
Applied Network ScienceBéres et al. Applied Network Science (2019) 4:64
https://doi.org/10.1007/s41109-019-0169-5

RESEARCH Open Access

Node embeddings in dynamic graphs
Ferenc Béres1,2* , Domokos M. Kelen1,2,3, Róbert Pálovics4 and András A. Benczúr1,3

*Correspondence: beres@sztaki.hu
1Institute for Computer Science and
Control, Hungarian Academy of
Sciences, (MTA SZTAKI) Kende Street
13-17, H1111 Budapest, Hungary
2Eötvös University Budapest
Pázmány s. 1, H-1117 Budapest,
Hungary
Full list of author information is
available at the end of the article

Abstract

In this paper, we present algorithms that learn and update temporal node embeddings
on the fly for tracking and measuring node similarity over time in graph streams.
Recently, several representation learning methods have been proposed that are
capable of embedding nodes in a vector space in a way that captures the network
structure. Most of the known techniques extract embeddings from static graph
snapshots. By contrast, modeling the dynamics of the nodes in temporal networks
requires evolving node representations. In order to update node representations that
reflect the temporal changes in the local graph structure, we rely on ideas for data
stream algorithms. For example, we assess neighborhood overlap by a MinHash
fingerprint-based algorithm.
To evaluate our methods, in addition to the standard link prediction task, we provide
dynamic ground truth data for the quantitative evaluation of similarity search by using
online updated node embeddings. In our experiments, we constructed tennis
tournament Twitter mention graphs as edge streams and compiled dynamic ground
truth by using tournament schedule as external source. Our new algorithms
outperformed snapshot-based batch methods for both link prediction and similarity
search.

Introduction
The need for machine learning over data streams is motivated by a rapidly growing num-
ber of industrial applications of graph algorithms (Wang et al. 2017; Nie et al. 2017; Zhou
et al. 2017; Wei et al. 2017) and online machine learning (Bifet et al. 2010; De Francisci
Morales et al. 2016; Zhu and Shasha 2002; Žliobaite et al. 2012). In graph streams, the
combination of the two areas, edges arrive continuously over time from a large network
and have no duration (McGregor 2014).We intend to apply onlinemachine learning (Bifet
et al. 2010) for link prediction and similarity search by learning and updating node feature
representations on the fly from graph streams.
The principal task of onlinemachine learning is to learn a concept incrementally by pro-

cessing data immediately after creation (Widmer and Kubat 1996), for example, after each
mention in a Twitter mention graph. Traditional, batch learners build static models from
finite, static data sets, which do not change over time. By contrast, stream learners build
models that evolve over time. For example, in graphs, more recent edges can form a more
relevant picture of the current network structure than older ones. The final model will
strongly depend on the order of examples generated from a continuous, non-stationary
flow of data. Modeling is therefore affected by potential concept drifts or changes in dis-
tribution (Gama et al. 2013). Online learning seems more restricted than batch learning,
which can iterate over the data set several times, and thus one could expect inferior

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/232188203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0169-5&domain=pdf
http://orcid.org/0000-0001-6322-7139
mailto: beres@sztaki.hu
http://creativecommons.org/licenses/by/4.0/

Béres et al. Applied Network Science (2019) 4:64 Page 2 of 25

results from onlinemethods. By contrast, in some cases (Frigó et al. 2017), onlinemethods
perform surprisingly strongly.
To track node properties in a graph stream, we adapt the highly successful technique

of node representations. Representation learning methods on graphs encode the nodes of
the network to points in a low-dimensional vector space. In general, representations in the
embedded space should reflect the structure of the original graph. The research area of
node embeddings has been recently catalyzed by theWord2Vec algorithm (Mikolov et al.
2013), developed for natural language processing. Several node embedding methods have
been proposed recently (Perozzi et al. 2014; Tang et al. 2015; Grover and Leskovec 2016;
Qiu et al. 2018) and applied successfully for multi-label classification and link prediction
in a variety of real-world networks from diverse domains.
In order to generate node embeddings, we have to solve the challenge of maintain-

ing node embeddings for tracking and measuring node properties and similarities as the
edges arrive. Most graph algorithms are difficult to update online. For example, to com-
pute random walk-based embeddings (Grover and Leskovec 2016), we have to be able to
maintain not just the embedding but also the set of walks whenever a new edge appears
in the stream.
Time-aware relevance evaluation also becomes troublesome in the presence of fast

changes in network structure. For link prediction (Liben-Nowell and Kleinberg 2007), in
an edge stream we can update our model immediately after the new edge arrives, and
predict a completely new list in the next step. For this so-called predictive sequential
(abbreviated as prequential) evaluation (Dawid 1984), we have to define new evaluation
metrics. The same difficulties for evaluating streaming recommenders was first observed
in (Lathia et al. 2009).
To fully utilize the power of graph embedding, our main focus for evaluation is simi-

larity search, in which we assess the information encoded in the embedding about node
pairs rather than just a global property required for predicting links. For similarity search,
the prime source of difficulty lies in ground truth compilation. Static relevance measures
such as precision, recall, or NDCG already require ground truth labeling, which itself
often requires tedious human effort such as the effort that has been made for TREC top-
ics (Clarke et al. 2004). In a dynamic graph stream, depending on time granularity, the
same human data curation may be required in each time step.
Algorithms for temporal graphs have already started to emerge in publications; how-

ever, very few graph learning algorithms are capable of immediately updating their models
from edge streams. Similarly, in the literature we rarely find real graph streaming meth-
ods where node labels are highly dynamic: even link prediction tasks are evaluated in
batches for sets of edges that appear over a longer period in time. Any embedding method
can be applied in dynamic graphs by considering graph snapshots in time. However, such
solutions do not only react slowly, but also build new representations for every snapshot,
hence they require an entire model retraining for downstream machine learning tasks
(Hamilton et al. 2017a). The more natural part of the task is updating the embedding: gra-
dient descent is a commonly used optimization procedure, which naturally lends itself to
online learning algorithms (Juang and Lin 1998) as well. However, walk-based embedding
methods published so far could only efficiently rebuild the walks for snapshots or larger
batches of insertions and deletions, and were not able to update the set of walks for every
single new edge in the stream.

Béres et al. Applied Network Science (2019) 4:64 Page 3 of 25

Present work. StreamWalk, our first algorithm updates the node embedding online to
track and measure node properties and similarity from a graph stream (Rozenshtein and
Gionis 2016). StreamWalk is based on the recent concept of temporal walks containing
edges ordered in time. As illustrated in Fig. 1, the StreamWalk algorithm picks node sam-
ples for a single node from its temporal neighborhood, using temporal walks ending in
the node. Given the sample, we optimize to make the embedding of the sample similar to
the source node. Our algorithm performs online machine learning (Bifet et al. 2010) by
continuously updating a model as we read the graph stream. Its key ingredients are online
gradient descent optimization (Juang and Lin 1998) and time respecting temporal walks
(Rozenshtein and Gionis 2016).
StreamWalk improves over static node representations as applied to graph streams in

three key ways:
• It accounts for the ordering of edges by sampling only from time respecting random

walks, capturing richer information about graph structure.
• It includes an efficient data structure to sample random walks online without storing

the entire edge set.
• The node representations evolve over time to reflect changes in network structure.
Our second algorithm directly learns the neighborhood similarity of node pairs in the

graph stream, which we call second order similarity. By MinHash fingerprinting (Fog-
aras and Rácz 2005), we efficiently approximate the neighborhood Jaccard similarity of
any two nodes at a given time. Then we optimize the embedding to make pairs similar,
proportional to the overlap of their neighborhood.
Our main results are twofold:
• We design two algorithms that can update their node representations quickly in large

graph streams, and outperform the baselines among others in link prediction tasks.
• We design a quantitative experiment for accessing the quality of temporal node

embeddings based on the Twitter tennis tournament mention graphs of (Béres et al.
2018), which include temporally changing node labels. In a supervised experiment,

Fig. 1 Concept of StreamWalk. When uv edge arrives in the stream, vertices from the temporal
neighborhood of u are sampled via temporal random walks. The method optimizes for the similarity of v and
the sampled node w

Béres et al. Applied Network Science (2019) 4:64 Page 4 of 25

we show that online updateable embeddings capture node similarities better than
static embeddings.

The rest of this paper is organized as follows. First we summarize the related works
in “Related works” section. In “Dynamic vector space embedding methods in edge
streams” section we introduce StreamWalk and our method for learning neighborhood
similarities directly from graph streams. In “Similarity search experiments” section we
first examine the quality of dynamic node embeddings on the RG17 and UO17 Twitter
data sets. Finally, in “Online link prediction” sectionwe consider the online link prediction
problem as another evaluation of our methods.

Related works
Temporal networks. A large variety of temporal network algorithms have appeared for
connectivity, spanning trees, matchings, and many more, which are surveyed, for exam-
ple, in (Holme and Saramäki 2012; Aggarwal and Subbian 2014). The usual approach for
analyzing temporal graphs is to use timestamps to create a series of static graph snap-
shots (Kumar et al. 2010). High temporal granularity networks are considered in the edge
or graph streammodel (McGregor 2014) where edges must be processed once they arrive
in the stream; for example, a random walk algorithm is described in (Sarma et al. 2011).
The concept of time respecting paths, in which adjacent edges must be ordered in time,

is key in our results and directly used in one of our embedding models. The concept
was perhaps introduced in (Moody 2002) for analyzing diffusion in networks. In another
terminology, temporal walks were used to construct time-aware centrality metrics in
(Rozenshtein and Gionis 2016; Béres et al. 2018).
Online machine learning. The area of online machine learning covers algorithms that

work from data streams with only a limited possibility to store past data (Bifet et al. 2010).
We define our models over graph streams where the data stream consists of the edges
of the graph. Our models are online updateable, hence they are capable of adapting to
concept drift.
Link prediction from graph streams is one of our tasks where the goal is to predict the

next edge appearing in the edge stream. The problem is closely related to recommender
systems where the strength of online machine learning has been observed recently (Ling
et al. 2012; Frigó et al. 2017). Note that for link prediction we use the prequential evalua-
tion, which was published more than thirty years ago (Dawid 1984) but has only recently
come into widespread use (Gama et al. 2013) for streaming algorithms.
Representation learning on graphs. Embedding methods on graphs encode the nodes

of the network to vectors in a low-dimensional vector space. In general, representations
in the embedded space should reflect the structure of the original graph. Perhaps the
most well-knownmethod is Laplacian eigenmaps (Belkin and Niyogi 2002). Another class
of models is based on the adjacency matrix of the graph; one popular example is graph
factorization (Ahmed et al. 2013). Recently, random walk-based approaches have been
proposed, like Node2Vec (Grover and Leskovec 2016), LINE (Tang et al. 2015), and Deep-
Walk (Perozzi et al. 2014). These methods sample node pairs that co-occur in random
walks, and then optimize for their similarity in the embedded space. Walk sampling is
motivated by the skip-grammodel from natural language processing (Mikolov et al. 2013).
Furthermore, the aforementioned techniques can be unified under a matrix factorization
framework (Qiu et al. 2018).

Béres et al. Applied Network Science (2019) 4:64 Page 5 of 25

We briefly review the methodology of the above approaches by following (Hamilton
et al. 2017b). Static embedding methods learn an embedding vector qu for each node
u in the graph. Usually the objective is to learn vectors that are similar for neighboring
nodes. Let s(u) denote the neighborhood of u; then our goal is to satisfy qv ≈ qu for
v ∈ s(u). Shallow embedding approaches for static graphs differ in the objective function
they use to ensure the similarity of the embeddings, and in the definition of the network
neighborhood s(u).
Graph factorization (Ahmed et al. 2013), GraRep (Cao et al. 2015), and HOPE (Ou et al.

2016) optimize for the squared error (SE) over node pairs in the neighborhood:
∑

u

∑

v∈s(u)

[
quqv − sim(u, v)

]2 ; (1)

where sim(u, v) is the similarity of two nodes measured from the graph structure. The
definition of the neighborhood is based on the adjacency matrix. Graph factorization
calculates with adjacent neighbors, while GraRep uses higher powers of the adjacency
matrix, for example, two-hop neighbors.
As a different method, random walk-based approaches (Grover and Leskovec 2016;

Perozzi et al. 2014) sample vertices from the neighborhood of a node. Sampling is done
by initiating random walks from node u. Instead of SE, these approaches optimize for
cross-entropy loss:

∑

u

∑

v∈s∗(u)

= − log
[

exp(quqv)∑
w exp(quqw)

]
; (2)

where s∗(u) is a random sample from the neighborhood of u.
Many of the above mentioned algorithms use the Word2Vec model as an underlying

abstraction by training the model, using sampled walks analogously to sentences, and
using the learned embeddings as node embeddings. We follow this approach, and also
investigate the use of either the input (W1) or the output embedding (W2) of the model
(Press and Wolf 2016) as the vector space representation of the graph.
The above models learn static embeddings on graph snapshots; however, they men-

tion extensions towards online learning from graph streams. In DeepWalk (Perozzi et al.
2014), the possibility of an online incremental update is proposed but not analyzed. An
incremental update for LINE with a batch of edge insertions and deletions is described
in (Yu et al. 2018), but no attempt is made to analyze the online, single edge insertion
behavior. Closest to our work is the continuous-time dynamic network embedding result
(Nguyen et al. 2018), which does not learn online but computes an embedding for a sin-
gle point in time. Similarly, the HTNE algorithm (Zuo et al. 2018) produces temporal
node embeddings, but training is done in batch instead of executing online updates. A
promising direction for computing the embedding dynamically involves recurrent neural
networks, for example, Long Short-Term Memory networks (Wang et al. 2015); however,
the applicability for graphs is not yet explored.

Dynamic vector space embeddingmethods in edge streams

We describe two node embedding approaches that are applicable in edge streams. The
input of both algorithms consists of an edge stream (u, v, t) ordered by time t in which

Béres et al. Applied Network Science (2019) 4:64 Page 6 of 25

each edge can occur multiple times. As required by the data stream algorithmic model,
we process the edges in the order of arrival without storing the entire input.
Our goal is to dynamically learn node representations by reflecting the current node

similarity structure of the evolving graph as we dynamically change the location of the
nodes in the vector space. To this end, we give two embedding methods in the next two
subsections. Two nodes are required to be mapped close in the vector space whenever
they lie on short paths formed by recent edges in the first model, and whenever the set of
their recent neighbors is similar in the second model.

Similarity based on reachability through short temporal walks

In our first algorithm, our goal is to enforce that the embedding of node v be similar to
the embedding of nodes with the ability to reach v across edges that appeared recently,
as shown in Fig. 1. In other words, the embedding of a node should be similar to the
embedding of nodes in its temporal neighborhood. We define time respecting temporal
walks (Rozenshtein and Gionis 2016) in order to sample for each node u at any time t
nodes from its temporal neighborhood. As seen in Fig. 2, a temporal walk consists of
adjacent edges ordered in time:

z = (u0,u1, t1), (u1,u2, t2), · · · , (uj−1,uj, tj); ti−1 ≤ ti. (3)

For example, there are three temporal walks leading to node v in Fig. 4: e1, e3, and e2, e3.
Since edges can appear multiple times, we consider the edge set as a multiset and distin-
guish between the walk (e2, e3), which is a temporal walk, from (e2, e1), which is not, since
e1 comes earlier than e2.
To define the similarity, we want to give more weight to shorter walks and more

weight to fresh edges. Towards this end, for a temporal walk where edges appeared at
(t1, t2, . . . , tj), we define the probability of the walk at time t as

p(z, t) := β |z| ·
j∏

i=1
γ (ti+1 − ti); (4)

where β ≤ 1 is an exponential decay on the length of the walk, t = tj+1, and γ (τ) is a
time-aware weighting function that is based on the delay τ between adjacent edges. The
concept of (4) is that a walk is more likely if edges along the walk appeared close to each
other in time. We use exponential time weight γ (τ) := exp(−cτ). Since γ (a) · γ (b) =
γ (a + b), the probability of the path in (4) becomes

p(z, t) = β |z| exp(−c(t − tj)) · . . . · exp(−c(t2 − t1)) = β |z| exp(−c(t − t1)). (5)

The notation is summarized in Table 1.

Fig. 2 Temporal walk. Adjacent edges in the graph are in time respecting order. The probability of the walk is
based on the delays between the apperances of the adjacent edges

Béres et al. Applied Network Science (2019) 4:64 Page 7 of 25

Table 1 Notations used in the StreamWalk algorithm

z a temporal walk

uv the new directed edge that is being processed in the edge stream

t(xy) time of arrival of a multi-edge instance

tu last time an edge arrived leading to u

β decay exponent for the length of the walk

γ time-aware edge weighting function

p(z, t) weight of walk z at time t

p(w, t) sum of weight of walks ending in node w at time t

p(xy) sum of weight of walks ending with edge xy at time t(xy)

Temporal walk sampling from edge stream

Given a node v, a naive idea would be to compute the walk weight
∑{p(z, t) : z is a

temporal walk from w to v} for all other nodes w and set the embedding of w close to that
of v proportional to the walk weight. The problem with this approach is that it requires a
time consuming walk enumeration procedure at each time instance, and has no ability to
update the similarity measure by focusing only on the new edges as they arrive.
Given the new edge uv that arrives at time t, we would like to only consider walks from

any w that reach v by the new edge uv. Towards this end, we propose a sampling update
procedure for temporal walks as follows. We select a start node w of a random temporal
walk z ending in u with probability proportional to p(z, t) in (5); see Fig. 3. We generate
the walks by taking steps backwards from u. To make sure the walks are temporal, we
always use edges that appeared before the previous one. Among the possible edges enter-
ing the current node, we select proportional to the time-aware weighting function γ . For
example, in Fig. 3, we select t5 backwards from u, and then t3 backwards from the next
node. Finally, we also compute a stopping probability corresponding to the length decay β

so that we select no new edge from w in the example; the actual formula (10) is explained
later.
The actual implementation is somewhat tricky in that we have to handle multi-sets of

edges. A way to illustrate the implementation is to consider an edge uv that appears before
another wu and then reappears, see Fig. 4. The second instance can form a temporal walk
w,u, v, while the same walk is not temporal with the first instance of uv. However, the

Fig. 3 StreamWalk: learning embeddings based on random walks to the past in temporal networks

Béres et al. Applied Network Science (2019) 4:64 Page 8 of 25

second instance of uv has a higher edge weight γ , hence we have to store the weight of
the first instance as well to be able to correctly compute the weight of all temporal walks
that reach node v.

The implementation of the StreamWalk algorithm

In Algorithm 1, we describe StreamWalk, our implementation of temporal walk sampling.
Recall that the notation is summarized in Table 1. For every edge uv in the multi-set of
edges arriving in the stream, we maintain the total weight of all walks ending at v at time
t(uv):

p(v, t(uv)) =
∑

z
p(z, t(uv)); (6)

where we sum over all temporal walks z ending in v using edges arriving no later than
t(uv). The actual computation in procedure UPDATEWALKS accumulates the weight of
the walks seen in Fig. 5. There is a new single edge temporal walk uv with weight β .
Furthermore, we can continue each temporal walk z that ended in u before t(uv) with uv.
The total weight of these walks is p(u, tu) · β · exp(−c(t(uv) − tu)) where tu is the most
recent timestamp for which p(u, tu) is known. In other words, tu denotes the last time an
edge entering u arrived in the edge stream. The exponential term accounts for the time
decay of temporal walk weights since the arrival of this last edge entering u. Finally, we add
all the walks that terminated at v before, with exponential time decay. The final formula
becomes

p(v, t(uv)) ← β ·(1+p(u, tu) ·exp(−c(t(uv)−tu)))+p(v, tv) ·exp(−c(t(uv)−tv)); (7)

where tv is the most recent timestamp for which p(v, tv) is known. The update rule is
illustrated in the last step in Figs. 4 and 5.
For each edge uv in the stream, we finally update the embedding of v by sampling a fixed

number of temporal walks ending in u; we do this by calling procedure SAMPLEWALKS k
times as described at the end of this section. Given the start node w of a walk in the sam-
ple, we optimize for the similarity of the embedding pair (qv, qw) with stochastic gradient
descent. For loss function, we either set MSE or cross-entropy as in Eqs. (1) and (2). In
the case of MSE, for each w we apply online negative sampling (Pálovics et al. 2014) by
selecting pairs vw′ proportional to the popularity of w′ in the edge stream up to the cur-
rent timestamp. We refer to (Kaji and Kobayashi 2017) for online incremental updates for
cross-entropy based loss.

Fig. 4 Computation of p(v, t) for the arrival times t1 < t2 < t3 of the three edges e1, e2, and e3. The bottom
right cell illustrates the update formula (7)

Béres et al. Applied Network Science (2019) 4:64 Page 9 of 25

Fig. 5 Whenever a new edge uv appears, a new walk starts from u (red), and each temporal walk (z1, z2, z3)
that ended in u up to time tu continues via uv (blue). We get p(v, t(uv)) by summing up the contribution of
the previous two type of walks (red and blue) with the decayed weight of walks that have already reached
node v (purple) before time t(uv)

Since we train by sampling k walks per edge, time complexity is affected by the cost of
sampling temporal walks. To reduce storage, we can work over a sliding window of the
stream and periodically remove the oldest edges; these edges will already have a very small
γ value.
Finally, we describe the algorithm to sample temporal walks as implemented in Proce-

dure SAMPLEWALKS of Algorithm 1. Our goal is to sample proportional to p(y, τ) at a
given time τ . We define a randomwalk backwards from y. We select a backward edge with
probability proportional to the weight of walks ending with that edge, which we define as

p(xy) =
∑

z
p(z, t(xy)); (8)

where z are temporal walks ending with the given instance of the edge xy that appeared
at time t(xy). Recall that the edges are taken from a multi-set. The value of p(xy) can
be calculated as follows. From the total temporal walk weight ending in y at time t(xy),
we have to subtract the total weight of all walks ending in y before t(xy); the difference
contains the weight of only those paths that use the edge instance xy of timestamp t(xy):

p(xy) = p(y, t(xy)) − p(y, t̄) · exp(−c(t(xy) − t̄)); (9)

where t̄ < t(xy) is the timestamp of the last edge in the stream entering y before t(xy).
The exponential term corresponds to the time decay of the walk weight since time t̄.
We also define the termination for the walk, which is based on the contribution of the

single node y as a zero-edge walk relative to all other walks that end at y. At any time of
observation τ , the weight of the zero-edge walk is 1, and the total weight of the remaining
walks is p(y, t) for the last recorded time t ≤ τ , decayed proportional to the elapsed time,
τ − t. Hence with the probability below, we take no further steps but stop the walk:

1/(1 + p(y, t) · exp(−c(τ − t))). (10)

The steps of Procedure SAMPLEWALKS are summarized as follows.

1 We start the random walk from y ← u and set τ = now.

Béres et al. Applied Network Science (2019) 4:64 Page 10 of 25

Algorithm 1 StreamWalk.
procedure UPDATEWALKS(u, v)

� Update the weight for all walks ending at v
tu, tv ← last timestamp such that p(u, tu) and p(v, tv) are known, respectively
p(v, now) ← β · (1 + p(u, tu) · exp(−c(now − tu))) + p(v, tv) · exp(−c(now − tv))
t(uv) ← now

end procedure

procedure SAMPLEWALKS(y, τ) � Recursively sample a temporal walk ending at y
t ← most recent timestamp with t ≤ τ such that p(y, t) is known
p(y, τ) ← p(y, t) · exp(−c(τ − t))
With probability 1/(1 + p(y, τ)) do

return y
else

for all xymulti-edges with t(xy) < τ do
Select x with probability p(xy) · exp(−c(τ − t(xy)))/p(y, τ)

end for
return SAMPLEWALKS(x, t(xy))

end procedure

procedure STREAMWALK(u, v)
� Update embedding for v

call UpdateWalks(u, v)
repeat k times

w ← SAMPLEWALKS(u, now)

Optimize the representations qw and qv by Eqs. (1) or (2)
end procedure

2 With probability such as in Eq. 10, we stop the walk and return the current node y.
3 Optionally, we can also terminate the walk if its length reaches a predefined limit.
4 Else, we select an edge xy with t(xy) < τ with probability proportional to the

time-decayed total weight of walks ending with xy, which is
p(xy) · exp(−c(τ − t(xy))) by definition.

5 We repeat from step 2 by setting y ← x and τ ← t(xy).

As the final implementation details, we can sample by selecting a random value between
zero and p(y, τ) and binary search in the multi-set of xy edges ordered by t(xy). For a
given edge xy, we compute p(xy) by Eq. 9 and continue the binary search based on the
time-decayed value p(xy) ·exp(−c(τ − t(xy))). Lastly, it can happen that sampling intends
to select a very old edge that was already deleted from the sliding window. This happens
when binary search does not terminate at the oldest t still kept in the records. In this case,
we can repeat the sampling with a new random value.

Online learning of second order node similarity

Our next online algorithm optimizes the embedding to match the neighborhood similar-
ity of the nodes, which we call second order proximity by following (Tang et al. 2015). Our

Béres et al. Applied Network Science (2019) 4:64 Page 11 of 25

goal is to optimize for (1) online, by considering sim(u, x) as a time-aware Jaccard similar-
ity of the neighborhood of u and x, as illustrated in Fig. 6. We consider the neighbors y of
u as a multi-set N(u, t) in which we use the decayed weight of edge uy as the weight of y:

w(y) = exp(−c(t − t(uy))); (11)

where t(uy) is the time the corresponding instance of edge uy appeared in the stream.
Whenever we add a new edge to u, we discard elements y ∈ N(u, t) with probability
1 − w(y). This way we emphasize the importance of new edges and also limit the size
of N(u, t) by discarding old edges with low weight that have little effect on similarity
values.
In order to design a streaming algorithm to compute second order similarity, we

face the same problems as in the StreamWalk algorithm: we want to focus on the
increase of similarity when we add a new edge uv, and we want to avoid the
costly full computation of similarities of u with all neighbors x of v. Note that
the similarity of x and u depend on their neighborhood, which means that all
nodes of distance two from v should be enumerated for the full computation. In
the next subsection, we describe a randomized approximation method for neighbor-
hood similarities based on (Fogaras and Rácz 2005), which will be used in our final
algorithm.

Approximation by fingerprinting

Our algorithm relies on MinHash fingerprinting (Broder et al. 2000) to approximate the
Jaccard similarity. The notations are summarized in Table 2. Let there be k independent
random permutations over the nodes πi for i = 1 . . . k. We define the k fingerprints
of A as

hi(A) := argmin{πi(a) : a ∈ A}; hi(∅) = NaN; i = 1 . . . k; (12)

Fig. 6 Online learning of second order node similarity

Béres et al. Applied Network Science (2019) 4:64 Page 12 of 25

Table 2 Notations used in the second oder similarity algorithm

uv the new directed edge that is being processed in the edge stream

t(xy) time of arrival of a multi-edge instance

πi a permutation of the entire vertex set, fixed in time

N(u, t) the pruned neighbors of u at time t

hi(u) = hi(N(U, t)) the i-th fingerprint of u at time t

For short,

hi(u) := hi(N(u, t)). (13)

We maintain k fingerprints defined in (12) for the neighborhood of each node where
the weights of the elements are defined by (11). We approximate the time-aware Jaccard
similarity of any node pair with the fraction of common fingerprint values:

sim(u, v, t) ≈
k∑

i=1
I[hi(u) = hi(v)] /k. (14)

We illustrate the fingerprinting idea in Fig. 7 for k = 2. The two fingerprints of u, h1(u)

and h2(u), are defined based on two permutations π1 and π2 of the entire vertex set. The
permutations are fixed, but the fingerprints change in time as new edges arrive and past
edges become too old and get removed from N(u, t).
Next, we show how the similarity of u and a neighbor x of v can be approximated in

the example of Fig. 7. Assume that h1(x) = v and h2(x) = v1. By using formula (14),
before edge uv arrives, the similarity approximation is sim(u, v, t3) ≈ (0+1)/2 as h2(x) =
h2(u) = v1 at time t3. When edge uv arrives, the similarity will on one hand increase,
since h1(u) gets assigned with v. On the other hand, the similarity can decrease as edges
become too old. For example, if we drop edge uv1, equation h2(x) = h2(u) = v1 will no
longer hold. However, since we want to avoid the cost of updating hi(x) for all i and all
neighbors x of v, we heuristically only consider the increase of similarity, which can be
caused by adding v as new fingerprint of u.

Fig. 7 Illustration of how the fingerprints of node u change when adding the new edge uv. Neighbors of u
are ordered in time as t1 < t2 < t3 < t. Two fixed random permutations π1 and π2 define the fingerprints
h1(u) and h2(u). In π1 (red), v has minimum value, hence the previous h1(u) will be reassigned to v. In π2

(purple), the minimum is the oldest node v1, which becomes too old and gets removed from N(u, t). The
correct value for h2(u) would be v2 (�). Instead we heuristically set h2(u) = v after the removal of v1

Béres et al. Applied Network Science (2019) 4:64 Page 13 of 25

Algorithm 2Online learning second order similarity
procedure UPDATEFINGERPRINTS(u, v)

for all i in 1 . . . k do
if hi(u) is too old or πi(v) < πi(hi(u)) then

hi(u) ← v
end if

end for
end procedure

procedure GETSIMILARITYDELTA(u, v, x)
� ← 0
for all i in 1 . . . k do

if hi(u) = hi(x) = v then
� ← � + 1

end if
end for
return �

end procedure

procedureONLINESECONDORDERSIM(u, v)
UPDATEFINGERPRINTS(u, v)
for all in-neighbors x of v that are not too old do

� ← GETSIMILARITYDELTA(u, v, x)
Optimize the representations qu and qx repeated � times, by using Eqs. (1) or (2)

end for
Repeat with v and u swapped and edge directions reversed

end procedure

As a final heuristic, in our implementation we always replace fingerprints correspond-
ing to pruned neighbors by v, since obtaining the πi values of the entire neighborhood is
computationally costly. In the example of Fig. 7, we drop edge uv1 as t1
 t. The correct
new value of h2(u) would be the next oldest vertex v2, however this can only be calculated
by enumerating all neighbors of u. Instead, in our implementation we heuristically assign
h2(u) ← v.

Algorithm for online learning second order similarity

Our method is described in Algorithm 2 by using the notations in Table 2. Our goal is to
approximate the change of similarity between u and the in-neighbors x of v, and modify
the embedding vectors whenever certain x gets more similar to u after adding the new
edge uv. Note that x becomes more similar if the edge xv also appeared recently; in terms
of fingerprints, this means that for some fingerprint index i, both x and u have v as finger-
print node. We perform the steps below to update the fingerprints of u and check for v as
fingerprint in the in-neighbors x of v:

1 For node u, we maintain the present neighborhood N(u) by removing very old
edges, and recompute the k fingerprints hi(u) for i = 1 . . . k by calling

Béres et al. Applied Network Science (2019) 4:64 Page 14 of 25

Procedure UPDATEFINGERPRINTS. Fingerprint hi(u) can take the new value v for
the new edge uv if it is too old or if πi(v) becomes the new MinHash value for
permutation i. In the former case, we can either heuristically replace hi(u) with the
new neighbor v or compute the true MinHash value argmin{πi(y) : y ∈ N(u)}.

2 Finally, for each in-neighbor x ∈ N(v), we compute the number of fingerprints �

that match those of u and have value v in Procedure GETSIMILARITYDELTA, and �

times optimize the representations qu and qx by using Eqs. (1) or (2).

Symmetrically, we also check for the similarity increase of v with the out-neighbors of u
by performing the same steps, replacing u and v on the reverse direction graph.

Similarity search experiments
In this section, we describe ourmain evaluation, in which we assess howwell the closeness
of two nodes in the embedding reflect their similarity against an external ground truth.
Towards this end, we first describe a network enriched with a time dependent external
similairty ground truth information. Then, at a time instance, we compute the list of nodes
closest to selected ones in the embedding, and compare these lists against the similarity
ground truth.
We analyze node embedding methods for similarity search over the Twitter tennis

tournament collections of (Béres et al. 2018). For the quantitative analysis, we use the
annotation of the nodes for the accounts of the tennis players that participate in a game on
a given day. In this sense, we expect that the players of the same day are more similar than
other players and non-player accounts, as we will describe in “Evaluationmetrics” section.
We compare the performance of StreamWalk and online second order similarity with
online and static baseline methods, which we will describe in “Baseline models” section.

Tennis tournament twitter collection data

In (Béres et al. 2018), we compiled two separate tweet collections: RG17 for Roland-
Garros, the French Open Tennis Tournament, and UO17 for US Open, the United States
Open Tennis Championships, which we use in our first experiment. We use the mention
graphs extracted from the last 15 and 14 days of RG17 and UO17, respectively. Based on
the approximate time of the games, we consider a Twitter account n active on the given
day, if it belongs to a tennis player who participated in a completed, canceled, or resumed
game.

Evaluation metrics

We evaluate similarity search by a supervised experiment in which for each active account
we consider the other similar active accounts on the given day. For each embedding algo-
rithm, we generate 128-dimensional node representations every six hours (6:00, 12:00,
18:00, 24:00). For online methods, we perform continuous updates over the edge stream.
For the static methods, we build the corresponding graph snapshots.
We useNDCG (Al-Maskari et al. 2007) to evaluate how other active accounts are similar

to a selected one. NDCG is a measure for ranked lists that assigns higher score if active
accounts appear with higher rank in the similarity list. In our experiments, we compute
the average of the NDCG@100 for the active accounts as query nodes to measure the
performance of a single model in any given snapshot.

Béres et al. Applied Network Science (2019) 4:64 Page 15 of 25

Baseline models

We compare StreamWalk and online second order similarity to online (or time-aware) and
static (or batch) embedding methods. Online models are updated after the arrival of each
edge. By contrast, static representations are only updated once every six hours when the
graph snapshot ends. At hour t a static model is computed on the graph constructed from
edges arriving in time window [t − T , t] from the edge stream. For each batch baseline,
we experimentally select the best value of T.
We consider four static centrality measures as baseline:

• DeepWalk (Perozzi et al. 2014)
• Node2Vec (Grover and Leskovec 2016)
• LINE (Tang et al. 2015): the first and the second order versions of LINE, as well as the

combination of the two versions
• Static indegree, calculated in time window [t − T , t] by counting each edge with

multiplicity

Furthermore, we compare our proposed algorithms with a simple online baseline:

• Decayed indegree, defined for node u at time t as
∑

zu∈E(t)
exp(−c(t − tzu)); (15)

where E(t) is the multi-set of edges that occurred up to time t with edge activation
time tzu.

We use the 128-dimensional representations of StreamWalk, second order similarity,
DeepWalk, Node2Vec, and LINE tomeasure node similarity over time. For the two degree
methods, we rank by degree without reference to the query node in the NDCG@100
formula.

Results

In our experiments, we measure how the similarity of node representations evolves over
time by a supervised evaluation in which the active nodes should be similar to each other.
We show two different ways to describe the performance of a single model:

1 For each day, we present the mean NDCG@100 of the snapshots evaluated at 6:00,
12:00, 18:00, and 24:00.

2 As a single global value (NDCG@100), we take the average of NDCG@100(u) for
each daily player u in every snapshot.

For a given parametrization of every embedding-based method, we always show the
average performance of ten independent instances.
During our experiments, we found that the following parameters had a great impact on

the quality of online node embeddings, see Table 3:

W1 andW2: In Word2Vec, we have the option to optimize node representations for the
input (W1) or the output (W2) matrices (Press and Wolf 2016). It is application
dependent whetherW1 orW2 yields the better representation. For SW, we achieved
the best results byW2.

Initialization: We experimented with Xavier (Glorot and Bengio 2010) and uniform
random initialization ofW1 andW2.

Béres et al. Applied Network Science (2019) 4:64 Page 16 of 25

Table 3Mean global performance (NDCG@100) of StreamWalk with different settings on the first
three day of RG17 and UO17 respectively

matrix init type mirror decayed RG17 UO17

W1 Xavier yes no 0.1865 0.1695

W1 uniform yes no 0.2001 0.1818

W2 uniform yes no 0.2898 0.2386

W2 uniform no no 0.3272 0.2898

W2 uniform no yes 0.3341 0.2999

Mirror: In our algorithms, the input toWord2Vec consists of node pairs. Given a training
instance (x, y), wemirror if we feed both (x, y) and (y, x), not just (x, y).

Decay: We heuristically map the representations of nodes with no recent activity to the
null vector.

Negative sampling rate and past positive samples used: Key parameters of Word2Vec
analyzed separately in Figs. 8–9. Past positive samples are edges that appeared longer
time ago; using such edges for negative training helps forgetting the past.

Fig. 8 The effect of negative sample rate on the global mean performance (NDCG@100) of StreamWalk (top)
and online second order similarity (bottom)

Béres et al. Applied Network Science (2019) 4:64 Page 17 of 25

Fig. 9 The effect of past positive samples used as negative samples for SO when the latest edge arrives

Next, we examine the quality of node representations with respect to node pair
sampling-related parameters:

Time decay and half-life: By transforming the time decay parameter c, we show our
results as the function of half-life h = ln(2)/c in Fig. 10.

Number of walks sampled: The number of new training instances for SW and SO for a
new edge arrival is a parameter analyzed in Fig. 11.

We also combine the output of StreamWalk and second order similarity by using the
weighted average of the corresponding inner products as similarity. This method denoted
as SW+SO outperforms SW and SO, as seen in Fig. 12. The optimal weight of SO in the
combination is 0.3 for both RG17 and UO17.
In Table 4 we present the best global mean performance for each model. Fig. 13 shows

the daily mean performance of the best models.
For illustration, in Table 5 we present the 20 accounts most similar to that of Rafael

Nadal for different node embeddings on 2017-May-31 18:00. Since Rafael Nadal played
on this day, the active accounts (yellow) belong to tennis players who participated in a
game on this day. The combined model SW+SO has the highest number of active player
accounts. Furthermore, accounts present in both SW and SO columns (e.g. BMATTEK,
DjokerNole, GrigorDimitrov, etc.) typically achieve higher position by SW+SO than SW.
It is interesting to see that SW and SO find different active accounts, which explains
why the combination SW+SO achieves superior performance. While static LINE and
Node2Vec have less relevant hits than our onlinemethods, most of the irrelevant accounts
still belong to tennis players (e.g. andy_murray, stanwawrinka, etc.). The main dif-
ference is that the daily active players are better found by the online than the static
methods.

Online link prediction
Next, we address the online, time-aware variant of the link prediction problem, in which
we give a prediction for the next edge as we process the stream edge by edge. Our goal

Béres et al. Applied Network Science (2019) 4:64 Page 18 of 25

Fig. 10 The effect of half-life on the global mean performance (NDCG@100) of StreamWalk (top) and online
second order similarity (bottom)

is to predict a new link at a given time based on all events that appeared before, includ-
ing the arrival of the most recent edges. Compared to the predictions given at time t, at
time t + 1, we can potentially reconfigure our model based on the edges appeared at time
t and give a very different prediction for the next set of links. If we compare with a tradi-
tional model based on graph snapshots, the traditional model will output the exact same
ranked list of links between two snapshots.While our modeling technique provides much
stronger time awareness, it poses a challenge for evaluation, since we cannot compare just
a single prediction against a larger set of edges, but a large set of potentially very different
predictions ordered in time.
To evaluate online link prediction methods, we use the prequential evaluation frame-

work (Dawid 1984). As explained in Fig. 14, before a new edge (u, v, t) arrives in the graph
stream, we first give an attempt to predict this edge, then reveal the edge and update the
model using the new edge. In this way, we can incorporate information on themost recent
edges in our model and evaluate potentially completely different predictions, coming
from modified models, at every new time tick.

Béres et al. Applied Network Science (2019) 4:64 Page 19 of 25

Fig. 11 The effect of sampled walks (top) and hash functions (bottom) on the global mean performance
(NDCG@100) for SW and SO respectively. These parameters control the number of sampled node pairs we
feed to online Word2Vec at every edge arrival

Fig. 12 Global mean performance of the combination of SW and SO with respect to the weight of SO. The
combined model (SW+SO) has superior performance with the optimal weight 0.3

Béres et al. Applied Network Science (2019) 4:64 Page 20 of 25

Table 4 Best mean global performance (NDCG@100) of each model for the Twitter tennis data sets

model RG17 UO17

SW+SO 0.3683 0.3709

SW 0.3446 0.3455

SO 0.3283 0.3261

LINE 0.2946 0.2936

Node2Vec 0.2617 0.2562

decayed indegree 0.2973 0.2548

static indegree 0.2288 0.2073

Best performing methods are marked boldface

For evaluation, we use a single-point variant of NDCG (Pálovics et al. 2014) in which
there is always exactly one relevant item, the actual new edge, and the higher the rank of
the relevant edge, the higher the score. The overall evaluation of the model is the average
of the single-point DCG@20 values over all events in the graph stream.We can also assess
performance trends by computing daily or weekly averages of the DCG. We note that we
ignore reappearing edges and only evaluate the prediction for those edges that appear the
first time in the stream.

Fig. 13 Best model performance over time for RG17 (top) and UO17 (bottom) tennis data sets. For each day
the average NDCG@100 over the four daily snapshots is presented

Béres et al. Applied Network Science (2019) 4:64 Page 21 of 25

Table 5 Similarity list of Rafael Nadal for models based on embeddings generated at 18:00 on May
31 (fourth day of RG17)

SW+SO SW SO LINE Node2Vec

1 robin_haase robin_haase NikaBasil DjokerNole renzolii

2 KikiMladenovic KikiMladenovic Amandine_Hesse benoitpaire Gael_Monfils

3 BMATTEK SJohnson_89 GarbiMuguruza andy_murray KikiMladenovic

4 SJohnson_89 BMATTEK GrigorDimitrov FerVerdasco DjokerNole

5 borna_coric borna_coric DjokerNole GarbiMuguruza dieschwartzman

6 rolandgarros rolandgarros milosraonic tsonga7 tsonga7

7 DjokerNole CaroWozniacki p2hugz robin_haase andy_murray

8 CaroWozniacki DjokerNole AljazBedene delpotrojuan AndreAgassi

9 cicibellis99 cicibellis99 Petra_Kvitova Gael_Monfils keinishikori

10 SaraErrani joaosousa30 rolandgarros CaroWozniacki HoracioZeballos

11 GarbiMuguruza SaraErrani WTA stanwawrinka GarbiMuguruza

12 joaosousa30 GarbiMuguruza ppauline86 Venuseswilliams LuksiMladenovic

13 GrigorDimitrov Venuseswilliams ThiemDomi KikiMladenovic geniebouchard

14 Venuseswilliams GrigorDimitrov KikiMladenovic ThiemDomi NickKyrgios

15 milosraonic renzolii Cibulkova M_Granollers TKokkinakis

16 tsonga7 serenawilliams alizecornet NickKyrgios delpotrojuan

17 jimchardy tsonga7 David__Goffin Petra_Kvitova babolat

18 AnettKontaveit AnettKontaveit Gael_Monfils CaroGarcia Venuseswilliams

19 ThiemDomi kyle8edmund BMATTEK JoKonta91 FerVerdasco

20 David__Goffin BolelliSimone TimeaOfficial richardgasquet1 DavidFerrer87

Active player accounts are highlighted in yellow. With the exception of a few renamed accounts (since 2017) most of the
presented accounts can be still searched for on Twitter

Data sets

We experiment on three standard network data sets from KONECT (Kunegis 2013). We
selected networks from the collection with timestamped edges evenly distributed in time.
For example, we discarded networks that were crawled for several weeks, but a significant
part of their edges appeared within one day due to anomalies in the crawl. We discarded
self-loops and similar edges with the same timestamps from each data set and processed
the links in temporal order.
Enron: The Enron email network consists of emails sent between employees of Enron.

Nodes in the network are individual employees and edges are individual emails. The data
has 308,708 edge events in 365 days between 27,972 nodes with 90,177 unique edges.

Fig. 14 The online link prediction problem. For each edge in the stream, first we query the model to predict
the next interaction. Then we train the model on the observed edge. Whenever node u interacts with
another node, the model may generate different, updated top-k predictions

Béres et al. Applied Network Science (2019) 4:64 Page 22 of 25

Linux kernel: The communication network of the Linux kernel mailing list. The nodes
are people, and each directed edge represents a reply from a user to another. The data has
487,355 edge events in 1380 days between 16,449 nodes with 88,855 unique edges.
Facebook: The nodes of this network are Facebook users, and each edge represents one

post, linking the user writing a post to the user whose wall the post is written on. The data
has 16,868 edge events in 658 days between 16,868 nodes with 61,582 unique edges.

Baseline methods

We compare our methods to three batch baselines: Node2Vec, DeepWalk (DW), and
Graph Factorization (GF). For these three models, we retrained the model over all
past data periodically. We set the periodicity for one day on the Enron data set. We
trained models with weekly batch updates on the Linux and Facebook data sets. Fur-
thermore, we give two online baselines. Besides simply updating the degree of each
node and using it as a predictor, we experimented with the online version of Graph Fac-
torization. This corresponds to the version of StreamWalk where we do not take any
samples but optimize only for the similarity of the node pairs along the edges in the
stream.

Results

We analyze the results for online link prediction for the best parameter setting of each
algorithm. The results are summarized in Table 6 and in Fig. 15. Our key observation is
that the online learning methods, online graph factorization (GF), StreamWalk (SW) and
SecondOrder (SO) show very strong performance compared to the batch methods. Note
that batch methods such as GF read the list of edges several times to perform stochastic
gradient descent, while online methods must process the edges in the order of arrival,
without the possibility to access past edges again.
The surprisingly good performance of the online methods is due to the fact that they

put emphasis on the more recent edges. For gradient descent with negative sampling, the
embedding is always optimized towards the freshly arrived edges, while negative sampling
has the effect of forgetting the past. The advantage of model freshness is strikingly strong
for the link prediction experiments where the low time granularity prequential evaluation
method is used. Onlinemethods also outperform batch embeddings for the Twitter tennis
data sets. Note that ground truth data is only available daily in our collections. Higher
performance difference can be obtained with labels of higher time granularity, as seen for
the link prediction.
When comparing the methods that update the embeddings from an edge stream, online

graph factorization (GF), StreamWalk (SW), and SecondOrder (SO), we observe that they

Table 6 Link prediction results with best parameter settings for each algorithm: batch: Graph
Factorization (GF), Node2Vec, DeepWalk (DW), online: degree, online Graph Factorization (GF), and
the best of StreamWalk (SW) and SecondOrder (SO)

data degree GF DW Node2Vec online GF SW/SO

enron 0.0212 0.0381 0.0259 0.0279 0.0943 0.0955

linux 0.0731 0.0469 0.0482 0.0482 0.1163 0.0997

facebook 0.0092 0.0094 0.0201 0.0201 0.0109 0.0298

Best performing methods are marked boldface

Béres et al. Applied Network Science (2019) 4:64 Page 23 of 25

Fig. 15 Comparison of the batch and online methods for the link prediction problem on the Facebook data
set

perform very similarly and their relative order depends on the data sets. Also note that
GF is a special case of SW with walks of a length of one.

Conclusion
We introduced two online machine learning algorithms to extract temporal node repre-
sentations from graph streams. The StreamWalk algorithm optimizes for the similarity
of node pairs extracted along temporal walks from the data stream, whereas online sec-
ond order similarity efficiently learns neighborhood similarity over graph streams by
MinHash fingerprinting.
We measured the quality of these models in two tasks. In the RG17 and UO17 Twitter

collections, we analyzed the similarity of node representations over time for both online
and static node embedding algorithms. Our methods SW and SO significantly outper-
formed static Node2Vec, LINE, and simple degree related baselines. The combination
of SW and SO achieved superior performance in the supervised evaluation task that we
implemented using daily changing node relevance labels.
In a second experiment, we addressed the temporal link prediction task in three com-

monly used network data sets. We observed that online learning methods are superior
to the snapshot-based batch algorithms. For some graphs, our walk-based embedding
methods performed better than online matrix factorization.

Abbreviations
DCG: Discounted cumulative gain; DW: DeepWalk (Perozzi et al. 2014); GF: Graph factorization (Ahmed et al. 2013); NDCG:
Normalized discounted cumulative gain; RG17: Our twitter data set about Roland-Garros 2017, the French Open Tennis
Tournament; SO: online second order similarity, our model based on temporal node neighborhoods; SW: StreamWalk,
our proposed model based on temporal walks; SW+SO: The combination of StreamWalk and online second order
similarity; TREC: Text retrieval conference; UO17: Our twitter data set about US Open 2017, the United States Open Tennis
Tournament

Acknowledgements
See Fundings section.

Authors’ contributions
FB implemented online second order similarity and measured all algorithms for the similarity search experiments. DMK
implemented online Word2Vec and contributed to link prediction measurements. RP implemented StreamWalk and
contributed to algorithm descriptions. AB contributed with ideas for the algorithms and provided funding. All authors
read and approved the final manuscript.

Béres et al. Applied Network Science (2019) 4:64 Page 24 of 25

Funding
Support from Project 2018-1.2.1-NKP-00008: Exploring the Mathematical Foundations of Artificial Intelligence and the
“Big Data—Momentum” grant of the Hungarian Academy of Sciences.

Availability of data andmaterials
Our data sets and software code are publicly available in the GitHub repository https://github.com/ferencberes/online-
node2vec.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute for Computer Science and Control, Hungarian Academy of Sciences, (MTA SZTAKI) Kende Street 13-17, H1111
Budapest, Hungary. 2Eötvös University Budapest Pázmány s. 1, H-1117 Budapest, Hungary. 3Széchenyi University, Gyõr
Egyetem tér 1, H-9026 Gyõr, Hungary. 4Department of Computer Science, Stanford University, 353 Serra Mall Stanford CA
94305 USA.

Received: 17 April 2019 Accepted: 8 July 2019

References
Aggarwal C, Subbian K (2014) Evolutionary network analysis: A survey. ACM Comput Surv (CSUR) 47(1):10
Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola AJ (2013) Distributed large-scale natural graph

factorization. In: Proceedings of the 22nd International Conference on World Wide Web. ACM, Geneva. pp 37–48
Al-Maskari A, Sanderson M, Clough P (2007) The relationship between IR effectiveness measures and user satisfaction. In:

Proc. SIGIR. ACM, New York. pp 773–774
Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS. Neural

Information Processing Systems, San Diego. pp 585–591
Béres F, Pálovics R, Oláh A, Benczúr AA (2018) Temporal walk based centrality metric for graph streams. Appl Netw Sci

3(1):32
Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) Moa: Massive online analysis. J Mach Learn Res 11(May):1601–1604
Broder AZ, Charikar M, Frieze AM, Mitzenmacher M (2000) Min-wise independent permutations. J Comput Syst Sci

60(3):630–659
Cao S, Lu W, Xu Q (2015) Grarep: Learning graph representations with global structural information. In: Proceedings of the

24th ACM International on Conference on Information and Knowledge Management. ACM, New York. pp 891–900
Clarke CL, Craswell N, Soboroff I (2004) Overview of the trec 2004 terabyte track. In: TREC. NIST 100 Bureau Drive,

Gaithersburg Vol. 4. p 74
Dawid AP (1984) Present position and potential developments: Some personal views: Statistical theory: The prequential

approach. J R Stat Soc Ser A Gen 147(2):278–292
De Francisci Morales G, Bifet A, Khan L, Gama J, Fan W (2016) Iot big data streammining. In: Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York. pp 2119–2120
Fogaras D, Rácz B (2005) Scaling link-based similarity search. In: Proceedings of the 14th World Wide Web Conference.

International World Wide Web Conferences Steering Committee Republic and Canton of Geneva, Switzerland.
pp 641–650

Frigó E, Pálovics R, Kelen D, Benczúr AA, Kocsis L (2017) Online ranking prediction in non-stationary environments. In:
Proceedings of the 1st Workshop on Temporal Reasoning in Recommender Systems, Co-located with 11th
International Conference on Recommender Systems. CEUR Workshop Proceedings Vol-1922

Gama J, Sebastião R, Rodrigues PP (2013) On evaluating stream learning algorithms. Mach Learn 90(3):317–346
Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of M

achine Learning Research Vol. 9. pp 249-256
Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM, New York. pp 855–864
Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: NIPS. pp 1024–1034
Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: Methods and applications. NIPS Neural

Information Processing Systems, San Diego
Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125
Juang C.-F., Lin C.-T. (1998) An online self-constructing neural fuzzy inference network and its applications. IEEE Trans

Fuzzy Syst 6(1):12–32
Kaji N, Kobayashi H (2017) Incremental skip-gram model with negative sampling. In: Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen.
pp 363–371

Kumar R, Novak J, Tomkins A (2010) Structure and evolution of online social networks. In: Link Mining: Models,
Algorithms, and Applications. Springer, New York. pp 337–357

Kunegis J (2013) Konect: the koblenz network collection. In: Proceedings of the 22nd International Conference on World
Wide Web. ACM, Geneva. pp 1343–1350

Lathia N, Hailes S, Capra L (2009) Temporal collaborative filtering with adaptive neighbourhoods. In: Proceedings of the
32nd International ACM SIGIR Conference. ACM, New York. pp 796–797

Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Technol
58(7):1019–1031

https://github.com/ferencberes/online-node2vec
https://github.com/ferencberes/online-node2vec

Béres et al. Applied Network Science (2019) 4:64 Page 25 of 25

Ling G, Yang H, King I, Lyu MR (2012) Online learning for collaborative filtering. In: The 2012 International Joint
Conference on Neural Networks (IJCNN). IEEE. pp 1–8

McGregor A (2014) Graph stream algorithms: a survey. ACM SIGMOD Rec 43(1):9–20
Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint.

arXiv:1301.3781
Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their

compositionality. In: NIPS. Neural Information Processing Systems, San Diego. pp 3111–3119
Moody J (2002) The importance of relationship timing for diffusion. Soc Forces 81(1):25–56
Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018) Continuous-time dynamic network embeddings. In:

Companion Proceedings of the The Web Conference 2018. International World Wide Web Conferences Steering
Committee, Geneva. pp 969-976

Nie F, Zhu W, Li X (2017) Unsupervised large graph embedding. In: Thirty-first AAAI Conference on Artificial Intelligence.
AAAI Press, Palo Alto

Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York.
pp 1105–1114

Pálovics R, Benczúr AA, Kocsis L, Kiss T, Frigó E (2014) Exploiting temporal influence in online recommendation. In:
Proceedings of the 8th ACM Conference on Recommender Systems. ACM, New York. pp 273–280

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York. pp 701–710

Press O, Wolf L (2016) Using the output embedding to improve language models. CoRR abs/1608.05859:157–163
Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J (2018) Network embedding as matrix factorization: Unifying deepwalk, line, pte,

and node2vec. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM,
New York. pp 459–467

Rozenshtein P, Gionis A (2016) Temporal pagerank. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer International Publishing Switzerland, Cham. pp 674–689

Sarma AD, Gollapudi S, Panigrahy R (2011) Estimating pagerank on graph streams. J ACM JACM 58(3):13
Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: Large-scale information network embedding. In: Proceedings

of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering
Committee, Geneva. pp 1067–1077

Wang P, Qian Y, Soong FK, He L, Zhao H (2015) A unified tagging solution: Bidirectional lstm recurrent neural network
with word embedding. arXiv preprint. arXiv:1511.00215

Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S (2017) Community preserving network embedding. In: Thirty-First AAAI
Conference on Artificial Intelligence. AAAI Press, Palo Alto

Wei X, Xu L, Cao B, Yu PS (2017) Cross view link prediction by learning noise-resilient representation consensus. In:
Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, Geneva. pp 1611–1619

Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1):69–101
Yu Y, Yao H, Wang H, Tang X, Li Z (2018) Representation learning for large-scale dynamic networks. In: International

Conference on Database Systems for Advanced Applications. Springer, Cham. pp 526–541
Zhou C, Liu Y, Liu X, Liu Z, Gao J (2017) Scalable graph embedding for asymmetric proximity. In: Thirty-First AAAI

Conference on Artificial Intelligence. AAAI Press, Palo Alto
Zhu Y, Shasha D (2002) Statstream: Statistical monitoring of thousands of data streams in real time. In: Proceedings of the

28th International Conference on Very Large Data Bases. VLDB Endowment, Franklin. pp 358–369
Žliobaite I, Bifet A, Gaber M, Gabrys B, Gama J, Minku L, Musial K (2012) Next challenges for adaptive learning systems.

ACM SIGKDD Explor Newsl 14(1):48–55
Zuo Y, Liu G, Lin H, Guo J, Hu X, Wu J (2018) Embedding temporal network via neighborhood formation. In: Proceedings

of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, New York.
pp 2857–2866

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Abstract
	Introduction
	Related works
	Dynamic vector space embedding methods in edge streams
	Similarity based on reachability through short temporal walks
	Temporal walk sampling from edge stream
	The implementation of the StreamWalk algorithm

	Online learning of second order node similarity
	Approximation by fingerprinting
	Algorithm for online learning second order similarity

	Similarity search experiments
	Tennis tournament twitter collection data
	Evaluation metrics
	Baseline models
	Results

	Online link prediction
	Data sets
	Baseline methods
	Results

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

