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Abstract: Big data analysis has an increasing importance in the field of the autonomous
vehicles. It is related to vehicular networks and individual control. The paper proposes the
improvement of a lateral autonomous vehicle control design through big data analysis on
the measured signals. Based on the data a decision tree is generated by using the C4.5 and
the MetaCost algorithms. It results in the regions of vehicle dynamic states and guarantees
the tracking of the autonomous vehicle. The lateral control problem is formed in an MPC
(Model Predictive Control) structure, in which the results of the big data analysis are built
as constraints. The efficiency of the proposed method is illustrated through a comparative
simulation example through a high-fidelity vehicle control software.
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1. INTRODUCTION AND MOTIVATION

A recent technology in intelligent transportation systems
and autonomous vehicles is the processing of big data
information. Both semi-autonomous and autonomous ve-
hicle systems apply several on-board sensors of vehicle
motion dynamics through their enhanced sensor networks,
while they also require various signals from the road and
traffic environments. It is predicted that the autonomous
vehicle can generate over 1 Terabyte data per hour, see
e.g. Xu et al. [2018]. However, the storage and processing
of big data is a future technological challenge, see Daniel
et al. [2017], Sherif et al. [2017]. Numerous measured data
concerning autonomous vehicles are used for different pur-
poses in driverless vehicles and intelligent traffic control.

One of the most important applications of big data is the
coordination of autonomous vehicles in vehicular networks.
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Cheng et al. [2018] reviewed the relationship between ve-
hicle ad-hoc networks and big data, and the enhancement
of the communication in the network through machine
learning schemes was presented. Lin et al. [2017] proposed
a social-based localization algorithm that used location
prediction to assist in global localization in vehicular
networks. Amini et al. [2017] proposed a comprehensive
and flexible architecture based on a distributed computing
platform for real-time traffic control. The architecture was
based on a systematic analysis of the requirements of
the existing traffic control systems. Traffic flow prediction
using a deep-learning algorithm was presented in Lv et al.
[2015]. In that research a deep architecture model was
applied using autoencoders as building blocks to represent
traffic flow features for prediction. Similarly, Lasso regres-
sion on big data was used for traffic flow prediction in Li
et al. [2015]. Cell phone information-based big data analy-
sis and control for transportation purposes were proposed
in Dong et al. [2015].

Another important field of big data is its usage in indi-
vidual autonomous vehicle control systems. First, it can
be used for prediction and estimation purposes. Big data
provides large amount of relevant information about the
environment to improve perception as found in Xu et al.
[2018]. Moreover, big data have been used in the predic-
tion of vehicle slip through the combination of individual
measurements of the vehicle and database information, see
Jeon et al. [2015], Fényes et al. [2018a]. Lee and Wu [2015]
utilized data-mining algorithms to process electric vehicle
battery data for energy-consumption and driving range
purposes. Secondly, big data can be the part of the control
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strategy. An optimal trajectory selection strategy focusing
on the safety of the autonomous vehicles using cloud
database was proposed by Najada and Mahgoub [2016].
Zhu et al. [2016] presented the idea of the path planning
strategy of public vehicle systems which use traffic data.
The processing of the measured signals was also used to
approximate the lateral stability domain of the vehicles,
see some preliminary results in Fényes et al. [2018b]. Al-
though several results about the application of big data in
the autonomous vehicles and vehicular networks have been
proposed in the literature, the possible benefits of big data
are not thoroughly utilized in the field of vehicle control
design.

The contribution of the paper is the improvement of lat-
eral autonomous vehicle control design through vehicle
dynamic constraints from the big data analysis on the mea-
sured signals. The control problem is formed in a Model
Predictive Control (MPC) structure, which must guar-
antee the path tracking of the autonomous vehicle. The
motivation for MPC formulation is its flexible structure in
the lateral vehicle control design. Although MPC has some
weaknesses, it provides a systematic design procedure and
the constraints can easily be incorporated as it is sum-
marized in Dixit et al. [2018]. The numerous measured
signals (e.g. acceleration, velocity, GPS position, heading
angle, route information etc.) result in big data, which are
processed through the C4.5 machine learning algorithm
to generate a decision tree. The tree provides information
about the regions of vehicle dynamic states, in which the
performance of path tracking is acceptable. The advantage
of the proposed method is that, although it is difficult to
determine these regions analytically, the big data analysis
provides an approximation of them. The resulting regions
from the decision tree analysis are incorporated in the
MPC control as constraints.

The structure of the paper is the following. Section 2
presents the method of data collection and a brief intro-
duction of C4.5 and MetaCost algorithms. These meth-
ods yield decision trees, whose incorporation in the MPC
design is proposed in Section 3. Section 4 illustrates the
application of the control method on a lateral autonomous
vehicle control problem, in which the efficiency of the im-
provement in a comparative study is highlighted. Finally,
the contributions of the paper and the further challenges
are summarized in Section 5.

2. DESCRIPTION OF BIG DATA ANALYSIS

In this section the method of big data analysis is presented,
which yields a decision tree based on collected data.
The data is provided by the sensors of the autonomous
vehicles, such as inertial and gyro sensors, GPS velocity
measurement and wheel speed sensors. Moreover, the big
data analysis contains scenarios which are considered to be
acceptable or unacceptable from the viewpoint of the path
tracking of the autonomous vehicle. These scenarios are
called good or bad instances in the dataset. The purpose
of the decision tree generation is to find the set of relations
with which the a current scenario can be classified as
acceptable or unacceptable.

Each scenario requires a definition of a criterion to be
acceptable. However, the path tracking scenarios demon-

strate that it is difficult to find an appropriate criterion.
For example, if the vehicle reaches an unstable state, the
error in path tracking increases significantly. The criterion
of acceptability cannot be clearly identified as a stability
issue, as it is illustrated by the following counterexamples.

• It is difficult to determine the instability of the ve-
hicle. Due to the nonlinearities in the lateral vehicle
models the stability regions are generally computed
on constant longitudinal velocities, see e.g. Sadri and
Wu [2013], Masouleh and Limebeer [2018]. However,
sometimes the instability of the vehicle leads to a
significant reduction in the velocity, at which the sta-
bility of the vehicle is restored. Thus, if the stability of
the vehicle is evaluated depending on the velocity, the
scenario is only locally unstable, but globally stable.

• Moreover, the increasing error in the path tracking
of the autonomous vehicle is caused by deficiencies
in the lateral control. In this case the error can be
handled as a performance problem, not a stability
issue. However, it may also depend on the designed
controller, not only on the vehicle itself.

These examples illustrate that it may be difficult to find an
appropriate criterion to evaluate the acceptability of the
path tracking in a given database. The approach of this
paper is based on the idea that the motion of the vehicle
is generally acceptable for the human passengers in the
linear region of the tire force characteristics. In this case
the side-slip angle of the axles can provide information
about the characteristics of the motion. Thus, the defined
criterion expresses the similarity between the current side-
slip of the front axle (1 + α1) and the expected side-slip
based on the linear formulation of the vehicle (Fényes et al.
[2018b]):

ith instance is classified as acceptable

if − ε < |1 + α1|
|1 + δ − β − l1ψ̇

vx
|
− 1 ≤ ε, (1)

Otherwise, ith instance is unacceptable.

where ε is an experimentally-defined parameter and the
side-slip angle of the front wheels in the linear modeling

of the vehicle is approximated as α1 = δ − β − l1ψ̇
vx

, where
δ is the steering angle, l1 is the distance between the front
wheels and the vehicle center of gravity, ψ̇ denotes the
yaw-rate, β is the side-slip angle of the vehicle and vx is
the longitudinal velocity. Based on experience the criteria
(1) provide a suitable evaluation of the vehicle motion
regarding to the path tracking. However, the definition of
a more accurate vehicle dynamic criterion is a challenge in
the application of big data analysis.

Generation of the decision tree

The result of the data collection and the evaluation based
on (1) is a data set S, which is used for the generation of
the decision tree T . The inputs of the decision tree are the
longitudinal speed, the yaw-rate angle, the side-slip angle
of the vehicle and the adhesion coefficient of the road (µ),
while the output is the result of the classification. In this
paper the generation is based on the C4.5 machine learning
algorithm, whose result is improved through the MetaCost
technique.
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The C4.5 decision tree algorithm is one of the most widely-
used machine learning classifiers. The original algorithm
was proposed by Hunt [1962]. Just as other machine
learning algorithms, the C4.5 requires two sets of data:
a training set and a test set. The training set is based
on the collected data set, and it is used for building the
decision tree, while the test set is used for the evaluation.
The purpose of the C4.5 algorithm is to create a set
of rules (decision tree), by which the instances can be
correctly classified according to the selected dependent
(class) attribute. A decision tree consists of leaves, nodes
and branches. A node is associated with a condition (e.g.
current value of an attribute is smaller/bigger than a given
value). A branch is the outcome of a node (the condition
is satisfied or not) and leads to another node or to a leaf.
Finally, a leaf determines the class of the instance.
Briefly, the C4.5 algorithm works in the following way:

• Let S denote the training set, which contains all of the
measured attributes. The disorder (or uncertainty) of
the dataset can be expressed as the entropy of the
data. The entropy of the set is calculated as:

E(S) =

n∑
i=1

Pilog2Pi, (2)

where Pi denotes the ratio of the instances classified
as class i and n is the number of the classes.

• The C4.5 algorithm tries to minimize the entropy
of each subset, which is created from the original
dataset. The entropy difference between the new
subsets and the original set is called gain information
and can be calculated as:

G(S,A) = E(S)−
k∑
i=1

(
|Si|
|S|

)
E(Si), (3)

where A is the chosen attribute and Si are the created
subsets and k is the number of the subsets.
• Moreover, the method calculates the entropy of all

created subsets, related to the number of instances in
subsets. It is called split information and it can be
determined as

SI(S,A) = −
k∑
i=1

|Si|
|S|

log2

(
|Si|
|S|

)
. (4)

• Finally, the optimization problem is to maximize the
ratio of the gain information and the split information

max

(
G(S,A)

SI(S,A)

)
. (5)

The result of the optimization is the decision tree T . The
background of the applied machine learning methods and
the detailed description of the C4.5 are in Quinlan [1993].

The evaluation of the decision tree is an important step
of the generation procedure. Several methods have been
developed for this task, e.g. MetaCost algorithm (Domin-
gos [1999]), Stratification, or Decision Trees with Minimal
Costs (Ling et al. [2004]). The main advantage of the
selected MetaCost algorithm is that it does not require
a specified classifier, it can work with any classifier. The
evaluation of T can be performed through various mea-
sures, e.g. precision, recall, accuracy, f-measure etc. These
measures use slightly different aspects to determine the

acceptability of the produced tree. Nonetheless, the easiest
way to evaluate a decision tree is the examination of its
confusion matrix. The confusion matrix summarizes the
correctly and incorrectly classified instances of the test set.

Finally, the C4.5 and the MetaCost algorithms yield an
iterative tree generation method, in which the MetaCost
algorithm incorporates the C4.5 algorithm. The core of
the method is to solve the optimization problem, which
minimizes the misclassified instances

min

(∑
j

P (j|x)C(k, j)

)
. (6)

P (j|x) represents the probabilities of the classes through
T , which are the elements of the confusion matrix

P (j|x) =
1∑
i

1

∑
i

P (j|x, T ), (7)

where x is a given instance and j is the given class. In
(6) P (j|x) are weighted through the cost matrix C, which
guarantees the minimization of the misclassified instances.

3. PREDICTIVE CONTROL DESIGN USING
DECISION TREES

In this section the lateral control design of the autonomous
vehicle for a path tracking is presented. During the design
the MPC structure is used, in which the result of the
decision tree through the constraints is incorporated. The
designed controller must adapt to the varying parameters,
such as the adhesion coefficient and longitudinal velocity.
The control design is based on the lateral dynamics of the
vehicle, which consists of three equations:

mvx(ψ̇ + β̇) = C1α1 + C2α2, (8a)

Jψ̈ = C1α1l1 − C2α2l2, (8b)

v̇y = vx(ψ̇ + β̇), (8c)

where J is the yaw inertia, m is the mass of the vehicle
Ci represents cornering stiffness on the front and the rear
axles and li is the distance between vehicle center of
gravity and the wheels and α1 = δ− β − ψ̇l1/vx and α2 =

β+ψ̇l2/vx are the tire side-slip angles. The lateral velocity
of the vehicle is vy, from which the lateral displacement
y can be computed. The equations can be transformed
into a state space representation, whose state vector is

x =
[
β ψ̇ vy y

]T
and the state-space representation is

ẋ = Ax+Bu, (9)

where u is the steering angle.

The MPC control design requires a discrete-time model of
the continuous system, therefore the presented state-space
representation is discretized using the sampling time Ts.
The discrete state-space representation is:

x(k + 1) = φx(k) + Γu(k), (10)

where φ = eATs and Γ =
(k+1)Ts∫
kTs

eA((K+1)Ts−τ)Bdτ . The

motion of the vehicle is predicted for n steps ahead of the
vehicle. Using (10) the prediction is proposed as
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ypred(k, n) =


y(k + 1)
y(k + 2)

...
y(k + n)

 =

0
0
0
1


T

φ
φ2

...
φn

x(k)+ (11)

+

0
0
0
1


T


Γ 0 · · · 0
φΓ Γ · · · 0
...

. . .
. . .

...
φn−1Γ φΓ · · · Γ




u(k)
u(k + 1)

...
u(k + n− 1)

 .

The purpose of the path tracking of the vehicle is the
minimization of the tracking error ey, which is defined as

ey(k, n) = yref (k, n)− ypred(k, n), (12)

where the reference lateral position of the vehicle on the
route ahead yref (k, n) is defined by the road geometry.
The minimization of the tracking error can be guaranteed
by a cost function

J =
1

2
ey(k, n)TQey(k, n) + U(k, n)TRU(k, n), (13)

where U(k, n) = [u(k) . . . u(k + n− 1)]
T

. Moreover, Q
and R are weighting matrices, which guarantee a balance
between lateral error minimization and control actuation.
Using (11) and (12) the cost function can be transformed
to

J = U(k, n)TσU(k, n) + νTU(k, n), (14)

where σ and ν are matrices. The core of the MPC design
problem is to find a solution on the quadratic optimization
task

min
U(k,n)

U(k, n)TσU(k, n) + νTU(k, n). (15)

The computed solution U(k, n) of (15) guarantees the
balance between the tracking error and the value of the
steering angle. However, it is possible that the resulting
vehicle motion is not acceptable from the viewpoint of
human passengers. Therefore, the design procedure is
improved through the consideration of the decision tree.
In the relationships in the decision tree the acceptability
of the control input can be guaranteed.

The set of acceptable states in the MPC design through the
limitation of control input are incorporated. It is defined
the upper Umax and lower Umin limits on the control input
sequence U(k, n) such as

Umax = [umax . . . umax]
T
, Umin = [umin . . . umin]

T
,

(16a)

and the sizes of both vectors are n − 1 × 1. The upper
and lower limits must guarantee that the yaw rate and
the side-slip angle of the vehicle are inside of Rgood on the

horizon n ahead. The prediction of ψ̇(k + 1) . . . ψ̇(k + n)
and β(k + 1) . . . β(k + n) are computed as

ψ̇pred(k, n) =


ψ̇(k + 1)

ψ̇(k + 2)
...

ψ̇(k + n)

 =

0
1
0
0


T

φ
φ2

...
φn

x(k)+ (17a)

+

0
1
0
0


T


Γ 0 · · · 0
φΓ Γ · · · 0
...

. . .
. . .

...
φn−1Γ φΓ · · · Γ




ui(k)
ui(k + 1)

...
ui(k + n− 1)

 ,

βpred(k, n) =


β(k + 1)
β(k + 2)

...
β(k + n)

 =

1
0
0
0


T

φ
φ2

...
φn

x(k)+ (17b)

+

1
0
0
0


T


Γ 0 · · · 0
φΓ Γ · · · 0
...

. . .
. . .

...
φn−1Γ φΓ · · · Γ




ui(k)
ui(k + 1)

...
ui(k + n− 1)

 ,
where ui represents umin or umax. Moreover, it is necessary
to select umin and umax, so that Rgood contains the entire
trajectory:

maxumax s.t. ψ̇pred(k, n), βpred(k, n) ∈ Rgood, (18a)

minumin s.t. ψ̇pred(k, n), βpred(k, n) ∈ Rgood. (18b)

The result of (18a) is formed in a constraint on the control
input U(k, n)

MU(k, n) 5 H, (19)

where

M =

[
I 0
0 −I

]
, H =

[
Umax
−Umin

]
. (20)

Finally, the improved MPC optimization task is formed
using (15) and (19)

min
U(k,n)

U(k, n)TσU(k, n) + νTU(k, n) (21a)

s.t.

MU(k, n) 5 H. (21b)

The result of the optimization is U(k, n), and it is nec-
essary to actuate u(k) = δ(k) at the time step k of the
computation.

4. ILLUSTRATION OF THE PREDICTIVE
CONTROL ALGORITHM

The proposed decision tree generation and improved MPC
control design methods are presented through a simula-
tion example. First, the results of the decision tree are
presented, while secondly, the efficiency of the control
algorithm is illustrated.

Results of the big data analysis

In this paper the data set for the analysis is provided by the
high-fidelity car simulator CarSim. Through this software
the required data can be collected, as detailed below.

(1) At the initial step, it is necessary to define the vehicle
dynamic environment of the simulation. It is neces-
sary to follow the path under various circumstances,
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in which the yaw rate can vary between 0.1−0.5rad/s,
vx = 10 . . . 130km/h and the adhesion coefficient is
between 0.1 and 1. These wide ranges of parameters
allow the vehicle to reach even extremely high states.

(2) Furthermore, it is necessary to design a lateral path
following controller, by which the selected route can
be performed. For data collection the conventional
MPC design is used, see (15).

(3) In the simulations the following parameters are mea-
sured: longitudinal velocity, yaw rate, the side slip of
vehicle, the side slip of the wheels and the adhesion
coefficient.

In this way, more than 10 million instances have been
collected through the CarSim simulation software. The col-
lected dataset contains both acceptable and unacceptable
instances from the viewpoint of path tracking. E.g., the
vehicle may leave the road because of the low adhesion
coefficient, which is unacceptable.

The data set S is processed through the C4.5 and Meta-
Cost methods, as it is presented in Section 2. In this
paper, the machine learning software WEKA is used, in
which the algorithm has been implemented, see Witten
and Frank [2005]. The parameters of the generated deci-
sion trees using the C4.5 can be found in Table 1. The
first column in Table 1 shows the minimum number of
instances which are contained by a leaf. The second and
third columns give the percentage of the correctly classified
instances and the percentage of the misclassified ’bad’
(unacceptable) instances. The sizes of the produced trees
are in the last column. It can be seen that the trees with
more minimum objects have lower accuracy but their sizes
are smaller. While the total accuracy (correctly classified
instances) of the trees is above 90%, the percentages of
the misclassified ’bad’ instances are between 16.69% and
42.63%. The misclassification of the ’bad’ instances can
be dangerous from a vehicle dynamic viewpoint, because
a scenario with low performance is evaluated as acceptable.
Thus, is it is necessary to minimize the percentage of this
kind of misclassification, which is the goal of the MetaCost
algorithm.

Table 1. Relationship between the tree size and
the object number

Min. Objects Corr. Class. Inst. Misclass. ’bad’ Inst. Size

2 95.5729% 16.69% 4029

20 95.0298% 19.33% 1867

200 93.4067% 28.43% 367

2000 91.6381% 42.63% 39

The MetaCost algorithm uses a cost matrix to determine
suitable cost function. In this case, the dataset has only
two classes, therefore the cost matrix is formed as

C =

[
0 Cg
Cb 0

]
, (22)

where Cb weights the misclassification of ’bad’ instances
and Cg weights the misclassification of ’good’ instances.
Since the goal is to reduce the percentage of the misclas-
sified ’bad’ instances, Cg is set at 1 and Cb is increased

gradually from 1 to 5. The results of the C4.5 with Meta-
Cost algorithm are summarized in Table 2.

Table 2. Relationship between the tree size and
the object number

Cb Corr. Class. Inst. Missclass. ’bad’ Inst. Size

1 91.6381% 42.63% 39

2 91.4861% 39.18% 33

3 88.0597% 24.01% 25

4 88.0627% 23.99% 21

5 83.3101% 14.97% 23

In this case the minimum object number is fixed at 2000,
since that tree must be reasonable size to be used in the
control design. Table 2 shows that the new trees have
slightly lower accuracy but their percentages of misclas-
sification of the class ’bad’ are significantly improved.
Moreover, the decision trees with higher cost matrix have
higher accuracy at the class ’bad’, but their total accuracy
decreases. For safety reasons, in the rest of the paper, the
decision tree with the lowest misclassification percentage
is used.

Results of the MPC design

In the rest of the section a comparative simulation example
of the proposed control system is presented. The control
system is implemented in CarSim, which works together
with the Matlab/Simulink. In the simulation scenarios
a mid-size passenger vehicle is selected, whose mass is
2015kg. In the simulations, the car must follow a prede-
fined path, which contains various road segments, such as
a sharp bend. The friction coefficient between the road and
the tires is fixed to 0.5 during the simulations. However,
the velocity of the vehicle varies during the maneuver as
shown in Figure 4 (a).
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(a) Velocity of the vehicle
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(b) A sharp bend of the path

Fig. 1. Velocity and path of the vehicle

In the example two simulation scenarios are compared. In
the first simulation, the car is controlled by the conven-
tional MPC controller (15), while in the second simulation
the vehicle is driven by the improved MPC control system
(21a). It means that in the first simulation example the
information about the acceptable states through the deci-
sion tree is not considered. Figure 4 (b) shows the paths
of the vehicle and the original track. It can be seen that
the vehicle which is controlled by the conventional MPC
controller is not able to follow the trajectory and its lateral
error is above > 5m. In contrast, the car controlled by the
improved MPC controller accurately follows the path and
its lateral error is below < 0.5m.
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Figure 4 (a) illustrates the actuated steering angles which
are computed by the control systems. In the case of the
conventional controller, the maximum of the realized steer-
ing angle is above |δmax| > 0.3rad, which is close to
the physical limit of the steering system. The improved
MPC system computes smaller inputs (|δmax| < 0.07rad)
compared to the previous case. The reason for this ten-
dency is that the control input of the extended system is
continuously bounded by the constraint which is derived
through the current attributes and circumstances.
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Fig. 2. Steering angle and its bounds

The upper and lower bounds of the extended control
system are depicted in Figure 4 (b). Except for a time
section between 28 − 42s, the variation of the upper
and lower bounds are small. However, between 28 − 42s
the lower bound gradually increases, which results in a
significant limit for the steering angle, as shown in Figure
4 (b).

5. CONCLUSIONS

The paper has presented a new application of decision
trees in autonomous vehicle control design. It presents a
big data-based analysis of the autonomous vehicles using
the iterative method of the decision tree classifier the
C4.5 extended with the cost-sensitive algorithm MetaCost.
Moreover, the resulting decision trees are built into the
control system, which is formed in a model predictive
structure. As a result of the decision tree generation, the
MPC problem is improved by using constraints on the
control actuation, which is related to the steering angle on
the vehicle. Finally, the efficiency of the proposed control
system has been demonstrated through a complex simu-
lation example using the CarSim simulation environment.
The comparative simulations show the control input lim-
itations, the significant reduction of the lateral error and
the steering angle.
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