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Peroxidase enzymes can oxidize a multitude of substrates in diverse biological

processes. According to the latest phylogenetic analysis, there are four major heme

peroxidase superfamilies. In this review, we focus on certain members of the

cyclooxygenase-peroxidase superfamily (also labeled as animal heme peroxidases) and

their connection to specific NADPH oxidase enzymes which provide H2O2 for the

one- and two-electron oxidation of various peroxidase substrates. The family of NADPH

oxidases is a group of enzymes dedicated to the production of superoxide and hydrogen

peroxide. There is a handful of known and important physiological functions where

one of the seven known human NADPH oxidases plays an essential role. In most of

these functions NADPH oxidases provide H2O2 for specific heme peroxidases and

the concerted action of the two enzymes is indispensable for the accomplishment

of the biological function. We discuss human and other metazoan examples of such

cooperation between oxidases and peroxidases and analyze the biological importance

of their functional interaction. We also review those oxidases and peroxidases where this

kind of partnership has not been identified yet.

Keywords: heme peroxidase, NADPH oxidase, hydrogen peroxide, reactive oxygen species, peroxidasin

INTRODUCTION

Heme peroxidases comprise a large number of heme-containing proteins. Families of these
enzymes display distinct structural and biochemical properties and play a role in highly specialized
biological processes. The numerous members of each of these families are expressed in all
different kingdoms of life. Therefore, it had been recently suggested that the denomination
of heme peroxidases should happen according to their characteristic enzymatic activities and
structural properties instead of their animal, plant or fungal origin (1). The unique feature
of the peroxidase-cyclooxygenase superfamily is the presence of a post-translationally modified
heme group which is covalently linked to the peroxidase protein via two covalent bonds (2).
Myeloperoxidase (MPO) is unique in this superfamily because of having three covalent linkages
to the heme group.
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The activity of these peroxidases results in oxidation of one-
electron donors into the corresponding radical (AH in Reaction
1) or oxidation of halides or pseudohalides (two-electron donors)
into hypohalous acids (HOX in Reaction 2) (3).

Reaction1 :H2O2 + 2AH2 → 2H2O+ 2·AH

Reaction2 :H2O2 +H+
+ X−

→ H2O+ HOX

H2O2 is not only required for the generation of oxidants but
it seems that it is also necessary to the autocatalytic activation
of heme peroxidases during which process the heme-protein
crosslink is reinforced (4).

Numerous biochemical processes can produce reactive
oxygen species including hydrogen peroxide. The mitochondrial
respiratory chain, several metabolic pathways, xanthine oxidase,
monoamine oxidases, and the NADPH oxidases are all possible
sources of H2O2 (5–7).

There are seven members of the Nox/Duox family of NADPH
oxidases encoded in the human genome. In other species the
number of NADPH oxidase homologs can vary greatly with only
two isoforms present in Caenorhabditis elegans, five members in
zebrafish, six in mouse and rat to name a few examples (8). The
NADPHoxidases show important differences in tissue expression
pattern and activation mechanism. Nox1, Nox2, Nox3, and Nox4
all require the membrane-bound p22phox protein to be able to
produce ROS. Nox1, Nox2, and Nox3 also require different
cytosolic factors to become active (9). However, Nox4 does
not rely on cytosolic factors but is continuously active. Nox5,
Duox1, and Duox2 are independent of p22phox and are primarily
activated by intracellular Ca++-signals. Interestingly, Duox
proteins can be also classified as heme peroxidases although
their peroxidase domain lacks a few critical amino acids that are
required for the enzymatic activity of their N-terminal peroxidase
domain (10). Dual oxidase (Duox) proteins also require the
activity of maturation factors DuoxA1 or DuoxA2 for proper
folding and membrane targeting (11).

Hydrogen peroxide is not always the primary oxidant product
of NADPH oxidases. Nox2 for example generates mainly
superoxide anion, which can be further converted into H2O2 in a
dismutation reaction enhanced by superoxide dismutase (SOD)
enzymes (12). SOD catalyzes the disproportionation of the free
radical superoxide anion resulting in the generation of molecular
oxygen and hydrogen peroxide (see in Reaction 3) (13).

Reaction3 : 2O−

2 + 2H3O
+
→ O2 +H2O2 + 2H2O

Certain members of the cyclooxygenase-peroxidase family rely
specifically on hydrogen peroxide generated by an NADPH-
oxidase. In these specific cases, the absence of the corresponding
NADPH-oxidase cannot be supplemented by any other H2O2

sources. This closely intertwined mode of action suggests
evolutionarily conserved cooperation between these heme
peroxidases and NADPH-oxidases. Our aim was to collect and
analyze all known examples of such coactions.

The natural beauty of these peroxidase-oxidase concurrences
is literally highlighted by a chemiluminescent light emitted
during intense activation of the phagocyte myeloperoxidase or
the fertilized sea urchin egg’s ovoperoxidase (14, 15).

LEUKOCYTE
NOX2/MYELOPEROXIDASE SYSTEM

The prodigious increase in oxygen consumption of
phagocytosing leukocytes was already described in 1933 by
C.W. Baldridge and R.W. Gerard (16). During the following
decades, it became clear that this oxygen consumption was
not dependent on mitochondrial respiration but was necessary
for the production of reactive oxygen species by a complex,
multi-protein system that comprised of membrane-bound and
cytosolic factors. Nox2 (formerly known as gp91phox) contains 6
transmembrane helices and forms a membrane-bound complex
with p22phox. Whereas, there are 4 cytosolic factors that in
vivo are all necessary for a fully activated oxidase complex:
p67phox, p47phox, p40phox, and the small GTPase Rac1 or Rac2
(9, 17). These cytosolic components are all able to rapidly
translocate to the gp91phox-p22phox complex upon activation
of the phagocyte. The gp91phox-p22phox complex is stored in
the peroxidase negative subsets of the neutrophil granulocytes’
granules which—upon activation—fuse with the phagosomal
or plasma membrane. Compared to other Nox isoforms, the
ROS producing capacity of the activated Nox2 system seems
to be extremely high (18, 19) and this might ensure the potent
antimicrobial function of this isoform.

Another line of research elucidated the biochemical activity
of myeloperoxidase that was present in large quantities (5%
of the total dry cell weight) in phagocytes and was able
to turn H2O2 into microbicidal hypohalides like HOCl (20).
Myeloperoxidase is stored mainly in the matrix of azurophilic
granules of neutrophil granulocytes in a mature, dimeric form.
The dimerization does not seem to affect the enzymatic activity
of MPO but it is rather important for the stability and storage
of the enzyme (21). In activated leukocytes, the granules can be
released into the lumen of the forming phagosome or into the
extracellular space around phagocytes (22, 23). The translocation
of myeloperoxidase and Nox2 oxidase (cytochromeb558 complex
of Nox2 and p22phox) from cytoplasmic granules and vesicles into
the phagosomal lumenwas demonstrated by different approaches
including studies based on subcellular fractionation, fluorescent
and electronmicroscopic analysis (24–27).

The above regulatory mechanisms, multi-component
assembly, and compartmentalization ensure that in non-
stimulated cells there is practically no hypohalide production.
This can prevent that aggressive antimicrobial reactive oxygen
products cause random tissue destruction in the host.

Notably, human phagocytes express about an order of
magnitude higher amounts of MPO than mouse leukocytes
which limit the interpretation of mouse data. However, to
circumvent this problem mouse models expressing human
MPO have been established (28, 29). These models became
important also to study the role of MPO in the pathomechanism
of atherosclerotic lesion formation, as human atherosclerotic
lesions do contain MPO and its peroxidation products
whereas mouse MPO is hardly detectable in macrophages of
atherosclerotic plaques. The expression of human MPO in
mouse macrophages was unanimously associated with increased
atherosclerotic lesions in different studies. However, other
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functional changes, like plasma lipoprotein and cholesterol levels
showed more conflicting results, which might be explained by
different transgenic systems used in different studies [i.e., bone
marrow transplanted transgenic macrophages (28) or overall
expression of the MPO transgene (29, 30)].

Similarly to the numerous other antimicrobial effector
functions of phagocytes, dysregulation of superoxide
production and myeloperoxidase activity can also contribute
to the development of autoimmune diseases. Both the
over activation or impairment of these processes can
promote tissue damage associated with autoimmune
conditions (31).

Furthermore, the lack of either Nox2 or MPO does result
in immune deficiency disorder with substantially different
characteristics and severity. In the absence of Nox2—or other
components of the active phagocytic oxidase complex—a disease
called chronic granulomatous disease (CGD) develops (32).
CGD patients have largely increased susceptibility toward both
bacterial and fungal infections. In contrast, many patients with
loss of function mutations of MPO might have no obvious
clinical symptoms or show an increased predisposition only
toward fungal infections (caused mainly by Candida albicans)
(33, 34). This phenotypic discrepancy might be explained in
different ways. First, it is possible that the superoxide produced
by Nox2 and/or its derivatives exert direct antimicrobial effects
even without being converted into hypochlorous acid. Second,
based on observations showing altered membrane potential
changes and Ca++-signals in CGD neutrophils it is possible
to presume that altered intracellular ion concentrations might
hamper also several other antimicrobial effector functions of
these cells (35, 36).

EOSINOPHIL NOX2/EOSINOPHIL
PEROXIDASE SYSTEM

Although the eosinophil peroxidase (EPO) and myeloperoxidase
are highly homologous at the amino acid level their biochemical
properties and biological role differ significantly. EPO binds
its prosthetic group only via two covalent links and its
spectral properties are more similar to that of LPO and TPO
(2). Eosinophil granulocytes also express components of the
Nox2 based superoxide-generating molecular machinery which
provides H2O2 for EPO. Unlike MPO, EPO is not able to oxidize
Cl−, but it uses mainly Br− and SCN− to generate hypobromous
acid and hypothiocyanous acid, respectively. Detection of protein
bromotyrosination can be used as a marker of EPO mediated
protein oxidation (37).

Eosinophil granulocytes exert their antimicrobial and
antiparasitic activities extracellularly and EPO is also a secreted
protein. Eosinophils also play a special role in the pathologies
of allergic inflammatory diseases (38–40). Despite the essential
host defense and inflammatory role of eosinophil granulocytes
the lack of eosinophil peroxidase activity does not manifest
in any obvious phenotype in humans and the diagnosis of
EPO deficiency is usually an accidental clinical finding (41). In
contrast, in allergic diseases, accumulation and hyperactivity

of eosinophil granulocytes are associated with overproduction
of oxidative substances which contributes to the pathology of
these conditions. An especially interesting pathomechanism
is the activation of endothelium-derived tissue factor by
hypothiocyanous acid with the consequentially increased risk of
thrombotic complications (42, 43).

DUOX2 AND THYROID PEROXIDASE IN
THYROID HORMONE SYNTHESIS

The thyroid peroxidase (TPO) catalyzes the iodination of
tyrosine residues of thyroglobulin (44, 45). This peroxidase has
got a unique transmembrane domain through which it is located
in the apical membrane of thyrocytes. Its heme-containing
catalytic site faces the thyroglobulin containing follicular lumen.
To produce active iodine radicals the thyrocytes take up iodide
ion through the basolateral Na+/I− symporter and transport
it to the lumen through pendrin or through other apically
located anion transporters (46). H2O2 is produced by dual
oxidase 2 (Duox2), an other apically located transmembrane
NADPH oxidase enzyme. The pharmacological inhibition or loss
of function mutations of I− transporters, TPO or Duox2, and
DuoxA2 all lead to insufficient thyroid hormone synthesis—
i.e., hypothyreosis.

As we have no detailed structural insight into the molecular
vicinity of the luminal site of the thyrocyte, it is difficult to explain
how the produced, highly reactive iodine radicals can react
selectively with tyrosine side chains of thyroglobulin without
eliciting oxidative damage of other extracellular proteins. Co-
immunoprecipitation studies revealed a molecular interaction
between TPO and Duox2 in the membrane fractions of isolated
thyroid tissue lysates and of transfected COS-7 cells as well (47).
This close association can at least explain how leakage of H2O2

can be prevented.
In contrast to the Nox2/MPO system, the thyroid hormone

synthesis is a rather continuous, steady process. Accordingly,
the oxidase and peroxidase components are located in the same
subcellular compartment. Interestingly, the thyroid expresses
two dual oxidases, Duox1 and Duox2 (48), but the absence
of Duox1 is not associated with hypothyreosis (49). Therefore,
the exact function of Duox1 in the thyroid is still unknown.
It is also quite enigmatic why the highly homologous Duox1
cannot compensate for the lack of Duox2 in the hormone
synthesis process. One explanation might be that Duox1
localizes to another microdomain of the apical membrane.
However, the lack of Duox1 specific antibodies that work in
immunohistochemistry applications makes it difficult to prove
this idea (50).

DUOX AND LACTOPEROXIDASE IN
EXOCRINE GLANDS AND ON
MUCOSAL SURFACES

Lactoperoxidase (LPO) has long been recognized as an
antimicrobial enzyme present in various exocrine secretions like
milk, saliva, and tear. In 2003 a detailed in situ hybridization
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study identified Duox2 expression in major salivary ducts and on
rectal epithelial cells and Duox1 expression in airway epithelial
cells (58).

LPO can utilize I− or SCN− as substrates and the
sodium/iodide transporter (NIS) plays an important role in
transporting these anions through the epithelial cells. In the
salivary glands LPOwas expressed deep in the serous acini, NIS in
the intercalated ducts and Duox2 in final ducts (58). This pattern
of expression could ensure that the microbicide hypothiocyanous
acid is formed only at later stages of secretion, just before entering
the oral cavity.

In the airways, thiocyanate might be transported onto
the epithelial surface via the cystic fibrosis transmembrane
regulator CFTR (58–62). Decreased transport activity in
cystic fibrosis patients might reduce the LPO mediated
antimicrobial effects which might contribute to the high rate
of pulmonary infections. Importantly microbes seem to be
much more susceptible to HOSCN than mammalian cells
probably because mammalian epithelial cells express high
molecular weight thioredoxin reductase (TrxR) that can readily
turn over HOSCN. In contrast, bacterial TrxR is strongly
inhibited by HOSCN (62). This makes the Duox-LPO-HOSCN
system much more adequate for continuous mucosal host
defense functions than the more cytotoxic Nox2-MPO-HOCl
system (63, 64).

C. ELEGANS DUAL OXIDASE 1 (BLI-3) AND
HEME PEROXIDASES

The Caenorhabditis elegans NADPH oxidase, BLI-3 was
described to be expressed in the hypodermal cells of C. elegans
underlying the cuticle layer. The hypodermal cells play an
essential role in the repeated synthesis of the cuticle (molting)
during consecutive larval stages of the worm. RNAi knockdown
of BLI-3 resulted in severe cuticle abnormalities. Di- and
trityrosine crosslinks between cuticular collagen molecules
were found to be significantly reduced in BLI-3 RNAi worms.
The same study that described this phenotype also proposed
that the BLI-3 peroxidase domain was responsible for the
tyrosine crosslinks between cuticular collagens (65). However,
later analysis revealed that the BLI-3 peroxidase domain lacks
critical amino acids that are important for heme binding which
makes its peroxidase activity doubtful. Accordingly, a reverse
genetics RNAi screen approach identified the hypodermally
expressed MLT-7 peroxidase that was responsible for collagen
crosslinking (55). MLT-7 expression showed a cyclic pattern
according to molting stages and its knockdown showed
very similar phenotypes to BLI-3 knockdowns. It has been
supposed that the enzymatically inactive BLI-3 peroxidase
domain might function as a docking site for MLT-7 peroxidase
domain thereby providing a spatial control of the peroxidase
activity (55).

Another hypodermally localized heme peroxidase—SKPO-
1—was also discovered by RNAi screening that was found to be
important inmaintaining normal cuticle phenotype. SKPO-1 was
also claimed to play a role—along with BLI-3—in host defense
against pathogenic bacteria (56, 66).

OVOPEROXIDASE AND URCHIN DUAL
OXIDASE 1 IN THE SEA URCHIN
FERTILIZATION MEMBRANE

In the sea urchin (Strongylocentrotus purpuratus) the fertilization
of the egg elicits plasma membrane depolarization, cytosolic
Ca++-signal and a cortical reaction which involves degranulation
of vesicles located below the egg’s membrane surface (67).
This results in the formation of a stiff, insoluble fertilization
envelope (FE) which prevents the entry of other sperms (53).
The active pool of the sea urchin oxidase is located in the
egg’s plasma membrane whereas the ovoperoxidase is tethered
to the forming FE by a protein called proteoliaisin (54, 68).
Bennett M. Shapiro and his coworkers gave a detailed description
of this envelope formation, they isolated and characterized the
ovoperoxidase enzyme that is released from the granules and is
responsible for the crosslinking of protein tyrosyl residues in this
hardened membrane. Another important feature of the secreted
peroxidase is its spermicidal activity which means an additional
defense mechanism against polyspermy. Although the source
of H2O2 for these peroxidase mediated reactions were already
addressed in the 1977 PNAS paper, the molecular identification
of the urchin dual oxidase (Udx1) was accomplished almost
three decades later (54). This process is also a prime example
of how compartmentalization and inducible translocation can
ensure a swift, robust, but tightly controlled oxidative burst and
peroxidase activation.

Although it is challenging to find quantitatively comparable
data about the ROS production of different NADPH oxidase
systems, it seems that the respiratory burst in the sea urchin
egg results in a H2O2 concentration of about 60 nM in the
perivitelline space whereas in the phagosome of activated human
neutrophil granulocytes the peroxide concentration is estimated
to be in the micromolar range (54, 69). However, in the biological
context of egg fertilization, this relatively lower rate of ROS
production can still amply support the ovoperoxidase function.

NOX5 AND HEME PEROXIDASE 2 IN
MOSQUITO ANTIPLASMODIAL IMMUNITY

A unique example has been identified in the midgut cells
of Anopheles gambiae where the HPX2 heme peroxidase—in
concert with Nox5 and nitric oxide synthase (NOS)—generates
reactive nitrogen species (RNS) resulting in increased protein
nitration. This process renders the Plasmodium ookinetes more
susceptible to the Anopheles complement system which is the
final effector mechanism against invading parasites (57) (see
Table 1).

The same research group presented another mechanism in
the Anopheles midgut where a Duox homolog cooperates with
a secreted immunomodulatory epithelial peroxidase (IMPer) to
form a dityrosine crosslinked matrix on the luminal surface.
This matrix layer is supposed to separate the luminal microbiota
and the epithelial immune system thereby subduing the immune
activation and potential epithelial damage. On the other hand,
Plasmodium parasites could proliferate more rapidly in the
midgut lumen under these conditions (70).
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TABLE 1 | An overview of the peroxidase-oxidase co-operations discussed in detail in this paper.

Peroxidase Oxidase Location Function Related anomaly or disease in the absence of

oxidase/peroxidase function

MPO Nox2 Neutrophil granulocytes,

macrophages, peritoneal B

lymphocytes

Production of antimicrobial

hypochloric acid

Nox2: chronic granulomatous disease (CGD) (32)

MPO: increased susceptibility to fungal

infections (34)

EPO Nox2 Eosinophil granulocytes Production of antimicrobial

hypobromous and hypothiocyanous

acid

no evidence of disease (51)

TPO Duox2 Thyroid gland Oxidation of iodide ion during thyroid

hormone synthesis

Duox2 or TPO: congenital hypothyreosis (52) (48)

(44) (45)

LPO Duox1,

Duox2

Exocrin glands, mucosal surfaces Production of antimicrobial

hypothiocyanate and hypoiodide

?

Ovoperoxidase Udx1 Plasmamembrane, subcortical

granules, fertilization envelope

Crosslinking and subsequent

hardening of matrix molecules in the

fertilization membrane

Ovoperoxidase or Udx1: increased probability of

polyspermy (53) (54)

MLT-7 BLI-3

(Ce-Duox1)

Hypodermis Crosslinking of cuticle matrix

molecules

BLI-3 or MLT7: developmental arrest, cuticle

abnormalities (55)

SKPO-1 BLI-3

(Ce-Duox1)

Hypodermis Maintaining normal cuticle, host

defense

BLI-3 or SKPO-1:

developmental arrest, susceptibility to Enterococcus

infection (56)

HPX2 NOX5 Plasmodium infected Anopheles

midgut epithelial cells

Nitration of Plasmodium ookinetes Nox5 or HPX2: susceptibility to Plasmodium

invasion (57)

NOX1, NOX3, AND NOX4 FUNCTION
WITHOUT KNOWN
PEROXIDASE PARTNERS

These three members of the NADPH oxidase family have not
been linked to heme peroxidases in any known biological
process yet. Nox1 is mainly expressed in the distal parts of
the gastrointestinal tract, showing low expression levels in the
ileum, and more robust levels in the colon epithelium (19,
71). In a glutathione peroxidase deficient animal model of
spontaneous ileocolitis, it was shown to be involved in the
pathogenesis of inflammatory bowel diseases (72). This and
other potential physiological functions of Nox1 are reviewed
in detail elsewhere (73). However, cooperation with a known
heme peroxidase has not been described in the divergent actions
of Nox1.

Nox3 is uniquely expressed in the inner ear (74). Although
there are no published data about any connection to
heme peroxidases in this organ, it is interesting to note
that—according to the publicly available NCBI Unigene
database—myeloperoxidase has got a surprisingly high
expression level in the mouse inner ear. Whether there is
any functional link between MPO and Nox3 in the inner ear
remains to be investigated.

The Nox4 expression is more ubiquitous with the highest
levels found in the kidney. Uniquely this oxidase is constitutively
active. The exact intracellular localization of Nox4 is still dubious,
however many independent literature data points toward the
endoplasmic reticulum where Nox4 might contribute to the
oxidative milieu of the ER (75–77). It would be a challenging
task to pinpoint any specific Nox4-heme peroxidase functional
interaction within this compartment.

PEROXIDASIN WITHOUT KNOWN
OXIDASE PARTNER IN COLLAGEN
IV CROSSLINKING

Peroxidasin (Pxdn) has been described as the specific enzyme
catalyzing the formation of sulfilimine covalent crosslink of C-
terminal NC1 domains between collagen IV protomers (78).
This unique, evolutionarily conserved chemical bond might
significantly affect the mechanical and biochemical properties of
collagen IV containing extracellular matrix structures. However,
using various NADPH-oxidase deficient mouse models, it has
been recently shown in vivo that NADPH oxidases most probably
do not provide H2O2 for this reaction. P22phox mutant, Nox4
deficient, Duox1 knockout, and Duoxa double knockout animals
were all equally capable to crosslink NC1 domains as wild-type
control animals (79). Lysyl oxidases which are also involved
in collagen IV assembly were also ruled out as possible ROS
sources (78). Therefore, the exact molecular identity of this
reactions’ ROS source is still unknown. It is also a puzzling
question how the Pxdn mediated reaction is restricted only
to the collagen IV NC1 amino acids and how it is ensured
that the highly reactive HOBr is not attacking numerous
neighboring matrix molecules (80). Identification of a specific
ROS source might help explain the spatiotemporal control of
redox modification.

CONCLUSION

Our review describes the functional cooperation between
members of the peroxidase-cyclooxygenase family and NADPH
oxidases in various biological settings. The deeper understanding
of these processes might help identify novel biological targets of
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oxidase and peroxidase products and improve our understanding
of how these reactive oxidants can contribute to very specific,
sophisticated physiological phenomena, or how they can trigger
pathophysiological conditions.
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