outcomes (e.g. case/control status) on the SNP, the logistic regression coefficients can be 

transformed into covariances as above, by multiplying by the SNP variances. However, it is appropriate to 

further transform the coefficients and their SEs such that they are scaled relative to unit-variance scaled 

 
liability. This can be achieved by dividing by , as a logistic regression model 

 

 2 

implies a residual variance of . If GWAS summary statistics are reported for odds ratios (ORs), they 
3 

can be transformed to logistic regression coefficients by taking their natural logarithm. Standard errors for 

the logistic regression coefficient are obtained as SEOR/OR. The derived logistic coefficients and their SEs 

should further be transformed such that they are scaled relative to unit-variance scaled phenotypes, as per 

above. Note that when the outcomes are categorical, the liability scale heritabilities and genetic 

covariances from multivariable LDSC (and not what are referred to as the “observed scale” heritabilities 

and genetic covariances) should be used to populate the S matrix. This has the desirable property of both 

modeling the continuous scale of risk in the population and providing estimates that are independent of 

the observed prevalence of the categorical outcomes. 

On occasion, summary statistics will be provided from OLS GWASs of categorical outcomes 

(e.g., case/control status). Such an analysis is sometimes referred to as a linear probability model, as it 

(incorrectly) assumes that the association between the predictor and the probability of being in the 

comparison (e.g. case) group relative to the reference (e.g. control) group is linear. Parameters from the 

linear probability model are dependent not only on the strength of the association between the SNP and 

the continuous underlying liability, but also on the MAF and the proportion of comparison group 

members (cases) in the sample. Thus, parameters from the linear probability model cannot be used 

directly in Genomic SEM. However, particularly in the case of complex traits, for which the effect sizes 

for individual SNPs are small, results from the linear probability model can be used to very closely 

N2 

SNP 
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approximate logistic regression coefficients and SEs that are amenable for use in Genomic SEM.49 This 

b** 

approximation can be obtained as Z 
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is equal to the regression coefficient from the linear probability 

b
SNP ,P Z SNP ,P 

model, blogit
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is the expected logistic regression coefficient that is derived from the linear probability 
SNP,P 

 

model results, v is equal to the proportion of cases in the sample, and  2
 

 
is the variance of the SNP, 

 

computed from its MAF obtained from a reference sample, as per above. To scale the derived logistic 

coefficient such that it is scaled relative to unit-variance scaled liability, the coefficient should be divided 

 
by . Lloyd-Jones et al. (2018)49 report that in a real data analysis of UKB 

 
data, the exponentiated regression coefficient (i.e., the odds ratio) obtained directly from a logistic 

regression-based GWAS and that derived from the linear probability model-based GWAS was nearly 

perfect (R2 > 98%, slope ≈ 1). We have verified this nearly perfect correspondence in our own simulations 

(Supplemental Fig. 28). 

Even within samples of the same ethnicity, there is likely to be discrepancies between the MAFs 

of a reference sample and the sample that GWAS summary statistics were generated from. However, 

some summary statistics may not include allele frequencies, and using the same reference panel for 

standardization across phenotypes has the desirable property of maintaining consistency across summary 

statistics. To examine the effect of this decision, the betas for 30,000 randomly selected SNPs for the 

mood phenotype from UKB were standardized using either sample or reference panel MAF. The 

correlation between the betas was .982, and a linear regression of betas standardized using reference panel 

MAF predicting standardization using sample MAF revealed near perfect correspondence (slope = 1.044, 

intercept = -6.54e-6; Supplemental Fig. 29). 

 
Model Fit Statistics 

Model 2 is an index of exact fit of a SEM. It indexes whether the model-implied genetic 

covariance matrix, Σ(θ), differs from the empirical genetic covariance matrix, S. Model 2 can also be 

used as a relative fit index for comparing nested models. Conventional SEM approaches to indexing 

model 2 are based on formulas that directly incorporate N. Because there is not an N that directly 

corresponds to the genetic covariance matrix that is modelled by Genomic SEM in the same way that N 

typically corresponds to an observed covariance matrix, we derived a formula for estimating model 2
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that does not require N, but instead incorporates the sampling covariance matrix of the model residuals. 

This is done in two steps. In Step 1, the proposed model (e.g., a common factor model) is estimated. In 

Step 2, all of the Step 1 estimates are fixed, and the residual covariances and residual variances of the 

indicators are freely estimated. Residual variances are estimated in Step 2 by estimating the variances of k 

residual factors defined by the indicators. This provides an estimate of the discrepancy between the model 

implied and observed covariance matrices, R  S    , along with the sampling covariance matrix 

(VR) of R. While the discrepancy between model implied and observed covariance matrices can be 

computed simply by deriving covariance expectations from the Step 1 model and subtracting the observed 

covariance matrix, such an approach would not provide the corresponding VR matrix necessary for the 

calculations below. The VR matrix is expected to be positive semidefinite and, consequently, have no 

negative eigenvalues. Therefore, the VR matrix has the following eigendecomposition: 

VR = (P1 P0) " " #
 

% % 

# $  % 
& 

where P1 is a matrix of principal components (eigenvectors) of VR, and ( is a corresponding diagonal 

matrix consisting of non-zero eigenvalues. P0 reflects the null space of VR. Projecting Ri—a vector of 

residual covariances estimated from the Step 2 Model—onto P1 and adjusting for corresponding 

eigenvalues, we have that: 
'$     

%
 

 
Therefore, 

) ( %$ *)+(0, /*) 

*)′P1(
-1

P1′*)  - 2 (r) 

This equation produces a test statistic that is 2 distributed with degrees of freedom (r) equal to the 

difference between the number of nonredundant elements (k*) in the empirical covariance matrix (S) and 

the number of freely estimated parameters in the proposed model. 

The Comparative Fit Index (CFI) is a test of approximate model fit. CFI indexes the extent to 

which the proposed model fits better than a model that allows all phenotypes to be heritable, but assumes 

that they are genetically uncorrelated. The 2 statistic can be used to calculate CFI by calculating a second 

2 statistic for a so-called independence model, i.e. a model that estimates genetic variances of all 

phenotypes but assumes all genetic covariances to be zero, such that ∑(θ) is diagonal. CFI is calculated 

using the formula below,50 with f = 2 – degrees of freedom: 

f(Independence Model) – f(Proposed Model) 

f(Independence Model) 

For the 2 of the independence model, a model is estimated in Step 1 that includes only the variance of the 

indicators and no common factor. In Step 2, these variances are fixed and the covariances among the 
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indicators and variances of k residual factors defined by the indicators are estimated and used to populate 

the same equation above used to calculate the proposed model 2. CFI values theoretically range from 0 

to 1, with higher values indicating good fit. CFI values of .90 and above are typically considered 

acceptable fit, and values of .95 and above are typically considered good model fit.51 When the empirical 

covariance matrix contains a large number of cells that are very close to 0, CFI values may be low, even 

when such cells are approximated well by the model. 

Akaike Information Criterion (AIC) is a relative fit index that balances fit with parsimony, and 

can be used to compare models regardless of whether they are nested. AIC is calculated as: 

AIC = 2 + 2 × fp, 

where fp is the number of free parameters in the model.52 Lower AIC values are considered superior. 

Standardized Room Mean Square Residual (SRMR) is an index of approximate model fit that is 

calculated as the standardized root mean squared difference between the model-implied and observed 

correlations in Σ(θ) and S, respectively.53 Higher SRMR values indicate a larger discrepancy between Σ(θ) 

and S. It is positively-biased, with larger bias resulting when the contributing univariate GWAS samples 

are lower powered. SRMR values below .10 indicate acceptable fit, values less than .05 indicate good fit, 

and a value of 0 indicates perfect fit.54 

We recommend that model fit indices be considered concurrently, as individual indices each have 

their own strengths and limitations. Model 2 is an index of exact fit, with lower values indicating better 

fit. Model 2 may oftentimes be statistically significant, indicating that the model-implied genetic 

covariance matrix significantly differs from the empirical (unrestricted) genetic covariance matrix, even 

when the model-implied covariance matrix very closely approximates the empirical genetic covariance 

matrix. Oftentimes, models that closely, albeit imperfectly approximate the empirical genetic covariance 

matrix may be scientifically and inferentially useful. We thus recommend considering CFI and SRMR 

indices of absolute fit, even when model 2 is significant. We also recommend using indices of relative fit 

to compare competing models of the same data (i.e. different models fit to genetic covariance matrices 

derived from the exact same summary data for the exact same phenotypes). When models are nested, their 

respective 2 values can be subtracted from one another to calculate a 2 difference test, with df equal to 

the difference in df between the two models. This 2 difference test, indexes the extent to which the less 

complex model (i.e. the model with more df) approximates the empirical genetic covariance matrix 

significantly worse than the more complex model (i.e. the model with fewer df). If the 2 difference test is 

significant, the more complex model should be chosen. If the 2 difference test is not significant, the less 

complex model should be chosen, as it is more parsimonious and approximates the empirical genetic 

covariance matrix no worse than the more complex model. Two models are nested when the set of 
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possible model implied covariance matrices from one model is a subset of the set of possible model 

implied covariance matrices of the second model.55 Nesting can typically be confirmed if the less 

restrictive model can be derived from the more restrictive model by dropping or fixing parameters. 

Regardless of whether models are nested, they can be compared on CFI, SRMR, and AIC, so long as the 

same data are being modeled. 

 
Validation of Summary-Based Model Fit Statistics via Simulation. A generating population with a 

common factor model defined by four, five, or six indicators was used to examine the null distribution of 

the newly derived 2 test statistic using a set of 1,000 simulations per model. These simulations did not 

include individual genotypes, and were simulated solely based on a generating factor structure. For the six 

indicator models the standardized factor loadings in the generating population were .42, .64, .22, .59, .19, 

and .64. The four and five indicator models specified the same factor loadings, excluding the last, or last 

two loadings, respectively. Results indicated that the two-step procedure described above produced a test 

statistic equivalent to the 2 statistic calculated by lavaan from the raw data (Supplementary Fig. 30 and 

Table S20). For a 2 distributed test-statistic, the mean of the null sampling distribution should match the 

df of the test. As expected, the distribution of the test-statistic conformed to a 2 distribution with an 

average approaching the df (Supplementary Fig. 31). Calculated CFI values were also highly consistent 

with those observed using the CFI statistic provided by lavaan when using raw data (Supplementary Fig. 

32, Table S20). Calculated AIC values were not contrasted with those obtained using the lavaan package 

in R in the simulations below as the software uses a formula that includes a log-likelihood estimate 

contingent on the provided sample size. 

 
QSNP Test of Heterogeneity 

As with the computation of model 2 outlined above, QSNP is calculated using a two-step 

procedure. In Step 1, a common pathway model is fit in which both factor loadings, the SNP effect on the 

common factor(s), and the residual variances of the common and unique factors are freely estimated (with 

one factor loading fixed to unity for factor identification and scaling). No paths representing direct effects 

of the SNP on the genetic components of the individual phenotypes are estimated. In Step 2, a common 

plus independent pathways model is specified, in which the factor loadings and the SNP effect on the 

common factor are fixed to the values estimated in Step 1, and direct effects of the SNP on individual 

indicators and the residual variances of each indicator are freely estimated. Supplementary Fig. 33 depicts 

this model, as applied to a single common factor model, with parameters that are fixed in Step 2 depicted 

in red and those that are freely estimated in Step 2 depicted in black. 
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Null Distribution of QSNP. To verify that the null distribution for QSNP is 2 distributed, a set of simulations 

specified a generating population in which the direct effects of the SNP on the indicators were entirely 

mediated through the common factor. Each simulation included 1,000 datasets, with N = 100,000 

completely overlapping participants per dataset. All simulated datasets were analyzed using both WLS 

and ML. We examined three models with F = 1 factor, and k = 4, 5, or 6 phenotypes. Table S21 presents 

descriptive statistics for QSNP. Using a genome-wide significance threshold, in all cases the false 

discovery rate for QSNP was 0, and the power to detect a SNP effect on the common factor was 1. Both 

WLS and ML estimation produced mean estimates of QSNP that were approximately equal to the df of the 

corresponding model. Supplementary Fig. 34 depicts the null sampling distributions of QSNP estimated 

using WLS or ML. Supplementary Fig. 35 plots QSNP from these two estimation methods against 2 

distributions and against one another. These results indicate that both estimation methods produce results 

that are approximately 2 distributed. 

 
Genomic SEM Simulation Procedures 

Simulation of Factor Structure. In order to evaluate the ability of Genomic SEM to capture the genetic 

factor structure in the generating population, the GCTA package3 was used to generate 100 sets of 6 

independent, 100% heritable phenotypes (“orthogonal genotypes”) to pair with genotypic data for 39,909 

randomly selected, unrelated individuals of European descent from UKB data for the 1,209,498 SNPs 

present in HapMap3. The generating list of causal SNPs was set to 10,000 for all 600 genotypes, with the 

specific list of causal variants sampled with replacement from the 1,209,498 SNPs. One of the six 

orthogonal genotypes per set was designated an index of the general genetic factor and the remaining five 

were designated indices of domain-specific genetic factors. All of these orthogonal genotypes were scaled 

to M=0, SD=1. Five new correlated genotypes were then constructed, each as the weighted linear 

combination of the general genetic factor and one domain-specific genetic factor. Weights for 

contribution of the general genetic factor were λFg,k =.70, .60, .50, .40, and .30, for correlated genotypes 1- 

5, respectively. Weights for the domain-specific factors were 2(1 −  λ( ). Phenotypes were then each 
 

constructed as the weighted linear combination of one of the correlated genotypes and domain-specific 

environmental factors (randomly sampled from a normal distribution with M=0, SD=1). Heritabilities for 

phenotypes 1-5 were set to ℎ(=35%, 40%, 50%, 60%, and 70%, respectively, such that the weights for 

the genotypes were 2ℎ( and the weights for the environmental factors were 2(1 − ℎ(). We chose these 
. . 

 

figures to stabilize the properties of the distributions across simulations at 100 replications with N~39K 

each. We expect that with lower SNP h2’s, the same patterns would hold, albeit at larger sample sizes. 
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Each of the 500 phenotypes (100 sets of 5 phenotypes) was then analyzed as a univariate GWAS in 

PLINK56 to produce univariate GWAS summary statistics. Our multivariable LDSC function was then 

used to construct 100 sets of 5×5 genetic covariance matrices (S) and associated sampling covariance 

matrices (VS), and Genomic SEM was used to fit a one factor model to each set. 

 
Simulation of Partial Sample Overlap. In order to examine the effect of sample overlap on estimates 

obtained from Genomic SEM, the GCTA package package3 was used to generate a 50% heritable, 

quantitative phenotype with 30,000 causal SNPs. The phenotype was paired with genetic data from 

100,000 randomly selected, unrelated individuals of European descent from UKB data for 1,209,498 

HapMap3 SNPs. Three sets of 60,000 participants each were created using this same phenotype, with 

40,000 participants overlapping across all three identical phenotypes and 20,000 participants unique to 

each phenotype (i.e., 100,000 total participants). These three subsamples were individually analyzed in 

PLINK56 to produce univariate GWAS summary statistics. The multivariable LDSC function was then 

used to construct the genetic covariance and sampling covariance matrix using the three sets of summary 

statistics, and Genomic SEM was used to fit a one factor model with the SNP predicting the common 

factor. Two key pieces were verified at this stage. First, we confirmed that the standardized factor 

loadings on the common factor were 1 for the identical phenotypes. Second, we verified that the bivariate 

ld-score intercepts that are used to account for sample overlap in the sampling covariance matrix were as 

expected. The equation for the ld-score bivariate intercept is4: Ns/√(N1N2), where Ns = sample overlap, 

= the phenotypic correlation, N1 = sample size of trait 1, and N2 = sample size of trait 2. In this simulation, 

we observed bivariate intercepts of .67, which is as expected given sample overlap of 40,000, a 

phenotypic correlation of 1, and sample sizes of 60,000 (i.e., 40,000*1/√(60,000*60,000) = .67). Finally, 

estimates from this multivariate GWAS were compared to estimates from the univariate GWAS in 

PLINK for the full set of 100,000 participants. 

 
MTAG Simulation. In order to evaluate the relationship between estimates from MTAG and those from a 

Genomic SEM formulation of the MTAG model, we specified a bivariate system of heritable 

phenotypes, A and u. Phenotype A was constructed using the GCTA package3, and specified to be 60% 

heritable, and affected by a random selection 30,000 HapMap3 SNPs. Phenotype u was constructed 

separately using the GCTA package, and also specified to be 60% heritable, and affected by a different 

random selection of 30,000 HapMap3 SNPs. Both A and u were standardized (M=0, SD=1). Phenotype B 

was constructed from phenotypes A and u according to the equation B = .7A + .7u. This procedure 

resulted in 60% heritabilities for both traits A and B, with a genetic correlation of .7 between them. 

Sample sizes for phenotypes A and B were 25,000 each, with 10,000 participants contributing data for 
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both phenotypes A and B (i.e. 40% sample overlap), such that the analytic dataset was composed of 

40,000 unique individuals in total. Both MTAG11 and a Genomic SEM model specified to satisfy the 

same moment conditions as MTAG (see Online Supplement) were then each run with Trait A as the 

supporting phenotype used to boost power for target Trait B and estimates from MTAG and Genomic 

SEM specified as MTAG were compared. 

 
Quality Control Procedures 

LD-Score Regression. For the p-factor, neuroticism, and anthropometric traits, quality control (QC) 

procedures for producing the S and VS matrix followed the defaults in LDSC. We recommend using these 

defaults for multivariable LDSC, including removing SNPs with an MAF < 1%, information scores < .9, 

SNPs from the MHC region, and filtering SNPs to HapMap3. Quality control procedures for the 

multivariable regression example mirrored those used by Nieuwboer et al. (2016)25 for comparative 

purposes. More specifically, SNPs were excluded with MAFs < .05 as determined by the HapMap 

Consortium,57 and with information values less than 0.9 or greater than 1.1. SNPs were also filtered to 

HapMap3. The LD scores used for the analyses presented were estimated from 1000 Genomes Phase 3, 

but restricted to HapMap3 SNPs. 

 
Multivariate GWAS. Summary statistics are only restricted to HapMap3 SNPs for the estimation of the 

genetic covariance and sampling covariance matrix in LD-Score regression, whereas all SNPs passing QC 

filters are included for multivariate GWAS. To obtain summary statistics for multivariate GWAS, we 

recommend using QC procedures of removing SNPs with an MAF < .01 in the reference panel, and those 

SNPs with an INFO score < 0.6. MAFs were obtained for the current analyses using the 1000 Genomes 

Phase 3 reference panel. Using these QC steps, 1,979,881 SNPs were present across schizophrenia, 

bipolar disorder, MDD, PTSD, and anxiety. For neuroticism, there were 7,265,104 SNPs that were 

present across all phenotypes. These QC procedures are the defaults for the processing function within the 

GenomicSEM package. The regression effects for the univariate indicators of the p-factor were 

standardized using the procedure for logistic coefficients outlined above. Regression effects for 

neuroticism indicators were converted from linear probability to logistic coefficients and then 

standardized with respect to the variance in the outcome. 

 
Out-of-Sample Prediction 

p-factor. Genomic SEM analyses that were used to produce the summary statistics for construction of 

polygenic scores for out-of-sample prediction omit the PGHC MDD 2018 GWAS and SCZ 2018 GWAS 

and replace them with the PGC MDD 201358 and PGC SCZ 201459 GWAS to prevent overlap between 
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discovery and target samples. This resulted in a Genomic SEM-based multivariate GWAS using 930,581 

SNPs. Analyses used to construct a phenotypic p-factor for polygenic prediction in the UKB dataset were 

restricted to data on up to N=332,050 European participants. The Genomic SEM of the p-factor employed 

case-control GWAS statistics to construct summary statistics for a general factor of liability for clinically- 

severe levels of psychopathology as the discovery phenotype. For out-of-sample prediction, we selected a 

set of psychiatric symptoms (rather than diagnoses) to construct liability for general and domain-specific 

factors of psychiatric symptomology across the subclinical-to-clinical ranges as the target phenotypes. 

From the UKB dataset, we chose symptoms falling within the following domains: psychosis, mania, 

depression, post-traumatic stress, and anxiety. We fit a confirmatory factor model (diagram shown in 

Supplementary Fig. 29) to the phenotypic symptom endorsements, treating them as ordered categorical 

variables. Analyses were run in Mplus,60 with the target phenotypes—the p-factor and each of the 

individual domains—specified as latent variables. PGS variables were specified to directly predict the 

latent phenotypes within the model (i.e., factor score estimates were not used). To construct PGSs, we 

removed from both the p-factor and univariate summary statistics the 5 SNPs that were identified as 

having genome-wide significant QSNP estimates for ML, along with SNPs that were in LD with these 

SNPs using an r2 threshold of 0.1 and 500-kb window. PGSs were constructed using PRSice,61 with LD 

clumping set to r2 > 0.25 over 250kb sliding windows. PGSs for the p-factor were based on the WLS 

summary statistics produced using Genomic SEM. We ran PGS analyses using a p-value threshold of 1.0 

(i.e., we used all available SNPs apart from those removed due to QSNP analyses). In order to maintain 

comparability, PGSs for the univariate summary statistics were constructed based on the same SNPs with 

which the PGSs for the p-factor were constructed. In the confirmatory factor models, we included 

controls for age, sex, genotyping array, and 40 principal components of ancestry in conjunction with the 

PGS predictor. 

 
Neuroticism. The raw total on the 12-item neuroticism subtest of the Eysenck Personality Questionnaire- 

Revised62 (maximum score = 12) was used as the target phenotype for out-of-sample prediction. Both 

genetic and neuroticism target data was available on 19,876 European participants in the Generation 

Scotland cohort63. Neuroticism scores were residualized for age, sex, and 20 principal components of 

ancestry prior to examining out-of-sample prediction. PGSs were constructed using PRSice,61 with LD 

clumping set to r2 > 0.25 over 250kb sliding windows and using a p-value threshold of 1.0. PGSs for 

neuroticism were based on the WLS summary statistics produced using Genomic SEM. Regression 

analyses were run using the lmekin function within the coxme package in R with a random intercept to 

account for nesting of individuals within families. 
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Clumping and Biological Annotation 

Lead SNPs for univariate indicators and the common factors were identified using the clumping 

algorithm in PLINK.56 We defined LD-independent SNPs using an r2 threshold of 0.1 and a 500-kb 

window using the same 1000 Genomes Phase 3 reference panel used for obtaining MAF. For 

chromosomes 6 and 8 an additional pruning filter was used of 1Mb and r2 > 0.1 to account for long-range 

LD due to the MHC region and pericentric inversion, respectively. Increasing the pruning window further 

to 4Mb did not influence our findings on chromosome 6 or 8. The lead SNPs identified using PLINK 

were entered into DEPICT. Prioritized genes, enriched gene sets, and enriched tissues were identified 

using the standard false discovery rate of 5%. 

 
Description of GenomicSEM Software 

The Genomic SEM software package, GenomicSEM, is written as an R package and is available 

through GitHub at https://github.com/MichelNivard/GenomicSEM. GenomicSEM contains several 

functions, including procedures for QCing and standardizing summary statistics, a function for producing 

genetic covariance matrices (SLDSC) and their associated sampling covariance matrices (VSLDSC) using a 

multivariable extension of LD Score regression, functions for fitting Genomic Structural Equation Models 

to SLDSC  and VSLDSC, and functions for adding SNP level data to the SLDSC  and VSLDSC  matrices (referred to as 

SFull  and VSFull) that are used for implementing Genomic SEM for multivariate GWAS discovery. Functions 

include both pre-specified models (e.g., a single common factor model) and user-specified models. Output 

includes both unstandardized and standardized solutions, along with the fit indices described above. WLS 

estimation is the default in the GenomicSEM package. GenomicSEM uses the lavaan Structural Equation 

Modeling package64 as the primary workhorse for model specification and numerical optimization. We also 

provide limited support for OpenMx.65 To run the multivariable LDSC function on five phenotypes takes 

~15 minutes, a step in the analyses that only needs to be performed once. For models of multivariate genetic 

architecture that do not incorporate individual SNP effects, the typical run time observed for 3-15 traits is 

<1 second on a standard personal computer. Using parallel processing implemented in the GenomicSEM 

package on a 4-core/8-thread laptop, a multivariate Genomic SEM GWAS with five indicators and ~1 

million SNPs took ~8 hours. With the time needed to run the models will increase with increasing model 

complexity, and with increasing numbers of variables or SNPs. In these cases, computing time can be 

greatly reduced by using a computing cluster to distribute SNP models across nodes/cores. 
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 Software 

GenomicSEM software is an R package that is available from GitHub at the following URL: 

https://github.com/MichelNivard/GenomicSEM 

The GenomicSEM R package can be installed directly at: 

https://github.com/MichelNivard/GenomicSEM/wiki. 

Example GenomicSEM code, including code used to produce results is provided for each set of analyses 

at the following online wiki: https://github.com/MichelNivard/GenomicSEM/wiki. 
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Table 1. Summary of multivariate (Genomic SEM) and univariate GWAS results. 
 

Lead SNPs Unique No. of 
No. No. 

Mean 

 

 

 

SEM (WLS) 

 

 

 

 

 

 

SEM (WLS) 

 

 

 

 

 

 

 

 

 

 

 

 

Note. In parentheses for QSNP reports how many QSNP hits were in LD with hits identified as significant for 

the common factor. Unique hits for the common factor refers to lead SNPs that were not in LD with hits for 

the individual indicators. Unique hits for the individual indicators refers to hits for the respective indicator 

that were not in LD with hits for the common factor. Unique hits for the common factor excluded hits in LD 

with QSNP hits. For unique hits for indicators, values in parentheses indicate whether any of these hits were 

identified as significant for QSNP. For unique hits for the common factor, hits were excluded that were in LD 

with previously reported indicator hits that were removed due to missing values across the other phenotypes. 

The single QSNP hit for WLS estimation of the p-factor was significant for both the common factor and 

schizophrenia. For the common factor and the indicators, independent hits were defined using a pruning 

window of 500Kb and r2 > 0.1. For chromosomes 6 and 8, an additional pruning filter was used of 1Mb and 

r2 > 0.1 to account for long-range LD due to the MHC region and pericentric inversion, respectively. For 

univariate statistics, we used only the SNPs present across all indicators in order to facilitate a direct 

comparison to Genomic SEM results. 

(p < 5 × 10-8) 
QSNP hits 

Hits gene sets 
prioritized

 tissues 
2 

    genes and cells  

  P-Factor     

Genomic 
128

 
1 (1) 27 71 37 24 1.88 

Schizophrenia 127 - 34 (0) 2 25 21 1.82 

Bipolar 4 - 4 (0) 0 0 0 1.15 

MDD 5 - 5 (0) 0 0 0 1.31 

PTSD 0 - 0 (0) 0 0 0 1.01 

Anxiety 1 - 1 (0) 0 0 0 1.03 

  Neuroticism     

Genomic 
118

 
69 (5) 38 1 19 20 1.64 

Mood 43 - 19 (5) 0 0 15 1.37 

Misery 31 - 6 (4) 0 0 0 1.32 

Irritability 36 - 17 (4) 0 0 0 1.37 

Hurt Feelings 24 - 11 (0) 0 0 0 1.33 

Fed-up 38 - 21 (6) 0 0 0 1.36 

Nervous 41 - 25 (12) 0 0 0 1.36 

Worry 56 - 26 (6) 0 13 0 1.46 

Tense 19 - 10 (3) 0 0 0 1.32 

Embarrass 17 - 6 (2) 0 0 0 1.33 

Nerves 12 - 7 (3) 0 0 0 1.26 

Lonely 6 - 4 (3) 0 0 0 1.19 

Guilt 21 - 8 (1) 0 0 0 1.28 
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.26 (.11) .35 (.11) .79 (.07) .91 (.44) .71 (.36) 

b 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

.25 (.01) 
 

.28 (.02) .43 (.02) .35 (.03) .33 (.02) 
 

.46 (.03) .39 (.02) .36 (.03) 
 

.52 (.03) 
 

.37 (.03) 

 

.50 (.04) 
 

.37 (.03) 

Fig. 1. Genomic SEM solutions for p-factor and neuroticism factor models with SNP effect. 

Standardized results from using Genomic SEM (with WLS estimation) to construct a genetically defined 

p-factor of psychopathology (panel a) and a genetic neuroticism factor (panel b) with a lead independent 

SNP predicting the factors. SEs are shown in parentheses. For a model that was standardized with respect 

to the outcomes only, the effect of the SNP was -.093 (SE = .017; SNP variance = .252) for the p-factor, 

and for neuroticism the SNP effect was -.042 (SE = .007, SNP variance = .432); this can be interpreted as 

the expected standard deviation unit difference in the latent factor per effect allele. SCZ = schizophrenia; 

BIP = bipolar disorder; DEP = major depressive disorder; PTSD = post-traumatic stress disorder; ANX = 

anxiety. Irr = irritability; Feel = sensitivity/hurt feelings; fed-up = fed-up feelings; emb = worry too long 

after embarrassment. 

1 uN 
.999 (.058) 

-.028 (.005) 
1 Ng 

  .87 (.02)    .75 (.04)    .81 (.02)   .80 (.03)   .79 (.03)   .80 (.03)  

Moodg Miseryg Irrg FeelG Fed-upG Nervousg Worryg Tenseg Embg Nervesg 
Lonelyg Guiltg 

1 1 1 1 1 1 1 1 1 
1 1 

uMood uMis uIrr uFeel uFed-up uNervous uWorry uTense uEmb uNerves uLonely uGuilt 

.78 (.03) .73 (.03) .71 (.03) .69 (.03) .81 (.03) .85 (.03) 

 
rs10497655 

1 up 
.998 (.049) 

-.045 (.008) 
1 rs4552973 p G 

.86 (.06) .53 (.08) 

.81 (.06) .29 (.09) 

.46 (.04) 

SCZg BIPg DEPg PTSDg ANXg 

1 1 1 1 1 

uSCZ uBIP uDEP uPT uANX 
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Fig 2. Manhattan plots of unique, independent hits from Genomic SEM. Genomic SEM (with WLS estimation) was used to conduct multivariate GWASs 

of the p-factor (panel a) and neuroticism (panel b). Manhattan plots are shown for SNP effects (left panels) and for QSNP (right panels). The gray dashed line 

marks the threshold for genome-wide significance (p < 5 × 10-8). In all four panels, black triangles denote independent hits for SNP effects from the GWAS of 

the general factor that were not in LD with independent hits for the univariate GWAS or hits for QSNP. In all four panels, purple diamonds denote independent 

hits for the SNP effects from univariate GWASs that were not in LD with independent hits from the GWAS of the general factor. Grey stars denote 

independent hits for QSNP. 
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Fig. 3. Out-of-sample prediction using Genomic SEM based and univariate based polygenic scores for psychiatric traits. Polygenic scores 

(PGSs) were constructed using the same set of SNPs for all predictors. R2 (%) on the y-axis indicates the percentage of variance (possible range: 0- 

100) explained in the outcome unique of covariates. The summary statistics for Genomic SEM were estimated using WLS. The Genomic SEM 

based PGS was derived from a model estimating SNP effects on a common “p”-factor, constructed from SCZ, BIP, MDD, PTSD, and ANX (as in 

Fig. 1a.). In order to prevent bias, the Genomic SEM summary statistics were produced using SCZ and MDD GWAS summary statistics that did 

not include UKB participants. Error bars indicate 95% confidence intervals estimated using the delta method. Phenotypes were constructed for 

European participants in the UKB for five symptom domains and for a general p factor spanning all five symptom domains. 
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Fig. 4. Relative power and out-of-sample prediction for neuroticism. Panel a represents relative power of 

GWAS summary statistics for individual neuroticism items (yellow), parcels (blue), and factor of parcels, 

sum score, and factor of items (purple) from in the UKB discovery sample. Relative power is indexed by the 

proportion (expressed as a percentage) in the average 2 – 1 across summary statistics relative to the lonely 

item (panel), which is the item with the smallest average 2 value. We subtract 1 because the mean of the null 

2 distribution is equal to its degrees of freedom. Panel b represents relative prediction in the Generation 

Scotland sample for polygenic scores (PGSs) derived from GWAS sumstats for individual neuroticism items 

(yellow), parcels (blue), and factor of parcels, sum score, and factor of items (purple). The proportional R2 

(%) is relative to the R2 for the lonely item PGS. PGSs were constructed using the same set of SNPs for all 

predictors. The summary statistics for Genomic SEM were estimated using WLS. Error bars indicate 95% 

confidence intervals. For both panels, the red line is drawn at 100%, to indicate distance from the lonely item 

baseline. The superior performance of Genomic SEM analysis of the common factor of items relative to the 

sum score of the items is likely, in part, a reflection of the fact that the sum score in UKB was created using 

listwise deletion, resulting in a reduced sample size of 274,008. Conversely, Genomic SEM uses all available 

information from neuroticism items, with sample sizes of ~325,000 each. In more severe cases of sample non- 

overlap, we would expect even larger power benefits of Genomic SEM-derived summary statistics relative to 

individual items or sum scores. Indeed, in instances of minimal sample overlap, it is not possible to compute 

sum scores, but Genomic SEM can still be used to integrate GWAS summary data across phenotypes. 
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a P−Factor 
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Neuroticism QSNP
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Fig. 5. Biological annotation of Genomic SEM results for p-factor, neuroticism, and QSNP of 

neuroticism. Results from tissue enrichment analyses conducted using DEPICT based on Genomic SEM 

results for the p-factor (panel a), neuroticism (panel b) and QSNP estimation for neuroticism (panel c) using 

WLS estimation. The red, dashed line indicates the false discovery rate at .05. As expected, the majority of 

enriched tissues were in the nervous system for both common factors and QSNP estimates. 
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ML Estimation 

 

WLS estimation more heavily prioritizes reducing misfit in those cells in the S matrix that are 

estimated with greater precision. This has the desirable property of potentially reducing standard errors of 

the Genomic SEM parameter estimates, which may boost power for SNP discovery and increase 

polygenic prediction. However, because the cells in the VS matrix (that index the precision of cells in the S 

matrix) are contingent upon the sample sizes for the contributing univariate GWASs, WLS may produce a 

solution that is dominated by the patterns of association involving the better powered GWASs, and 

contain substantial local misfit in cells of S that are informed by lower powered GWASs. In other words, 

WLS relative to ML may more heavily prioritize minimizing sampling variance of the parameter 

estimates in the so-called variance bias tradeoff.37 We expect that this will only occur when the model is 

overidentified (i.e., df > 0), such that exact fit cannot be obtained, and that divergence in WLS and ML 

estimates will be most pronounced when there is lower sample overlap and the contributing univariate 

GWASs differ substantially in power. 

In the case of our Genomic SEM formulation of GWIS, the model was just identified (df = 0) and 

results from ML were highly consistent with those from WLS (Supplementary Fig. 23). For 

anthropometric traits, results were also highly similar across ML and WLS, with ML estimation also 

confirming two latent factors with a modest genetic correlation (rg = .21, SE = .05, p < .001). In the case 

of psychiatric traits, we use summary statistics characterized by discrepant sample sizes and low levels of 

sample overlap for which the expectation is potentially divergent WLS and ML estimates. Indeed, WLS 

and ML findings were discrepant, with MDD loading strongest on the p-factor with ML estimation 

(Supplementary Fig. 24), but SCZ loading strongest on the p-factor with WLS estimation. The follow-up 

models used to calculate model fit failed to converge for ML estimation of both the p-factor and 

anthropometric traits. For neuroticism, results were highly consistent across WLS and ML estimation—as 

would be expected giving almost entirely overlapping univariate samples—revealing a common 

neuroticism factor with strong loadings for all indicators and good model fit (2[54] = 4959.08, AIC = 

5007.08, CFI = .891, SRMR = .116; Supplementary Fig. 24). 

For SNP effect models estimated using ML, there was minimal enrichment of effects for the p- 

factor, but effects were similar to WLS for neuroticism (Supplementary Fig. 25 for QQ plot). More 

specifically, there were no lead SNPs identified for the p-factor with ML estimation and 105 lead SNPs 

identified for neuroticism with ML estimation. For estimates of QSNP, there were 63 independent hits for 
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the p-factor and 63 independent hits for neuroticism. Inspection of QSNP estimates for the p-factor 

indicated that these results were largely driven by SNPs that were highly significant for schizophrenia, but 

not the other indicators (Table S19). As expected based on higher sample overlap and less discrepant 

sample sizes for neuroticism compared to the p-factor, the association between p-values for ML and WLS 

were higher for neuroticism (r = .94) than for the p-factor (r = .15; Supplementary Fig. 26). However, the 

association between QSNP estimates was high for both the p-factor (r = .77) and neuroticism (r = .99; 

Supplementary Fig. 26). Biological annotation of ML-based results conducted using DEPICT revealed all 

null findings for the p-factor, and 6 prioritized genes, no gene sets, and 23 tissues for neuroticism. Loci 

identified for ML estimation of neuroticism and QSNP estimates for the p-factor and neuroticism were 

expressed in the nervous system (Supplementary Fig. S27). 

 
Model Comparisons: Neuroticism Example 

As an example of how to use Genomic SEM to do model comparisons we examined different 

factor structures that might be fit to the 12 neuroticism items from UK Biobank. As a starting point, we 

performed an Exploratory Factor Analysis (EFA) in the fa R package using the oblimin rotation for a two- 

, three-, and four-factor solution. A follow-up CFA (Supplementary Fig. 5) within Genomic SEM was 

specified based on the EFA parameter estimates (standardized loadings > .4 were retained) for the two- 

and three-factor solutions, but not the four-factor solution as the fourth factor was defined only by the 

tense and irritability items (Table S2). The two-factor solution (2[53] = 2758.18, AIC = 2808.18, CFI = 

.940, SRMR = .077) and three-factor solution (2[51] = 1879.31, AIC = 1933.31, CFI = .959, SRMR = 

.057) both provided excellent fit to the data. For both solutions, the factors were highly correlated (rg  

.67). As these were not nested models, they could not be compared using 2 difference tests. 

There were 69 SNPs identified as significantly heterogenous for the common factor of 

neuroticism, indicating that these particular SNPs may be operating through factors defined by a smaller 

subset of items. In order to investigate this possibility, multivariate GWAS analyses were conducted for 

these 69 QSNP hits using the two- and three-factor solutions identified above. The SNP was specified to 

predict all factors in each model. Of these 69 SNPs, 28 and 20 were genome-wide significant for QSNP for 

the two- and three-factor solutions, respectively (Table S3). For the two-factor solution, 6 SNPs had a 

genome-wide significant effect on the first factor and 4 SNPs were significant for the second factor. For 

the three-factor solution, 5 SNPs were significant for the first factor, 1 was significant for the second 

factor, and 9 were significant for the third factor. Taken together, these results indicate that a proportion 

of the SNPs identified as significantly heterogenous for the single factor solution may have large effects 

on individual factors defined by a smaller subset of the neuroticism items. Indeed, plots of item-level 

effects for SNPs identified as significant for one of the factors indicate high levels of consistency within, 
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but not across, factors (Supplementary Fig. 6). For SNPs that continued to be significant for QSNP for even 

the three-factor solution, the effect may be even finer grained, with outlying effects on individual items. 

The iterative process outlined here of beginning with a common factor, and following up on SNPs 

identified as having high degrees of heterogeneity in more nuanced models, can be used to bin SNPs into 

categories of decreasing pleiotropic effects within a set of genetically correlated traits (Supplementary 

Fig. 6). 

 
MTAG as a Model within Genomic SEM 

Here we examine the connection between the MTAG model and Genomic SEM. 

MTAG Moment Conditions. MTAG builds onto the LDSC framework, where K phenotypes and M SNPs 

are measured in N individuals, and modeled according to the equation: 

i,k    xi , j  j ,k   Úi,k 
, (1.1) 

 
where i ,k is the score for person i on phenotype k, x is the standardized genotype for person i on SNP j, 

βj,k the true genotype effect size for SNPj on phenotype k, and ϵi,k is the residual for person i on phenotype 

k. Written in matrix form, we have: 
 

Φ = XB + E , (1.2) 

 
where Φ is an N× K matrix of scores for person i on phenotype k, X is an N×M matrix of standardized 

genotypes for person i on SNP j, B is an M×K matrix of true genotype effect sizes for SNP j on 

phenotype k, and Ei,k is an N×K matrix of residuals for person i on phenotype k. 

In this framework, LDSC is used to model βj,k as phenotype-specific random effects, varying over 

SNPs, with E(βj,k)= 0 and cov(βj,k)= Ω. The diagonal elements of Ω contain the average heritability 

explained per SNP ( h
2 
/ M ; alternately referred to as genetic variance explained per SNP, i.e.,  

2 
/ M ), 

k k 

and the off diagonal elements of Ω contain the genetic covariances between phenotypes on a per-SNP 

scale (/M, where  is the genetic covariance between pairs of phenotypes). In other words Ω is 

equivalent to 
! 
𝑆LDSC, where SLDSC is the genetic covariance matrix estimated with LDSC that is used in 

" 

Genomic SEM. 
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j ,k 

t 

t 

2 

 

 

By drawing on multivariate GWAS summary statistics from K genetically correlated phenotypes, 
 

j ,t 

MTAG attempts to obtain an estimate of the effect size for SNP j on target phenotype t that is more 

ˆ 
precise than the univariate GWAS estimate, j,t , of this effect. In the notation of Turley et al. (2018)11, 

 

the MTAG moment condition specifies: 

 

E
 
ˆ 












j,k   

 
 
kt 
tt 

 

 


j,t 









(1.3) 

where ̂ is the GWAS estimate for the regression effect of SNP j on phenotype k,  is the (k,t)th 
kt 

element of Ω (i.e., elements drawn from the tth column of Ω), and 
tt is the (t,t)th element of Ω. In other 

words,  
kt 

is the LDSC-estimate of per-SNP scaled genetic covariances between each phenotype and the 

target phenotype and 
tt 
is the LDSC estimate of the per-SNP genetic variance (i.e. per-SNP heritability) 

of the target phenotype. 

 
We can rewrite the MTAG moment condition in notation that is more germane to Genomic SEM. 

We write the GWAS estimate for the regression effect of SNP j on phenotype k as βGWAS j,k. We write the 

LDSC estimate of per-SNP scaled genetic covariance between phenotype k and target phenotype t as 

σk,t/M, and we write the LDSC estimate of per-SNP genetic variance in target phenotype t as  
2 
/ M . 

Finally, we write the effect size for SNP j on target phenotype t that MTAG attempts to estimate as βMTAG 

j,k. Under this notation, the MTAG moment condition takes the form: 


GWAS j ,k 

 
 k ,t / M 




 2 
/ M 

 

 
 
MTAG j ,t 

 0 

. (1.4) 

Cancelling M from the numerator and denominator of the quotient and rearranging yields: 


GWAS j ,k 

 
k ,t 

t 

 

 

 
 
MTAG j ,t 

 

 
. (1.5) 

Standard covariance algebra holds that the covariance between variables x and y divided by the variance 

of x is equivalent to the unstandardized regression effect of x on y. We therefore obtain that the LDSC- 

derived genetic covariance between k and t divided by the LDSC-derived genetic variance of t is 

equivalent to an LDSC-inferred structural regression effect of the genetic component of phenotype t on 

the genetic component of phenotype k, which we label 

to: 

 

 

LDSC t ,k 

. The moment condition therefore reduces 

 0 
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Solving for 


















MTAG j ,t 

 

 

 
, we obtain: 


GWAS j ,k 

  
LDSC  t ,k       MTAG  j ,t  . (1.6) 

 

 




MTAG j ,t  
GWAS  j ,k 


LDSC t ,k 

 
. (1.7) 

 
 

Genomic SEM Covariance Expectations. We can specify a model within Genomic SEM that satisfies 

these same moment conditions as MTAG. We write a model in which the genetic component Yk of each 

phenotype k, is regressed on the genetic component Yt of t, and Yt is regressed on SNP j: 

Yk  = βLDSC t,k × Yt  + ek , (2.1) 

 
Yt = βMTAG j,t × SNPj  + ut , (2.2) 

 
or in path diagram form (for two phenotypes, t and k) as: 

 
 

 

 
This model produces the following expectations with respect to the GWAS-estimated covariance 

between SNP j and phenotype k: 

 


GWAS j ,k 

2 

SNPj 
 

MTAG j ,t LDSC t ,k , (2.3) 
 

which rearranging yields:  


GWAS j ,k 

 

 
  

2 

SNPj 
MTAG j ,t LDSC t ,k 

. (2.4) 
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As the covariance between SNPj and phenotype k divided by the variance of SNPj is equal to the 

regression effect of SNPj on phenotype k, we have: 

 

 
Solving for 

















MTAG j ,t 

 

 

 
, we obtain: 


GWAS j ,k 

  
MTAG  j ,t        LDSC t ,k  . (2.5) 

 

 




MTAG j ,t  
GWAS  j ,k 


LDSC t ,k 

 
, (2.6) 

which is the same equality obtained when solving for 

equation 1.7 above. 

 

 

 

MTAG j ,t 

from the MTAG moment condition, in 

 
 

Optimization. Both the MTAG moment condition and the specific Genomic SEM model specified to 

satisfy the MTAG moment condition yields: 


MTAG j ,t 



 
GWAS  j ,k 


LDSC t ,k 

 

 
. (3.1) 

As there are K phenotypes, including the target phenotype, this yields a system of equations that 

is overidentified, in the sense that there are more knowns than free parameters. In, for example, the two- 

phenotype circumstance (1 target phenotype, t, and one supporting phenotype, s), the free parameter 


MTAG j ,t 

is equivalent to two separate terms: 

 


MTAG j ,t 

 



 
GWAS  j ,s 


LDSC t ,s 

 

 

 

 
, (3.2) 

and 

 


MTAG j ,t  
GWAS j ,t 





LDSC t ,t 

GWAS j ,t 

1 
 

GWAS j ,t  
. (3.3) 

In both MTAG and Genomic SEM, free parameters are estimated by minimizing a fit function. 

The MTAG fit function minimizes the weighted squared discrepancies between the MTAG-implied 

GWAS estimates and the univariate GWAS estimates for all K phenotypes. In the notation of Turley et al. 

(2018),11 this is written as: 

  
' 

  

 ̂ j   


t
 
 j ,t   W  ̂ j   


t
  j ,t 

 tt   tt  , (3.4) 
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j 



 

j 

 

where W is a weight matrix, ˆ is the vector of betas for the effect of SNPj on phenotype k estimated from 
 

 
univariate GWAS, and 


t  



tt 

 

 
 

j ,t 

 
is the vector of SNP-phenotype betas that is implied by MTAG (by 

multiplying the MTAG estimate for the GWAS effect on target trait t by the LDSC-inferred structural 

regression effect of the genetic component of phenotype t on the genetic component of phenotype k). 

 
This takes the same form as the WLS fit function in Genomic SEM, which minimizes the 

weighted squared discrepancies between all elements in the full genetic covariance matrix (combined 

both from elements derived from LDSC and elements derived directly from GWAS estimates) and those 

implied by the specified model, according to: 

s    W s   , (3.5) 

where W is a weight matrix, s is the half-vectorized empirical genetic covariance matrix (S), and    is 

the half-vectorized model-implied genetic covariance matrix (Σ(θ)). 

 

The weight matrices, W, in MTAG and Genomic SEM are very similar. In Genomic SEM, W is 

the inverse of the diagonal matrix DS that contains the diagonal elements of VS on its diagonal, where VS is 

the sampling covariance matrix of all of the elements in S, and SEs of parameter estimates θ are obtained 

via sandwich estimation using the full VS matrix. In MTAG, W is the inverse of a similar sampling 

covariance matrix of the MTAG-implied GWAS estimates. In the notation of Turley et al. (2018),11 this 

matrix is formed as: 

 

  '
 

1 

  t     t   
 tt   , (3.6) 

 

where  is the LDSC-derived genetic covariance matrix among the phenotypes on a per-SNP scale, 
t 
is 

the vector of estimates from column t of  that contains the genetic covariances between each phenotype 

and the target phenotype, 
tt 

is the per-SNP genetic variance (per-SNP heritability) of the target 

phenotype, and Σj is the sampling covariance of the univariate GWAS effects, which is equivalent (after 

transformation) to the elements of the portion of the Vs matrix from Genomic SEM that contains sampling 

' 

     t t  

covariances of the GWAS effects (VSNP) obtained from the cross-trait LDSC intercepts. The term 

reduces to a matrix of genetic variances and covariances among the phenotypes mediated by their 

tt 
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structural regressions on the genetic component of phenotype t, such that 

 
' 

 t t  

tt 

 

 

represents per-SNP 

scaled residual genetic covariances among the phenotypes after controlling for genetic variance in target 

phenotype t. The addition of these residual genetic covariances to the sampling covariance of the 

univariate GWAS effects in constructing the MTAG W matrix results in the fit function downweighting 

the contribution of GWAS estimates for supporting phenotypes that have lower genetic correlations with 

the target phenotype. 
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a Unstandardized 

 

 

 

 

 

 

 

 

 

 

 

 
 

.18 

(.17, 1.08) 

(.17, 1.09) 

 

 

b 

.26 

(.24, 1.02) 

(.24, 0.99) 

 

.38 

(.33, 1.05) 

(.32, 1.08) 

Standardized 

 

.50 

(.46, 1.16) 

(.45, 1.15) 

 

.63 

(.57, 1.09) 

(.57, 1.09) 

 

 

 

 

 

 

 

 

 

 

 
 

.51 

(.53, 1.22) 

(.53,  1.24) 

 

.64 

(.66, 1.25) 

(.66, 1.24) 

.75 

(.74, 1.26) 

(.73, 1.27) 

.84 

(.85, 1.56) 

(.84, 1.58) 

.91 

(.91, 1.79) 

(.91, 1.81) 

 

Fig. S1. Genomic SEM simulation results. Results from 100 runs of Genomic SEM using data 

simulated at the level of the SNPs. Results are presented for unstandardized (panel a) and standardized 

(panel b) estimates. Parameters outside of the parentheses indicate those provided in the generating 

population. In parentheses, we provide for WLS (in italics) and ML (in bold) estimation the average 

point estimate and the ratio of the mean SE estimate across the 100 runs over the empirical SE (calculated 

as the standard deviation of the parameter estimates across the 100 runs). The ratio of mean and empirical 

SEs was close to 1 in all cases, although slightly above 1 (i.e., conservative) for standardized estimates of 

residual variance. These SE estimates are expected to be upwardly biased in the standardized case due to 

genetic variance estimates being rescaled to exactly 100%. 
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Fig. S2. Model fit indices from Genomic SEM simulations. Model fit indices were compared across the 

100 runs of Genomic SEM using simulated data. Depicted in blue are model fit indices for runs specified 

to match the generating population (i.e., one common factor with freely estimated factor loadings). 

Depicted in green are indices for models specified to have equal factor loadings across all indicators. 

Depicted in red are indices for a model in which the third indicator loading was fixed to 0. Indices favored 

the model that matched the generating population for model chi-square, AIC, and CFI in 100% of cases, 

with the exception that 99 models favored the matching model for AIC with WLS estimation. Indices are 

presented for WLS (panel a) and ML (panel b) estimation. 
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Fig. S3. Confirmatory factor analysis of genetic p-factor with Genomic SEM. Confirmatory factor 

analyses (CFA) were used to construct a genetically defined p-factor for unstandardized (panel a) and 

standardized estimates (panel b) using WLS estimation. SEs are shown in parentheses. The genetic 

covariance matrix (unstandardized) or genetic correlation matrix (standardized) and associated sampling 

covariance matrix were used as input for Genomic SEM. Indicators are presented as circle to reflect the 

fact that these are unobserved heritability estimates from LDSC. SCZ = schizophrenia; BIP = bipolar 

disorder; DEP = major depressive disorder; PTSD = post-traumatic stress disorder; ANX = anxiety. 
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Fig. S4. Confirmatory factor analysis of a genetic factor of neuroticism with Genomic SEM. 

Confirmatory factor analyses (CFA) were used to construct a genetically defined neuroticism factor for 

unstandardized (panel a) and standardized estimates (panel b) using WLS estimation. SEs are shown in 

parentheses. The genetic covariance matrix (unstandardized) or genetic correlation matrix (standardized) 

and associated sampling covariance matrix were used as input for Genomic SEM. Irr = irritability; Feel = 

sensitivity/hurt feelings; fed-up = fed-up feelings; emb = worry too long after embarrassment. 
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Fig. S5. Confirmatory factor analysis of two and three-factor models of neuroticism. Confirmatory 

factor analyses (CFA) based on initial EFAs were used to construct a two-factor (panel a) and three-factor 

(panel b) solution using WLS estimation. The displayed ordering of the variables is maintained across the 

factor solutions for comparative purposes. Standardized values are reported along with SEs in 

parentheses. The genetic correlation matrix (standardized) and associated sampling covariance matrix 

were used as input for Genomic SEM. Irr = irritability; Feel = sensitivity/hurt feelings; fed-up = fed-up 

feelings; emb = worry too long after embarrassment. 
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Fig. S6. Identifying SNPs with increasingly specific effects on neuroticism items. Panel a depicts the 

flow chart for the iterative process that can be undertaken to identify SNPs with increasingly specific 

effects on sets of traits. Any mention of significance is at the genome-wide level (p < 5e-8). Values inside 

and outside of the dotted red circle are negative and positive, respectively. Panels b-d depict polar plots 

for the item-level Z-statistics for exemplar SNPs identified as genome-wide significant for the one-factor 

solution (panel b), the first factor for the two-factor solution (panel c), and the third factor for the three- 

factor solution (panel d). The same coloring within item names denotes loading on the same factor. In 

panel b, a SNP identified as significant for a common factor shows highly consistent effects across items. 

In panels c and d, SNPs identified as significant for factors defined by only a subset of items show 

consistent effects with respect to magnitude and direction only within these factors. 
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Fig. S7. Heatmap of genetic associations among anthropometric traits. Genetic covariance (panel a) 

and correlation (panel b) matrices with parameters estimated from multivariate LDSC. Visual inspection 

indicates two clusters in the upper left and lower right corner of the heatmap. BMI = body mass index; 

WHR = waist-hip ratio; CO = childhood obesity; IHC = infant head circumference; BL = birth length; 

BW = birth weight. 
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Fig S8. Confirmatory factor analysis of multivariate genetic architecture of anthropometric traits 

using Genomic SEM. Confirmatory factor analyses (CFA) informed by an initial exploratory factor 

analysis were used to construct latent overweight and early life growth factors for unstandardized (panel 

a) and standardized estimates (panel b) using WLS estimation. SEs are shown in parentheses. The genetic 

covariance matrix (unstandardized) or genetic correlation matrix (standardized) and associated sampling 

covariance matrix were used as input for Genomic SEM. BMI = body mass index; WHR = waist-hip 

ratio; CO = childhood obesity; IHC = infant head circumference; BL = birth length; BW = birth weight. 
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Fig. S9. Reproducing GWIS findings using Genomic SEM. Results from Genomic SEM in which the 

genetic component of educational achievement was simultaneously regressed on the genetic components 

of bipolar disorder and schizophrenia. The genetic covariance (unstandardized; panel a) and genetic 

correlation (standardized; panel b) matrices, and associated sampling covariance matrices, estimated from 

multivariate LDSC were used as input for Genomic SEM. 

SCZg 

.365 (.039) 
EA 

1 

g 
uEA 

BIPg 

.2
5
5
 (

.0
2
9

) 

.5
7
9
 (

.0
6
5

) 



Genomic SEM 18 
 

b 

 
 

a 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S10. Quantile-quantile plot of multivariate GWAS p-values for the p-factor and neuroticism. 

Expected −log10(p)-values are those expected under the null hypothesis. The shaded area indicates the 

95% confidence interval under the null. The multivariate GWAS was conducted using Genomic SEM 

with WLS estimation. 
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Fig. S11a. Manhattan plot for univariate Schizophrenia GWAS (Genomic SEM results 

superimposed). The gray dashed line marks the threshold for genome wide significance (p < 5 × 10-8). 

Black triangles denote independent hits for the p-factor that were not in LD with independent hits for the 

univariate GWAS. Purple diamonds denote independent hits for the univariate indicators that were not in 

LD with independent hits for the p-factor. Grey stars denote independent hits for QSNP. 
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Fig. S11b. Manhattan plot for univariate Bipolar GWAS (Genomic SEM results superimposed). 

The gray dashed line marks the threshold for genome wide significance (p < 5 × 10-8). Black triangles 

denote independent hits for the p-factor that were not in LD with independent hits for the univariate 

GWAS. Purple diamonds denote independent hits for the univariate indicators that were not in LD with 

independent hits for the p-factor. Grey stars denote independent hits for QSNP. 
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Fig. 11c. Manhattan plot for univariate Major Depression GWAS (Genomic SEM results 

superimposed). The gray dashed line marks the threshold for genome wide significance (p < 5 × 10-8). 

Black triangles denote independent hits for the p-factor that were not in LD with independent hits for the 

univariate GWAS. Purple diamonds denote independent hits for the univariate indicators that were not in 

LD with independent hits for the p-factor. Grey stars denote independent hits for QSNP. 
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Fig. S11d. Manhattan plot for Post-Traumatic Stress Disorder GWAS (Genomic SEM results 

superimposed). The gray dashed line marks the threshold for genome wide significance (p < 5 × 10-8). 

Black triangles denote independent hits for the p-factor that were not in LD with independent hits for the 

univariate GWAS. Purple diamonds denote independent hits for the univariate indicators that were not in 

LD with independent hits for the p-factor. Grey stars denote independent hits for QSNP. 
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Fig. S11e. Manhattan plot for univariate Anxiety GWAS (Genomic SEM results superimposed). 

The gray dashed line marks the threshold for genome wide significance (p < 5 × 10-8). Black triangles 

denote independent hits for the p-factor that were not in LD with independent hits for the univariate 

GWAS. Purple diamonds denote independent hits for the univariate indicators that were not in LD with 

independent hits for the p-factor. Grey stars denote independent hits for QSNP. 
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Fig. S12. Manhattan plots of hits from Genomic SEM. Genomic SEM (with WLS estimation) was used to 

conduct multivariate GWASs of the p-factor (panel a) and neuroticism (panel b). The gray dashed line marks the 

threshold for genome wide significance (p < 5 × 10-8). In both panels, black triangles denote independent hits for 

SNP effects from the GWAS of the general factor. 
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Fig. S13. Polar plots of item-level effects for genome-wide significant effects on common factors and 

for QSNP. All plots display the betas for the items standardized with respect to the total variance in the 

phenotype. Values inside and outside of the dotted red circle are negative and positive, respectively. The 

top panel displays item-level betas for a SNP that was genome-wide significant and produced low QSNP 

estimates for the p-factor (panel a; factor p-value = 7.78e-13; QSNP p-value = 0.57) and neuroticism (panel 

b; factor p-value = 5.06e-12; QSNP p-value = 0.77). As expected, the estimates in the top panel are both 

large in magnitude and consistent in direction across the items. The bottom panel displays item-level 

effects that produced genome-wide significant QSNP estimates for the p-factor (panel c; factor p-value = 

5.32e-3; QSNP p-value = 2.02e-8) and neuroticism (panel d; factor p-value = 2.40e-4; QSNP p-value = 

1.66e-14). Unlike the top panel, these SNPs are characterized by discrepant effects across the items with 

respect to magnitude and direction. This indicates that the QSNP test of heterogeneity is appropriately 

capturing discrepancy across genetic effects for the included phenotypes. 
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Fig. S14. Histograms of –log10 p-values for hits on p-factor. Histograms of –log10 p-values for the 

684 non-independent SNPs that were genome wide significant for the p-factor using WLS estimation, but 

were not identified as significant in any of the individual GWASs. The vertical red line indicates genome 

wide significance. 
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Fig. S15. Histograms of –log10 p-values for hits on neuroticism factor. Histograms of –log10 p-values 

for the 2,540 non-independent SNPs that were genome wide significant for neuroticism using WLS 

estimation, but were not identified as significant in any of the individual GWASs. The vertical red line 

indicates genome wide significance. 
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Fig. S16. Quantile-quantile plot for QSNP. Estimates are from WLS estimation for the p-factor (panel a) 

and neuroticism (panel b). Expected −log10 p-values are those expected under the null hypothesis. The 

shaded area indicates the 95% confidence interval under the null. As some QSNP estimates for neuroticism 

were quite large, p-values < 5-20 were set to 5-20. 
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Fig. S17. Heatmap of univariate betas for neuroticism indicators for QSNP hits. The heatmap depicts 

univariate item-specific betas for the 69 lead SNPs for QSNP identified using WLS estimation for 

neuroticism. Items are on the x-axis. SNPs are on the y-axis. Cells depicted in red, white, and blue 

indicate negative, near zero, and positive betas, respectively. As expected, individual rows indicate 

substantial heterogeneity across the indicators for hits on QSNP. 
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a b 

the common factor and QSNP effects. The association 

between the p-values for SNP effects on the common factor (x-axis) and the p-values for QSNP (y-axis) are 

plotted for WLS estimation of the p-factor (panel a) and neuroticism (panel b). The red line reflects the 

regression line for the common factor p-value predicting itself (i.e., a slope of 1), with dots above the line 

estimated as less significant for QSNP. The correlation between these two outcomes was .02 for the p-factor 

and .05 for neuroticism. 

 

 

 

 

 

 

 

 

 
 

Fig. S18. Association between SNP effects on 
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Fig. S19. QSNP –log10 p-values for common-factor and indicator-specific hits. Results are depicted for 

WLS estimation of the p-factor (panel a) and neuroticism (panel b). There were 684 non-independent 

SNPs identified as genome-wide significant for p-factor, but not the univariate GWAS, and 1,022 

indicator-specific SNPs. For neuroticism, there were 2,540 non-independent hits specific to the common 

factor and 6,523 hits specific to the indicators. The average –log10 QSNP p-value was 0.61 for hits only on 

the p-factor and 1.81 for hits specific to the univariate indicators. For neuroticism, the average –log10 

QSNP p-value was 0.95 for hits unique to the common factor and 5.95 for hits unique to the indicators. 

Thus, QSNP values were generally more significant for those SNPs not identified as significant for the 

common factor. 
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Fig. S20. MTAG predicting Genomic SEM specified as MTAG. Panel a depicts the MTAG beta 

predicting the Genomic SEM formulation of MTAG beta (b = .998, intercept = -1.56E-7, R2 = .994). 

Panel b depicts MTAG Z-statistic predicting the Genomic SEM formulation of MTAG Z-statistic (b = 

.999, intercept = 2.65E-4, R2 = .999). For both panels, the red line reflects the regression line for MTAG 

predicting itself (i.e., a slope of 1). 
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Fig. S21. Comparison of parcel p-values for low versus high QSNP estimates. Histograms shown for 

SNPs that produced genome wide significant hits for at least one of the parcels split across high (QSNP p- 

value < 5e-8; 1,090 SNPs; panel a) and low (p > 5e-3; 3,685 SNPs; panel b) QSNP estimates as estimated 

using WLS for the common neuroticism factor. For those SNPs characterized by a larger degree of 

heterogeneity, as indexed by QSNP, there was a corresponding heterogeneity in the p-values at the level of 

the parcel. 
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Fig. S22. UK Biobank p-factor. Standardized output of phenotypic p-factor constructed from UKB 

phenotypes for out of sample prediction using p-factor polygenic scores. PSY = psychotic experiences; 

DEP = depressive symptoms; PTSD = symptoms of post-traumatic stress disorder; ANX = anxious 

symptoms. 
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Fig. S23. ML Estimates from GWIS and anthropometric trait Genomic SEM models. Results are 

presented for standardized output for the multiple regression model of GWIS (panel a) and the 

confirmatory factor model of anthropometric traits (panel b). SEs are shown in parentheses. The genetic 

correlation matrix (standardized) and associated sampling covariance matrix were used as input for 

Genomic SEM. BMI = body mass index; WHR = waist-hip ratio; CO = childhood obesity; IHC = infant 

head circumference; BL = birth length; BW = birth weight. 
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Fig. S24. ML estimates for neuroticism and p-factor Genomic SEM models. Results are presented for 

standardized output for the confirmatory factor models of the p-factor (panel a) and neuroticism (panel b). 

The genetic correlation matrix (standardized) and associated sampling covariance matrix were used as 

input for Genomic SEM. SEs are shown in parentheses. SCZ = schizophrenia; BIP = bipolar disorder; 

DEP = major depressive disorder; PTSD = post-traumatic stress disorder; ANX = anxiety. Irr = 

irritability; Feel = sensitivity/hurt feelings; fed-up = fed-up feelings; emb = worry too long after 

embarrassment. 
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Fig. S25. Quantile-quantile plot of multivariate GWAS p-values for p-factor and neuroticism (ML 

estimation). Estimates are from ML estimation for the p-factor (panel a), neuroticism (panel b), QSNP 

estimates for the p-factor (panel c), and QSNP estimates for neuroticism (panel d). Expected −log10 p- 

values are those expected under the null hypothesis. The shaded area indicates the 95% confidence 

interval under the null. As some QSNP estimates for neuroticism were quite large, p-values < 5-20 were set 

to 5-20. 
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Fig. S26. Associations between ML and WLS p values. Scatter plot comparing p-values between WLS 

(y-axis) and ML (x-axis) estimation for the p-factor (panel a), neuroticism (panel b), QSNP for the p-factor 

(panel c), and QSNP for neuroticism (panel d). The red line reflects the regression line for ML predicting 

itself (i.e., a slope of 1), with dots above the line estimated as less significant for WLS. The correlation 

between the two sets of common factor p-values (top panel) was .15 for the p-factor and .94 for 

neuroticism. The correlation between the two QSNP statistics (bottom panel) for neuroticism was > .99 and 

.77 for the p-factor . Thus, the rank-ordering is largely maintained across the estimation methods, but may 

diverge, in particular, for factor effects. 
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Fig. S27. Biological annotation of QSNP of p-factor, neuroticism, and QSNP of neuroticism. Results from 

tissue enrichment analyses conducted using DEPICT based on Genomic SEM results for QSNP of the p- 

factor (panel a), neuroticism (panel b) and QSNP estimation for neuroticism (panel c) using ML estimation. 

The red, dashed line indicates the false discovery rate at .05. As expected, the majority of enriched tissues 

were in the nervous system for both common factor and QSNP estimates. 
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Fig S28. Associations between regression coefficients from logistic regression model and linear 

probability model. 200 datasets were simulated with 100,000 observations each in which a continuously 

distributed liability was specified to be a linear function of a biallelic autosomal SNP and a normally 

distributed residual. Population effect sizes were randomly generated for each simulation, from within the 

range of 0 to .04 SD units per effect allele. The outcome was then dichotomized using a randomly 

generated threshold for each simulation within the range of -1.96 and 1.96 standard deviations from the 

mean of the liability distribution (i.e. the population prevalence of cases ranged between 2.5% to 97.5%). 

The population minor allele frequency of the SNP was randomly generated for each replication from 

within the range of 0 to .5. Panel a depicts the association between the betas obtained from a logistic 

regression of a SNP predicting the dichotomous outcome (x-axis) and from the betas obtained from a 

linear probability model (LPM) applied to the same data (y-axis; r = .70). Panel b depicts the same x-axis 

and the LPM output converted to logistic betas on the y-axis (r > .99). Panel c depicts the z-statistics (the 

coefficient divided by its standard error) for the logistic betas (x-axis) and LPM betas (y-axis, r > .99). 

The red lines depict the regression line (slope = 1, intercept = 0) for the logistic betas (panel b) and 

logistic z-statistics (panel c) predicting themselves. Thus, LPM output must be rescaled before effect sizes 

(i.e., regression coefficients) can be used for multivariate GWAS in Genomic SEM. However, LPM Z 

statistics can be used directly for LDSC to produce heritabilities and genetic covariances (the liability 

scale estimates should still be requested). 
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Fig S29. Associations between betas standardized using reference panel or sample MAF. 30,000 

SNPs were randomly selected from the mood UK Biobank phenotype and converted to approximate 

logistic regression effects and scaled relative to unit-variance scaled liability using either MAFs from a 

reference panel (1000 Genomes Phase 3; x-axis) or MAFs from the sample (UK Biobank; y-axis). 

Regardless of the MAFs used for standardization, the correspondence between the betas was very strong 

(r = .987, slope = 1.044, intercept = -6.54e-6). Although the use of either sample or reference MAF may 

be appropriate for different reasons, these results indicate that the decision will produce very similar 

estimates. 
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Fig. S30. Associations between model 2 values computed from summary data and model 2 values 

computed from raw data. Raw data-based estimates of model 2 were computed directly from the data 

using lavaan. Summary data-based estimates of model 2 were computed using the S and V matrices with 

WLS (left) and ML (right) estimation. The red line in the middle and left panel reflects the regression line 

for the raw data-based model 2 predicting itself. The blue line in the right panel reflects the regression 

line for the WLS 2 predicting itself. 
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Fig. S31. Distributions of calculated and theoretical 2 statistics. Comparison between distribution of 

2 values for model estimated from S and V matrices using WLS (left column) and ML (middle column) 

against a theoretical 2 distribution. The right column compares the distributions of WLS (blue bars) and 

ML (green bars). 
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Fig. S32. Associations between CFI values derived from summary data and CFI values derived 

from raw data. Summary data-based estimates of CFI are depicted for models estimated using WLS (left 

column) and ML (middle column). We also present comparisons of the CFI from models estimated with 

ML and those estimated with WLS(right column). All CFI estimates were bounded at 1. 
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Fig. S33. Genomic SEM models for estimating QSNP. Red lines and parameters are fixed from Step 1, 

and black lines and parameters are freely estimated in Step 2. 

! 



Genomic SEM 46 
 

 

 

 

 

Fig. S34. Null distributions of QSNP for 1,000 simulations per model. Red lines for all panels depict the 

chi-square distribution with the relevant df. The top, middle, and bottom panels depict the sampling 

distributions for 3, 4, and 5 df, respectively. The left-most column shows estimates for WLS, the middle 

column estimates for ML and the right-most column overlays the WLS (depicted in light blue) and ML 

(light green) QSNP estimates. 
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Fig. S35. Associations between QSNP and theoretical 2 distributions. Associations shown for models 

estimated using WLS (left column) and ML estimates (middle column). Red lines depict the 2 

distribution plotted against itself, with values below the line indicating under-estimated effects. The right 

column depicts WLS and ML plotted against one another. The blue line depicts WLS plotted against 

itself, with values above the line indicating QSNP estimates that were estimated as larger for ML. 
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