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Abstract. Numerous clinical observations have confirmed that 
breakpoint cluster region-abelson fusion oncoprotein tyrosine 
kinase inhibitors used in leukemia treatment alter bone physi-
ology in a complex manner. The aim of the present study was 
to analyze the whole transcriptome of cultured murine osteo-
blasts and determine the changes following treatment with 
imatinib and nilotinib using Sequencing by Oligonucleotide 
Ligation and Detection next generation RNA sequencing. This 
study also aimed to identify candidate signaling pathways 
and network regulators by multivariate Ingenuity Pathway 
Analysis. Based on the right‑tailed Fisher's exact test, signifi-
cantly altered pathways including upstream regulators were 
defined for each drug. The correlation between these pathways 
and bone metabolism was also examined. The preliminary 
results suggest the two drugs have different mechanisms 
of action on osteoblasts, and imatinib was shown to have a 
greater effect on gene expression. Data also indicated the 
potential role of a number of genes and signaling cascades that 
may contribute to identifying novel targets for the treatment of 
metabolic bone diseases.

Introduction

Tyrosine kinase inhibitors (TKI) have become a widely used 
class of drugs for the treatment of a range of solid tumors and 
hematological malignancies. In 2001, imatinib was the first TKI 
to be registered for the targeted therapy of chronic myelogenous 
leukemia (CML) (1). Imatinib is an ATP competitive inhibitor 
of the tyrosine kinase activity of abelson (ABL) kinase and 
the breakpoint cluster region-abelson fusion oncoprotein 
(BCR‑ABL). Whereas ABL is found in the majority of cells, 
the fusion protein is only expressed in leukemic cells. Imatinib 
arrests proliferation and induces the apoptosis of CML cells. 
During long‑term imatinib therapy, clinicians observed that a 
number of patients became resistant to the treatment. Therefore, 
a more selective and potent BCR‑ABL inhibitor molecule, nilo-
tinib, was developed, which was able to overcome resistance in 
numerous cases (2,3).

A number of TKIs have demonstrated marked effects 
on bone homeostasis and the remodeling balance. Imatinib 
directly inhibits osteoclastogenesis and the bone resorp-
tion activity of osteoclasts, and also reduces the survival of 
osteoclast precursors and mature osteoclasts (4‑8). Based 
on in vitro studies, imatinib reduces osteoblast prolif-
eration (3‑7,9) and survival, but increases osteoblast cell 
differentiation (3,8). Similarly, nilotinib also effectively 
inhibits the proliferation rate of osteoblasts (3,10). However, 
nilotinib increases the secretion of osteoprotegerin (OPG) 
and decreases the expression of receptor activator of nuclear 
factor κ‑B ligand (RANKL) (3). Other studies have shown 
increased osteoblast‑specific gene expression, cell activity 
and mineralization induced by imatinib (3‑9). It should be 
noted that the examined TKIs have differing effects on osteo-
blast function. The described differences may be dependent 
upon the concentration of the utilized TKI, the maturation 
stage of the osteoblasts and the distribution of various 
TKI‑targeted receptors on cells (8,10,11). The direct influ-
ence of imatinib on osteoclasts and osteoblasts results from 
off-target effects on cell surface receptor tyrosine kinases 
[such as colony-stimulating factor 1 receptor, stem cell 
growth factor receptor (c‑KIT), and platelet‑derived growth 
factor receptor (PDGFR)] and carbonic anhydrase II (3,10). 
Nilotinib is a second‑generation TKI with greater selectivity 
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towards ABL/BCR‑ABL over other tyrosine kinases (such as 
PDGFR, c‑KIT and discoidin domain receptor kinases).

The clinical effects of TKI administration also show 
differences in bone metabolism. Changes in trabecular bone 
volume (TBV) were observed in patients with CML after 
imatinib therapy (7,10,12). TBV was measured in 17 patients 
with CML prior to treatment and 2‑ and 4‑years after imatinib 
treatment. In 8 patients, there was a significant increase 
in TBV, although, serum phosphate and calcium levels of 
9 participants were reduced (7). According to numerous 
clinical studies, hypophosphataemia (3,7,13-16), hypocal-
cemia (13‑16) and hyperparathyroidism (13‑16) have been 
documented during TKI administration. Vandyke et al (12) 
reported elevated bone mineral density (BMD) and bone 
volume:trabecular volume ratio at the femoral neck in 
imatinib‑treated CML patients. During the 48‑month obser-
vation period, trabecular bone area (TBA%) was decreased 
in 10 patients and increased in 24 patients (17). In other 
studies, diminished serum osteocalcin and N‑telopeptide 
of type I collagen levels, as well as lower bone mineral 
content and impaired bone remodeling have also been 
reported (12‑14,18).

Currently, there are numerous contradictory results 
regarding the effects of imatinib and nilotinib on bone metabo-
lism, and there is no clear evidence to explain the results, either 
at the cellular level or in clinical observations. Furthermore, 
there is limited comprehensive transcription data available in 
relation to bone cell and/or tissue function and TKI treatment. 
Only targeted bone‑specific gene expression [e.g. osteocalcin, 
alkaline phosphatase, OPG, RANKL and bone morphogenetic 
protein 2 (BMP2)] changes have been examined. Therefore, 
the aim of the present study was to analyze the whole tran-
scriptome of cultured murine osteoblasts following imatinib 
and nilotinib treatment using Sequencing by Oligonucleotide 
Ligation and Detection (SOLiD) next generation RNA 
sequencing. This study aimed to identify candidate signaling 
pathways and network regulators by multivariate Ingenuity 
Pathway Analysis (IPA).

Materials and methods

In vitro cell culture. The MC3T3-E1 murine preosteoblast 
cell line was obtained from the American Type Culture 
Collection (Rockville, MD, USA). The cells were cultured in 
Minimum Essential Medium Eagle α‑Modification (α-MEME, 
Sigma‑Aldrich, St. Louis, MO, USA) supplemented with 
0.292 g/l L‑glutamin (Sigma‑Aldrich), 5% fetal calf serum 
(FCS, Sigma‑Aldrich) and 1% antibiotic solution (peni-
cillin‑streptomycin sulfate‑amphotericin B) (Sigma‑Aldrich). 
Cells were incubated at 37˚C in a 5% CO2 atmosphere and 
78% humidity. The cultured medium was changed twice a 
week. Cells were passaged when grown to 70% confluence 
using 0.25% Trypsin EDTA solution (Sigma‑Aldrich). All 
experiments were conducted with MC3T3‑E1 cells between 
passages 8 and 15. All used reagents were of analytical quality.

Effects of imatinib and nilotinib on cell viability. In the in vitro 
system, the following three sample groups were examined: 
Imatinib‑treated, nilotinib‑treated and untreated (control) 
osteoblast cell cultures.

The adequate incubation time and drug concentration 
were defined using a cell viability assay. Different imatinib 
(Glivec/Gleevec, STI571, CGP 57148B; Novartis, Basel 
Switzerland) and nilotinib (Tasigna; Novartis) concentra-
tions (30 nM‑20 µM) were administered to 40% confluent 
MC3T3‑E1 cells for various incubation times (1‑6 days) in 
96‑well plates. After removal of culture medium, cells were 
fixed with 100 µl/well trichloroacetic acid (Sigma‑Aldrich) for 
30 min. Then, cells were stained with 0.4% sulforhodamine‑B 
(SRB, Sigma‑Aldrich) protein dye solution for 30 min. After 
the excess dye solution removal, cell culture plates were 
rinsed with 1% acetic acid solution four times and dried at 
room temperature. The bound SRB was dissolved in 100 µl of 
10 mM Trisma‑Sol (Sigma‑Aldrich) and the cell culture plates 
were shaken for 5 min. The measurements were performed by 
Multiskan Spectrum V1.2 1500‑636 device (Thermo Fisher 
Scientific Inc, Waltham MA USA) at 520 nm. Three parallel 
measurements on 24‑well cell culture plates were performed 
twice in all experiments.

RNA isolation. RNA isolation was performed using the High 
Pure Total RNA Isolation kit (Roche Diagnostics, Indianapolis, 
IN, USA) from the treated and untreated osteoblastic cells. 
The quality and quantity of isolated RNA were measured by 
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) 
and Qubit fluorometer (Thermo Fisher Scientific, Inc.). After 
pooling the parallel biological samples, the whole transcrip-
tome analysis was performed by the Applied Biosystems 
SOLiD V4 device (Thermo Fisher Scientific, Inc.).

SOLiD next generation RNA sequencing. The whole 
transcriptome analysis of the purified, DNA‑free total RNA 
molecules (>5 mg/sample, RIN >8.0, cc >400 ng/ml) were 
performed by SeqOmics Biotechnology Ltd. (SeqOmics 
Biotechnology Ltd., Szeged, Hungary; http://www.seqomics.
hu/) with SOLiD next generation 50+20 bp reads paired‑end 
technologies.

Statistical analysis. For the data analysis, Benjamini and 
Hochberg False Discovery Rate test was applied (19,20). P≤0.05 
was considered to indicate a statistically significant difference. 
Genes showing significantly changed mRNA expression levels 
were evaluated by IPA 7.6 software (QIAGEN, Redwood City, 
CA, USA; www.ingenuity.com). Canonical pathway analysis 
utilizing the IPA library of canonical pathways identified the 
signaling routes that contained the differentially expressed 
genes in the input data set. The significance of the association 
between the data set and the canonical pathway was deter-
mined based on two parameters: i) A ratio of the number of 
genes from the data set that map to the pathway divided by the 
total number of genes that map to the canonical pathway and 
ii) a P-value calculated using Fischer's exact test determining 
the probability that the association between the genes in the 
data set and the canonical pathway is due to chance alone. The 
upstream regulator analysis identifies the cascade of upstream 
transcriptional regulators based on prior knowledge of expected 
effects between transcriptional regulators and their target 
genes stored in the Ingenuity Knowledge Base. The analysis 
examines the number of known targets of each transcription 
regulator present in the dataset, and also compares their 
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direction of change (expression in the experimental sample 
relative to control) to what is expected from the literature in 
order to predict likely relevant transcriptional regulators. The 
aim of the overlap P‑value is to identify transcriptional regula-
tors that are able to explain observed gene expression changes. 
The overlap P‑value measures whether there is a statistically 
significant overlap between the dataset genes and the genes 
that are regulated by a transcriptional regulator. It is calcu-
lated using Fisher's exact test, and significance is attributed to 
P<0.01. The most upregulated molecules were selected based 
on logarithmic fold change (logFC) values, which describe 
the rate of expression changes in the treated groups compared 
with the untreated control group.

Results

Differentially expressed genes in the treated groups. Based on 
the cell viability test, the 1 µM drug concentration and 6‑day 
incubation period had the greatest effects on the expression 
profile of osteoblastic cells. Altogether, 16,383 (imatinib‑treated 
group), 16,951 (nilotinib‑treated group) and 17,290 (control 
group) annotated RNAs were found in the samples, respec-
tively. Altered expression of 358 genes in the imatinib 
compared with the control and 21 genes in the nilotinib group 
compared with control were identified using the Benjamini 
and Hochberg statistical test. There were three common 
differentially expressed genes [C11orf87, chromosome 11 
open reading frame 87 (AI593442), 3‑hydroxyisobutyrate 
dehydrogenase pseudogene (Gm11225) and zinc finger protein 
184 (Zfp184)] in the two treated groups compared with control. 
logFC values were as follows: logFC (AI593442)=2.95, logFC 

(Gm11225)=2.09 and logFC (Zfp184)=1.45 in the imatinib 
group, and logFC (AI593442)=2.82, logFC (Gm11225)=2.79 
and logFC (Zfp184)=3.43 in the nilotinib group. These three 
genes had almost the same expression activity in the two 
groups. In the imatinib‑treated group, all of the identified 
differentially expressed genes were upregulated. This was also 
observed in the nilotinib treatment, with one exception [logFC 
(RP23‑390C13.1)=‑2.95] based on logFC values.

Canonical pathway analysis. Genes showing significantly 
altered expression rates in response to the two drugs 
compared with control were evaluated by IPA canonical 
pathways analysis. Six most upregulated canonical path-
ways were identified in the imatinib‑treated osteoblast cells 
(Fig. 1A). Reelin signaling in neurons pathway which partici-
pates in the formation of neuronal architectonic patterns had 
the lowest P‑value. This pathway was represented by six 
genes, namely Mitogen‑Activated Protein Kinase Kinase 
Kinase 9 MAP3K9, C‑jun‑amino‑terminal kinase‑inter-
acting protein 2 (MAPK8IP2), Integrin subunit α2 (ITGA2), 
cytoplasmic adaptor disabled‑1 (DAB1), Reelin gene 
(RELN) and doublecortin (DCX). The logFC values were: 
logFC (MAP3K9)=3.41, logFC (MAPK8IP2)=2.10, logFC 
(ITGA2)=2.35, logFC (DAB1)=2.24, logFC (RELN)=3.71 
and logFC (DCX)=1,86. The fatty acid activation pathway 
supports adequate fatty acid and lipid biosynthesis. ACSL6 
and ACSBG2 genes characterize this pathway. The logFC 
values of these genes were 3.39 and 2.42, respectively. Based 
on these two genes, IPA software indicated another signaling 
pathway, γ-linolenate biosynthesis II cascade, which is 
also responsible for lipid metabolism. The γ-aminobutyric 

Figure 1. Most upregulated canonical pathways of (A) imatinib and (B) nilotinib as determined by IPA analysis. These figures show the results of IPA canonical 
pathway analysis. The ‑log (P‑value) of each pathway was calculated using right‑tailed Fisher's exact test. In this method, the P‑value for a given process 
annotation is calculated by considering the number of focus genes that participate in that process and the total number of genes that are known to be associated 
with that process in the selected reference set. The statistical threshold is indicated by an orange line at P=0.05. Gray and white bars indicate pathways where 
predictions are not currently possible, because either no activity pattern was available or the z‑score was ~0.

  A   B
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acid (GABA) receptor signaling pathway primarily regu-
lates signal transduction in the nervous system. In these 
results, two ion‑channel (GABRQ and GABRG3), one G 
protein‑coupled receptor B (GABBR2) and the adenylate 
cyclase type 1 genes (ADCY1) were shown to be associated 
with this pathway. The logFC values were as follows: 2.69, 
1.95, 2.74 and 3.16, respectively. Sertoli‑sertoli cell junction 
signaling pathway is involved in testicular cell growth, prolif-
eration and development. This pathway was represented by 
seven differentially expressed genes. The logFC values were 
as follows: logFC (CLDN10)=1.94, logFC (MAP3K9)=3.41, 
logFC (EPB4.1)=2.51, logFC (CTNNA2)=2.76, logFC 
(CLDN4)=2.21,  logFC ( ITGA2)=2.35 and logFC 
(Gucy1b2)=2.86. Finally, the Serotonin receptor signaling 
pathway, which had been demonstrated to show a strong posi-
tive effect on bone mass was also identified. The logFC values 
of the three connected genes were: logFC (HTR5A)=2.06, 
logFC (ADCY1)=1.45 and logFC (HTR1A)=2.88. These 
pathways were shown to be significantly altered following 
treatment (P<0.05); however, the software could not predict 
the activity pattern of the most upregulated pathways. The 
most upregulated pathway is a relevant (significant) signaling 
pathway, where genes of the uploaded dataset were signifi-
cantly enriched. The evaluation criteria of most upregulated 
pathways are the ratio and the P‑value. 

Five most upregulated canonical pathways were identified in 
the transcriptome of the nilotinib‑treated group (Fig. 1B). The 
Eukaryotic Initiation Factor 2 (EIF2) signaling pathway had the 
highest P‑value, although the activation z‑score was almost 0. 
EIF2 signaling has an important role in the initiation of transla-
tion. The logFC values of the three differentially expressed genes 
involved in this pathway were: logFC (RPL17)=2.41, logFC 
(RPL39)=1.99 and logFC (ribosomal protein S23; RPS23)=3.45. 
Embryonic stem cell differentiation into cardiac lineages, 
Transcriptional regulatory network in embryonic stem cells and 
Role of Oct4 in mammalian embryonic stem cell pluripotency 
pathways were denoted by the NANOG gene, which encodes 
a critical transcription factor for cell self‑renewal. The GABA 
receptor signaling pathway is characterized with GABRB1 
(γ‑aminobutyric acid receptor A, subunit β1) gene, logFC=2.83. 
The GABA receptor signaling network was determined to be 
one of the most upregulated canonical pathway associated with 
the differentially expressed genes following treatment with 
imatinib and nilotinib compared with control.

Upstream regulator analysis. The IPA software defines the 
most upregulated upstream regulators on the basis of quality 
of expression changes. Five upstream regulators were identi-
fied in the imatinib group, namely: GLDN, FREM2, NRCAM, 
GRIP1 and very low density lipoprotein receptor (VLDLR). A 
summary of the identified upstream regulators, including their 
biological function associated with bone metabolism is shown 
in Table I (21-23).

In the nilotinib‑treated osteoblast culture, five most upregu-
lated upstream regulators were also found: FAAH, MARCH7, 
ACVR1B, RAD23B and ACVR1C. Details of these upstream 
regulators are listed in Table II (24).

Upregulated molecules. The most sensitive genes in response 
to imatinib and nilotinib treatment were determined based on 

fold changes using IPA core analysis. In the two groups, based 
on the degree of expression changes, the lists of the most sensi-
tive genes with the most marked expression differences are 
shown in Tables III and IV (25‑30). Following imatinib admin-
istration, the syntaxin binding protein 5‑like (STXBP5L) gene 
showed the strongest upregulation (21‑fold), while the RPS23 
gene was most strongly upregulated following nilotinib treat-
ment (11‑fold) compared with control.

Discussion

In the present study, the effects of selective TKI imatinib and 
nilotinib on the global gene expression pattern of a murine 
osteoblastic cell line culture in vitro was observed. Previous 
studies have reported expression data in response to TKI only 
of strictly bone‑related genes (RANKL, OPG, bone sialopro-
tein, osteocalcin, osterix, BMP2 and RUNX2) (2,3,7,8). To the 
best of our knowledge, this is the first study to observe the 
complete mRNA pattern of osteoblasts by whole transcrip-
tome analysis. Thus, it was possible to demonstrate the most 
upregulated canonical pathways and upstream regulators that 
were affected in osteoblast cells by these compounds.

TKIs are widely used drugs for the treatment of certain 
oncohematological diseases, the treatment may continue for 
decades or the rest of the patient's lives. Therefore, there is a 
limitation in the present study as the results reflect the rapid 
primary drug effect on gene activities rather than the extended 
secondary expression changes. Thus future studies will aim 
to model the long‑term effects of imatinib and nilotinib in an 
in vitro system.

Generally, imatinib and nilotinib inhibit the proliferation, 
growth and survival of BCR‑ABL‑positive cells. However, 
several studies have demonstrated contradicting drug effects 
on bone remodeling. These TKIs have been shown to 
attenuate osteoclastic bone resorption, reduce site‑specific 
bone volume (7,12,13), change histomorphometric features 
of bone, support extracellular matrix mineralization (7) 
and cause concentration‑dependent mixed effects on bone 
turnover markers and osteoblast activity (31). The results 
indicate different effects of imatinib and nilotinib on osteo-
blast function, which is reflected in altered gene expression 
patterns caused by the two drugs. This may be explained by 
the different chemical profiles, different target spectrums and 
the bound non‑kinase molecules of the examined TKIs (32). 
Among the significantly altered genes in the two treatment 
groups, there were only three common genes. Zfp184, which 
participates in transcription regulation processes and may be 
important in osteoblast differentiation through chloride intra-
cellular channel 1 interaction (https://reports.ingenuity.com, 
http://innatedb.com) (33). Biological roles of Gm11225 and 
AI593442 in bone metabolism have not yet been established.

GABA receptor signaling was found among the most 
upregulated canonical pathways in the imatinib and nilo-
tinib groups. GABA receptors mediate signals of the 
neurotransmitter GABA. Osteoblasts constitutively express 
GABA (B) receptor subunits (34). The overexpression of 
several other GABA receptor family members (GABBR2, 
GABRQ, GABRG3 and GABRB1) was observed following 
after TKI treatment. Mentink et al (35) demonstrated that 
GABBR2 inhibits alkaline phosphatase activity and calcium 
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accumulation in mesenchymal stromal cells. Signals via the 
GABA pathway can stimulate osteoblastogenesis, and the acti-
vation of GABA (B) receptors upregulates the key osteoblast 
differentiation markers: BMP2, secreted protein acidic and 
rich in cysteine/osteonectin (SPARC) and osteocalcin (36). 
During the bone remodeling process, this signal transduction 
network may be involved in bone cell proliferation, differ-
entiation and development. Functional GABA (B) receptors 
appear to be predominantly expressed by osteoblasts rather 
than osteoclasts during remodeling and skeletogenesis (34,37).

The most significantly altered pathway in imatinib‑treated 
osteoblasts was Reelin signaling in neurons, which is closely 
associated with nervous system function and development, as 
well as synaptogenesis and neurodegeneration. A genome‑wide 
association study confirmed that genetic variants in the RELN 
gene have a crucial role in the development of otosclerosis, 
a complex bone remodeling disorder of the otic capsule (38). 
The extracellular reelin binds to VLDLR, which was shown to 
be one of the most upregulated upstream regulator molecules 
in the present study as well as apolipoprotein‑E receptor 
2 (ApoER2). This interaction indicates the involvement of 
tyrosine phosphorylation of DAB1 in the Reelin pathway (39). 
Reelin signals generated following binding to the lipoprotein 
receptors are also known to be involved in neuronal migra-
tion. The possible role of the Reelin signaling complex 
(Reelin/VLDLR/ApoER2/Dab1) in osteoblasts remains to be 
revealed.

The present study demonstrated that imatinib treat-
ment elicited a significant change in the mRNA expression 
of genes involved in serotonin receptor signaling. Several 
types of serotonin (5‑hydroxytryptamine, 5‑HT) receptors 
can be found on major bone cells (osteoblasts, osteocytes 
and osteoclasts), including 5‑HT1 and 5‑HT2 (40‑43). 
Expressional changes in another class of serotonin receptors 
(HTR5A, 5‑HT5A receptor) was also identified. Serotonin 
may exhibit regulatory effects on bone and recent data 
suggested that gut‑derived serotonin may mediate skeletal 
effects (44). Several in vitro studies have confirmed the 
functionality of serotonin signaling in bone cells, with 
mixed effects reported (44). Some suggest a direct stimula-
tory effect of serotonin on bone formation pathways, while 
others have found inhibitory effects. Serotonin produced 
in the periphery appears to act as a hormone and inhibits 
bone formation. Conversely, serotonin produced in the brain 
acts as a neurotransmitter and has a strong positive effect 
on bone mass by supporting bone formation and reducing 
bone resorption (45). The effect of serotonin signaling on 
bone resorption pathways also depends on the concentra-
tion present (46). However, the specific biochemical nature 
of serotonergic pathways influencing bone and their direct 
and/or indirect effects on bone metabolism remain unclear.

The EIF2 signaling pathway showed the greatest expression 
changes among pathways affected by nilotinib. Phosphorylated 
eIF2α and its downstream regulators are involved in the endo-
plasmic reticulum stress response of osteoblasts. Stress to the 
endoplasmic reticulum (e.g. protein misfolding, viral infection 
and nutritional deprivation) modifies transcriptional activa-
tion of bone remodeling and osteogenesis markers (47‑49). 
In the present study, NANOG was significantly upregulated 
following nilotinib usage. This transcription factor is involved 

in three different pathways (Embryonic stem cell differentia-
tion into cardiac lineages, Transcriptional regulatory network 
in embryonic stem cells and Role of Oct4 in mammalian 
embryonic stem cell pluripotency), which principally control 
cell pluripotency and self‑renewal mechanisms. NANOG 
regulates the proliferation and differentiation of primary bone 
mesenchymal stem cells (MSCs), as well as skeletal tissue 
regeneration. NANOG in MSCs leads to increased proliferative 
capacity but expression is downregulated as MSCs undergo 
osteogenic differentiation (50). Another study revealed cross-
talk between NANOG and the bone morphogenic protein 
cascade via direct binding to SMAD1 (51).

Using IPA analysis, the most upregulated upstream 
regulators in imatinib‑ and nilotinib‑treated cells were 
identified, which are involved in a wide variety of biological 
processes. A number of these genes have been shown to 
influence bone metabolism. Nilotinib markedly increased the 
expression of Activin A receptors (ACVRs). ACVR1B and 
ACVR1C are transmembrane serine/threonine kinases that 
are members of the transforming growth factor β (TGF‑β) 
pathway. The type‑1 and type‑2 receptors form a heteromeric 
complex. Within the complex, the type 1 receptors act as 
downstream transducers of activin signals and phosphory-
late SMAD proteins. The activin signaling has well‑known 
role in bone homeostasis (24). Activins affect proliferation, 
differentiation and activity of bone cells. Furthermore, they 
can influence bone turnover, bone mass and fracture risks (24). 
One of the most upregulated molecules following imatinib 
application was growth differentiation factor 10 (GDF10), also 
termed bone morphogenetic protein 3B, which is a member of 
the TGFβ superfamily. GDF10 is involved in skeletal morpho-
genesis, regulates osteoblast differentiation and supports 
skeletal system development (https://reports.ingenuity.com, 
http://www.genecards.org). Unlike the known bone‑forming 
BMPs, GDF10 is a negative regulator of BMD (52). According 
to in vitro and in vivo observations, GDF10 inhibits osteogen-
esis and bone formation (53).

STXBP5L and RPS23 genes were the most sensitive with 
the greatest fold changes following imatinib and nilotinib 
treatment. STXBP5L participates in vesicle transport and 
exocytosis (http://www.genecards.org). It is also involved in 
the regulation of protein secretion, protein transport, glucose 
homeostasis and regulation of insulin secretion (https://reports.
ingenuity.com, http://www.ncbi.nlm.nih.gov/gene). RPS23 
gene encodes a cytoplasm‑located ribosomal protein that is a 
component of the 40S subunit (https://reports.ingenuity.com, 
http://www.genecards.org). However, the direct role of these 
two most upregulated molecules in bone metabolism is pres-
ently unknown.

The limitations of this preliminary study are that the 
experiments were only performed on MC3T3‑E1 osteoblastic 
cells. Further investigation is required to confirm changes in 
a number of the reported genes by reverse transcription‑quan-
titative polymerase chain reaction or functional tests, and 
parallel treatment of other cell lines in order to validate the 
biologically significant targets.

In conclusion, the specifically altered gene expression 
patterns in response to imatinib and nilotinib observed in 
the osteoblast cultures may explain the previously observed 
in vivo clinical changes in bone metabolism. Further studies 
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to assess the biological significance of these observations are 
required.
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