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Abstract. The Directed Feedback Vertex Set (DFVS) problem
takes as input a directed graph G and seeks a smallest vertex set S
that hits all cycles in G. This is one of Karp’s 21 NP-complete prob-
lems. Resolving the parameterized complexity status of DFVS was a
long-standing open problem until Chen et al. in 2008 showed its fixed-
parameter tractability via a 4kk!nO(1)-time algorithm, where k = |S|.

Here we show fixed-parameter tractability of two generalizations of
DFVS:

– Find a smallest vertex set S such that every strong component of
G − S has size at most s: we give an algorithm solving this problem
in time 4k(ks + k + s)! · nO(1).

– Find a smallest vertex set S such that every non-trivial strong com-
ponent of G − S is 1-out-regular: we give an algorithm solving this

problem in time 2O(k3) · nO(1).

We also solve the corresponding arc versions of these problems by fixed-
parameter algorithms.

1 Introduction

The Directed Feedback Vertex Set (DFVS) problem is that of finding a
smallest vertex set S in a given digraph G such that G − S is a directed acyclic
graph. This problem is among the most classical problems in algorithmic graph
theory. It is one of the 21 NP-complete problems on Karp’s famous list [12].

Consequently, the DFVS problem has long attracted researchers in approxi-
mation algorithms. The current best known approximation factor achievable in
polynomial time for n-vertex graphs with optimal fractional solution value1 τ∗

is O(min{log τ∗ log log τ∗, log n log log n}) due to Seymour [17], Even et al. [8]
and Even et al. [7]. On the negative side, Karp’s NP-hardness reduction shows

1 In unweighted digraphs, τ∗ ≤ n; in weighted digraphs we assume all weights are at
least 1.
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the problem to be APX-hard, which rules out the existence of a polynomial-
time approximation scheme (PTAS) assuming P �= NP. Assuming the Unique
Games Conjecture, the DFVS problem does not admit a polynomial-time O(1)-
approximation [10,11,18].

The DFVS problem has also received a significant amount of attention from
the perspective of parameterized complexity. The main parameter of interest
there is the optimal solution size k = |S|. The problem can easily be solved
in time nO(k) by enumerating all k-sized vertex subsets S ⊆ V (G) and then
seeking a topological order of G−S. The interesting question is thus whether the
DFVS problem is fixed-parameter tractable with respect to k, which is to devise
an algorithm with running time f(k) · nO(1) for some computable function f
depending only on k. It was a long-standing open problem whether DFVS admits
such an algorithm. The question was finally resolved by Chen et al. who gave a
4kk!k4 · O(nm)-time algorithm for graphs with n vertices and m arcs. Recently,
an algorithm for DFVS with run time 4kk!k5 ·O(n+m) was given by Lokshtanov
et al. [14]. It is well-known that the arc deletion variant is parameter-equivalent
to the vertex deletion variant and hence Directed Feedback Arc Set (DFAS)
can also be solved in time 4kk!k5 · O(n + m).

Once the breakthrough result for DFVS was obtained, the natural ques-
tion arose how much further one can push the boundary of (fixed-parameter)
tractability. On the one hand, Chitnis et al. [4] showed that the generalization
of DFVS where one only wishes to hit cycles going through a specified subset of
nodes of a given digraph is still fixed-parameter tractable when parameterized
by solution size. On the other hand, Lokshtanov et al. [15] show that finding a
smallest set of vertices of hitting only the odd directed cycles of a given digraph
is W[1]-hard, and hence not fixed-parameter tractable unless FPT = W[1].

Our Contributions. For another generalization the parameterized complexity
is still open: In the Eulerian Strong Component Arc (Vertex) Deletion
problem, one is given a directed multigraph G, and asks for a set S of at most k
vertices such that every strong component of G − S is Eulerian, that is, every
vertex has the same in-degree and out-degree within its strong component. The
arc version of this problem was suggested by Cechlárová and Schlotter [2] in the
context of housing markets. Marx [16] explicitly posed determining the parame-
terized complexity of Eulerian Strong Component Vertex Deletion as an
open problem. Notice that these problems generalize the DFAS/DFVS problems,
where each strong component of G − S has size one and thus is Eulerian.

Theorem 1. Eulerian Strong Component Vertex Deletion is W[1]-
hard parameterized by solution size k, even for (k + 1)-strong digraphs.

Alas, we are unable to determine the parameterized complexity of Eulerian
Strong Component Arc Deletion, which appears to be more challenging.
Hence, we consider two natural generalizations of DFAS which may help to gain
better insight into the parameterized complexity of that problem.

First, we consider the problem of deleting a set of k arcs or vertices from a
given digraph such that every strong component has size at most s. Thus, the
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DFAS/DFVS problems corresponds to the special case when s = 1. Formally,
the problem Bounded Size Strong Component Arc (Vertex) Deletion
takes as input a multi-digraph G and integers k, s, and seeks a set S of at most k
arcs or vertices such that every strong component of G − S has size at most s.

The undirected case of Bounded Size Strong Component Arc (Ver-
tex) Deletion was studied recently. There, one wishes to delete at most k
vertices of an undirected n-vertex graph such that each connected component
of the remaining graph has size at most s. For s being constant, Kumar and
Lokshtanov [13] obtained a kernel of size 2sk that can be computed in nO(s)

time; note that the degree of the run time in the input size n depends on s
and is thus not a fixed-parameter algorithm. For general s, there is a 9sk-sized
kernel computable in time O(n4m) by Xiao [19]. The directed case—which we
consider here—generalizes the undirected case by replacing each edge by arcs in
both directions.

Our main result here is to solve the directed case of the problem by a fixed-
parameter algorithm:

Theorem 2. There is an algorithm that solves Bounded Size Strong Com-
ponent Arc (Vertex) Deletion in time 4k(ks + k + s)! · nO(1) for n-vertex
multi-digraphs G and parameters k, s ∈ N.

In particular, our algorithm exhibits the same asymptotic dependence on k as
does the algorithm by Chen et al. [3] for the DFVS/DFAS problem, which cor-
responds to the special case s = 1.

Another motivation for this problem comes from the k-linkage problem, which
asks for k pairs of terminal vertices in a digraph if they can be connected by k
mutually arc-disjoint paths. The k-linkage problem is NP-complete already for
k = 2 [9]. Recently, Bang-Jensen and Larsen [1] solved the k-linkage problem in
digraphs where strong components have size at most s. Thus, finding induced
subgraphs with strong components of size at most s can be of interest in com-
puting k-linkages.

Our second problem is that of deleting a set of k arcs or vertices from a given
digraph such that each remaining non-trivial strong component is 1-out-regular,
meaning that every vertex has out-degree exactly 1 in its strong component. (A
strong component is non-trivial if it has at least two vertices.) So in particular,
every strong component is Eulerian, as in the Eulerian Strong Component
Arc Deletion problem. Observe that in the DFAS/DFVS problem we delete k
arcs or vertices from a given directed graph such that each remaining strong com-
ponent is 0-out-regular (trivial). Formally, we consider the 1-Out-Regular
Arc (Vertex) Deletion problem in which for a given multi-digraph G and
integer k, we seek a set S of at most k arcs (vertices) such that every non-trivial
component of G − S is 1-out-regular. Note that this problem is equivalent to
deleting a set S of at most k arcs (vertices) such that every non-trivial strong
component of G − S is an induced directed cycle. In contrast to Eulerian
Strong Component Vertex Deletion, the 1-Out-Regular Arc (Ver-
tex) Deletion problem is monotone, in that every superset of a solution is
again a solution: if we delete an additional arc or vertex that breaks a strong
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component that is an induced cycle into several strong components, then each
of these newly created strong components is trivial.

Our result for this problem reads as follows.

Theorem 3. There is an algorithm solving 1-Out-Regular Arc (Vertex)

Deletion in time 2O(k3) · O(n4) for n-vertex digraphs G and parameter k ∈ N.

Notice that for Bounded Size Strong Component Arc (Vertex)
Deletion and 1-Out-Regular Arc (Vertex) Deletion, there are infinitely
many instances for which solutions are arbitrarily smaller than those for DFAS
(DFVS), and for any instance they are never larger. Therefore, our algorithms
strictly generalize the one by Chen et al. [3] for DFAS (DFVS). As a possible
next step towards resolving the parameterized complexity of Eulerian Strong
Component Arc Deletion, one may generalize our algorithm for 1-Out-
Regular Arc Deletion to r-Out-Regular Arc Deletion for arbitrary r.

We give algorithms for vertex deletion variants only, and defer algorithms for
arc deletion variants and proofs marked by � to the full version of this paper.

2 Notions and Notations

We consider finite directed graphs (or digraphs) G with vertex set V (G) and arc
set A(G). We allow multiple arcs and arcs in both directions between the same
pairs of vertices. For each vertex v ∈ V (G), its out-degree in G is the number
d+G(v) of arcs of the form (v, w) for some w ∈ V (G), and its in-degree in G is
the number d−

G(v) of arcs of the form (w, v) for some w ∈ V (G). A vertex v is
balanced if d+G(v) = d−

G(v). A digraph G is balanced if every vertex v ∈ V (G) is
balanced.

For each subset V ′ ⊆ V (G), the subgraph induced by V ′ is the graph G[V ′]
with vertex set V ′ and arc set {(u, v) ∈ A(G) | u, v ∈ V ′}. For any set X of arcs
or vertices of G, let G − X denote the subgraph of G obtained by deleting the
elements of X from G. For subgraphs G′ of G and vertex sets X ⊆ V (G) let
R+

G′(X) denote the set of vertices that are reachable from X in G′, i.e. vertices to
which there is a path from some vertex in X. For an s-t-walk P and a t-q-walk R
we denote by P ◦ R the concatenation of these paths, i.e. the s-q-walk resulting
from first traversing P and then R.

Let G be a digraph. Then G is 1-out-regular if every vertex has out-degree
exactly 1. Further, G is called strong if either G consists of a single vertex (then G
is called trivial), or for any distinct u, v ∈ V (G) there is a directed path from u
to v. A strong component of G is an inclusion-maximal strong induced subgraph
of G. Also, G is t-strong for some t ∈ N if for any X ⊆ V (G) with |X| < t,
G − X is strong. We say that G is weakly connected if its underlying undirected
graph 〈G〉 is connected. Finally, G is Eulerian if there is a closed walk in G using
each arc exactly once.

Definition 4. For disjoint non-empty vertex sets X,Y of a digraph G, a set S
is an X − Y separator if S is disjoint from X ∪ Y and there is no path from X
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to Y in G − S. An X − Y separator S is minimal if no proper subset of S is
an X − Y separator. An X − Y separator S is important if there is no X − Y
separator S′ with |S′| ≤ |S| and R+

G−S(X) ⊂ R+
G−S′(X).

Notice that S can be either a vertex set or an arc set.

Proposition 5 ([5]). Let G be a digraph and let X,Y ⊆ V (G) be disjoint non-
empty vertex sets. For every p ≥ 0 there are at most 4p important X − Y sepa-
rators of size at most p, all of which can be enumerated in time 4p · nO(1).

3 Tools for Generalized DFVS/DFAS Problems

Iterative Compression. We use the standard technique of iterative com-
pression. For this, we label the vertices of the input digraph G arbitrarily by
v1, . . . , vn, and set Gi = G[{v1, . . . , vi}]. We start with G1 and the solution
S1 = {v1}. As long as |Si| < k, we can set Si+1 = Si ∪ {vi+1} and continue. As
soon as |Si| = k, the set Ti+1 = Si ∪ {vi+1} is a solution for Gi+1 of size k + 1.
The compression variant of our problem then takes as input a digraph G and a
solution T of size k +1, and seeks a solution S of size at most k for G or decides
that none exists.

We call an algorithm for the compression variant on (Gi+1, Ti+1) to obtain a
solution Si+1 or find out that Gi+1 does not have a solution of size k, but then
neither has G. By at most n calls to this algorithm we can deduce a solution for
the original instance (Gn = G, k).

Disjoint Solution. Given an input (G,T ) to the compression variant, the next
step is to ask for a solution S for G of size at most k that is disjoint from the
given solution T of size k + 1. This assumption can be made by guessing the
intersection T ′ = S ∩ T , and deleting those vertices from G. Since T has k + 1
elements, this step creates 2k+1 candidates T ′. The disjoint compression variant
of our problem then takes as input a graph G − T ′, a solution T \ T ′ of size
k + 1 − |T ′|, and seeks a solution S′ of size at most k − |T ′| disjoint from T \ T ′.

Covering the Shadow of a Solution. The “shadow” of a solution S is the
set of those vertices that are disconnected from T (in either direction) after the
removal of S. A common idea of several fixed-parameter algorithms on digraphs
is to first ensure that there is a solution whose shadow is empty, as finding such
a shadowless solution can be a significantly easier task. A generic framework by
Chitnis et al. [4] shows that for special types of problems as defined below, one
can invoke the random sampling of important separators technique and obtain
a set Z which is disjoint from a minimum solution and covers its shadow, i.e.
the shadow is contained in Z. What one does with this set, however, is problem-
specific. Typically, given such a set, one can use (some problem-specific variant
of) the “torso operation” to find an equivalent instance that has a shadowless
solution. Therefore, one can focus on the simpler task of finding a shadowless
solution or more precisely, finding any solution under the guarantee that a shad-
owless solution exists.
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Definition 6 (shadow). Let G be a digraph and let T, S ⊆ V (G). A vertex
v ∈ V (G) is in the forward shadow fG,T (S) of S (with respect to T ) if S is
a T − {v}-separator in G, and v is in the reverse shadow rG,T (S) of S (with
respect to T ) if S is a {v} − T -separator in G.

A vertex is in the shadow of S if it is in the forward or reverse shadow of S.

Note that S itself is not in the shadow of S by definition of separators.

Definition 7 (T -connected and F-transversal). Let G be a digraph, let T ⊆
V (G) and let F be a set of subgraphs of G. We say that F is T -connected if
for every F ∈ F , each vertex of F can reach some and is reachable by some
(maybe different) vertex of T by a walk completely contained in F . For a set F
of subgraphs of G, an F-transversal is a set of vertices that intersects the vertex
set of every subgraph in F .

Chitnis et al. [4] show how to deterministically cover the shadow of F-
transversals:

Proposition 8 (deterministic covering of the shadow, [4]). Let T ⊆
V (G). In time 2O(k2) · nO(1) one can construct t ≤ 2O(k2) log2 n sets Z1, . . . , Zt

such that for any set of subgraphs F which is T -connected, if there exists an F-
transversal of size at most k then there is an F-transversal S of size at most k
that is disjoint from Zi and Zi covers the shadow of S, for some i ≤ t.

4 Hardness of Vertex Deletion

In this section we prove Theorem 1, by showing NP-hardness and W[1]-hardness
of the Eulerian Strong Components Vertex Deletion problem. Before
the hardness proof we recall an equivalent characterization of Eulerian digraphs:

Lemma 9 (folklore). Let G be a weakly connected digraph. Then G is Eulerian
if and only if G is balanced.

We can now state the hardness reduction, which relies on the hardness of
the following problem introduced by Cygan et al. [6]. In Directed Balanced
Vertex Deletion, one is given a directed multigraph G and an integer k ∈ N,
and seeks a set S of at most k vertices such that G − S is balanced.

Proposition 10 ([6]). Directed Balanced Vertex Deletion is NP-hard
and W[1]-hard with parameter k.

We will prove the hardness of Eulerian Strong Component Vertex
Deletion for (k + 1)-strong digraphs by adding vertices ensuring this connec-
tivity. The proof of Theorem1 is deferred to the full version of this paper.
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5 Bounded Size Strong Component Arc (Vertex)
Deletion

In this section we show a fixed-parameter algorithm for the vertex deletion vari-
ant of Bounded Size Strong Component Vertex Deletion.

We give an algorithm that, given an n-vertex digraph G and integers k, s,
decides in time 4k(ks + k + s)! · nO(1) if G has a set S of at most k vertices such
that every strong component of G − S has size at most s. Such a set S will be
called a solution of the instance (G, k, s).

The algorithm first executes the general steps “Iterative Compression” and
“Disjoint Solution”; it continues with a reduction to a skew separator problem.

Reduction to Skew Separator Problem. Now the goal is, given a digraph G,
integers k, s ∈ N, and a solution T of (G, k+1, s), to decide if (G, k, s) has a solu-
tion S that is disjoint from T . We solve this problem—which we call Disjoint
Bounded Size Strong Component Vertex Deletion Reduction—by
reducing it to finding a small “skew separator” in one of a bounded number of
reduced instances.

Definition 11. Let G be a digraph, and let X = (X1, . . . , Xt),Y = (Y1, . . . , Yt)
be two ordered collections of t ≥ 1 vertex subsets of G. A skew separator S for
(G,X ,Y) is a vertex subset of V (G)\⋃t

i=1(Xi ∪Yi) such that for any index pair
(i, j) with t ≥ i ≥ j ≥ 1, there is no path from Xi to Yj in the graph G − S.

This definition gives rise to the Skew Separator problem, which for a
digraph G, ordered collections X ,Y of vertex subsets of G, and an integer k ∈ N

asks for a skew separator for (G,X ,Y) of size at most k. Chen et al. [3] showed:

Proposition 12 ([3, Theorem 3.5]). There is an algorithm solving Skew Sep-
arator in time 4kk · O(n3) for n-vertex digraphs G.

The reduction from Disjoint Bounded Size Strong Component Ver-
tex Deletion Reduction to Skew Separator is as follows. As T is a solu-
tion of (G, k + 1, s), we can assume that every strong component of G − T has
size at most s. Similarly, we can assume that every strong component of G[T ]
has size at most s, as otherwise there is no solution S of (G, k, s) that is disjoint
from T . Let {t1, . . . , tk+1} be a labeling of the vertices in T .

Lemma 13 (�). There is an algorithm that, given an n-vertex digraph G, inte-
gers k, s ∈ N, and a solution T of (G, k + 1, s), in time O((ks + s − 1)!) · nO(1)

computes a collection C of at most (ks + s − 1)! vectors C = (C1, . . . , Ck+1) of
length k + 1, where th ∈ Ch ⊆ V (G) for h = 1, . . . , k + 1, such that for some
solution S of (G, k, s) disjoint from T , there is a vector C ∈ C such that the
strong component of G − S containing th is exactly G[Ch] for h = 1, . . . , k + 1.

Armed with Lemma 13, we can hence restrict our search for a solution S
of (G, k, s) disjoint from T to those S that additionally are “compatible” with
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a vector in C. Formally, a solution S of (G, k, s) is compatible with a vector
C = (C1, . . . , Ck+1) ∈ C if the strong component of G−S containing th is exactly
Ch for h = 1, . . . , k + 1. For a given vector C = (C1, . . . , Ck+1), to determine
whether a solution S of (G, k, s) disjoint from T and compatible with C exists, we
create several instances of the Skew Separator problem. To this end, note that
if two sets Ch, Ch′ for distinct th, t′h ∈ T overlap, then actually Ch = Ch′ (and
th, t′h ∈ Ch). So for each set Ch we choose exactly one (arbitrary) representative
T -vertex among all T -vertices in Ch with consistent choice over overlapping
and thus equal Ch’s. Let T ′ ⊆ T be the set of these representative vertices.
Now we generate precisely one instance (G′,Xσ′ ,Yσ′ , k) of Skew Separator
for each permutation σ′ of T ′. The graph G′ is the same in all these instances,
and is obtained from G by replacing each unique set Ch by two vertices t+h , t−h
(where th is the representative of Ch), and connecting all vertices incoming
to Ch in G by an in-arc to t+h and all vertices outgoing from Ch in G by an
arc outgoing from t−h . This way also arcs of the type (t−j , t+h ) are added but
none of type (t−j , t−h ), (t+j , t−h ) or (t+j , t+h ). Notice that this operation is well-
defined and yields a simple digraph G′, even if th′ ∈ Ch for some distinct h, h′.
The sets Xσ′ and Yσ′ of “sources” and “sinks” depend on the permutation σ′

with elements σ′(1), . . . , σ′(|T ′|): let Xσ′ = (t−σ′(1), . . . , t
−
σ′(|T ′|)) and let Yσ′ =

(t+σ′(1), . . . , t
+
σ′(|T ′|)).

Thus, per triple ((G, k, s), T, C) we generate at most |T ′|! ≤ |T |! = (k + 1)!
instances (G′,Xσ′ ,Yσ′ , k), the number of permutations of T ′.

We now establish the correctness of this reduction, in the next two lemmas:

Lemma 14 (�). If an instance (G, k, s) admits a solution S disjoint from T ,
compatible with C and for which (tσ′(1), . . . , tσ′(|T ′|)) is a topological order of the
connected components of G′ − S, then S forms a skew separator of size k for
(G,Xσ′ ,Yσ′).

Lemma 15 (�). Conversely, if S is a skew separator of (G′,Xσ′ ,Yσ′) with size
at most k, then S is a solution of (G, k, s) disjoint from S and compatible with C.

In summary, we have reduced a single instance to the compression problem
Disjoint Bounded Size Strong Component Vertex Deletion Reduc-
tion to at most |C| · |T ′|! instances (G′,Xσ′ ,Yσ′ , k) of the Skew Separator
problem, where each such instance corresponds to a permutation σ′ of T ′. The
reduction just described implies that:

Lemma 16. An input (G, k, s, T ) to the Disjoint Bounded Size Strong
Component Vertex Deletion problem is a “yes”-instance if and only if
at least one of the instances (G′,Xσ′ ,Yσ′ , k) is a “yes”-instance for the Skew
Separator problem.

So we invoke the algorithm of Proposition 12 for each of the instances
(G′,Xσ′ ,Yσ′ , k). If at least one of them is a “yes”-instance then so is (G, k, s, T ),
otherwise (G, k, s, T ) is a “no”-instance. Hence, we conclude that Disjoint
Bounded Size Strong Component Vertex Deletion Reduction is
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fixed-parameter tractable with respect to the joint parameter (k, s), and so is
Bounded Size Strong Component Vertex Deletion. The overall run time
of the algorithm is thus bounded by |C| · |T ′|! ·nO(1) · 4kkn3 = (ks+ s− 1)! · (k +
1)! · 4k · nO(1) = 4k(ks + k + s)! · nO(1). This completes the proof of Theorem 2.

6 1-Out-Regular Arc (Vertex) Deletion

In this section we give a fixed-parameter algorithm for the vertex deletion variant
of Theorem 3. Let G be a digraph and let k ∈ N. A solution for (G, k) is a set S
of at most k vertices of G such that every non-trivial strong component of G−S
is 1-out-regular.

We first apply the steps “Iterative Compression” and “Disjoint Solution”
from Sect. 3. This yields the Disjoint 1-Out-Regular Vertex Deletion
Reduction problem, where we seek a solution S of (G, k) that is disjoint from
and smaller than a solution T of (G, k + 1).

Then we continue with the technique of covering of shadows, as described in
Sect. 3. In our setting, let F be the collection of vertex sets of G that induce a
strongly connected graph different from a simple directed cycle. Then clearly F
is T -connected and any solution S must intersect every such induced subgraph.

So we can use Proposition 8 to construct sets Z1, . . . , Zt with t ≤ 2O(k2) log2 n
such that one of these sets covers the shadow of our hypothetical solution S
with respect to T . For each Zi we construct an instance, where we assume that
Z = Zi \T covers the shadow. Note that a vertex of T is never in the shadow. As
we assume that Z ∪ T is disjoint of a solution we reject an instance if G[Z ∪ T ]
contains a member of F as a subgraph.

Observation 17. G[Z ∪ T ] has no subgraph in F .

Normally, one would give a “torso” operation which transforms (G, k) with
the use of Z into an instance (G′, k′) of the same problem which has a shadowless
solution if and only if the original instance has any solution. Instead, our torso
operation reduces to a similar problem while maintaining solution equivalence.

Reducing the Instance by the Torso Operation. Our torso operation works
directly on the graph. It reduces the original instance to one of a new problem
called Disjoint Shadow-less Good 1-Out-Regular Vertex Deletion
Reduction; afterwards we show the solution equivalence.

Definition 18. Let (G,T, k) be an instance of Disjoint 1-Out-Regular
Vertex Deletion Reduction and let Z ⊆ V (G). Then torso(G,Z) defines
the digraph with vertex set V (G) \ Z and good and bad arcs. An arc (u, v) for
u, v �∈ Z is introduced whenever there is an u → v path in G (of length at least 1)
whose internal vertices are all in Z. We mark (u, v) as good if this path P is
unique and there is no cycle O in G[Z] with O ∩ P �= ∅. Otherwise we mark it
as a bad arc.
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Note that every arc between vertices not in Z also forms a path as above. There-
fore G[V (G) \ Z] is a subdigraph of torso(G,Z). Also, torso(G,Z) may contain
self loops at vertices v from cycles with only the vertex v outside of Z. In
torso(G,Z), we call a cycle good if it consists of only good arcs. (A non-good
cycle in torso(G,Z) can contain both good arcs and bad arcs.)

Now we want to compute a vertex set of size k whose deletion from
G′ = torso(G,Z) yields a digraph whose every non-trivial strong component is a
cycle of good arcs. We call this problem Disjoint Shadow-less Good 1-Out-
Regular Vertex Deletion Reduction. To simplify notation we construct
a set Fbad which contains all strong subdigraphs of G that are not trivial or good
cycles. Then S is a solution to G′ if and only if G′ − S contains no subdigraph
in Fbad. In the next lemma we verify that our new problem is indeed equivalent
to the original problem, assuming that there is a solution disjoint from Z.

Lemma 19 (�, torso preserves obstructions). Let G be a digraph, T,Z ⊆
V (G) as above and G′ = torso(G,Z). For any S ⊆ V (G)\(Z∪T ) it holds that G−
S contains a subdigraph in F if and only if G′ −S contains a subdigraph in Fbad.

The above lemma shows that S is a solution of an instance (G,T, k) for Dis-
joint 1-Out-Regular Vertex Deletion Reduction disjoint of Z if and
only if it is a solution of (torso(G,Z), T, k) for Disjoint Shadow-less Good
1-Out-Regular Vertex Deletion Reduction. As connections between ver-
tices are preserved by the torso operation and the torso graph contains no vertices
in Z, we can reduce our search for (torso(G,Z), T, k) to shadow-less solutions
(justifying the name).

Finding a Shadowless Solution. Consider an instance (G,T, k) of Disjoint
Shadow-less Good 1-Out-Regular Vertex Deletion Reduction. Nor-
mally, after the torso operation a pushing argument is applied. However, we give
an algorithm that recovers the last connected component of G. As T is already
a solution, but disjoint of the new solution S, we take it as a starting point of
our recovery. Observe that, without loss of generality, each vertex t in T has
out-degree at least one in G − T \ {t}, for otherwise already T − t is a solution.

Consider a topological order of the strong components of G − S, say
C1, . . . , C�, i.e., there can be an arc from Ci to Cj only if i < j. We claim
that the last strong component C� in the topological ordering of G − S contains
a non-empty subset T0 of T . For if C� did not contain any vertex from T , then the
vertices of C� cannot reach any vertex of T , contradicting that S is a shadowless
solution of (G, k).

Since T0 is the subset of T present in C� and arcs between strong components
can only be from earlier to later components, we have that there are no outgoing
arcs from C� in G − S.

We guess a vertex t inside T0. This gives |T | ≤ k + 1 choices for t. For each
guess of t we try to find the component C�, similarly to the bounded-size case.
The component C� will either be trivial or not.
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If C� is a trivial component, then V (C�) = {t}, and so we delete all out-
neighbors of t in G − T and place them into the new set S. Hence, we must
decrease the parameter k by the number of out-neighbors of t in G − T , which
by assumption is at least one.

Else, if the component C� is non-trivial, define v0 = t and notice that exactly
one out-neighbor v1 of v0 belongs to C�. Set i = 0 and notice that every out-
neighbor of vi other than vi+1 must be removed from the graph G as C� is the last
component in the topological ordering of G − T ′, there is no later component
where those out-neighbors could go. This observation gives rise to a natural
branching procedure: we guess the out-neighbor vi+1 of vi that belongs to C�

and remove all other out-neighbors of vi from the graph. We then repeat this
branching step with i �→ i + 1 until we get back to the vertex t of T0 we started
with. This way, we obtain exactly the last component C�, forming a cycle. This
branching results in at least one deletion as long as vi has out-degree at least
two. If the out-degree of vi is exactly one, then we simple proceed by setting
vi := vi+1 (and increment i). In any case we stop early if (vi, vi+1) is a bad arc,
as this arc may not be contained in a strong component.

Recall that the vertices t = v0, v1, . . . must not belong to S, whereas the
deleted out-neighbors of vi must belong to S. From another perspective, the
deleted out-neighbors of vi must not belong to T . So once we reached back at
the vertex vj = t for some j ≥ 1, we have indeed found the component C� that
we were looking for.

Let us shortly analyze the run time of the branching step. As for each ver-
tex vi, we have to remove all its out-neighbors from G except one and include
them into the hypothetical solution S of size at most k, we immediately know
that the degree of vi in G can be at most k+1. Otherwise, we have to include v0
into S. Therefore, there are at most k + 1 branches to consider to identify the
unique out-neighbor vi+1 of vi in C�. So for each vertex vi with out-degree at
least two we branch into at most k + 1 ways, and do so for at most k vertices,
yielding a run time of O((k + 1)k) for the entire branching.

Once we recovered the last strong component C� of G−S, we remove the set
V (C�) from G and repeat: we then recover C�−1 as the last strong component,
and so on until C1.

Algorithm for Disjoint 1-Out-Regular Vertex Deletion Reduction.
Lemma 19 and the branching procedure combined give a bounded search tree
algorithm for Disjoint 1-Out-Regular Vertex Deletion Reduction:

Step1. For a given instance I = (G,T, k), use Proposition 8 to obtain a set of
instances {Z1, . . . , Zt} where t ≤ 2O(k2) log2 n, and Lemma 19 implies

– If I is a “no”-instance then all reduced instances I/Zj are “no”-instances,
for j = 1, . . . , t.

– If I is a “yes”-instance then there is at least one i ∈ {1, . . . , t} such that
there is a solution T � for I which is a shadowless solution for the reduced
instance I/Zi.

So at this step we branch into t ≤ 2O(k2) log2 n directions.
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Step2. For each of the instances obtained from Step 1, recover the compo-
nent C� by guessing the vertex t = v0. Afterwards, recover C�−1, . . . , C1 in
this order.
So at this step we branch into at most O(k · (k + 1)k) directions.

We then repeatedly perform Step 1 and Step 2. Note that for every instance,
one execution of Step 1 and Step 2 gives rise to 2O(k2) log2 n instances such that
for each instance, we either know that the answer is “no” or the budget k has
decreased, because each important separator is non-empty. Therefore, consider-
ing a level as an execution of Step 1 followed by Step 2, the height of the search
tree is at most k. Each time we branch into at most 2O(k2) log2 n ·O(k · (k +1)k)
directions. Hence the total number of nodes in the search tree is

(
2O(k2) log2 n

)k

· O (
k · (k + 1)k

)
=

(
2O(k2)

)k (
log2 n

)k · O(k) · O((k + 1)k)

= 2O(k3)
(
log2 n

)k
= 2O(k3) · O (

((2k log k)k + n/2k)3
)

= 2O(k3) · O(n3).

We then check the leaf nodes of the search tree and see if there are any strong
components other than cycles left after the budget k has become zero. If for at
least one of the leaf nodes the corresponding graph only has strong components
that are cycles then the given instance is a “yes”-instance. Otherwise, it is a
“no”-instance. This gives an 2O(k3) · nO(1)-time algorithm for Disjoint 1-Out-
Regular Vertex Deletion Reduction. So overall, we have an 2O(k3) ·nO(1)-
time algorithm for the 1-Out-Regular Vertex Deletion problem.
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