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(Dated: October 4, 2018)

Electrokinetic transport phenomena can strongly influence the behaviour of macromolecules and colloidal
particles in solution, with applications in, e.g., DNA translocation through nanopores, electro-osmotic flow in
nanocapillaries, and electrophoresis of charged macromolecules. Numerical simulations are an important tool
to investigate these electrokinetic phenomena, but are often plagued by spurious fluxes and spurious flows
that can easily exceed physical fluxes and flows. Here, we present a method that reduces one of these spurious
currents, spurious flow, by several orders of magnitude. We demonstrate the effectiveness and generality of our
method for both electrokinetic lattice-Boltzmann and finite-element-method based algorithms by simulating a
charged sphere in an electrolyte solution, and flow through a nanopore. We also show that previous attempts
to suppress these spurious currents introduce other sources of error.

INTRODUCTION

Electrokinetic transport phenomena play a major role
in the dynamics of macromolecules and colloidal particles
in solution. The intricate interplay between diffusion,
electrostatics, and hydrodynamics makes them an inter-
esting topic for theoretical research. Applications based
on electrokinetics comprise, among others, the charac-
terization and separation of biomolecules, colloids and
ions,1–10 microfluidic pumping and rectification mecha-
nisms,11–17 active particles,18–24 and model systems for
living cells.25 Gaining experimental understanding of each
of these mechanisms can be difficult due to the inherently
small length scales involved. Therefore, theoretical and
numerical studies are often used to complement and pro-
vide insight to experimental work.

The electrokinetic equations can be solved analytically
for a number of special cases, giving insight into phenom-
ena such as electric double layers and electrostatic screen-
ing,26 and electrophoresis in the limit of high27,28 and
low29 salt concentrations. Analytical techniques based on
first order perturbation expansions of the applied electric
field have been used to determine the electrophoretic mo-
bility of bare colloids and colloids homogeneously grafted
with polymers and polyelectrolytes.1–4

Electrokinetic phenomena can also be simulated using
mesoscopic methods such as dissipative particle dynam-
ics,30,31 multi-particle collision dynamics,32–34 or hybrid
particle-lattice-Boltzmann algorithms.35–40 See Refs. [41]
and [42] for a more thorough review of these different
mesoscopic methods.

However, these particle-based algorithms are generally
restricted to systems on the nanoscale, and analytical
techniques based on perturbation theory cannot model
non-linear effects caused by large applied electric fields;

a)Electronic mail: georg.rempfer@icp.uni-stuttgart.de
b)Electronic mail: j.degraaf@ed.ac.uk

for systems on experimental length scales with few sym-
metries, the fully non-linear, coupled equations must be
solved numerically. In recent years, growing computa-
tional power has allowed researchers to simulate electroki-
netic phenomena on experimentally relevant length and
time scales using continuum simulations of the electroki-
netic equations.8–10,14,16,17,43

One popular method to solve the continuum electroki-
netic equations is the finite-element method, a technique
that involves reformulating the equation in the so-called
weak formulation and using a finite set of basis functions
to derive a discrete equation system that can be solved nu-
merically. Finite-element simulations of the electrokinetic
equations have been used to investigate electrophoresis of
macromolecules, electro-osmotic flow in nanopores,14,16,17

and translocation of colloids8–10 and DNA.43

Capuani et al.44 developed an alternative to the finite-
element method by devising a numerical algorithm that
combines the finite-volume, finite-difference, and lattice-
Boltzmann method.44 This algorithm was later used to
investigate the electrophoretic mobility of charged spheri-
cal particles as a function of the Peclét number.45

We show in this article that extreme care must be taken
when discretising the electrokinetic equations, and that
if the conventional form of the electrokinetic equations
based on the available literature1,7,11–15,44,45 is used, sig-
nificant errors arise. In the best case scenario, these errors
can be controlled by using highly refined grids, requir-
ing significant computational effort. In the worst case
scenario, they lead to incorrect and unphysical results.

Here, we present a new model that reduces errors due to
spurious flow at constant computational cost by incorpo-
rating an additional gradient term into the hydrodynamic
part of the continuum electrokinetic equations. While
the problems and solutions we discuss are relevant to any
discretisation method or non-equilibrium electrokinetic
phenomenon, we illustrate the issues and improvements
using two commonly used schemes from the literature:
a numerical solver for the time-dependent electrokinetic
equations by Capuani et al.44 and a solver for the station-

ar
X

iv
:1

60
4.

02
05

4v
1 

 [
co

nd
-m

at
.s

of
t]

  7
 A

pr
 2

01
6

mailto:georg.rempfer@icp.uni-stuttgart.de
mailto:j.degraaf@ed.ac.uk


2

ary electrokinetic equations based on the finite-element
method.14

We carry out simulations of a stationary charged sphere
in an electrolyte solution using both methods. We show
firstly the presence of spurious flow even in equilibrium,
and then the corresponding reduction of spurious flow by
several orders of magnitude using our improved model
that incorporates a gradient term into the hydrodynamic
part of the electrokinetic equations. Finally, we simu-
late a charged nanopore system and show that using our
proposed gradient term reproduces the correct physics,
where as methods based on the current literature do not.

This article is organised as follows. Section I reviews
the physics of the continuum electrokinetic equations. In
Section II, we introduce the two most commonly used
numerical schemes to solve these continuum electrokinetic
equations, and explain the origin of the spurious fluxes and
flows that occur in numerical simulations of electrokinetic
phenomena. Section IV describes the simulation setup
and parameters that we used to simulate the stationary
charged sphere system, and we present the results of these
simulations in Section V. Section VI concludes the article.

I. THE GOVERNING EQUATIONS FOR
ELECTROKINETIC TRANSPORT

The electrokinetic equations model the motion of
charged species by a diffusion-advection equation. The
expression for the flux of the charged species reads:

jk = −Dk∇ck − µkzkeck∇Φ︸ ︷︷ ︸
jdiff
k

+ cku︸︷︷︸
jadv
k

, (1)

where ck denotes the concentration of the ionic species
with index k, e denotes the elementary charge, and Φ the
electric potential. The flux can be split into a diffusive,
jdiff
k , and an advective, jadv

k , part.
The diffusive flux itself has two contributions. The first
term, often called the Fickian term, concerns the diffusion
of ions due to local concentration variations: the ions flow
from regions of high concentrations to regions of low con-
centration, and they do so with a diffusion coefficient Dk

that dictates the speed of diffusion. The second contribu-
tion to the diffusive flux, sometimes called the migrative
term, occurs due to the presence of local electric fields:
ions with a charge zke flow from regions of high potential
to low potential, and they do so with a mobility µk that
determines the speed of the ions’ movement due to the
applied electric field.

The diffusion coefficient and mobility are related by
the Einstein-Smoluchowski relation Dk/µk = kBT ,46,47

where kB is Boltzmann’s constant and T the absolute
temperature.

The advective flux, jadv
k accounts for the contribution

of the underlying fluid’s velocity u to the motion of the
ionic species.

Without sources or sinks of the ionic species k, the diffu-
sive flux of the kth ionic species must fulfil the continuity
equation:

∂tck = −∇ · jk. (2)

For stationary situations in which none of the fields vary
over time (∂t = 0), (Eq. 1) and (Eq. 2) may be combined
to form:

∇ · (−Dk∇ck − µkzkeck∇Φ + cku) = 0. (3)

In order to solve (Eq. 3), we need a model that describes
both the electrostatic potential Φ and the fluid velocity u.

Modelling the electrostatic potential is relatively
straightforward: in the stationary state, and when the
only source of electric field is due to the arrangement
of the charges themselves, the electrostatic potential Φ
fulfils the Poisson equation:

∇ · (ε∇Φ) = −% = −∑k zkeck. (4)

Here the charge density % is given in terms of the ionic
species concentrations ck. The permittivity ε = ε0εr(r) is
the product of the vacuum permittivity ε0 and the local
relative permittivity εr(r) of the medium.

The hydrodynamics of soft matter systems usually con-
cerns the motion of nano- to micrometer sized objects
in fluids in which viscous forces dominate, i.e., the low-
Reynolds number regime. The motion of the fluid in this
regime is governed by Stokes’ equations:

η∇2u = ∇p− f ,

∇ · u = 0.
(5)

Here, p denotes the hydrostatic pressure and η the shear
viscosity. The external body-force density f couples the
fluid motion to the motion of the charged species. We
note that even at concentrations of 1 mol/l, the charged
species contribute at most a few percent to the mass of
the total solution, which allows one to neglect the ionic
species density in the hydrodynamic equations.18,44

The fluid coupling body-force is commonly chosen
as:1,7,11–17,25,48

f = %E = −∑k zkeck∇Φ, (6)

where E = −∇Φ is the electric field. In this case, the
driving force f for the fluid is simply the net force acting
on all the ionic species. In a stationary situation, there
cannot be any momentum change in the ionic species:
all momentum transported into the ionic species by the
electric field must therefore be dissipated into the fluid.

In situations where the ionic concentrations and the
electrostatic field vary over time, momentum conserva-
tion for the ionic species does not hold. Yet, the force
term (Eq. 6) remains valid, since the time scale of the in-
dividual ions’ acceleration is orders of magnitude smaller
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than the dynamics of the flow field and the ions’ distribu-
tions.

To summarize, the time-dependent electrokinetic equa-
tions are given by the following system of equations

∂tck = ∇ · (Dk∇ck + µkzkeck∇Φ− cku),

∇ · (ε∇Φ) = −∑k zkeck,

η∇2u = ∇p+
∑

k zkeck∇Φ,

∇ · u = 0.

(7)

One obtains the stationary electrokinetic equations by
setting the time derivative ∂tck = 0. This mean field
model is valid in particular for moderate concentrations
of monovalent ions without permanent magnetic moments
in aqueous solution at room temperature, since it is based
on the same principles as Poisson-Boltzmann theory.49,50

II. NUMERICAL SOLUTIONS OF THE
ELECTROKINETIC EQUATIONS

In this section, we briefly discuss two common numeri-
cal schemes. In Section II A, we discuss a time-dependent
solver that combines the finite-volume method (FVM),
finite-difference method (FDM), and lattice-Boltzmann
method (LBM), introduced by Capuani et al.44; in Sec-
tion II B, we discuss a solver that uses the finite-element
method (FEM) to solve the complete set of stationary
electrokinetic equations (Eq. 7).

The time-dependent solver reproduces the stationary
solutions by simulating sufficiently long times for the
system to relax completely.

Solving the electrokinetic equations numerically intro-
duces spurious fluxes and flows. In Section II C, we discuss
the origin of these numerical artefacts.

A. Solver Based on FVM, FDM, and LBM

Capuani et al.44 introduced a general method for solv-
ing the time-dependent electrokinetic equations (Eq. 7)
in their entire realm of applicability. They used this
scheme to determine the electrophoretic mobility of spher-
ical particles of various sizes in solutions of various salt
concentrations.45

In a time-dependent simulation, it is essential to con-
serve the density of the ionic species to numerical pre-
cision: a drift in the net amount of ionic species would
otherwise lead to a change in the net charge of the system
and significantly influence the measured mobilities and
conductivities.

For this reason, Capuani et al.44 propagate the densi-
ties according to the continuity equation (Eq. 2) using
a finite-volume scheme on a regular cubic grid. They
calculate the discrete ionic fluxes between neighbouring
grid nodes and the electrostatic potential using a simple
finite-difference approximation of the diffusive flux expres-
sion in (Eq. 1) and Poisson’s equation (Eq. 4). Instead of

directly discretising the diffusive flux from (Eq. 1), they
transform it into the following form:

jdiff
k = −Dk exp

(
−zkeΦ(r)

kBT

)
∇
[
ck(r) exp

(
zkeΦ(r)
kBT

)]
. (8)

Capuani et al.44 claim that this form of the expression
suppresses spurious fluxes, since the gradient is applied to
an approximately constant term if the concentrations are
close to equilibrium, thus minimizing numerical errors.

After applying a symmetric finite-difference discretisa-
tion over the link between two neighbouring nodes, this
expression becomes

jdiff
ki (r) = Dk

2|di|

[
exp

(
− zkeΦ(r)

kBT

)
+ exp

(
− zkeΦ(r+di)

kBT

)]
×[

ck(r) exp
(

zkeΦ(r)
kBT

)
− ck(r + di) exp

(
zkeΦ(r+di)

kBT

)] (9)

Here jdiff
ki (r) denotes the flux of species k from the node

at position r to its neighbour at position r + di.
The total fluxes are calculated according to (Eq. 9) and

a volume of fluid scheme for the advective flux contribu-
tion in (Eq. 1). These fluxes can then be used to propagate
the concentrations in time, according to the finite-volume
representation of the continuity equation (Eq. 2):

ck(r, t+ ∆t) = ck(r, t)−∆t
∑

iAijki(r, t). (10)

Capuani et al.44 discretise the diffusive flux using face
and edge neighbour nodes, and the advective flux using
face, edge, and corner neighbours. This scheme main-
tains isotropy despite the underlying regular cubic grid,
provided the weighting factors Ai = A. The remaining
constant A is chosen such that the discrete system repro-
duces the correct mean square displacement (MSD) for
the ionic species in a situation of vanishing electric field
and fluid velocity:∑

i c(r + di,∆t)d
2
i = 6D∆t, c(r, 0) = δr. (11)

This explicit propagation scheme is limited in stability.
Using an implicit scheme would in principle allow for
much larger time steps at the cost of having to solve a
system of equations at every time step. However, since
the LBM imposes a limit on the time step already, this
advantage of an implicit scheme would be negated and
the explicit scheme is the more sensible choice.

To solve Poisson’s equation (Eq. 4) for the electrostatic
potential, they first assume that the electric permittivity
ε is constant, allowing one to express Poisson’s equa-
tion (Eq. 4) as:

∇2Φ = −4πlBkBT%, (12)

with the net charge density % =
∑

k zkeck and the Bjerrum
length lB = e2/(4πεkBT ). Discretising Poisson’s equa-
tion (Eq. 12) using a symmetric 7-point finite-difference
stencil for the Laplacian, on the same regular cubic grid
with grid spacing h yields the following system of coupled
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linear equations:

−4πh2lBkBT%(x, y, z) = Φ(x+ h, y, z) + Φ(x− h, y, z)
+ Φ(x, y + h, z) + Φ(x, y − h, z)
+ Φ(x, y, z + h) + Φ(x, y, z − h)

−6Φ(x, y, z). (13)

Capuani et al.44 solve this system using an iterative
successive over-relaxation (SOR) scheme that benefits
from the previous time step’s solution as an initial guess.
To solve Stokes’ equations (Eq. 5), they employ a com-
pressible single-relaxation-time lattice-Boltzmann scheme.
In Section III, we show that the discretised flux expres-
sion (Eq. 9) proposed by Capuani et al.44 only reproduces
the correct flux in special cases, and in general results in
an error that increases exponentially with the potential
gradient. We present a method that fixes this problem
and eliminates the unbounded exponential error.

B. Solvers Based on the Finite-Element Method

Let us now turn our attention to the second common
method of solving the EK equations.

In order to solve the electrokinetic equations using the
finite-element method, one must reformulate the station-
ary electrokinetic equations (Eq. 7) in the so-called weak
form. In the weak formulation, we multiply both sides of
the equations by a test function ϕ and integrate over the
whole domain, rather than requiring that the fields c, Φ,
u, and p satisfy the partial differential equations (Eq. 7)
directly (the strong form). As an example, carrying out
this procedure for Poisson’s equation yields:∫

Ω

ϕ∇2Φ dV = −
∫

Ω

ϕ%/ε dV

⇔
∫

Ω

∇ϕ∇Φ dV =

∫
∂Ω

ϕ∇Φ dA︸ ︷︷ ︸
=0, since ϕ(∂Ω)=0

+

∫
Ω

ϕ%/ε dV, (14)

using Green’s first identity and assuming that the test
function ϕ vanishes on the domain boundary, and that ε
is spatially homogeneous.

To find an approximate solution, one chooses a finite
number of basis (ansatz) functions bi(r) to expand the un-
known electrostatic potential Φ(r) and the charge density
%(r)

Φ(r) =
∑

k Φkbk(r), %(r) =
∑

k %kbk(r). (15)

Using the Galerkin approach, the test function ϕ(r) is
approximated using the same basis functions bi(r) as for
the unknown fields. For a fixed ϕ(r) the integral on the
left-hand side is linear in Φ, allowing us to consider each
basis function individually. The relation (Eq. 14) is then
fulfilled for any ϕ(r) =

∑
i ϕibi(r).

∑
k

Φk

∫
Ω

∇bi(r)∇bk(r) dV︸ ︷︷ ︸∑
kKikΦk

=
∑
k

%k/ε

∫
Ω

bi(r)bk(r) dV︸ ︷︷ ︸
fi(%)

(16)

Decomposing the domain into a mesh of small sub-
domains of, for example, triangular shape and choosing
basis functions bi(r) that are only non-zero on one of
these mesh elements ensures that the matrix K̄ is sparse,
which allows for efficient computation.

Choosing polynomials as the ansatz functions on each
of these sub-domains allows the exact evaluation of the in-
tegrals numerically. In the case of equations with smooth
solutions, such as the electrokinetic equations, the ac-
curacy of the FEM approximation benefits more from
increasing the polynomial order of the ansatz functions
than from increasing the mesh resolution, for the same
computational cost.51

Ultimately, one is left with a system of linear equations
for the coefficients of the solution Φk

K̄Φ = f(%) (17)

where Φ and % are the vectors consisting of all the coeffi-
cients Φk and %k, respectively. Applying this procedure
to the diffusion-advection and hydrodynamic equations
in (Eq. 7) yields similar equation systems. The coupling
between the different equations is reflected by the fact
that both the operator K̄ and the right-hand side f can
depend on the solutions of the other equations. Combin-
ing the resulting discretised equations into one system
yieldsK̄1(Φ,u) 0 0

0 K̄2 0
0 0 K̄3


︸ ︷︷ ︸

F (Φ,u)

 c
Φ
u

 =

 0
f2(c)

f3(Φ, c)

 , (18)

where K̄1 represents the discretised version of all the
diffusion-advection equations (Eq. 3), K̄2 and f2 represent
Poisson’s equation as previously derived in (Eq. 17), and
K̄3 and f3 represent Stokes’ equations (Eq. 5). The
discrete vector c contains all coefficients of the FEM
approximation for the ionic concentrations, Φ contains
these coefficients for the electrostatic potential, and u
contains them for the fluid velocity (and pressure).

The discretised and fully coupled equation sys-
tem (Eq. 18) is non-linear due to the coupling between
the different equations. This equation system can be
solved using Newton’s method. Obtaining the necessary
Jacobian matrix of the differential operator is simple: for
a single iteration of Newton’s scheme, the fields Φ, u,
and c are fixed, which makes the operator F (Φ,u) linear
and the right-hand side constant, yielding the following
iteration schemeK̄1(Φn,un) 0 0

0 K̄2 0
0 0 K̄3

 cn+1 − cn
Φn+1 −Φn

un+1 − un

 =

 0
f2(cn)

f3(Φn, cn)

 (19)
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To summarise, the above described procedure and it-
eration scheme now allow us to guess an initial solution
of the electrokinetic equations; in most cases the itera-
tion scheme will then converge to the correct solution.
In simulations involving very high surface charges, or a
strong imposed voltage bias at the boundaries, the itera-
tion scheme (Eq. 19) can diverge. An initial guess closer
to the actual solution fixes this problem. That is why, in
these situations, one slowly ramps up the surface charge
or the voltage bias over a series of simulations, using each
one’s solution as the initial guess for the next.

The flexibility, accuracy, and computational efficiency
of the finite-element method have made it an extremely
popular choice for the numerical modelling of the elec-
trokinetic equations, amongst others. There are now
many powerful and user-friendly simulation codes based
on the finite-element method, for example the COMSOL
simulation package.

However, in Section V we show that care must be taken
when carrying out finite-element simulations of electroki-
netic phenomena due to the occurrence of spurious fluxes
and flows, the magnitude of which can easily exceed phys-
ical fluxes and flows if not properly controlled.

In the following section we discuss the origin of spurious
fluxes and flows in numerical simulations of electrokinetic
phenomena.

C. The Origin of Spurious Fluxes and Spurious Flows

Unfortunately, discretising the electrokinetic equa-
tions (Eq. 7) with the standard form of the fluid cou-
pling force (Eq. 6) introduces numerical instabilities in
the form of so-called spurious fluxes and spurious flows.
These artificial currents and flows, if not properly con-
trolled, can exceed physical fluxes and flows, invalidating
simulation results. Spurious fluxes appear both in the
time-dependent electrokinetic model (Eq. 7) and the sta-
tionary electrokinetic model (setting ∂t = 0), though the
magnitude and shape of these artefacts depend on the
specifics of the solver.

Spurious flux and spurious flow are caused by the near-
cancellation of different contributions to the physical ionic
fluxes and physical fluid flows in non-equilibrium situa-
tions, and from exact cancellation in equilibrium situa-
tions. Due to discretisation errors and limited arithmetic
precision, such scenarios involving near/exact-cancellation
are hard to treat correctly in numerical schemes.

Consider a system in thermodynamic equilibrium where
all fluxes and flows vanish. Assuming that the flow ve-
locity actually is zero in the FEM solution, the flux ex-
pression (Eq. 1) and Poisson’s equation (Eq. 12) yield
expressions for the polynomial degree of the ansatz func-
tions for the ionic concentrations [c] and the electrostatic
potential [Φ]. These expressions read:

[c]− 1 = [c] + [Φ]− 1, (20)

[Φ]− 2 = [c]. (21)

The only way to fulfil these equations simultaneously
is to set [c] = −2 and [Φ] = 0, neither of which is a
viable choice: the former because having a polynomial of
order −2 is impossible; and the latter because a piecewise
polynomial of degree 0 (i.e., a constant) is not compatible
with the weak form of the electrokinetic equations typi-
cally used in finite-element simulations, which contain a
gradient term in the electrostatic potential. This means
that the conditions necessary to eliminate spurious fluxes
exactly cannot be realised in an FEM simulation of the
type described in Section II B. Similar issues prevent the
pressure gradient and external force (Eq. 6) in Stokes’
equations (Eq. 5) from cancelling, which leads to spurious
flow.

One way to minimize these effects is to simply increase
the grid resolution. This works because polynomials of
different order can better approximate one another on
smaller domains. The required increase in grid resolu-
tion to sufficiently suppress spurious flow and fluxes far
exceeds the resolution necessary to accurately treat the
gradients in the double layer, and therefore comes with
a hefty increase in calculation time, which is extremely
undesirable.

Despite the fact that in the Capuani et al.44 scheme
there are no ansatz functions, spurious fluxes still occur
due to the near cancellation of the two terms in the dif-
fusive flux expression (Eq. 1). Spurious flows still occur
because of the near cancellation between the pressure gra-
dient and the applied force in Stokes’ equations (Eq. 5).
The coupling of the ionic flux (Eq. 1) and the hydrody-
namic flow (Eq. 5) further enhance both these artefacts.

III. IMPROVEMENTS TO THE TIME-DEPENDENT
FVM, FDM, AND LBM SOLVER

Before we move on to the main results of this paper,
namely the reduction of spurious flow in simulations of
electrokinetic phenomena in both time-dependent solvers
and finite-element method solvers, we must first present
some results regarding the time-dependent solver based on
FVM, FDM, and LBM introduced by Capuani et al.44 and
described in Section II A. We will use these improvements
when carrying out simulations illustrating issues with
spurious flow with the time-dependent solver.

Capuani et al.44 proposed a reformulation (Eq. 8) of
the diffusive contribution to the flux expression (Eq. 1) to
reduce spurious fluxes, however, we show here that this
reformulation (Eq. 8) is only strictly equivalent to the
diffusive contribution of the physical flux (Eq. 1) in the
continuum limit and leads to higher-order errors in the
discretised version (Eq. 9). These higher-order contribu-
tions are in fact unbounded and increase exponentially
with the difference in potential between neighbouring
cells. This reformulation is therefore undesirable in simu-
lations where large electric gradients appear, e.g., in the
simulation of nanopores.

To illustrate this, consider the flux of a single homoge-
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neously distributed species of concentration c:

jdiff
i (r) =

Dc

2|di|
(
e−zeΦ(r)/kBT + e−zeΦ(r+di)/kBT

)
×(

ezeΦ(r)/kBT − ezeΦ(r+di)/kBT
)
. (22)

By setting ∆iΦ(r) = Φ(r + di) − Φ(r), this can be ex-
pressed as:

jdiff
i (r) =

Dc

|di|
sinh

(
−ze∆iΦ(r)

kBT

)
(23)

= − D

kBT
cze

∆iΦ(r)

|di|
+O

(
∆iΦ(r)2

)
, (24)

from which one recovers the correct expression jdiff =
−µcze∇Φ to first order only. The error grows exponen-
tially with the potential difference of neighbouring cells
∆iΦ, which results in an additional upper limit for the
grid spacing, depending on the maximum of the electric
field in the system.

It is worth noting that this higher-order effect only
occurs in non-equilibrium situations and does not change
the equilibrium distribution, as can be seen by setting
the flux in the discrete expression (Eq. 9) to zero and
separating the expressions involving the concentrations
and the potentials.

In order to eliminate this unbounded, exponentially
increasing error in the scheme by Capuani et al.44, we
instead employ a direct discretisation of the diffusive part
of the physical flux (Eq. 1) using a finite-difference scheme
for the gradient across the links, connecting the nodes at
position r and r + di

jdiff
ki (r) = −Dk

ck(r)− ck(r + di)

|di|

+ µkzke
ck(r + di) + ck(r)

2
× Φ(r + di)− Φ(r)

|di|
. (25)

In order to illustrate the differences between the scheme
by Capuani et al.44 (Eq. 9) and our modified expres-
sion (Eq. 25), we simulate a system consisting of two
parallel no-slip plates containing a homogeneous density
of a single, uncharged species. A spatially and tempo-
rally constant force density acting on the dissolved species
along the channel creates a parabolic flow profile. The
fact that the dissolved species is uncharged allows it to
remain homogeneously distributed, which in turn causes
the Fickian diffusion term in the flux density (Eq. 1),
−D∇c, to vanish. This system corresponds exactly to
the well-known Poisseuille-flow set up; the homogeneous
neutral species merely acts as a means to apply a homo-
geneous force density to the fluid.

The fluid’s viscosity and the solute’s diffusion coef-
ficient were chosen such that the ratio of advective to
diffusive/migrative transport is approximately 1. In this
set-up, the potential Φ is not given by Poisson’s equation
but instead just prescribed externally.
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Figure 1. Comparison between the Capuani et al.44 discreti-
sation (Eq. 9) and our direct discretisation method for the
diffusive flux (Eq. 25) in Poiseuille-flow. Theoretical results are
shown as coloured areas and split up into contributions coming
from advection (blue) and diffusion (green). The higher-order
discretisation errors (Eq. 23) in the Capuani et al.44 scheme
are shown in red. The crosses (×) show results of simulations
with our direct discretisation, the plus symbols (+) show re-
sults obtained from simulations using the Capuani et al.44

discretisation scheme.

Figure 1 shows how the reduced flux density j̃ =
jh/(µckBT ) varies with the reduced force density f̃ =
fh/kBT for the above described Poiseuille-flow system,
where h denotes the grid spacing and µ the solute’s mobil-
ity. The coloured regions of Figure 1 show the analytical
results.

The blue region shows the advective contribution to the
reduced flux, j̃adv, which is identical in both our direct
discretisation scheme and in the Capuani et al.44 scheme,
since the fluid motion is solved by a lattice-Boltzmann
solver in both cases and the fluid’s driving force is un-
changed.

The green region shows the diffusive contribution, j̃diff,
to the reduced flux. Our direct discretisation method
(× symbols) reproduces the analytical result for the re-
duced force densities that we investigated. The diffusive
contribution according to Capuani et al.44 (+ symbols)
shows good agreement with the analytical solution for re-
duced force densities up to f̃ ≈ 0.5, but begins to deviate
for reduced force densities f̃ > 0.5. In fact, as we showed
in (Eq. 23), the error between the analytical solution and
the numerical solution using the scheme by Capuani et
al.44 increases exponentially with increasing reduced force
density, shown by the red coloured region.

It is important to note that in many systems, including
the ones investigated by Capuani et al.44, the difference is
negligible. However, these errors become significant and
important in systems involving strong local electric fields,
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such as the much researched biological and solid state
nanopores. These pores typically connect reservoirs of an
electrolyte solution otherwise separated by a thin mem-
brane. Due to the high conductivity of the electrolyte,
most of the voltage drops at the nanopore, creating very
strong local electric fields. Typical measurements include
the ionic current through the nanopore as well as the
electro-osmotic flow. Both of these are non-equilibrium
effects and therefore suffer from the discussed discretisa-
tion errors. In non-equilibrium situations, we therefore
recommend that our direct discretisation method (Eq. 25)
be used.

In Section V B, we carry out several simulations using
the time-dependent solver based on FVM, FDM, and
LBM introduced by Capuani et al.44 and described in
Section II A. When carrying out these simulations, we use
the direct discretisation method (Eq. 25) that we propose
here, rather than the flux reformulation method (Eq. 9)
presented by Capuani et al.44.

IV. SIMULATION SETUP AND METHODS

To illustrate the issues with spurious fluxes and flows,
we simulate two systems. The first is a commonly encoun-
tered system, a charged sphere at rest immersed in an
electrolyte solution.

Section IV A describes the simulation set up and pa-
rameters we use when carrying out time-dependent simu-
lations based on FVM, FDM, and LBM introduced by Ca-
puani et al.44 and described in Section II A, incorporating
our direct discretisation improvements as described in
Section III. Section IV B describes the simulation setup
and parameters used in finite-element simulations of the
charged sphere system.

The second system we simulate is a charged nanopore.
Section IV C describes the simulation setup and methods
of a charged nanopore system, which we simulate to
illustrate how spurious fluxes and flows can invalidate
simulation results. For this system, we only carry out
finite-element simulations.

A. Time-Dependent Simulations

To solve the system comprising a charged sphere at
rest immersed in an electrolyte solution numerically, we
deviate from the approach of Capuani et al.44 by using a
method based on discrete Fourier transforms (DFT) to
solve the discretised Poisson equation (Eq. 13) instead
of a successive-over-relaxation scheme. This solver deliv-
ers superior precision at comparable computational cost
for moderate system sizes and scales more favourably
(O(n log n) instead of O(n4/3)). The one drawback of
this method compared with the successive-over-relaxation
scheme is that the electric permittivity must be homoge-
neous.

We use fast Fourier transforms (FFT) to obtain the
DFT %̂(r) of the charge distribution, then multiply with
the DFT of the exact Green’s function for the discrete
Poisson problem (Eq. 13) to obtain the DFT of the electro-

static potential Φ̂(r), which assumes the following form:

Φ̂(k) = − 2πh2lBkBT ∑
j∈{x,y,z}

cos

(
2πkj
Nj

)− 3

%̂(k),k 6= 0 (26)

Φ̂(0) = 0. (27)

We obtain the desired real space representation of the
electrostatic Potential Φ(r) using an inverse FFT. While
this method’s superior numerical precision helps maintain
momentum conservation in situations involving moving
boundaries, it does not significantly influence spurious
fluxes and spurious flow in this system containing a fixed
boundary i.e., all of the problems of spurious fluxes and
flows remain.

We employ a two-relaxation-time LB scheme as op-
posed to the single-relaxation-time LB scheme used by
Capuani et al.44. In the low Mach number and low
Reynolds number limit realized in this investigation, both
LB methods reproduce the incompressible Stokes equa-
tions (Eq. 5).52,53

The specifics of the investigated system enter the sim-
ulation as boundary conditions. The fluid velocity, as
well as the normal flux of ionic species at the sphere’s
surface is zero (no-slip and impermeable). We introduce
the sphere’s surface charge by charging the outermost
layer of the boundary nodes accordingly. The simula-
tion domain is a cubic box, whose outer boundaries are
periodic in all directions. Our own numerical experi-
ments have shown that a distance of 5λD, between the
sphere’s surface and the periodic boundary is sufficient
to eliminate finite-size effects, if the system is charge
neutral. We ensure charge neutrality by adding the nec-
essary amount of counter-ions in addition to the salt ions.
λD = 1/

√
4πlB

∑
k z

2
k c̄k denotes the Debye length. We

use two oppositely charged monovalent ionic species at
equal concentrations of c̄1,2 = 1 mmol/l resulting in a
Debye length of λD = 9.7 nm for a Bjerrum length of
lB = 0.7 nm (water at 300 K), and a sphere of radius
10 nm with a surface charge σ = −0.03 C/m2. These are
typical parameters for experimental systems. The grid
resolution is h = 1 nm, to resolve the Debye length.

B. Finite-Element Simulations

The parameters and boundary conditions in the finite-
element simulation of the stationary electrokinetic equa-
tions (Eq. 7) (setting ∂t = 0) are the same as described
above. The only difference we make is at the outer bound-
ary, where we model a bulk fluid instead: we set the ionic
species’ concentrations to their bulk value, the electro-
static potential to zero, and require the normal stress
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of the fluid to vanish. Setting the normal stress to zero
implies no momentum exchange with the outer boundary,
but still allows fluid flow through the boundary. This is
possible because momentum is only transported through
viscous friction and not through convection in Stokes’
equations (Eq. 5). Charge neutrality is not enforced ex-
plicitly but is achieved through the coupling with the
reservoir at the outer boundary for sufficiently large sim-
ulation domains.

We take advantage of the fact that the domain can
be divided non-uniformly and use much smaller mesh
elements in the region close to the sphere’s charged surface,
where we expect strong gradients in all of the fields. At
the sphere surface, we place mesh elements of size λD/20
and gradually increase the element size to λD/4 at a
distance of 90 nm from the sphere’s surface at the outer
domain boundary, where we expect bulk-like behaviour.
We can afford such a high resolution by taking advantage
of the cylindrical symmetry of the system. As ansatz
functions, we use piecewise polynomials of degree 3 for
the ionic concentrations, degree 2 for the electrostatic
potential, and degree 2 and 1 for the fluid velocity and
pressure, respectively.

C. Simulations of a Nanopore

We simulate a charged nanopore system that comprises
two electrolyte reservoirs connected by a pore in the
shape as depicted in Figure 2. The inner boundaries of
the nanopore (No. 2, yellow) are negatively charged with
a surface charge σ = −0.01 C/m2. We apply a potential
difference to the pore by setting the electrostatic potential
to 0 V at the lower bulk boundary condition (No. 1, blue)
and to a non-zero voltage at the upper bulk boundary.
We use the same condition of no normal stress for the fluid
as in the sphere system described in Section IV B. The
remaining boundaries at the membrane separating the
reservoirs and along the sides of the simulation domain
(No. 3, black) are uncharged (vanishing normal electric
field), no-slip boundaries impermeable for ions (normal
flux vanishing). As before, we take advantage of the
rotational symmetry of the system. We use the same
ansatz functions and remaining parameters as for the
system previously described in Section IV B and prepare
two different meshes. The first is a coarse mesh, with
significant refinement only at the corners of the charged
walls, which otherwise contains mesh elements of sizes
between λD/5 and λD/2. The second is an extremely
fine mesh covering the whole simulation domain with
elements of size λD/10 and even smaller mesh elements
at all but the bulk boundaries. These two meshes result
in discretised equation systems with 26, 895 and 367, 431
degrees of freedom, respectively.

In Section V C, we will show that one obtains similar
results for the coarse and fine grid simulation if one im-
plements the improved fluid coupling (Eq. 29), which we
introduce in Section V A, and that the results differ wildly

Figure 2. The geometry, boundary conditions, and mesh
used for the charged nanopore system. The bulk boundary
conditions (No. 1. blue) are applied at the top and bottom of
the simulation domain. The electro-osmotic flow is created at
the inner boundaries of the nanopore (No. 2, yellow), which
are the only charged boundaries in the system. The remaining
boundaries (No. 3, black) are uncharged, no-slip boundaries
impermeable to ions. Red denotes the symmetry axis. The
left half of the image depicts the coarse grid used, resulting in
an equation system with 26, 895 degrees of freedom, while the
right half depicts the fine mesh used resulting in an equation
system with 367, 431 degrees of freedom.

using the traditional fluid coupling (Eq. 6).

V. RESULTS

In order to reduce the magnitude of spurious flow, we
propose a correction to the fluid coupling force (Eq. 6)
in Section V A, which does not eliminate spurious flow
entirely, but decreases it by several orders of magnitude
without increasing the computational cost, in contrast
with the transformation (Eq. 9) involving exponentials
employed by Capuani et al.44 We demonstrate that in
typical applications, this reduction of the magnitude of
the artefacts is sufficient to obtain correct results in sim-
ulations of electro-osmotic flow and electrophoresis.

A. Theory

To address this issue of spurious flow, instead of the
flux term (Eq. 1), we modify the hydrodynamic driving
force (Eq. 6) so as to minimize the spurious flow contri-
bution to the fluid velocity field u. Note that we have
significant freedom in choosing this force term f in Stokes’
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equations (Eq. 5), as any force term modified only by a
gradient field will not change the resulting velocity field
u. To explain this, consider Stokes’ equations:

η∇2u = ∇p− f ,

∇ · u = 0.
(5)

Note that both the velocity u and the pressure p are
unknowns and that p needs to be chosen in such a way,
that the solution for the velocity field u also fulfils the
incompressibility constraint. For appropriately chosen
boundary conditions, the solutions for u and p are unique
(apart from a constant offset in the pressure). We can
therefore add any gradient field ∇ω to the force density

η∇2u = ∇(p′ − ω︸ ︷︷ ︸
p

)− f , (28)

because this gradient field can be absorbed into the pres-
sure gradient. Due to the uniqueness of solutions, this
modified pressure field p′ − ω has to match the solu-
tion for the pressure p from the unmodified Stokes’ equa-
tions (Eq. 5), and the velocity field u remains unchanged.

To reduce the issues with spurious flow, we propose an
extension of the hydrodynamic driving force (Eq. 6) in
the form of a gradient field corresponding to the ionic
species’ ideal gas pressure. The hydrodynamic driving
force extended in this way reads:

f = −∑k(kBT∇ck + zkeck∇Φ). (29)

The advantage of this choice is that the force density
acting on the fluid vanishes in equilibrium. To explain this
property, note that by definition, both the flow velocity
and the ionic fluxes vanish in equilibrium

jk/µk = − kBT∇ck − zkeck∇Φ = 0, (30)

u = 0. (31)

Stokes’ equations (Eq. 5) for this equilibrium situation
reveal that the modified force density (Eq. 29) does not
lead to a pressure build-up

0 = ∇p+
∑

k(kBT∇ck + zkeck∇Φ)︸ ︷︷ ︸
=0

. (32)

The common coupling force (Eq. 6) on the other hand,
does not vanish in equilibrium and must be countered by
a pressure build-up in the fluid to fulfil the condition of
zero flow velocity

0 = ∇p+
∑

k zkeck∇Φ. (33)

This effect is especially strong in electric double layers,
where the charge density and electrostatic potential gra-
dients are large. In numerical schemes, exact cancellation,
especially when gradients are involved, is usually prob-
lematic. If the discretisation does not allow for this to be
fulfilled exactly, spurious flow must occur. But even if the

discretisation scheme would allow for this cancellation,
numerical errors can still cause spurious flow.

Finally, we should remark that our proposed cor-
rected coupling force (Eq. 29) can be expressed via the
diffusive flux from (Eq. 1) or the chemical potential
νk = kBT log(Λ3

kck) + zkeΦ, with the thermal de Broglie
wavelength Λk

f =
∑

k j
diff
k /µk = −∑k ck∇νk. (34)

The first equality allows one to interpret the modified force
density (Eq. 29) as a friction coupling, since the diffusive
flux normalised by the ions’ mobility jdiff

k /µk represents
exactly the drag force acting between the ions and the
fluid. The second equality demonstrates that our proposed
modified force density (Eq. 29) is the net thermodynamic
driving force, which must vanish in equilibrium.

Using the modified force density, the hydrodynamic
equations read

η∇2u = ∇p′ +∑k(kBT∇ck︸ ︷︷ ︸
=∇p

+zkeck∇Φ). (35)

B. Numerical Simulations of a Charged Sphere in an
Electrolyte

To demonstrate the improvement offered by our new
coupling force, we simulate a charged sphere in an elec-
trolyte solution using both the time-dependent Capuani
et al.44 scheme, as described in Section II A and IV A, and
the FEM solver, as described in Section II B and IV B.

In this system, ions of opposite charge to the sphere
should accumulate in a diffuse layer in the vicinity of
the sphere’s surface. After a period of time, all ions will
have rearranged into an equilibrium configuration. In the
absence of any external forces, the system should then be
completely at rest.

This exact, theoretical solution for both methods re-
quires the fluid pressure gradient to cancel the fluid cou-
pling force, as demonstrated by (Eq. 33) for the traditional
coupling force (Eq. 6), and by (Eq. 32) for the corrected
coupling (Eq. 29). Due to discretisation errors, spurious
fluxes and flows occur, as described in Section II C.

Figure 3 shows the comparison between the traditional
force coupling term (Eq. 6) and our improved force cou-
pling term (Eq. 29) using FEM simulations as described
in Section II B and IV B. The left half of the figure shows
the result for the traditional scheme (Eq. 6), and the
right-hand side for our modified scheme (Eq. 29).

On the left-hand side, the black arrows show the can-
cellation error between the gradient of the fluid pressure
and the traditional coupling force (Eq. 6) in the Stokes’
equations (Eq. 5), and the red colour shows the magnitude
of this cancellation error. The magnitude of this error
varies from 2.45× 102 Nm−3 in bulk to 1.76× 1014 Nm−3

at the charged surface.
The right-hand side shows our corrected fluid coupling

scheme (Eq. 29). The magnitude of the cancellation
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Figure 3. FEM Solver. The image compares the cancellation
error between the fluid coupling force and the pressure gradient
(black arrows at randomly selected positions), as well as the
magnitude of this error (shades of red) for the simulation
using the traditional fluid coupling (Eq. 6) (left half) and the
improved coupling (Eq. 29) (right half). In this equilibrium
situation, the gradient of the fluid pressure and the coupling
force should cancel each other exactly. The magnitude of the
cancellation errors are 115 times smaller using our improved
coupling scheme (right half).

errors are reduced by a factor of 115 to values between
7.28×102 Nm−3 and 1.53×1012 Nm−3 using our improved
coupling scheme.

Figure 4 shows the same system using the time-
dependent solver described in Section II A and IV A. The
left half of the figure implements the traditional fluid
coupling scheme (Eq. 6), and the right-hand side our
improved coupling scheme (Eq. 29).

The magnitude of the cancellation errors using the
traditional coupling scheme (left half) range from 9.18×
10−10 a.u. to 7.46 × 10−3 a.u. (a.u. = arbitrary units).
Using our improved force coupling, the magnitude of the
errors vary from 8.69×10−9 a.u. to 3.82×10−4 a.u., which
represents a reduction by a factor of 20. However, the true
reduction in the cancellation error is actually much larger
than this because the largest errors occur at the sphere’s
surface, the value of which we are unable to evaluate due
to difficulties in calculating the pressure gradient at a
no-slip boundary using the Capuani et al.44 scheme. We
show later in this section that the true reduction in the
cancellation error is a factor of 125.

Due to the linearity of Stokes’ equations (Eq. 5), the
spurious flow decreases by the same factor as the cancella-
tion errors shown in Figure 3 and 4. Therefore, we expect
a two order of magnitude reduction in the spurious flow
velocity using our improved scheme (Eq. 29) as compared
with the traditional coupling scheme (Eq. 6). It should be
noted that the converse is true: a reduction in spurious
flow of a factor α implies a reduction in the cancellation
error by the same factor α.

Figure 4. Time-Dependent LB-based Solver. The image
compares the cancellation error between the fluid coupling
force and the pressure gradient (black arrows), as well as the
magnitude of this error (shades of red) for the simulation
using the traditional fluid coupling (Eq. 6) (left half) and the
improved coupling (Eq. 29) (right half). For reasons discussed
in Section V B, the cancellation error cannot be evaluated right
at the sphere’s surface, where it assumes its maximum, which
is why this image understates the reduction of the cancellation
error. Our improved scheme (right half) shows a factor of 25
reduction in the cancellation error, but as we discuss in the
text, the true reduction factor is 125.

Figure 5 shows the flow fields obtained from the FEM
simulation for the traditional coupling (Eq. 6) (left-hand
side) and our improved coupling (Eq. 29) (right-hand side).
The exact, theoretical solution is a fluid at rest. The spu-
rious flow velocity using the traditional scheme (Eq. 6)
varies from 0 m/s to 7.83× 10−5 m/s at the sphere’s sur-
face, while in our improved scheme (Eq. 29) (right-hand
side), the maximum spurious flow velocity varies from
0 m/s to 5.01× 10−7 m/s, which is the 2 orders of magni-
tude reduction that we expect.

The black flow lines denote the shape of the flow field,
while the blue colour denotes the flow magnitude. Since
these are simulations of an equilibrium system, the exact
solution for the flow field is a fluid at rest. Figure 5
shows that, as expected, the spurious flow velocity for
the corrected fluid coupling (Eq. 29) (right-hand side)
is reduced by the same factor as the cancellation error
between the pressure gradient and the coupling force. For
comparison, the flow resulting from the simulations with
the traditional fluid coupling (Eq. 6) is shown on the left-
hand side: there is a two orders of magnitude difference in
the spurious flow velocity between the traditional coupling
and our improved coupling.

The flow field from the simulations using the Capuani
et al.44 scheme and corresponding to Figure 4 is shown
in Figure 6. Using the traditional coupling (Eq. 6) (left-
hand side), the spurious flow velocity varies from 0 to
2.5×10−4 a.u., while our improved scheme (Eq. 29) shows



11

Figure 5. FEM Solver. Comparison of the spurious fluid
flow velocity (black flow lines) corresponding to Fig. 3 and
its magnitude (blue colour) with the conventional fluid cou-
pling force (Eq. 6) (left half) and the corrected coupling
force (Eq. 29) (right half). The artefacts in the flow veloc-
ity are reduced by a factor of 115 when using the improved
coupling scheme.

a two order of magnitude reduction and the maximum
spurious flow velocity is of the order of 2.0× 10−6 a.u.

Therefore, using the Stokes’ equation linearity argument
above, we know that the true force cancellation error is
instead a factor of 125 smaller in Figure 4 using our
improved force coupling, rather than the factor of 25 that
Figure 4 shows. This is because we expect the largest
cancellation errors to occur at the sphere’s surface (as
shown in Figure 3), a region in which we were unable to
evaluate the pressure gradient for the Capuani et al.44

scheme.
To summarise, our improved coupling scheme provides

a factor of 115 reduction in the magnitude of the force
cancellation errors and in the spurious flow velocity using
FEM simulations, and a factor of 125 reduction using
the Capuani et al.44 time-dependent solver. It should
be noted that in the FEM solver our reduction in the
cancellation error is achieved with identical computational
cost, and in the original Capuani et al.44 with reduced
computational cost.

C. Finite-Element Simulations of a Nanopore

Finally, to highlight how spurious flow can produce
wrong simulation results when the spurious flows are
of the same magnitude as physical flows, we carry out
FEM simulations of the nanopore system introduced in
Section IV C.

We apply typical bias voltages in the range of −100 mV
to 100 mV between the upper and lower reservoir bound-
ary (No. 1 in Figure 2) and measure the net fluid flow
through the nanopore. The flow is caused exclusively by

Figure 6. Time-Dependent LB-based Solver. Compari-
son of the spurious fluid flow velocity (white/black flow lines)
corresponding to Fig. 4 and its magnitude (blue colour) with
the conventional fluid coupling force (Eq. 6) (left half) and the
corrected coupling force (Eq. 29) (right half). The artefacts
in the flow velocity are reduced by a factor of 125 when using
the improved coupling scheme.

the applied voltage difference through electro-osmosis, as
we keep the pressure at the upper and lower reservoir
boundary the same. The electro-osmotic flow happens
at the inner pore boundaries (No. 2 in Figure 2) – the
only charged boundaries in the system. These boundaries
are negatively charged, and the electro-osmotic flow is
therefore oriented in the direction of the electric field. We
expect flow in the positive direction for positive voltage
bias, no flow in the case of no bias, and flow in the nega-
tive direction for negative voltage bias. This is because
there is an excess of positive ions in the double layer in the
vicinity of the charged nanopore surface. These positive
ions move in the direction of the applied electric field, in
turn driving fluid flow in the same direction.

Figure 7 shows the net fluid flow through the pore as a
function of the applied voltage bias for all combinations
of coarse and fine mesh, as well as traditional (Eq. 6)
and improved (Eq. 29) fluid coupling. For the combi-
nation of (i) coarse mesh and the traditional fluid cou-
pling (Eq. 6) (blue squares), spurious flow dominates the
fluid behaviour, leading to completely incorrect results,
including flow in equilibrium: for zero applied voltage
bias, the net flow rate should be zero, which is not the
case.

A common technique to reduce spurious flow is to
increase the grid resolution, at significant computational
cost. In this nanopore simulation, the setup using the
fine mesh results in an equation system with 367.431
unknowns, while the setup using the coarse mesh results
in only 26.895 unknowns, making the fine-mesh simulation
at least a factor of 13.7 times more expensive, possibly
much more if a linearly scaling solver can not be used.
For the combination (ii) a fine mesh and traditional fluid
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Figure 7. Net electro-osmotic fluid flow through the nanopore
as depicted in Figure 2 for applied bias voltages between
−100 mV and 100 mV. Different symbols depict different com-
binations of the coarse and fine mesh with the traditional and
improved fluid coupling, as explained in the legend. Simula-
tions using the improved fluid coupling (Eq. 29) and the coarse
mesh reproduce the fine-grid solutions, while simulations us-
ing the traditional fluid coupling (Eq. 6) on a coarse mesh
are dominated by spurious flow and yield massively incorrect
results.

coupling (Eq. 6) (green diamonds), the results are indeed
physically sensible with a net-flow rate of zero for zero
applied voltage bias.

The third combination (iii) of a coarse grid and our
improved coupling term (red circles) highlights the impor-
tance of our results. Our improved coupling force (Eq. 29)
is able to reproduce the same physics as (ii) without the
increase in computational cost that comes with increasing
the grid resolution, as we predicted in Section V A.

Finally, (iv) combining our improved coupling (Eq. 29)
and a fine mesh (black triangles) reproduces the same
physics as (ii) and (iii), but at the same increase in com-
putational cost as (ii). We therefore conclude that using
our improved coupling and the coarse grid (iii) is pre-
ferred on account that increasing the grid resolution using
the improved coupling (iv) does not significantly improve
accuracy of results as compared with a coarse grid and
our improved coupling (iii), and at the same time re-
duces computational cost compared with a fine mesh and
traditional coupling (ii).

To summarise the methods we have introduced in this
results section, here is a sample recipe one can follow to
limit spurious flow in FEM simulations of electrokinetic
phenomena, using a commercial FEM simulation package
such as COMSOL:

1. Setup the system geometry.

2. Specify the individual diffusion-advection, electro-
statics, and hydrodynamic equations.

3. Specify boundary conditions.

4. Couple the individual equations to set-up the non-
linear equation system.

5. When specifying the driving force in the hydrody-
namic equations, choose a driving force term as pre-
sented in this paper f = −∑k(kBT∇ck+zkeck∇Φ)
rather than the traditional f = zkeck∇Φ.

VI. CONCLUSIONS

We have shown both theoretically and numerically that
simulations of electrokinetic phenomena frequently suffer
from spurious flow and spurious fluxes that can distort
results and make their numerical treatment unnecessarily
costly. We have also shown that previous approaches
to suppress these artefacts by Capuani et al.44 produce
correct solutions to the electrokinetic equations only in
equilibrium and incur higher-order discretisation errors
in non-equilibrium situations that grow exponentially
with the local electric field and the grid size. While these
errors remain small for typical simulations, such as for the
electrophoresis of charged colloids, they can be significant
in simulations of nanopores, where strong local electric
fields exist. We demonstrated that a direct discretisation
of the relevant equations eliminates these exponentially
unbounded errors.

Finally, we have proposed a method to limit spurious
flow in numerical simulations of electrokinetic phenom-
ena. Our method involves adding an additional gradient
term to the fluid coupling in the electrokinetic equations.
We demonstrated that this change does not affect the
solutions for the fluid velocity, but does decrease spu-
rious flow by several orders of magnitude using both a
time-independent solver by Capuani et al.44 and a finite-
element solver to simulate a charged sphere in an elec-
trolyte solution. We verified the advantages of our im-
proved coupling scheme with simulations of a nanopore,
showing that using our improved coupling method with
a coarse mesh produces the same results as using a fine
mesh and the traditional coupling scheme used in the lit-
erature to date, but with an order of magnitude reduction
in computational cost.

Our results have particularly important implications for
the numerical simulation of non-equilibrium phenomena
such as electro-osmotic flow in nanopores. If simula-
tions are carried out according to the commonly-used
algorithms in the present literature, they may lead to
inaccurate and unphysical results.
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