
Subtrees Search, Cycle Spectra and
Edge-Connectivity Structures

by
On-Hei Solomon Lo

M.Sc., Rheinische Friedrich-Wilhelms-Universität Bonn, 2015
B.Sc., The Chinese University of Hong Kong, 2013

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor rerum naturalium

in the
Institut für Mathematik

Fakultät für Mathematik und Naturwissenschaften
Technische Universität Ilmenau

Supervisor: Jun.-Prof. Dr. Jens M. Schmidt
Referees: Prof. Dr. Matthias Kriesell

Ass. Prof. Dr. Tomáš Madaras

Date of Submission: 19th March 2019
Date of Defense: 16th September 2019

urn:nbn:de:gbv:ilm1-2019000307

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/232187439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2019 by On-Hei Solomon Lo. All rights reserved.

iii

Abstract. In the first part of this thesis, we study subtrees of specified weight in a tree
T with vertex weights c : V (T) → N. We introduce an overload-discharge method, and
discover that there always exists some subtree S whose weight c(S) :=

∑
v∈V (S) c(v) is close

to c(T)
2 ; the smaller the weight c(T) of T is, the smaller difference between c(S) and c(T)

2
we can assure. We also show that such a subtree can be found efficiently, namely in linear
time. With this tool we prove that every planar hamiltonian graph G = (V (G), E(G)) with
minimum degree δ ≥ 4 has a cycle of length k for every k ∈ {b |V (G)|

2 c, . . . , d |V (G)|
2 e+ 3} with

3 ≤ k ≤ |V (G)|. Such a cycle can be found in linear time if a Hamilton cycle of the graph is
given.

In the second part of the thesis, we present three cut trees of a graph, each of them
giving insights into the edge-connectivity structure. All three cut trees have in common
that they cover a given binary symmetric irreflexive relation on the vertex set of the graph,
while generalizing Gomory-Hu trees. With these cut trees we show the following: (i) every
simple graph G with δ ≥ 5 or with edge-connectivity λ ≥ 4 or with vertex-connectivity
κ ≥ 3 contains at least 1

24δ|V (G)| pendant pairs, where a pair of vertices {v, w} is pendant if
λG(v, w) = min{dG(v), dG(w)}; (ii) every simple graph G satisfying δ > 0 has O(|V (G)|/δ)
δ-edge-connected components, and there are only O(|V (G)|) edges left if these components
are contracted; (iii) given a simple graph G satisfying δ > 0, one can find some vertex subsets
in near-linear time such that all non-trivial min-cuts are preserved, and O(|V (G)|/δ) vertices
and O(|V (G)|) edges remain when these vertex subsets are contracted.

Zusammenfassung. Im ersten Teil dieser Dissertation untersuchen wir Teilbäume eines
Baumes T mit vorgegebenen Knotengewichten c : V (T) → N. Wir führen eine Overload-
Discharge-Methode ein, und zeigen, dass es immer einen Teilbaum S gibt, dessen Gewicht
c(S) :=

∑
v∈V (S) c(v) nahe c(T)

2 liegt. Je kleiner das Gewicht c(T) von T ist, desto
geringer ist dabei die Differenz zwischen c(S) und c(T)

2 , die wir sicherstellen können. Wir
zeigen auch, dass ein solcher Teilbaum effizient, nämlich in Linearzeit, berechnet werden
kann. Unter Ausnutzung dieser Methode beweisen wir, dass jeder planare hamiltonsche
Graph G = (V (G), E(G)) mit Mindestgrad δ ≥ 4 einen Kreis der Länge k für jedes
k ∈ {b |V (G)|

2 c, . . . , d |V (G)|
2 e + 3} mit 3 ≤ k ≤ |V (G)| enthält. Dieser kann in Linearzeit

berechnet werden, falls ein Hamilton-Kreis des Graphen bekannt ist.
Im zweiten Teil der Dissertation stellen wir drei Schnittbäume eines Graphen vor, von

denen jeder Einblick in die Kantenzusammenhangsstruktur des Graphen gibt. Allen drei
Schnittbäumen ist gemeinsam, dass sie eine bestimmte binäre symmetrische irreflexive Rela-
tion auf der Knotenmenge des Graphen überdecken; die Bäume können als Verallgemeinerun-
gen von Gomory-Hu-Bäumen aufgefasst werden. Die Schnittbäume implizieren folgende
Aussagen: (i) Jeder schlichte Graph G, der δ ≥ 5 oder Kantenzusammenhang λ ≥ 4 oder
Knotenzusammenhang κ ≥ 3 erfüllt, enthält mindestens 1

24δ|V (G)| zusammengehörige Paare,
wobei ein Paar von Knoten {v, w} zusammengehörig ist, falls λG(v, w) = min{dG(v), dG(w)}
ist. (ii) Jeder schlichte Graph G mit δ > 0 hat O(|V (G)|/δ) δ-kantenzusammenhängende
Komponenten, und es verbleiben lediglich O(|V (G)|) Kanten, wenn diese Komponenten
kontrahiert werden. (iii) Für jeden schlichten Graphen G mit δ > 0 sind Knotenmengen
derart effizient berechenbar, dass alle nicht trivialen minimalen Schnitte erhalten bleiben,
und O(|V (G)|/δ) Knoten und O(|V (G)|) Kanten verbleiben, wenn diese Knotenmengen
kontrahiert werden.

In memory of my grandma.

Preface

In this thesis we study two topics in structural and algorithmic graph theory. We are
particularly interested in the notion of edge cut and edge-connectivity in graphs. It arises
frequently in issues of network design and network reliability, and has been extensively studied
for many decades. In the first part of the thesis, we introduce a method which allows us to
find cycles of specified length in planar hamiltonian graphs under certain conditions. Note
that cycles in a plane graph is known to be equivalent to edge cuts in the dual of the plane
graph. We develop our tool in Chapter 1 and illustrate its applications in detail in Chapter 2.
In the second part, comprised of joint works with Jens M. Schmidt and Mikkel Thorup, we
introduce a structure called cut tree. While generalizing the classic Gomory-Hu tree, results
concerning edge-connectivity can be derived from various cut trees. Mainly, it reveals how
small edge cuts are located in a graph; details will be given in Chapter 3.

Another issue that concerns us most is how efficient we can obtain these graph-theoretical
objects. In an era of Big Data the demand of linear or even sublinear algorithms now becomes
much greater than ever. We complement our results with several efficient algorithms, for
instance, a linear time algorithm for finding cycles of specified length and a near-linear time
contraction-based sparsification preserving small edge cuts.

Acknowledgments. I would like to thank everybody who has offered me any kind of
help during these years.

First and foremost, I would like to extend my gratitude to Jens M. Schmidt, my advisor,
mentor and collaborator, from whom I have learnt much in every aspect. This thesis would not
have been possible without his advice, guidance and ideas. It was also a great pleasure of mine
to join his project funded by the German Research Foundation, and the Ilmenau-Košice graph
theory workshop co-funded by the German Academic Exchange Service and the Ministry of
Education, Science, Research and Sport of the Slovak Republic.

I am grateful to Samuel Mohr, who not only shared and elaborated his problem and idea
to me, but also reviewed my manuscript and gave me many invaluable comments. I am much
indebted to Thomas Böhme for his effort to secure the funding for the prolongation of my
study. Besides, I am thankful to Rita Gerlach, Jochen Harant, Matthias Kriesell, Tomáš
Madaras, Anja Pruchnewski, Thomas Schweser, and Michael Stiebitz for their substantial
support in my research and teaching.

My deepest thanks to my family for their continuous faith in me.

Ilmenau, Spring 2019 Solomon Lo

vi

Notation

In this section we mention the notation that shall be standard throughout this thesis.

Sets. We use the standard set-theoretical notation while we mention the following. |X|
denotes the size of a set X. A− B represents the set {x : x ∈ A and x /∈ B}; parentheses
can be omitted if B is a singleton, i.e. |B| = 1. Given a set A, a binary relation R on A
is a subset of {(a, a′) : a, a′ ∈ A}. R is symmetric if (a, a′) ∈ R implies (a′, a) ∈ R for all
a, a′ ∈ A; irreflexive if (a, a) /∈ R for all a ∈ A. It is natural to see elements of a symmetric
irreflexive binary relation as unordered pairs.

Arithmetic. We recall some standard arithmetic notation. For x ∈ R, |x| denotes the
absolute value of x, dxe denotes the smallest integer not less than x, and bxc denotes the
greatest integer not exceeding x. For two functions f : N → R and g : N → R, we write
f = O(g) if there exist N0 ∈ N and c ∈ R such that |f(n)| ≤ c|g(n)| for all n ≥ N0; f = Ω(g)
if g = O(f); and f = o(g) if f(n)

g(n) tends to 0 when n tends to infinity.

Graphs.
Undirected Graphs. An undirected graph is a pair G = (V (G), E(G)) consisting of a set

V (G), whose members are called vertices, and E(G) a subset of {{u, v} : u, v ∈ V (G) and u 6=
v}, whose members are called edges. A vertex v is incident with an edge e if v ∈ e. The two
vertices incident with an edge are its endvertices. Two vertices u, v of G are adjacent, or
neighbors, if {u, v} ∈ E(G). For a vertex v ∈ V (G), let NG(v) be the set of neighbors of v in
G.

Given a vertex set W ⊆ V (G), G−W denotes the graph on the vertex set V (G)−W
with edges both of whose endvertices are in W . Given an edge set F ⊆ V (G), G−F denotes
the graph on the vertex set V (G) with edge set E(G)−F . A subgraph is obtained by deleting
edges and vertices. A spanning subgraph is obtained by deleting edges only. G[W] is defined
to be the induced subgraph of G on W , i.e. G− (V (G)−W).

For non-empty and disjoint vertex subsets X, Y ⊂ V (G), let EG(X, Y) denote the set of all
edges in G that have one endvertex in X and one endvertex in Y . Let further X := V (G)−X,
dG(X, Y) := |EG(X, Y)|, and dG(X) := |EG(X,X)|; if X = {v} for some vertex v ∈ V (G),
we simply write EG(v, Y), dG(v, Y) and dG(v). The number dG(v) is also called the degree of
v in G. In order to increase readability, we will omit subscripts whenever it is clear from the
context. We define δ(G) or simply δ to be the minimum degree minv∈V (G) dG(v) of G.

We also denote by uv or vu the edge with endvertices u, v ∈ V (G). We abuse the notation
of a sequence of vertices as follows. For t distinct vertices v1, v2, . . . , vt, we denote by v1v2 . . . vt
the path P of length t− 1 and size t with endvertices v1, vt such that V (P) := {v1, v2, . . . , vt}
and E(P) := {v1v2, v2v3, . . . , vt−1vt}. For t ≥ 3 distinct vertices v1, v2, . . . , vt, we denote
by v1v2 . . . vtv1 the cycle K of length t such that V (K) := {v1, v2, . . . , vt} and E(K) :=
{v1v2, v2v3, . . . , vt−1vt, vtv1}. A connected component in a graph is a maximal subgraph H

vii

viii NOTATION

such that there is a path in G between any two vertices of V (H). A graph is connected if it
consists of one component. A forest is a graph without cycles. A tree is a connected graph
without cycles. A subtree is a connected subgraph of a tree. Let T be a tree. For vw ∈ E(T),
we denote by T [vw; v] the connected component of T − vw containing v. Given a vertex
a ∈ V (T), we specify the tree T rooted at a by T (a). For v ∈ V (T), T (a)

v is defined as the
subtree of T containing v and all of its descendants in T (a). In other words, let P be the path
with endvertices a, v, T (a)

v is the connected component containing v in T − E(P). Vertices of
degree 1 in a tree are called leaves.

A subset ∅ 6= X ⊂ V of a graph G is called a cut of G. We say that a cut X separates
u, v ∈ V (G) if exactly one of u, v is in X; we also call X a u-v-cut. We define by dG(X) the
size of the cut X. A cut X of G is trivial if |X| = 1 or |X| = 1. For two vertices u, v ∈ V (G),
let λG(u, v) be the maximal number of edge-disjoint paths between u, v in G. A minimum
u-v-cut is a cut X that separates u and v and satisfies dG(X) = λG(u, v). Two vertices
u, v ∈ V (G) are called k-edge-connected if λG(u, v) ≥ k. For any k, the k-edge-connectedness
relation on vertices is symmetric and transitive, and thus its reflexive closure is an equivalence
relation that partitions V (G); let the k-edge-connected components be the blocks of this
partition. The edge-connectivity λ(G) or simply λ of G is the greatest integer such that every
two distinct vertices are λ(G)-edge-connected if |V (G)| ≥ 2, and it is infinity if |V (G)| = 1.
A cut X is a min-cut if dG(X) = λ(G). The vertex-connectivity κ(G) or simply κ of G is
defined to be |V (G)| − 1 if G is a complete graph (in which every two vertices are adjacent)
and otherwise the smallest integer κ(G) such that there exists a vertex subset S ⊆ V (G) of
size κ(G) and G− S is disconnected. G is k-connected if κ(G) ≥ k.

A planar graph is a graph that can be embedded in the Euclidean plane R2, i.e. it can
be drawn on the plane in such a way that its edges intersect only at their endvertices but
do not cross each other. Such a drawing is called a planar embedding of the graph. A plane
graph is a planar graph with some fixed planar embedding. For a plane graph G, we call
the open regions in R2 − (V (G) ∪ E(G)) faces. We consider only 2-connected planar graphs.
In this case the boundaries of the faces are cycles of the graph. Two faces are adjacent if
their boundaries intersect. The dual graph G∗ of G is the graph whose vertex set is the set of
faces of G and two vertices of G∗ are adjacent if the two corresponding faces are adjacent.
We identify the faces of G not only with the vertices in the dual graph G∗ but also with the
cycles in the boundaries of the faces provided that G is not a cycle.

Directed Graphs. A directed graph G = (V (G), E(G)) is a pair consisting of a vertex set
V (G), and an edge set E(G) which is a subset of {(u, v) : u, v ∈ V (G) and u 6= v}. We also
call (u, v) ∈ E(G) a directed edge or an edge directed from u to v; we denote it also by uv.
Directed paths and directed cycles can be defined analogously. Let C be a directed cycle. For
u, v ∈ V (C), we define [u, v]C to be the path directed from u to v along C. Subscripts can
be omitted if it is clear from the context. Let uv be an edge in C, we define u+ := v and
v− := u.

Multigraphs and Simple Graphs. An undirected or directed multigraph is a graph whose
edge set is a multiset, i.e. a set in which a multiple of occurrences of the same element
is allowed. We call a graph simple if every edge has only one occurrence in the edge set.
We consider only finite and simple graphs, unless otherwise specified. Given a graph or
multigraph G, contracting a vertex subset X ⊆ V (G) means identifying all vertices in X and
deleting the occurring self-loops (we do not require that X induces a connected graph in G).
Note that contracting a vertex subset in a simple graph can possibly give a multigraph.

Contents

Preface vi

Notation vii

Part I. 1

Chapter 1. Subtrees of Specified Weight 3
1.1. Introduction 3
1.2. An Overload-Discharge Approach 4
1.3. Support Vertices and Support Subtree 7
1.4. Overloading Vertices and Discharges 8
1.5. Proof of the Lemma 1.1 10
1.6. Some Examples 12

Chapter 2. Cycles of Specified Length 13
2.1. Overview of Cycle Spectra of Planar Graphs 13
2.2. Cycles of Length Close to Medium-Length 14
2.3. Planar Hamiltonian Graphs 15
2.4. 3-Connected Planar Hamiltonian Graphs 16

Part II. 19

Chapter 3. Generalized Cut Trees for Edge-Connectivity 21
3.1. Introduction 21
3.2. Cut Trees 22
3.3. Pendant Trees and Pendant Pairs 23
3.4. Contraction-Based Sparsification Preserving Small Cuts 30

Bibliography 36

Symbol Index 38

Index 39

ix

Part I

CHAPTER 1

Subtrees of Specified Weight

1.1. Introduction

Trees, as one of the most fundamental classes of graphs, have a long history for being
used to model many problems. They have numerous applications, for example, in searching,
data storage and network design. We can assign weights to the vertices in a tree and
ask, for example, how to find a subtree of maximum or minimum weight, or we can ask
how to partition the tree into subtrees satisfying some certain requirements. We refer the
reader to [Gar05, AMLM13] for optimization problems regarding weighted trees, and
to [Vyg11, INS+12] for tree partitioning problems. In this chapter we restrict the vertex
weights to positive integers, and we ask whether there is a subtree whose weight is very close
to half of the weight of the whole tree.

Given a tree T and vertex weights c : V (T)→ N, it is natural to ask subtrees of which
specified weight would exist. Let S be a subtree of T . We define c(S) := ∑

v∈V (S) c(v). Let
k, g ∈ N with 1 ≤ k ≤ c(T). We aim at finding a subtree S of weight k − g + 1 ≤ c(S) ≤ k.
Denote by N1 and N2 the number of vertices of the tree T and the weight c(T) of the whole
tree, respectively. Note that if we allow N2 to be arbitrarily large when compared to N1,
then it would be hopeless for us to achieve our goal. For example, it can happen that every
vertex has weight, say g′ � g, then a subtree S of weight k − g + 1 ≤ c(S) ≤ k exists if and
only if k ≡ 0, . . . , g − 1 mod g′. It means that the desired subtree does not exist for most
choices of k. We describe by h the difference between N1 and N2

2 . Our main goal is to prove
the following lemma, which can be interpreted as that the closer the value of our target k to
the medium-weight N2

2 and the smaller the medium-weight N2
2 when compared to the number

of vertices N1, the more favourable conditions we have in finding the desired subtree. It is
complemented by a deterministic linear-time algorithm, which will be given in Section 1.5.
We will find applications of this lemma in Chapter 2.

Lemma 1.1. Let k, g,N1, N2 ∈ N such that 1 ≤ k ≤ N2, 2g+h > 3 and 2k− 4g−h+ 3 ≤
N2 ≤ 2k+g+h−2, where h := 2N1−N2. Let T be a tree of N1 vertices and let c : V (T)→ N
be vertex weights such that c(T) = N2 and c(v) ≤ k for all v ∈ V (T). Then there exists a
subtree S of T of weight k − g + 1 ≤ c(S) ≤ k and S can be found in O(N1) time.

For the running time we assume that each arithmetic operation can be done in constant
time.

Along with the existence of subtrees of specified weight, we present an optimal linear-time
algorithm for finding them. Note that a tree may have exponentially many subtrees in
general. Hence, in our algorithm only a rather restricted (linear-size) subclass of subtrees
will be considered. We will exploit the Euler tour technique and find a subtree by local
search. Formally, given a tree T = (V (T), E(T)), we construct a directed cycle CT of size
2|E(T)| and consider the canonical homomorphism which maps vertices of CT to that of T
(as depicted in Figure 1.1). It is clear that every path in CT will be correspondingly mapped

3

4 1. SUBTREES OF SPECIFIED WEIGHT

to a subtree of T . We will prove that it is indeed the case that there exists such a subtree
satisfying the requirement. Therefore a linear-time algorithm follows as a simple consequence,
which searches greedily for a path in CT such that its corresponding subtree in T is what we
are looking for. To prove that such a path in CT exists, we assume it is not the case, and
then deduce a contradiction by counting the number of vertices of weight 1 in T in two ways.

We organize as follows. We introduce the aforementioned restricted subclass of subtrees
in Section 1.2.1. Since then we assume, towards a contradiction, that there is no subtree of T
having the desired weight in this subclass. We outline how to prove Lemma 1.1 by double
counting in Section 1.2.2. We study the subtrees in this linear-size subclass in Section 1.4,
and give a proof of Lemma 1.1 and a pseudocode of a linear-time algorithm in Section 1.5.
In Section 1.6 we present some examples showing that the conditions in Lemma 1.1 are tight
from several aspects.

1.2. An Overload-Discharge Approach

1.2.1. Overloading Subtrees by ETT. To define the subclass of subtrees mentioned
above, we consider the subtrees collected by the so-called Euler tour technique (ETT)
which was first introduced by Tarjan and Vishkin [TY84] and has abundant applications in
computing and data structures.

We assume a fixed planar embedding of the tree T and we walk around it, i.e. we see
edges of T as walls perpendicular to the plane and we walk on the plane along the walls.
This walk yields a cycle of size 2(|V (T)| − 1).

To make it precise, we define the auxiliary directed cycle graph CT as follows. For each
v ∈ V (T), we enumerate the edges incident to v in the clockwise order according to the planar
embedding and denote them by ev,1, ev,2, . . . , ev,dT (v). The vertex set V (CT) consists of dT (v)
vertices wv,1, wv,2, . . . , wv,dT (v) for each v ∈ V (T). Let wv,dT (v)+1 := wv,1. And, for every edge
uv ∈ E(T), say uv = eu,i = ev,j for some i ∈ {1, . . . , dT (u)} and j ∈ {1, . . . , dT (v)}, E(CT)
contains the edges wu,iwv,j+1 and wv,jwu,i+1. It is clear that CT is our desired cycle of size
2(|V (T)| − 1) (see Figure 1.1).

Note that a directed path in CT can be naturally corresponded to a subtree in T . Moreover,
growing a subtree by this walking-around-walls DFS in T is equivalent to growing a directed
path in CT .

We define the mapping ρ (a homomorphism) from V (CT) to V (T) by ρ(wv,i) := v for
wv,i ∈ V (CT) with v ∈ V (T) and i ∈ {1, . . . , dT (v)}. We also extend this mapping for paths
[u, v] directed from u to v in CT (u, v ∈ V (CT)) by defining ρ([u, v]) := T [{ρ(w) : w ∈
V ([u, v])}]. We then extend the weight function c to the vertices w and directed paths [u, v]
in CT (w, u, v ∈ V (CT)) by c(w) := c(ρ(w)) and c([u, v]) := c(ρ([u, v])).

Here we state an assumption (towards a contradiction) which we adopt from now on:
Assumption (Ω). There are no x, y ∈ V (CT) with k − g + 1 ≤ c([x, y]) ≤ k.
In other words there is no subtree of T with weight between k − g + 1 and k can be found
by searching along the Euler tour. Once we show that Assumption (Ω) cannot hold, we can
assure that there exists a subtree S of T having weight k − g + 1 ≤ c(S) ≤ k. Indeed, we
can have some linear-size subclass of subtrees that contains some subtree S having weight
k − g + 1 ≤ c(S) ≤ k. For instance, if k < c(T), we can consider the subtrees ρ([u, v])
(u, v ∈ V (CT)) satisfying c([u, v]) ≤ k, c([u−, v]) > k and c([u, v+]) > k. There are at most
|V (CT)| = O(|V (T)|) such subtrees, and at least one of them is of weight between k − g + 1

1.2. AN OVERLOAD-DISCHARGE APPROACH 5

and k when Assumption (Ω) doesn’t hold. It helps us to devise a linear-time algorithm
(Algorithm 1) for searching a subtree of the desired weight.

By Assumption (Ω), the inequalities c([u, v]) ≥ k − g + 1 and c([u, v]) ≤ k (u, v ∈ V (CT))
are equivalent to c([u, v]) > k and c([u, v]) < k − g + 1, respectively. (Such usage of
Assumption (Ω) would occur tacitly.)

We mention some more consequences that follow from Assumption (Ω). It is readily
to see that c(v) ≤ k − g for any v ∈ V (T) and N2 > k. Consider a path [u, v] (u, v ∈
V (CT)) satisfying c([u, v]) ≥ k, c([u+, v]) ≤ k and c([u, v−]) ≤ k, equivalently, c([u, v]) > k,
c([u+, v]) < k−g+1 and c([u, v−]) < k−g+1. It is clear that such a path exists, ρ(u) 6= ρ(v),
and both c(u), c(v) are at least g + 1, i.e. T has at least two distinct vertices of weight at
least g + 1.

Let u, v ∈ V (CT). [u, v] is k-overloading or simply overloading if c([u−, v−]) > k,
c([u, v−]) ≤ k and c([u, v]) > k, and we say ρ([u, v]) is an overloading subtree. Note that an
overloading path always exists when we assume (Ω), since we are given that 1 ≤ k ≤ N2 = c(T)
and c(v) ≤ k for every v ∈ V (T).

1.2.2. Bounds on |V1|. Now we see how we can count the number of vertices of weight
1 in two ways so that a contradiction may occur. For i ∈ N, we denote by Vi(T) ⊆ V (T)
the set of vertices v in T with c(v) = i. We write Vi := Vi(T) if there is no ambiguity. By

2 1 1 1 2 3 1

2 1

2

(a) The tree T with
vertex weights.

x

y zw

(b) The tree T ,
and the auxiliary
cycle CT whose
edges are directed
clockwise. Set
k := 7 and g := 1.
Qx,y is a maximal
overload-discharge
quadruples, since
c([x, y]) > 7,
c([x, y−]) < 7 and
c([x−, y−]) > 7.

Figure 1.1. Walk around the tree by ETT.

6 1. SUBTREES OF SPECIFIED WEIGHT

considering the sum of all the vertex weights, we have that

N2 =
∑
i≥1

i|Vi|

= 2
∑
i≥1
|Vi|+

∑
1≤i≤g

(i− 2)|Vi|+
∑
i≥g+1

(i− 2)|Vi|

= 2N1 − |V1|+
∑

2≤i≤g
(i− 2)|Vi|+

∑
i≥g+1

(i− g − 1)|Vi|+
∑
i≥g+1

(g − 1)|Vi|

=
∑
i≥g+1

(i− g − 1)|Vi|+
∑
i≥2

min{i− 2, g − 1}|Vi|+ 2N1 − |V1|.

As 2N1 −N2 =: h and ∑i≥g+1 |Vi| ≥ 2, we have the following lower bound on |V1|:

|V1| ≥
∑
i≥g+1

(i− g − 1)|Vi|+ 2g + h− 2.(�)

The intuitive idea of our proof of Lemma 1.1 is that if |V1| is large enough, i.e. there are
many vertices of weight 1, then it should facilitate the search of subtree of the desired weight.
Therefore, by assuming that Lemma 1.1 does not hold, there would be some upper bound on
the number of vertices of weight 1 which shows that the inequality (�) must be contradicted.
The upper bound is realized by the following observation.

Observation 1.2. Let g, k ∈ N. Let S be a subtree of T with c(S) > k, l be a leaf of S
with c(S − l) < k − g + 1, M be a subset of V (S)− l and n a vertex in S −M − l such that
S −M remains as a tree, n is a leaf of S −M , c(S −M) > k and c(S −M − n) < k− g+ 1.
Then we have

|M ∩ V1| ≤ c(S)− (k + 1) ≤ c(l)− g − 1.(∗)

The vertex set M can be seen as a set of vertices which are collected from a leave-cutting
process, i.e. we cut leaves (other than l) one by one from S with that the weight of the
remainder still larger than k, and it becomes less than k−g+1 once we further cut the vertex
n. Note that l is not cut from the subtree and it always stays as a leaf in the remaining part.

Proof. Since c(S)− c(M) = c(S −M) > k and c(S)− c(l) = c(S − l) < k − g + 1, we
have

|M ∩ V1| ≤ c(M) ≤ c(S)− (k + 1) ≤ c(l)− g − 1.
�

Note that the conditions given in Observation 1.2 appear naturally if we have a tree T
which has no subtree of weight between k − g + 1 and k. We carry out an overload-discharge
process as follows. We grow a subtree (say a single vertex) which is of weight less than
k − g + 1 until we grow it with a vertex l which makes the weight of the subtree at least
k − g + 1. As we assume that no subtree is of weight between k − g + 1 and k, when we halt
the growth, the weight of the subtree is actually not only at least k − g + 1 but greater than
k. We then start to cut its leaves (other than l) one by one until the weight declines to be
less than k − g + 1 again. The overload and discharge steps can always be achieved provided
that N2 > k and c(v) ≤ k − g for all v ∈ V (T). We say that l overloads S and a discharge
M ∪ {n} containing the last discharge n follows, and that (S, l,M, n) is an overload-discharge
quadruple. It is clear that l and n must have weight at least g + 1.

1.3. SUPPORT VERTICES AND SUPPORT SUBTREE 7

Let us have a look of a crude argument on how a contradiction would occur. Suppose we
have a family of overload-discharge quadruples (Sf , lf ,Mf , nf) (with some indices f) such
that the vertices of weight 1 in T is covered by the discharges, i.e. V1 ⊆

⋃
f Mf , and each

overloading vertex lf corresponds to only one overload-discharge quadruple, then, by the
inequality (∗), we can simply deduce the following contradiction to the inequality (�):

|V1| ≤
∑
f

|Mf ∩ V1| ≤
∑
f

(c(lf)− g − 1) ≤
∑
i≥g+1

(i− g − 1)|Vi|.

Although it is not always possible to have such a family of quadruples, we are still able
to have some sufficiently good family which leads to a contradiction to the inequality (�).
We will consider the family of overload-discharge quadruples corresponding to overloading
subtrees.

We demonstrate how an overload-discharge quadruple can be formed by considering paths
in CT . Let u, v be two distinct vertices of CT . If c([u, v−]) < k− g + 1 but c([u, v]) > k, then
there exists w ∈ V ([u, v−]) such that c([w, v]) > k and c([w+, v]) < k − g + 1. It is clear that
ρ(v) overloads the subtree ρ([u, v]) and we call

(ρ([u, v]), ρ(v), V (ρ([u, v]))− V (ρ([w, v])), ρ(w)) =: Qu,v

an overload-discharge quadruple associated with u, v.
An overload-discharge quadruple Qu,v associated with u, v ∈ V (CT) is maximal if

c([u−, v−]) > k holds, or equivalently, [u, v] is an overloading path in CT (see Figure 1.1(b)).
We let Q(T ; c, k) =: Q be the family of all maximal overload-discharge quadruples associated
with some u, v ∈ V (CT).

1.3. Support Vertices and Support Subtree

In order to see how the overloading subtrees from Q would be packed in the weighted
tree T , we need to study its structure in more detail. We introduce the notion of support
vertices and support subtree of the weighted tree T in this section.

We first fix an arbitrary vertex a ∈ V (T) and consider the rooted tree T (a). Note that
there always exists a vertex r such that c(T (a)

r) > k and c(T (a)
w) ≤ k for all children w of r

in T (a), as we assume c(T (a)) = N2 > k. We then take one such vertex r and consider the
tree T (r) rooted at r. Let r1, . . . , rt (t ∈ N) be the vertices each satisfies that c(T (r)

ri
) > k and

c(T (r)
w) ≤ k for all children w of ri in T (r) (i = 1, . . . , t). We call r, r1, . . . , rt support vertices

of T , and the minimal subtree T ∗ containing all support vertices support subtree of T .
Note that T (r)

w is exactly the same subtree as T (a)
w for every w ∈ V (T (a)

r)− r, therefore
c(T (r)

w) = c(T (a)
w) ≤ k and ri /∈ V (T (a)

r) − r for every i = 1, . . . , t. If there are two distinct
support vertices ri1 , ri2 with i1, i2 ∈ {1, . . . , t}, we have that ri1 is neither ancestor nor
descendant of ri2 in T (r), and, in particular, both ri1 , ri2 cannot be r. It is possible that r is
one of the r1, . . . , rt; it happens if and only if r is the only support vertex and |V (T ∗)| = 1.
We conclude that the leaves of T ∗ are exactly the support vertices if |V (T ∗)| > 1, as T ∗ is
the union of the paths Pi (i = 1, . . . , t), where Pi is the path in T with endvertices r and ri.

It is clear that T − E(T ∗) is a forest of |V (T ∗)| subtrees. For r̃ ∈ V (T ∗), we denote by
T ∗[r̃] the maximal subtree of T − E(T ∗) containing r̃. If |V (T ∗)| > 1, then the subtrees
T (a)
r , T (r)

r1 , . . . , T
(r)
rt

are exactly T ∗[r], T ∗[r1], . . . , T ∗[rt], and each of them has weight at least
k + 1.

Let t∗ be the number of support vertices. It is clear that t∗ = t = 1 if |V (T ∗)| = 1, and
t∗ = t+ 1 if |V (T ∗)| > 1. We claim that N2 ≥ t∗(k + 1). It holds trivially if |V (T ∗)| = 1. If

8 1. SUBTREES OF SPECIFIED WEIGHT

|V (T ∗)| > 1, then we have t∗ vertex-disjoint subtrees T ∗[r], T ∗[r1], . . . , T ∗[rt]. Thus we have
N2 = c(T) ≥ c(T ∗[r]) + c(T ∗[r1]) + · · ·+ c(T ∗[rt]) ≥ t∗(k + 1).

In particular, N2 ≥ 2k + 2 if |V (T ∗)| > 1.
We remark that for a fixed k the support tree T ∗ is unqiuely defined if |V (T ∗)| > 1, while

it is not always uniquely defined if |V (T ∗)| = 1, as it would depend on the initial root a. For
ease of presentation we assume that some support tree is fixed throughout.

1.4. Overloading Vertices and Discharges

In this section we focus on the vertices which overload subtrees from Q and see how
many discharges they can carry each. We first show a sufficient condition for a vertex to be
contained in some discharge from Q.

Lemma 1.3. Let vw be an edge in T . If c(T [vw;w]) ≥ k−g, then there exists (S, l,M, n) ∈
Q with v ∈M ∪ {n}.

Proof. Let i ∈ {1, . . . , dT (v)} such that the edge vw is ev,i. We grow a path in CT
from u := wv,i to obtain an overload-discharge quadruple Qu,y associated with u, y for some
y ∈ V (CT). The corresponding situation in T is that a subtree starts growing at v, then
traverses along the edge ev,i immediately. It will overload, i.e. the weight reaches larger than
k, without revisiting v, since c(v) + c(T [vw;w]) ≥ k − g + 1.

We can augment the path [u, y] backwards along the cycle CT to obtain [x, y] such that
c([x, y−]) < k − g + 1 but c([x−, y−]) > k. Then we have Qx,y ∈ Q. Note that u is the
only vertex in [u, y] with ρ(u) = v, and u cannot stay in the path after discharge since
c([u, y]) ≥ k − g + 1. Therefore the discharge of Qx,y must contain v. �

Now we give a necessary condition for a vertex to be an overloading vertex in some
quadruple in Q.

Lemma 1.4. Let Qx,y ∈ Q be an overload-discharge quadruple associated with some
x, y ∈ V (CT). We have c(T [ρ(y)ρ(y−); ρ(y−)]) + c(ρ(y)) > k.

Proof. It is clear that the subtree ρ([x, y−]) is contained in the subtree T [ρ(y)ρ(y−); ρ(y−)].
Therefore, c(T [ρ(y)ρ(y−); ρ(y−)]) + c(ρ(y)) ≥ c([x, y]) > k as ρ(y) overloads ρ([x, y]). �

We next show that if there are more than one overloading subtrees having the same
overloading vertex, then the mutual intersection among these subtrees can only be the
overloading vertex, and such a vertex must be in the support subtree. We also prove upper
bounds on these discharges.

Lemma 1.5. Let Qx1,y1 and Qx2,y2 be two distinct overload-discharge quadruples associated
with x1, y1 and x2, y2, where x1, y1, x2, y2 ∈ V (CT), in Q, respectively. If ρ(y1) = ρ(y2) =: l,
we have

V (ρ([x1, y1])) ∩ V (ρ([x2, y2])) = {l}
and l must be a vertex in the support subtree T ∗.

Proof. As Qx1,y1 and Qx2,y2 are distinct overload-discharge quadruples, by the choice
of maximality of elements of Q, y1 must be different from y2. Hence we have distinct
indices i, j ∈ {1, . . . , dT (l)} such that y1 = wl,i+1 and y2 = wl,j+1. Note that yf (f = 1, 2)
is the only vertex in [xf , yf] with ρ(yf) = l since l is the overloading vertex. It means
that l is not in the subtree ρ([xf , yf−]) (f = 1, 2). Moreover, the subtree ρ([x1, y1

−]) is a

1.4. OVERLOADING VERTICES AND DISCHARGES 9

subtree of T [el,i; ρ(y1
−)], i.e. the component not containing l when deleting the edge el,i, and

similarly, ρ([x2, y2
−]) is a subtree of the component not containing l when deleting the edge

el,j. Therefore V (ρ([x1, y1
−])) ∩ V (ρ([x2, y2

−])) = ∅ and V (ρ([x1, y1])) ∩ V (ρ([x2, y2])) = {l}.
Suppose l /∈ V (T ∗). Let u ∈ V (T ∗) and w be the neighbor of l such that u ∈ T [lw;w].

By the definition of the support subtree, for every neighbor v of l other than w, we have
c(T [lv; v]) + c(v) ≤ k. By Lemma 1.4, there are at most one overloading subtree whose
overloading vertex is l. �

Lemma 1.6. Let T0 be a subtree of T . Let l be an overloading vertex shared by t ∈ N
quadruples (Si, l,Mi, ni) ∈ Q, for i = 1, . . . , t, such that Si is a subtree of T0 for every
i = 1, . . . , t. We have

t∑
i=1
|Mi ∩ V1| ≤ c(l) + (t− 2)(c(l)− k − 1) + c(T0)− 2k − 2 ≤ c(T0)− k − 1.

Proof. By Lemma 1.5, the overloading subtrees share only the overloading vertex l,
hence c(l) +∑

i(c(Si)− c(l)) ≤ c(T0). By Observation 1.2 and the assumption c(v) ≤ k for all
v ∈ V (T), we have ∑i |Mi ∩ V1| ≤

∑
i(c(Si)− (k+ 1)) = ∑

i(c(Si)− c(l)) + t(c(l)− (k+ 1)) ≤
c(T0)− c(l) + t(c(l)− (k + 1)) = c(T0) + c(l)− 2(k + 1) + (t− 2)(c(l)− k − 1) = c(T0)− k −
1 + (t− 1)(c(l)− k − 1) ≤ c(T0)− k − 1. �

As the last preparation for the proof of Lemma 1.1 we show that a reasonable portion of
vertices will be covered by the discharges from Q.

Lemma 1.7. If |V (T ∗)| > 1, then we have⋃
(S,l,M,n)∈Q

(M ∪ {n}) = V (T).

If |V (T ∗)| = 1 and N2 ≥ 2k−2g−D for some D ∈ N, then we have |⋃(S,l,M,n)∈Q(M∪{n})| ≥
|V (T)| −D. If |V (T ∗)| = 1 and N2 ≥ 2k − 2g, then we have⋃

(S,l,M,n)∈Q
(M ∪ {n}) ⊇ V (T)− V (T ∗).

Proof. If |V (T ∗)| > 1, for a vertex v in T , we can take a support vertex u 6= v
such that v /∈ T ∗[u]. Let w be the vertex adjacent to v such that u ∈ T [vw,w]. We have
c(T [vw;w]) ≥ c(T ∗[u]) ≥ k+1 ≥ k−g, and hence, by Lemma 1.3, there exists (S, l,M, n) ∈ Q
such that v ∈M ∪ {n}. Thus ⋃(S,l,M,n)∈Q(M ∪ {n}) = V (T).

If |V (T ∗)| = 1 and N2 ≥ 2k−2g−D for some D ∈ N, let r be the only one support vertex.
Consider the tree T (r) rooted at r. Let U be the set of vertices v with c(T (r)

v) ≥ N2−k+g+1.
For v ∈ V (T)−r−U , let w be the parent of v in T (r), we have c(T [vw;w]) ≥ N2−(N2−k+g) =
k− g and hence, by Lemma 1.3, v is covered by some discharge from Q. We can assume that
U is not empty (otherwise at most one vertex, namely the root r, can be not covered by any
discharge from Q).

We consider the subtree T [U] of T induced by U . If T [U] has two leaves v, w other than r,
then |U | ≤ 2 + c(T [U]− v −w) ≤ 2 +N2 − c(T (r)

v)− c(T (r)
w) ≤ 2 +N2 − 2(N2 − k + g + 1) =

−N2 +2k−2g ≤ D. Otherwise T [U] is a path with r as one of the endvertices, say rv1v2 . . . vt
for some integer t ≥ 0. If t > D, then c(T (r)

v1) ≥ ∑t−1
i=1 c(vi) + c(T (r)

vt
) ≥ D + c(T (r)

vt
) ≥

D + (N2 − k + g + 1) ≥ k − g + 1 which contradicts the definition of the support subtree T ∗
as in this case v1 should be in V (T ∗). If t = D, similarly as above, we have c(T (r)

v1) ≥ k − g

10 1. SUBTREES OF SPECIFIED WEIGHT

and hence, by Lemma 1.3, r is covered by some discharge from Q. In any case, we have
that there are at most D vertices which are not covered by any discharge from Q, i.e.
|⋃(S,l,M,n)∈Q(M ∪ {n})| ≥ |V (T)| −D.

If |V (T ∗)| = 1 and N2 ≥ 2k− 2g, let r be the only support vertex and r 6= v ∈ V (T) be a
vertex in T . By the definition of the support subtree, we have that c(T (r)

v) ≤ k− g. Let w be
the parent of v in T (r). We have c(T [vw;w]) = N2 − c(T (r)

v) ≥ (2k − 2g)− (k − g) = k − g.
Therefore V (T)− r ⊆ ⋃(S,l,M,n)∈Q(M ∪ {n}). �

1.5. Proof of the Lemma 1.1

In this section we prove Lemma 1.1. We first consider the case that N2 ≥ 2k − 2g.
If |V (T ∗)| = 1, let r be the only support vertex. If c(r) < g + 1, then by Lemmas 1.7
and 1.5 and the condition that 2g + h > 3, we have |V1| ≤

∑
(S,l,M,n)∈Q |M ∩ V1| + 1 ≤∑

(S,l,M,n)∈Q(c(l)− g− 1) + 1 ≤ ∑i≥g+1(i− g− 1)|Vi|+ 1 < ∑
i≥g+1(i− g− 1)|Vi|+ 2g+ h− 2.

Otherwise, c(r) ≥ g + 1 and r can be an overloading vertex and we apply Lemmas 1.6 (take
T0 := T) to bound the corresponding discharges as follows: |V1| ≤

∑
(S,l,M,n)∈Q,l 6=r |M ∩ V1|+∑

(S,l,M,n)∈Q,l=r |M∩V1| ≤
∑

(S,l,M,n)∈Q,l 6=r(c(l)−g−1)+max{0, c(r)−g−1, c(r)+N2−2k−2} ≤∑
(S,l,M,n)∈Q,l 6=r(c(l)− g− 1) + c(r) + g+h− 4 ≤ ∑i≥g+1(i− g− 1)|Vi|+ 2g+h− 3. The third

inequality follows from the condition that N2 ≤ 2k+ g+ h− 2. In any case the inequality (�)
is contradicted.

If |V (T ∗)| > 1, then, by Lemma 1.7, all vertices in V1 are covered by some discharge from
Q. For a vertex u ∈ V (T ∗), by Lemma 1.6 (take T0 := T ∗[u]) and Observation 1.2, we have∑

(S,u,M,n)∈Q
|M ∩ V1| ≤ max{0, c(T ∗[u])− k − 1}+ dT ∗(u) max{0, c(u)− g − 1}.

Define U1 to be the set of vertices u ∈ V (T ∗) satisfying dT ∗(u) = 1, U2 the set of vertices
u ∈ V (T ∗) satisfying dT ∗(u) > 1 and c(T ∗[u]) ≥ k + 1, and U3 the set of vertices u ∈ V (T ∗)
satisfying c(u) ≥ g+1. Recall that U1 is exactly the set of support vertices and c(T ∗[u]) ≥ k+1
for all u ∈ U1. As U1 is disjoint with U2, we have N2 ≥

∑
u∈U1∪U2 c(T ∗[u])+∑u∈U3−(U1∪U2) c(u),

and ∑
(S,u,M,n)∈Q,u∈V (T ∗)

|M ∩ V1|

≤
∑

u∈U1∪U2

(c(T ∗[u])− k − 1) +
∑
u∈U3

dT ∗(u)(c(u)− g − 1)

=
∑

u∈U1∪U2

(c(T ∗[u])− k − 1) +
∑
u∈U3

(c(u)− g − 1) +
∑

u∈U3−U1

(dT ∗(u)− 1)(c(u)− g − 1)

≤
∑

u∈U1∪U2

c(T ∗[u]) +
∑

u∈U3−(U1∪U2)
c(u) +

∑
u∈U3

(c(u)− g − 1) +
∑
u∈U1

(−k − 1)

+
∑

u∈U3∩U2

((dT ∗(u)− 1)(c(u)− g − 1)− k − 1) +
∑

u∈U3−(U1∪U2)
((dT ∗(u)− 1)(c(u)− g − 1)− c(u))

≤N2 +
∑
u∈U3

(c(u)− g − 1) +
∑

u∈U3−U1

(dT ∗(u)− 2)(−k − 1) + 2(−k − 1)

+
∑

u∈U3−U1

(dT ∗(u)− 2)(c(u)− g − 1)

≤
∑
u∈U3

(c(u)− g − 1) +N2 − 2k − 2.

1.5. PROOF OF THE LEMMA 1.1 11

In the third inequality we utilize the basic fact about tree that ∑u∈U1 1 = ∑
u∈U1 dT ∗(u) =∑

u∈V (T ∗)−U1(dT ∗(u)− 2) + 2. Thus we have

|V1| ≤
∑

(S,l,M,n)∈Q,l /∈V (T ∗)
|M ∩ V1|+

∑
(S,l,M,n)∈Q,l∈V (T ∗)

|M ∩ V1|

≤
∑

(S,l,M,n)∈Q,l /∈V (T ∗)
(c(l)− g − 1) +

∑
l∈U3

(c(l)− g − 1) +N2 − 2k − 2

≤
∑
i≥g+1

(i− g − 1)|Vi|+ g + h− 4,

which contradicts the inequality (�).
We now consider the case that N2 < 2k − 2g. Note that in this case |V (T ∗)| = 1 always

holds. Let r be the only support vertex. Set D := 2g + h − 3 > 0 in Lemma 1.7, we
have |V1| ≤

∑
(S,l,M,n)∈Q,l 6=r(c(l) − g − 1) + max{0, c(r) − g − 1, c(r) + N2 − 2k − 2} + D ≤∑

(S,l,M,n)∈Q,l 6=r(c(l)− g − 1) + max{0, c(r)− g − 1, c(r)− 2g − 3}+ 2g + h− 3 ≤ ∑i≥g+1(i−
g − 1)|Vi|+ 2g + h− 3, which contradicts the inequality (�).

Thus it is proved the existence of a subtree S with weight k − g + 1 ≤ c(S) ≤ k. As
Assumption (Ω) cannot hold, it is not hard to see that the subtree S can be found by the
iterative overload-discharge process described in Algorithm 1. The cycle CT and the mapping
ρ can be constructed in O(N1) time [Hie73]. Note that there are O(|V (CT)|), i.e. O(N1)
iterations, since the initial vertex v ∈ V (CT) can be revisited at most once. Thus S can be
computed in O(N1) time. This completes the proof of Lemma 1.1.

We remark that here we assume that each arithmetic operation be done in constant time.
If the arithmetic operations require logarithmic cost, then one can have O(∆(T) ·N1 log N2

N1
)

running time, where ∆(T) denotes the maximum degree of T .

Algorithm 1
Input: A tree T of N1 vertices and vertex weights c : V (T)→ N with c(T) = N2 such

that 1 ≤ k ≤ N2, g + h > 2 and 2k − 4g − h+ 3 ≤ N2 ≤ 2k + g + h− 2
(k, g,N1, N2 ∈ N), where h := 2N1 −N2, and c(v) ≤ k for any v ∈ V (T).

Output: A subtree S of T with k − g + 1 ≤ c(S) ≤ k.
1 Construct the directed cycle CT and the homomorphism ρ : V (CT)→ V (T). Choose
an arbitrary vertex v of CT . Set s := v and t := v.

2 while c([s, t]) < k − g + 1 do
3 Set t := t+.
4 if c([s, t]) ≤ k then
5 Output ρ([s, t]).
6 while c([s, t]) > k do
7 Set s := s+.
8 if c([s, t]) ≥ k − g + 1 then
9 Output ρ([s, t]).

10 go to 2.

12 1. SUBTREES OF SPECIFIED WEIGHT

1.6. Some Examples

In this section we give some examples and show that the conditions in Lemma 1.1 are
tight from several aspects. A useful fact to study some examples mentioned below is that
Algorithm 1 is an exhaustive search when the input tree is a path.

The condition 1 ≤ k ≤ N2 should clearly be included for our interest.
We show that the condition 2g + h > 3 is tight. Consider the star T of order 2p for some

p > 1, such that center vertex has weight 1 and the other 2p− 1 vertices have weight 2. We
have N2 = 2N1 − 1 = 4p− 1 and h = 1. Set k := N1 = 2p ≥ 4 and g := 1. One can easily
check that all conditions are satisfied except that 2g + h = 3, and T has no subtree of weight
k.

For the condition N2 ≥ 2k− 4g−h+ 3, we consider the path v1v2 . . . vp+2q of order p+ 2q
for some integers p > 1 and q ≥ 1. Set c(vq+i) := 1 for i = 1, 2, . . . , p, and c(vj) := 2 for any
j 6= q + 1, q + 2, . . . , q + p. We have N2 = p+ 4q and h = p. Set k := p+ 2q + 1 and g := 1.
One can easily check that all conditions are satisfied except that N2 = 2k − 4g − h+ 2, and
T has no subtree of weight k.

We next discuss the condition N2 ≤ 2k + g + h − 2. Let p > 1 be an integer, and T
be a path v1v2 . . . v2p+3 of order 2p + 3. Set c(vp+2) := p + 2, c(vp+i) := 2 for i = 1, 3, and
c(vj) := 1 for any j 6= p+ 1, p+ 2, p+ 3. We have N2 = 3p+ 6 and h = 2N1 −N2 = p. Set
k := p + 3 and g := 1. One can easily check that all conditions are satisfied except that
N2 = 2k + g + h− 1, and T has no subtree of weight k.

As we have seen, the condition c(v) ≤ k for all v ∈ V (T) is one of the key ingredients to
make the overload-discharge process work. If this condition is violated, then the existence of
a subtree of the desired weight cannot be assured. Let T be the star of order p+ 1 for some
integer p > 1. We set the vertex weight of the center vertex to be q + 1 for some integer
2 < q < p+ 2, and those of the other p vertices (leaves) to be 1. We have N2 = p+ q + 1 and
h = p− q + 1. Set k := q and g := 2. Then it is clear that all conditions are satisfied except
that there exists a vertex (the center vertex) with weight larger than k, and T has no subtree
of weight between k − g + 1 and k.

CHAPTER 2

Cycles of Specified Length

2.1. Overview of Cycle Spectra of Planar Graphs

The cycle spectrum CS(G) of a simple graph G is defined to be the set of integers k for
which there is a cycle of length k in G. G is said to be hamiltonian if |V (G)| ∈ CS(G) and
pancyclic if its cycle spectrum has all possible lengths, i.e. CS(G) = {3, . . . , |V (G)|}. Cycle
spectra of graphs have been extensively studied in many directions, in this paper we study
cycle spectra of planar hamiltonian graphs with minimum degree δ ≥ 4.

In 1956, Tutte [Tut56] proved his seminal result that every 4-connected planar graph is
hamiltonian. Motivated by Tutte’s theorem together with the metaconjecture proposed by
Bondy [Bon75] that almost any non-trivial conditions for hamiltonicity of a graph should
also imply pancyclicity, Bondy [Bon75] conjectured in 1973 that every 4-connected planar
graph G is almost pancyclic, i.e. |CS(G)| ≥ |V (G)| − 3, and Malkevitch [Mal88] conjectured
in 1988 that every 4-connected planar graph is pancyclic if it contains a cycle of length 4
(see [Mal71, Mal78] for other variants).

These two conjectures remain open, while 4 is the only known cycle length that can be
missing in a cycle spectrum of a 4-connected planar graph. For example, the line graph of a
cyclically 4-edge-connected cubic planar graph with girth at least 5 is a 4-regular 4-connected
planar graph with no cycle of length 4, see also [Mal71, Tre89]. If we relax the connectedness,
more cycle lengths are known for being absent in some cycle spectra. Choudum [Cho77]
showed that for every integer k ≥ 7, there exist 4-regular 3-connected planar hamiltonian
graphs of order larger than k each has cycles of all possible lengths except k, which means
every integer k ≥ 7 can be absent in the cycle spectra of some 4-regular 3-connected planar
hamiltonian graphs. Another interesting example was constructed by Malkevitch [Mal71],
which is, for every p ∈ N, a 4-regular planar hamiltonian graph G of order |V (G)| = 6p whose
cycle spectrum CS(G) = {3, 4, 5, 6} ∪ {r ∈ N : |V (G)|

2 ≤ r ≤ |V (G)|}, as shown in Figure 2.1.
So far we have seen which cycle lengths can be absent in some cycle spectra, we now ask

the opposite question, i.e. which cycle lengths must be present in all cycle spectra. It is
known that every planar graph with δ ≥ 4 must contain cycles of length 3, 5 [WL02] and
6 [FJMv02], which is shown to be best possible by the aforementioned examples. It is also
known that every 2-connected planar graph with δ ≥ 4 must have a cycle of length 4 or
7 [HK08], a cycle of length 4 or 8 and a cycle of length 4 or 9 [MT]. While the presence of
a cycle of length 3 follows easily from Euler’s formula, the rest of them were shown by the
discharging method.

Another powerful tool in searching cycles of specified length is the so-called Tutte path
method, which was first introduced by Tutte in his proof of hamiltonicity of 4-connected
planar graphs. Using this technique, Nelson (see [Plu75, Tho83]), Thomas and Yu [TY94]
and Sanders [San97] showed that every 4-connected planar graph contains cycles of length
|V (G)| − 1, |V (G)| − 2 and |V (G)| − 3, respectively. Note that we always assume k ≥ 3

13

14 2. CYCLES OF SPECIFIED LENGTH

Figure 2.1. A 4-regular planar hamiltonian graph G which has no cycle of
length between 7 and |V (G)|

2 − 1.

when we say a graph contains a cycle of length k. Chen et al. [CFY04] noticed that the
Tutte path method cannot be generalized for smaller cycle lengths, they hence combined
Tutte paths with contractible edges and showed the existence of cycles of length |V (G)| − 4,
|V (G)| − 5 and |V (G)| − 6. Following this approach, Cui et al. [CHW09] showed that every
4-connected planar graph has a cycle of length |V (G)| − 7. To summarize, every 4-connected
planar graph contains a cycle of length k for every k ∈ {|V (G)|, |V (G)| − 1, . . . , |V (G)| − 7}
with k ≥ 3.

2.2. Cycles of Length Close to Medium-Length

With the knowledge of these short and long cycles, Mohr [Moh18] asked whether cycles
of length close to |V (G)|

2 also exist, and he answered his question by showing that every planar
hamiltonian graph G satisfying |E(G)| ≥ 2|V (G)| has a cycle of length between 1

3 |V (G)| and
2
3 |V (G)|. We present his simple and elegant argument in the following.

Let G∗ be the dual graph of the plane graph G and C be a Hamilton cycle (i.e. a spanning
cycle) of G. Note that C separates the Euclidean plane into two open regions Cint and Cext
containing no vertex. Let Gint and Gext be the graphs obtained from G by deleting the edges
in Cext and in Cint, respectively. We always assume that |E(Gint)| ≥ |E(Gext)|. As C is a
Hamilton cycle, its dual disconnects G∗ into two trees say Tint lying on Cint and Text on Cext
(see Figure 2.2). By Euler’s formula, we have |V (G∗)| = |E(G)| − |V (G)| + 2, and hence
|V (Tint)| ≥ 1

2 |V (G∗)| ≥ 1
2 |V (G)| + 1. We define vertex weight c(v) := dG∗(v) − 2 ≥ 1 for

every vertex v ∈ V (G∗) ⊃ V (Tint), where dG∗(v) is the degree of v in G∗, or equivalently, the
face length of v in G (see Figure 2.2(a)). It is not hard to see that for every subtree S of Tint,
the set of edges of G∗ having exactly one endvertex in S is indeed the dual of an edge set of
a cycle in G of length c(S) + 2, where c(S) := ∑

v∈V (S) c(v) (see Figure 2.2(b)).
Thus the problem of finding a cycle of specified length is transformed to the problem of

finding a subtree of specified weight: the existence of a subtree S of weight k in Tint implies
the existence of a cycle of length k + 2 in G. It is left to show that there is a subtree S
in Tint with 1

3 |V (G)| − 2 ≤ c(S) ≤ 2
3 |V (G)| − 2. First note that c(v) ≤ 1

2 |V (G)| − 2 for
all v ∈ V (Tint); otherwise c(Tint) > 1

2 |V (G)| − 2 + |V (Tint)| − 1 ≥ |V (G)| − 2, which is not
possible as Tint corresponds to the Hamilton cycle of length |V (G)|. If there is a vertex

2.3. PLANAR HAMILTONIAN GRAPHS 15

2

1
1

1
2

3
1

2

1

2

(a) The tree
Tint with vertex
weights.

(b) A subtree of
Tint of weight 6
corresponds to a
cycle of length 8
in G.

Figure 2.2. The tree Tint in the dual graph of G .

v ∈ V (Tint) with c(v) ≥ 1
3 |V (G)| − 2, then we can simply take S to be this single vertex v.

Suppose c(v) < 1
3 |V (G)| − 2 for all v ∈ V (Tint). We take S to be a maximal subtree of Tint

with c(S) ≤ 2
3 |V (G)| − 2, it is clear that c(S) ≥ 1

3 |V (G)| − 2. Thus G has a cycle of length
between 1

3 |V (G)| and 2
3 |V (G)|.

2.3. Planar Hamiltonian Graphs

We recapitulate the main content of Mohr’s inspiring proof. Given a planar hamiltonian
graph G, we can have a tree T (in the dual graph) of at least 1

2 |E(G)| − 1
2 |V (G)|+ 1 vertices

with vertex weights c : V (T)→ N such that c(T) = |V (G)|−2 and c(v) ≤ c(T)−|V (T)|+1 ≤
3
2 |V (G)| − 1

2 |E(G)| − 2 for all v ∈ V (T). And, if there is a subtree of weight k in T , then
there is a cycle of length k + 2 in G.

Combining Mohr’s transformation and Lemma 1.1 we have the following:

Corollary 2.1. Let G be a planar hamiltonian graph with |E(G)| ≥ (2 + γ)|V (G)| for
some real number −1 ≤ γ < 1. Let k, g ∈ N such that g+ dγ|V (G)|e+ 2 > 0, 3 ≤ k ≤ |V (G)|
and b (1−γ)|V (G)|

2 c ≤ k ≤ d(1+γ)|V (G)|e
2 + 2g + 3

2 . There exists a cycle K in G of length
k− g+ 1 ≤ |V (K)| ≤ k, and K can be found in linear time if a Hamilton cycle of G is given.

Proof. Let T be the tree with vertex weights c that we mentioned before. We set
k̃ := k − 2 ≥ 1 and h := dγ|V (G)|e + 4. We check the conditions required for applying
Lemma 1.1 on the parameters k̃, g, h,N1 and N2 as follows. First we have that g + h > 2,
1 ≤ k̃ ≤ N2 = |V (G)| − 2, 2k̃ ≤ d(1 + γ)|V (G)|e + 4g − 1 = N2 + 4g + h − 3, and
k̃ ≥ b (1−γ)|V (G)|

2 c − 2 ≥ b(1−γ)|V (G)|c
2 − 1

2 − 2 = |V (G)|−dγ|V (G)|e
2 − 1

2 − 2 ≥ N2
2 −

g
2 −

h
2 + 1.

Note also that 2|V (T)| ≥ |E(G)| − |V (G)| + 2 ≥ (1 + γ)|V (G)| + 2 = c(T) + γ|V (G)| + 4
implies 2N1 ≥ N2 + h, and for every v ∈ V (T), c(v) ≤ 3

2 |V (G)| − 1
2 |E(G)| − 2 ≤ 3

2 |V (G)| −
2+γ

2 |V (G)| − 2 = 1−γ
2 |V (G)| − 2 implies c(v) ≤ b (1−γ)|V (G)|

2 c − 2 ≤ k̃. As all conditions are
satisfied, by Lemma 1.1, there exists a subtree S of T of weight k̃ − g + 1 ≤ c(S) ≤ k̃ which

16 2. CYCLES OF SPECIFIED LENGTH

can be found in linear time. And hence G has a cycle K of length k − g + 1 ≤ |V (K)| ≤ k
which can be found in linear time provided a Hamilton cycle of G is given, since every planar
graph can be embedded in plane in linear time [CNAO85] and the tree Tint can then be
easily constructed from the planar embedding in linear time. �

We specify some implications as follows.

Corollary 2.2. Every planar hamiltonian graph G with δ(G) ≥ 3 has a cycle of
length b |V (G)|+1

4 c + 2 ≤ k ≤ b3|V (G)|
4 c. Every planar hamiltonian graph G with δ(G) ≥ 4

has a cycle of length k for every k ∈ {b |V (G)|
2 c, . . . , d |V (G)|

2 e + 3} with 3 ≤ k ≤ |V (G)|.
Every planar hamiltonian graph G with δ(G) ≥ 5 has a cycle of length k for every k ∈
{b |V (G)|

4 c, . . . , d3|V (G)|
4 e+ 3} with 3 ≤ k ≤ |V (G)|. Each of these cycles can be found in linear

time if a Hamilton cycle of G is given.

Proof. It follows immediately when we in Theorem 2.1 set γ := −1
2 , g := b |V (G)|

2 c − 1
and k := b3|V (G)|

4 c; γ := 0 and g := 1; and γ := 1
2 and g := 1, respectively. �

It is known that a Hamilton cycle can be found in linear time for every 4-connected planar
graph [CN89]. Thus those cycles mentioned above can be simply found in linear time each
in this case.

2.4. 3-Connected Planar Hamiltonian Graphs

Note that Malkevitch’s example (see Figure 2.1) illustrates that not every planar hamil-
tonian graph G with δ ≥ 4 can have a cycle of length b |V (G)|

2 c− 1 or b |V (G)|
2 c− 2. As a further

application we prove in this section that this cycle length can be assured for 3-connected
planar hamiltonian graphs with δ ≥ 4.

Theorem 2.3. Let G be a 3-connected planar hamiltonian graph with minimum degree
δ(G) ≥ 4. If |V (G)| ≥ 8 is even, there exists a cycle of length either 1

2 |V (G)|−2 or 1
2 |V (G)|−1

in G, and it can be found in linear time if a Hamilton cycle is given.

Proof. We adopt the notations defined in Section 2.2. If every face of Gint is of length
either |V (G)| or less than 1

2 |V (G)|, i.e. c(v) ≤ 1
2 |V (G)|−3 for every v ∈ V (Tint), by Lemma 1.1

(set g := 2 and h := 4), there exists a subtree of weight either 1
2 |V (G)| − 4 or 1

2 |V (G)| − 3 in
Tint and hence a cycle of length either 1

2 |V (G)| − 2 or 1
2 |V (G)| − 1 in G.

Recall that |E(Gint)| ≥ 3
2 |V (G)|. If |E(Gint)| > 3

2 |V (G)|, then |V (Tint)| ≥ 1
2 |V (G)|+ 2 =

1
2c(Tint)+3 and c(v) ≤ c(Tint)−|V (Tint)|+1 ≤ 1

2 |V (G)|−3 for all v ∈ V (Tint). By Lemma 1.1
(set g := 1 and h := 6), there exists a subtree of weight 1

2 |V (G)| − 3 in Tint and hence a cycle
of length 1

2 |V (G)| − 1 in G.
Now we can assume that |E(Gint)| = 3

2 |V (G)| and Gint has a face of length 1
2 |V (G)|. It

holds immediately that |E(Gext)| = 3
2 |V (G)| since |E(Gint)|+ |E(Gext)| = |E(G)|+ |V (G)| ≥

3|V (G)| and |E(Gint)| ≥ |E(Gext)|. And we can also assume that Gext has a face of length
1
2 |V (G)|. In this case we have dG(v) = 4 and dGint(v) + dGext(v) = 6 for every v ∈ V (G), and
that there are exactly one face of length |V (G)|, one face of length 1

2 |V (G)| and 1
2 |V (G)|

faces of length 3 in each of Gint and Gext. We denote by Fint and Fext be the faces of length
1
2 |V (G)| in Gint and Gext, respectively.

We claim that G is the square of a cycle of length |V (G)|, which is obtained from a cycle
of length |V (G)| by adding edges for every pair of vertices having distance 2 (see Figrue 2.3).

2.4. 3-CONNECTED PLANAR HAMILTONIAN GRAPHS 17

Figure 2.3. The square of a cycle of length 16.

It is obvious that the square of a cycle is pancyclic. We call a face of length 3 an i-triangle
(i = 0, 1, 2) if it contains exactly i edges of the Hamilton cycle C. We assume that the plane
graph G has the maximum number of 2-triangles over all of its planar embeddings. Let the
Hamilton cycle C of G be v0v1v2 . . . v|V (G)|−1v0 (indices modulo |V (G)|).

Suppose there is a 0-triangle v0vivjv0 in G, say it is also in Gint, for some 0 < i−1 < j−2 <
|V (G)| − 3. If i > 2, then the face in Gint containing the path v1v0vivi−1 is of length larger
than 3 and smaller than |V (G)|. As there is exactly one such face in Gint, namely Fint, we can
assume that i = 2 and j = 4. Then dGint(v1) = dGint(v3) = 2 and dGext(v1) = dGext(v3) = 4.
Let vi1 , vi2 be the neighbors of v1 other than v0, v2, and vi3 , vi4 be the neighbors of v3 other
than v2, v4, for some 2 < i1 < i2 < |V (G)| and 4 < i3 < i4 < |V (G)|+ 2.

If v1 is adjacent to v3 in Gext, i.e. i1 = 3 and i4 = |V (G)| + 1, and the face in Gext
containing vi2v1v3vi3 is a face of length 3, i.e. i2 = i3, then it must be a 0-triangle. We can
assume that i2 = i3 = 5. Clearly, {v0, v5} is a separator of G, which contradicts that G is
3-connected. If v1 is adjacent to v3 in Gext, but the face in Gext containing vi2v1v3vi3 is a
face of length larger than 3, then the faces in Gext containing v0v1vi2 and vi3v3v4 must be
2-triangles and {vi2 , vi3} = {v−1, v5} is a separator of G, contradiction.

If v1 is not adjacent to v3, then the face in Gext containing vi1v1v2v3vi4 is of length larger
than 3, and hence v−1v0v1v−1 and v3v4v5v3 must be 2-triangles in Gext. In this case we can
swap v0 and v1 and swap v3 and v4 to obtain a planar embedding with more 2-triangles (see
Figure 2.4(a)), which contradicts the maximality of the number of 2-triangles. Thus there is
no 0-triangle in the plane graph G.

Suppose there is a 1-triangle v0v1viv0 in G, say also in Gint, for some 2 < i < |V (G)| − 1.
It is not hard to see that we can assume that the face in Gint containing v0vivi+1 is Fint. Under
this assumption we must have a sequence of i− 1 faces of length 3 such that all faces are 1-
triangles except the last one which is a 2-triangle, namely v0v1viv0, v1vi−1viv1, v1v2vi−1v1, . . . ,
vd i

2 e−1vd i
2 e
vd i

2 e+1vd i
2 e−1.

We claim that i ≤ 4. Suppose i > 4, we prove the claim for odd i, it can be proved for
even i in a similar way. It is clear that dGext(vd i

2 e−3) ≤ 3, dGext(vd i
2 e−1) = 3 and dGext(vd i

2 e
) = 4.

Let vi1 , vi2 be the neighbors of vd i
2 e

other than vd i
2 e−1, vd i

2 e+1, and vi3 be the neighbor of vd i
2 e−1

other than vd i
2 e−2, vd i

2 e
, vd i

2 e+1, for some i < i1 < i2 ≤ i3 ≤ |V (G)|. Note that the face in Gext
containing vi1vd i

2 e
vd i

2 e+1vd i
2 e+2 is of length larger than 3. Therefore the face in Gext containing

vi3vd i
2 e−1vd i

2 e
vi2 and that containing vd i

2 e−3vd i
2 e−2vd i

2 e−1vi3 must be of length 3. It implies that
vd i

2 e−3 = vi3 = vi2 and dGext(vd i
2 e−3) ≥ 4, contradiction.

18 2. CYCLES OF SPECIFIED LENGTH

Now we consider the case when i = 4. It is clear that dGext(v2) = 4 and dGext(v3) = 3.
Let vi1 be the neigbor of v3 other than v1, v2, v4, and vi2 , vi3 be the neigbors of v2 other than
v1, v3, for some 4 < i1 ≤ i2 < i3 ≤ |V (G)|. If the face in Gext containing vi1v3v4 is of length
larger than 3, then i1 = i2 = |V (G)| − 1, i3 = |V (G)| and {v−1, v4} is separator of G. If the
face in Gext containing vi1v3v4 is of length 3 but that containing vi1v3v2vi2 is of length larger
than 3, then i1 = 5, i2 = |V (G)| − 1, i3 = |V (G)| and {v−1, v5} is a separator of G. If the
faces in Gext containing vi1v3v4 and vi1v3v2vi2 are of length 3 but that containing vi2v2vi3 is
of length larger than 3, then i1 = i2 = 5, i3 = |V (G)| and {v0, v5} is a separator of G. If
the faces in Gext containing vi1v3v4, vi1v3v2vi2 and vi2v2vi3 are of length 3, then i1 = i2 = 5,
i3 = 6 and {v0, v6} is a separator of G. In any case it contradicts that G is 3-connected.

Finally, we consider the case when i = 3. It is clear that dGext(v1) = 3 and dGext(v2) = 4.
Let vi1 , vi2 be the neigbors of v2 other than v1, v3, and vi3 be the neigbor of v1 other than
v0, v2, v3, for some 3 < i1 < i2 ≤ i3 < |V (G)|. If the face in Gext containing vi1v2v3 is of
length larger than 3, then i1 = |V (G)| − 2 and i2 = i3 = |V (G)| − 1, which has been shown
to be not possible. If the face in Gext containing vi1v2v3 is of length 3 but that containing
vi1v2vi2 is of length larger than 3, then i1 = 4, i2 = i3 = |V (G)| − 1 and dGint(v0) = 4. Let vi4
be the neighbor of v0 other than v−1, v1, v3 for some 3 < i4 ≤ |V (G)| − 2. If the faces in Gint
containing v−1v0vi4 is of length larger than 3, then i4 = 4, which has been shown to be not
possible. Hence v−1v0vi4v−1 is 2-triangle, i4 = |V (G)| − 2 and {v−2, v4} is a separator of G,
which is not possible. If the faces in Gext containing vi1v2v3 and vi1v2vi2 are of length 3, then
i1 = 4 and i2 = 5. Swapping v2 and v3 yields a planar embedding of more 2-triangles (see
Figure 2.4(b)), which contradicts the maximality of the number of 2-triangles. Hence we can
conclude that there is no 1-triangle in the plane graph G.

It is clear that G is the square of a cycle of length |V (G)| if it has a planar embedding with
neither 0- nor 1-triangle. To find a cycle of the desired length, one can apply Algorithm 1 for
Tint if |E(Gint)| > 3

2 |V (G)|, or if there is no face of length 1
2 |V (G)| in Gint and Gext, otherwise,

do swaps of some vertex pairs at most once for each face to obtain a planar embedding of
the square of a cycle of length |V (G)| with neither 0- nor 1-triangle, then a cycle of length
1
2 |V (G)| can be easily found in such planar embedding in linear time. �

v0 v2 v4
v3v1v−1 v5

v−1 v0
v1 v2 v3

v4 v5

(a) Swap v0, v1, and v3, v4.

v0 v1
v2

v3
v4 v5

v0
v1 v2

v3 v4
v5

(b) Swap v2, v3.

Figure 2.4. Swap vertices to obtain planar embedding of more 2-triangles.

Part II

CHAPTER 3

Generalized Cut Trees for Edge-Connectivity

3.1. Introduction

We propose a general notion of cut trees that cover some binary relation R on the
vertices. We consider only binary relations R that are irreflexive and symmetric, which
allows us to see R as a set of unordered pairs {a, b} satisfying a 6= b. We will study cut
trees (see Definition 3.1) for three relations, each of them giving structural insights about the
edge-connectivity in graphs.

We call a pair {v, w} of vertices pendant if λG(v, w) = min{dG(v), dG(w)}. The study of
pendant pairs is motivated by the well-known, simple and widely used min-cut algorithm
of Nagamochi and Ibaraki [NI92], which refines the work of Mader [Mad73, Mad71] in
the early 70s, and was simplified by Stoer and Wagner [SW97] and Frank [Fra94]. The
key approach of this algorithm is to iteratively contract a pendant pair of the input graph
G := (V (G), E(G)) in near-linear time by using maximal adjacency orderings (also known as
maximum cardinality search [TY84]). Having done that n− 2 times, where n := |V (G)|, one
can obtain a min-cut by just considering the minimum degree of all intermediate graphs.

As early as 1973, and originally motivated by the structure of minimally k-edge-connected
graphs, Mader proved that every graph with minimum degree δ ≥ 1 contains a pendant
pair [Mad73]. This holds also for the vertex-connectivity variant of pendant pairs, which
nowadays is most easily proven by using maximal adjacency orderings. Later, Mader improved
his result by showing that every simple graph with minimum degree δ contains in fact δ(δ+1)

2
pendant pairs [Mad74]. By considering the cut tree covering non-pendant pairs, it was
recently improved by Schmidt and the author [LS18]. They showed that every simple graph
that satisfies δ ≥ 5 or λ ≥ 4 or κ ≥ 3 contains δn

30 pendant pairs. This result is optimal up to
a constant factor and that every of the three assumptions is best possible. They also showed
how to compute these pendant pairs from a Gomory-Hu tree in linear time. We will present
this result in Section 3.3 and give an improvement of the lower bound by a constant factor,
namely we show that under the same conditions there are at least δn

24 pendant pairs.
In Section 3.4, we study two other cut trees, from which results on sparsification done by

vertex subset contractions will be derived. We consider the cut tree covering the vertex pairs
{v, w} for which λG(v, w) < δ in Section 3.4.1. We prove that every simple graph G with
δ > 0 has O(n/δ) δ-edge-connected components, and contracting these components leaves
O(n) edges. For a simple graph G satisfying 0 < λ < δ, it was recently shown [LST18] that
G has O((n/δ)2) min-cuts. We strengthen this and show that G has O((n/δ)2) cuts of size
less than min{3

2λ, δ}, and O((n/δ)b2αc) cuts of size not larger than min{αλ, δ − 1} for any
given α, respectively.

Recently, Kawarabayashi and Thorup [KT18] gave the first deterministic near-linear time
algorithm for finding a min-cut of G. Subsequently, Henzinger, Rao and Wang [HRW17]
obtained an improved variant with running time O(m log2 n log log2 n) by replacing the

21

22 3. GENERALIZED CUT TREES FOR EDGE-CONNECTIVITY

diffusion subroutine with a flow-based one, where m := |E(G)|. A crucial step in both
algorithms is a sparsification routine [KT18, Theorem 3] for large minimum degree δ that
contracts vertex subsets of G such that, after these sparsifications, the remaining graph has
only O((n logc n)/δ) vertices and O(n logc n) edges (for some constant c) and all non-trivial
min-cuts of G are preserved. Schmidt, Thorup and the author [LST18] later showed that, for
a simple graph G satisfying δ > 0, we can find some vertex subsets in near-linear time such
that all non-trivial min-cuts are preserved, and only O(n/δ) vertices and O(n) edges are left
when these vertex subsets are contracted. This eliminates the poly-logarithmic factor needed
above. Here, we introduce the cut tree that covers the vertex pairs that are separated by
some non-trivial min-cut, and give an alternative proof of this new result (see Section 3.4.2).
We also show that such a cut tree exists and can be computed in near-linear time for every
simple graph G satisfying λ 6= 0, 2.

A Note on the History of Maximal Adjacency Orderings. Mader’s proof for the
existence of one pendant pair relies strongly on [Mad71, Lemma 1], which in turn uses special
orderings on the vertices. Interestingly, these orderings are maximal adjacency orderings and
this fact exhibits a nowadays almost forgotten variant of them, which existed long before they
got 1984 their first name (maximum cardinality search [TY84]). We are only aware of one
place in literature where this is (briefly) mentioned: [Mad96, p. 443]. Mader’s existential
proof can in fact be made algorithmic. A direct comparison between the old and the modern
variant however shows that the modern maximal adjacency orderings are nicer to describe, as
they work on the original graph, while Mader iteratively moves edges in the graph in order
to represent the essential connectivity information on the already visited vertex set with a
clique.

3.2. Cut Trees

We define our main tool in this chapter in the following. Let T be a tree whose vertex
set is a partition of V (G). For the sake of notational clarity, we will call the vertices of such
trees nodes. Let AB ∈ E(T) and let CAB be the union of the nodes that are contained
in the component of T − AB containing A, and symmetrically, CBA = CAB. For an edge
AB ∈ E(T), let c(AB) := dG(CAB) be the size of its corresponding edge-cut in G.

Definition 3.1. Given an undirected graph G := (V,E) and a binary relation R on
V (G), a cut tree T covering R is a tree whose vertex set is a partition of V (G), such that

(i) for every A ∈ V (T) and every a, a′ ∈ A, we have {a, a′} /∈ R,
(ii) for every tree edge AB ∈ E(T), there exist a ∈ A and b ∈ B that satisfy {a, b} ∈ R

and
(iii) for every tree edge AB ∈ E(T), there exist a∗ ∈ A and b∗ ∈ B that satisfy

λG(a∗, b∗) = dG(CAB), i.e. CAB is a minimum a∗-b∗-cut in G.

This definition generalizes the well-known Gomory-Hu trees, as a Gomory-Hu tree is a cut
tree covering the maximal binary relation on V (G) (i.e. {{v, w} : v, w ∈ V (G), v 6= w}); and
also the tool tree representations used in [Cai93, Mad95]. By choosing the binary relation
R in the above cut-tree appropriately, we will prove results about the edge-connectivity
structure of graphs in the remaining sections.

3.3. PENDANT TREES AND PENDANT PAIRS 23

3.3. Pendant Trees and Pendant Pairs

We call a cut tree T covering the set of all pairs of non-pendant vertices a pendant tree.
By Definition 3.1, we have that (i) every pair of two distinct vertices in a common node in
V (T) is pendant, (ii) for every edge AB ∈ E(T), there are vertices a ∈ A and b ∈ B such
that (a, b) is non-pendant, and (iii) for every edge AB ∈ E(T), there are vertices a∗ ∈ A and
b∗ ∈ B such that c(AB) = λG(a∗, b∗).

The following lemma allows us to find a non-pendant pair from two adjacent nodes of a
pendant tree efficiently.

Lemma 3.2. Let AB be an edge of a pendant tree T and let amax and bmax be vertices in
A and B of maximum degrees, respectively. Then (amax, bmax) is non-pendant.

Proof. By Property (ii) of Definition 3.1, there are vertices a ∈ A and b ∈ B such that
λ(a, b) < min{d(a), d(b)}. Since (a, amax) and (b, bmax) are pendant, a minimum a-b-cut can
neither separate a from amax nor b from bmax. Hence,

λ(amax, bmax) ≤ λ(a, b)
< min{d(a), d(b)}
≤ min{d(amax), d(bmax)}.

�

Property (iii) of pendant trees gives the following lemma.

Lemma 3.3. Let AB be an edge of a pendant tree T and let amax be a vertex in A of
maximum degree. Then c(AB) < d(amax).

Proof. Let bmax be a vertex of maximum degree in B and let a∗ ∈ A and b∗ ∈ B be such
that c(AB) = λ(a∗, b∗) due to Property (iii). By the transitivity of local edge-connectivity,
we have

λ(amax, bmax) ≥ min{λ(amax, a
∗), λ(a∗, b∗), λ(b∗, bmax)}

= min{d(a∗), λ(a∗, b∗), d(b∗)}
= c(AB),

where the first equality follows from the fact that (amax, a
∗) and (bmax, b

∗) are pendant.
According to Lemma 3.2, λ(amax, bmax) < d(amax), which gives the claim. �

3.3.1. Constructing Pendant Trees. We will construct a pendant tree by contracting
edges in a Gomory-Hu tree. We recall that a Gomory-Hu tree of a graph G is a tree on the
vertex set V (G) of G. If we replace each vertex v in a Gomory-Hu tree by the singleton {v},
then it is exactly a cut tree that covers the maximal binary relation. We see a Gomory-Hu
tree as such a cut tree.

Proposition 3.4. Given a Gomory-Hu tree of a graph G, a pendant tree of G can be
computed in linear time.

Proof. Let T be a Gomory-Hu tree of G. We see T as a cut tree covering the maximal
irreflexive relation. Throughout the algorithm, we maintain that every pair of distinct vertices
that is contained in a node is pendant. Iteratively for every edge AB in T , we check whether
there is a non-pendant pair {a, b} with a ∈ A and b ∈ B. We contract AB in T and set the

24 3. GENERALIZED CUT TREES FOR EDGE-CONNECTIVITY

new node as A ∪ B if and only if there is no such non-pendant pair. We claim that there
is such a non-pendant pair if and only if min{dG(amax), dG(bmax)} > c(AB), where amax and
bmax are vertices in A and B with maximum degrees, respectively. The sufficiency follows
from Lemma 3.2, and it remains to show that if min{dG(amax), dG(bmax)} ≤ c(AB), then
{a, b} is pendant for all a ∈ A and b ∈ B.

Thus suppose that min{dG(amax), dG(bmax)} ≤ c(AB). Without loss of generality, let
dG(amax) ≤ c(AB), which implies dG(a) ≤ c(AB) for all a ∈ A. Let a ∈ A and b ∈ B.
By the Gomory-Hu tree properties, T contains vertices a∗ ∈ A and b∗ ∈ B such that
λG(a∗, b∗) = c(AB); in particular, dG(b∗) ≥ dG(a∗) = c(AB). Then {a, b} is pendant, since

λG(a, b) = min{λG(a, a∗), λG(a∗, b∗), λG(b∗, b)}
= min{dG(a), dG(a∗), c(AB), dG(b∗), dG(b)}
= min{dG(a), dG(b)}.

The first equality is implied by the transitivity of local edge-connectivity, the second by the
fact that every vertex pair of a node is pendant, and the third by dG(b∗) ≥ dG(a∗) = c(AB) ≥
dG(a).

It is not hard to see that the algorithm has a linear running time. �

Proposition 3.4 implies in particular that every graph has a pendant tree.
The best known running time for a deterministic construction of a Gomory-Hu tree is

still based on the classical approach that applies n− 1 times the uncrossing technique to find
uncrossing cuts on the input graph, and hence in O(nθflow), where θflow is the running time for
a maximum flow subroutine (by Dinits’ algorithm [Din70, Kar73], θflow = O(n2/3m)), where
n := |V (G)| and m := |E(G)|. For randomized algorithms, Bhalgat et al. [BHKP07] showed
that a Gomory-Hu tree of a simple unweighted graph can be constructed in expected running
time Õ(nm), where the tilde hides polylogarithmic factors. Therefore, by our construction
above, we conclude that:

Corollary 3.5. Given a simple graph G, a pendant tree of G can be constructed
deterministically in running time O(n5/3m), and randomized in expected running time Õ(nm).

3.3.2. Large Nodes of Degree 1 and 2. In this section we show that the nodes of a
pendant tree have large sizes on average, from which we can derive a lower bound of the
number of pendant pairs as every pair of vertices in a node is pendant. For any tree T whose
vertex set partitions V (G), let Vk be the set of nodes of T having degree k in T and let
V>k := ⋃

k′>k Vk′ . We call the nodes in V1 leaf nodes. In T , the set V2 induces a family of
disjoint paths; we call each such path a 2-path. We will prove that the leaf nodes of pendant
trees as well as the nodes that are contained in 2-paths are large.

Lemma 3.6. Let T be a pendant tree of a simple graph G. Then every leaf node A of T
satisfies |A| > δ(G).

Proof. Let p := |A| ≥ 1 and let B be the node adjacent to A in T . By Lemma 3.3,
we have maxv∈A d(v) > c(AB) ≥ ∑v∈A(d(v)− (p− 1)) ≥ maxv∈A d(v) + δ(p− 1)− p(p− 1),
where the last inequality singles out the maximum degree. Therefore, p > 1 and p > δ. �

Let amax be a vertex of maximal degree in a leaf node A with neighbor B. Since
c(AB) < d(amax), A must actually contain a vertex that has all its neighbors in A, as
otherwise each of the d(amax) incident edges of amax would contribute at least one edge to

3.3. PENDANT TREES AND PENDANT PAIRS 25

the edge-cut, either directly or by an incident edge of the corresponding neighbor of amax.
This gives the following corollary of Lemma 3.6, which was first shown by Mader.

Corollary 3.7 ([Mad74]). Let T be a pendant tree of a simple graph G. Then every
leaf node A contains a vertex v with N(v) ⊆ A. Hence, every pair in {v} ∪N(v) is pendant.

This already implies that simple graphs contain
(
δ+1

2

)
= Ω(δ2) pendant pairs. Note that

Lemma 3.6 and Corollary 3.7 do not hold for graphs having parallel edges: for example,
consider a node A that consists of two vertices of degree δ, which are joined by δ − 1 parallel
edges. However, even if the graph is not simple, a leaf node A must always contain at least
two vertices due to Lemma 3.3.

Corollary 3.8. Every leaf node of a pendant tree of a graph contains at least two
vertices.

In simple graphs, we thus know that leaf nodes give us a large number of pendant pairs.
Since T is a tree, the number of leaf nodes is completely determined by the number of
nodes of degree at least 3, namely |V1| =

∑
A∈V>2(dT (A)− 2) + 2. Thus, in order to prove

a better lower bound on the number of pendant pairs, we have to consider the case that
there are many small nodes of size o(δ) contained in 2-paths. The following two lemmas
prove that (i) for every two adjacent nodes A and B in a 2-path with |A|+ |B| > 2, we have
|A|+ |B| ≥ δ − 1 = Ω(δ) and (ii) if δ(G) ≥ 5 or λ(G) ≥ 4 or κ(G) ≥ 3 and P is a subpath of
a 2-path such that all nodes of P are singletons, then P contains at most two nodes. This
will be used later to show that the bad situation of many small nodes of size o(δ) can actually
not occur.

Lemma 3.9. Let T be a pendant tree of a simple graph G. Let AB be an edge in T with
A,B ∈ V2. If |A|+ |B| > 2, |A|+ |B| ≥ δ(G)− 1.

Proof. Let p := |A| and q := |B|, and let A′A,BB′ be edges in T with A′ 6= B and
B′ 6= A. By Lemma 3.3, we have ∑v∈A∪B d(v, CA′A) ≤ c(A′A) ≤ maxv∈A d(v) − 1 and∑
v∈A∪B d(v, CB′B) ≤ maxv∈B d(v)− 1. For v ∈ A∪B, there are at most p+ q− 1 edges that

are incident to v and A ∪B, which implies d(v, CA′A) + d(v, CB′B) ≥ d(v)− (p+ q − 1) (see
Figure 3.1). Therefore,

max
v∈A

d(v) + max
v∈B

d(v)− 2

≥
∑

v∈A∪B
(d(v, CA′A) + d(v, CB′B))

≥
∑

v∈A∪B
(d(v)− (p+ q − 1))

≥max
v∈A

d(v) + max
v∈B

d(v) + (p+ q − 2)δ − (p+ q)(p+ q − 1),

which gives (p+ q)(p+ q − 1) ≥ (p+ q − 2)δ + 2 and thus
(p+ q)(p+ q − 2) ≥ (p+ q − 2)(δ − 1).

Hence, p+ q ≥ δ − 1 if p+ q > 2. �

Lemma 3.10. Let T be a pendant tree of a simple graph G with |V (T)| > 1. Let A = {vA}
be a node in Vr with neighborhood B1, . . . , Br ∈ V2 in T such that |A| = |B1| = · · · = |Br| = 1.
Let B′i 6= A be the node that is adjacent to Bi in T . Then d(vA) ≤ r2 − 2γ, where γ :=

26 3. GENERALIZED CUT TREES FOR EDGE-CONNECTIVITY

CA′A CB′BBA
F2

bmax

amax

F1

v

Figure 3.1. A graph G with δ = 6 and adjacent nodes A,B ∈ V2 of sizes 3
and 4. Here, d(amax) = d(bmax) = 12, |F1| := |c(AA′)| = 11 ≤ d(amax)− 1 and
|F2| := d(v, CA′A) + d(v, CB′B) = 2 ≥ d(v)− (|A|+ |B| − 1).

∑
1≤i<j≤r d(CB′iBi

, CB′jBj
). In particular, we have δ(G) ≤ r2 and λ(G) < r2. Moreover, if

r = 2, κ(G) ≤ 2.
Proof. Note that r ≥ 2, since there is no singleton leaf node (Corollary 3.8). For

every 1 ≤ i ≤ r, let Bi = {vi} and Ci := CB′iBi
. Since every vi or vA can have at most

r neighbors in {vA, v1, . . . , vr}, we have d(vi) ≤ r + ∑r
j=1 d(vi, Cj) for every 1 ≤ i ≤ r,

and d(vA) ≤ r + ∑r
i=1 d(vA, Ci). On the other hand, by Lemma 3.3, we have, for every

1 ≤ i ≤ r, d(vA, Ci) + ∑r
j=1 d(vj, Ci) + ∑

j∈{1,...,r}−i d(Cj, Ci) ≤ d(Ci) ≤ d(vi) − 1 (see
Figure 3.2). Therefore,

r∑
i=1

d(vi) + d(vA, Ci) +
r∑
j=1

d(vj, Ci) +
∑
j 6=i

d(Cj, Ci)
 ≤ r∑

i=1

r +
r∑
j=1

d(vi, Cj) + d(vi)− 1

⇔
r∑
i=1

d(vA, Ci) +
∑
j 6=i

d(Cj, Ci)
 ≤ r2 − r

⇔
r∑
i=1

d(vA, Ci) ≤ r2 − r − 2γ,

and hence,
d(vA) ≤ r +

r∑
i=1

d(vA, Ci) ≤ r2 − 2γ.

In particular, this gives δ(G) ≤ r2 and, according to Lemma 3.3, λ(G) ≤ c(AB1) < d(vA) ≤ r2.
Now, we claim that, if r = 2, then κ(G) ≤ 2. If γ(G) > 0, then κ(G) ≤ δ(G) ≤ d(vA) ≤

r2−2γ ≤ 2. If γ = 0, let S := {vA, v1, v2}, which is a separator of G of size 3. If a vertex z ∈ S
has no neighbor in Ci for some 1 ≤ i ≤ 2, S− z is a separator of size 2, which gives the claim.
Otherwise, we have c(B1A) ≥ 3 and c(AB2) ≥ 3, and in addition, c(B1A) = c(AB2) = 3,
according to d(vA) ≤ 4 and Lemma 3.3. Hence, vA is of degree 2 in G, which gives the
claim. �

Setting r = 2 in Lemma 3.10 gives the following corollary for adjacent nodes of 2-paths.
Corollary 3.11. Let G be simple and let AB and BC be edges in a 2-path of T . If

δ(G) ≥ 5 or λ(G) ≥ 4 or κ(G) ≥ 3, then |A|+ |B|+ |C| > 3.

3.3. PENDANT TREES AND PENDANT PAIRS 27

C1

C2

C3

B1

B3

A

B2

vA

v1

v3

v2

F1

F2

Figure 3.2. A graph with δ = 6. Here, r = 3, |F1| := ∑3
i=1 d(v3, Ci) = 4 ≤

d(v3)− r and |F2| := c(B3C3) = 6 ≤ d(v3)− 1.

For every node A ∈ V2, let A be in V int
2 if all of its neighbors are also in V2; otherwise, let

A be in Vext
2 . The nodes in Vext

2 are exactly the endvertices of 2-paths.
Lemma 3.12. Let T be a tree. If |V (T)| > 1, then |V>2| ≤ |V1| − 2 and |Vext

2 | ≤ 4|V1| − 6.
Proof. As T is a tree, ∑A∈V (T) dT (A) = 2|E(T)| = 2(|V (T)| − 1), which yields 2 =∑

A∈V (T)(dT (A) − 2) = ∑
A∈V1(dT (A) − 2) + ∑

A∈V2(dT (A) − 2) + ∑
A∈V>2(dT (A) − 2) ≥

−|V1| + 0 + |V>2|, i.e. |V>2| ≤ |V1| − 2. Since every 2-path contains at most two nodes
in Vext

2 and contracting every 2-path along with one of its neighbors gives a tree T ′ with
V (T ′) = V1∪V>2, we have |Vext

2 | ≤ 2E(T ′) = 2(|V1|+ |V>2|−1). Thus, |Vext
2 | ≤ 4|V1|−6. �

Now we are ready to show that the nodes of 2-paths contain many vertices if δ(G) ≥ 5 or
λ(G) ≥ 4 or κ(G) ≥ 3.

Lemma 3.13. Let T be a pendant tree of a simple graph G satisfying δ(G) ≥ 5 or λ(G) ≥ 4
or κ(G) ≥ 3. Let P be a 2-path of T . Then∑

S∈V (P)
|S| ≥ (|V (P)| − 2)max{4, δ(G)}

3 + 2.

Proof. For any two consecutive edges AB and BC in P , applying Corollary 3.11 gives
|A| + |B| + |C| > 3. Due to Lemma 3.9, this implies |A| + |B| + |C| ≥ max{4, δ}. Since
there may be at most two singletons that are not contained in such a triple, we conclude∑
S∈V (P) |S| ≥ (|V (P)| − 2)max{4,δ}

3 + 2. �

3.3.3. Many Pendant Pairs. We will use the results on large nodes of the previous
section to obtain our main theorems, Theorems 3.15 and 3.16. While the latter shows the
existence of Ω(δn) pendant pairs, as mentioned in the introduction, the former gives a weaker
bound Ω(n), but in return counts only pendant pairs of a special type.

Definition 3.14. Let a set F of pendant pairs be dependent if V (G) contains at least
three distinct vertices v1, . . . , vk such that (vi, vi+1) ∈ F for all i = 1, . . . , k, where vk+1 := v1;
otherwise, F is called independent.

28 3. GENERALIZED CUT TREES FOR EDGE-CONNECTIVITY

Counting only independent pendant pairs allows us to deduce statements about the
number of vertices in the graph that is obtained from contracting these pairs (these are
not true for arbitrary sets of pendant pairs): Theorem 3.15 will prove for δ ≥ 5 that there
are at least δ

δ+12n ≥
5
17n = Ω(n) such independent pendant pairs. We will show that the

contractions imply not only an additive decrease of the number of vertices by at least 5
17n,

but also a multiplicative decrease by the factor δ (i.e. the number of vertices left is O(n/δ)).

Theorem 3.15. Let G be a simple graph that satisfies δ(G) ≥ 5 or λ(G) ≥ 4 or κ(G) ≥ 3.
Let T be a pendant tree of G. Then G has at least δ(G)|V (G)|

δ(G)+12 independent pendant pairs each
of which is in some node of T and whose pairwise contraction leaves O(|V (G)|/δ(G)) vertices
in the graph.

Proof. We may assume that G is connected. Note that n > δ ≥ 3 and, for this reason,
δ

δ+12n ≥
1
5n = Ω(n). First assume that G does not contain a non-pendant pair. For an

arbitrary spanning tree of G, consider the pair of endvertices of every edge of it. These are
n − 1 ≥ δ

δ+12n pendant pairs that are independent and whose pairwise contraction leaves
only 1 = O(n/δ) vertex.

Now assume that G contains a non-pendant pair; then |V (T)| ≥ 2. Using the previous
results, we can relate n with the number of nodes in T by considering the nodes in V2
separately as follows.

n =
∑

S∈V (T)
|S|

= |V (T)|+
∑

S∈V1∪V>2

(|S| − 1) +
∑

2-path P

 ∑
S∈V (P)

|S| − |V (P)|

≥ |V (T)|+ |V1|δ +
∑

2-path P, |V (P)|≥3
(|V (P)| − 2)

(
max{4, δ}

3 − 1
)

≥ |V (T)|+ |V1|δ + 1
12 |V

int
2 |δ

≥ |V (T)|+ 1
6(|V1|+ |Vext

2 |+ |V>2|)δ + 1
12 |V

int
2 |δ

≥
(

1 + 1
12δ

)
|V (T)|.

The first inequality follows from Lemmas 3.6 and 3.13. The second inequality holds, as
δ = 3 ⇒ (4

3 − 1) > δ
12 and δ ≥ 4 ⇔ δ

3 − 1 ≥ δ
12 . The third inequality holds, since

6|V1| ≥ |V1|+ |Vext
2 |+ |V>2| follows from Lemma 3.12.

Now let F be any forest on the vertex set V (G) such that, for every S ∈ V (T), S is
the vertex set of a component of F . Then {{u, v} : uv ∈ E(F)} is a set of independent
pendant pairs. Therefore, G contains at least |E(F)| = n− |V (T)| ≥ (1− 12

δ+12)n = δ
δ+12n ≥

n
5 independent pendant pairs. Furthermore, contracting every edge in F leaves at most
|V (T)| ≤ (1 + 1

12δ)
−1n = O(n/δ) vertices, which gives the second claim. �

For arbitrary pendant pairs not requiring independence, we improve the lower bound
Ω(n) of Theorem 3.15 to Ω(δn) in the following theorem. This is done by grouping the nodes
in a more sophisticated way.

3.3. PENDANT TREES AND PENDANT PAIRS 29

Theorem 3.16. Let G be a simple graph that satisfies δ(G) ≥ 5 or λ(G) ≥ 4 or κ(G) ≥ 3.
Then G contains at least δ(G)|V (G)|

24 pendant pairs.
Proof. Note that n > δ ≥ 3. If G does not contain a non-pendant pair, there are(

n
2

)
≥ δn

30 pendant pairs in G. Otherwise, G contains a non-pendant pair. Let T be a pendant
tree of G; then |V (T)| ≥ 2.

For each 2-path P with |V (P)| ≥ 3, let P∗ be a subpath obtained from P by deleting at
most two endvertices (i.e. nodes in P ∩Vext

2) of P such that |V (P∗)| is a multiple of 3. Then,
we split P∗ into subpaths P∗1 , . . . ,P∗|V (P∗)|

3
, each of size 3. By Corollary 3.11 and Lemma 3.9,∑

S∈V (P∗i) |S| ≥ max{4, δ} for every i = 1, . . . , |V (P∗)|
3 . Let V∗2 := V2−

⋃
2-path P,|V (P)|≥3 V (P∗) ⊆

Vext
2 . For every leaf node S ∈ V1, let YS be a collection of nodes that consists of S, at most

four nodes from V∗2 and at most one node from V>2 such that the collections YS (S ∈ V1) form
a partition of V1 ∪ V∗2 ∪ V>2; such allocation exists as |V∗2 | ≤ |Vext

2 | ≤ 4|V1| and |V>2| ≤ |V1|
(Lemma 3.12). For every S ∈ V1, let DS be a node in YS of maximum size. Then, by
Lemma 3.6, |DS| ≥ |S| > δ. Thus, the number of pendant pairs in G is at least∑

S∈V (T)

(
|S|
2

)

≥
∑
S∈V1

|DS|(|DS| − 1)
2 +

∑
2-path P, |V (P)|≥3

∑
S∈V (P∗)

|S|(|S| − 1)
2

≥δ2
∑
S∈V1

|DS|+
1
2

∑
2-path P, |V (P)|≥3

|V (P∗)|
3∑
i=1

∑
S∈V (P∗i)

|S|(|S| − 1)

≥δ2
∑
S∈V1

|DS|+
1
2

∑
2-path P, |V (P)|≥3

|V (P∗)|
3∑
i=1

3
(∑

S∈V (P∗i) |S|
3

(∑
S∈V (P∗i) |S|

3 − 1
))

≥δ2
∑
S∈V1

|DS|+
δ

24
∑

2-path P, |V (P)|≥3

∑
S∈V (P∗)

|S|

≥ δ

12
∑

S∈V1∪V∗2∪V>2

|S|+ δ

24
∑

S∈V2−V∗2

|S|

≥δn24 .

The third inequality follows from Jensen’s inequality as the function f(x) := x(x− 1)

is convex for x ≥ 1. The fourth inequality follows from that
∑

S∈V (P∗
i

) |S|

3 − 1 ≥ δ
12 for

every i = 1, . . . , |V (P∗)|
3 , which holds since δ ≥ 3 and ∑

S∈V (P∗i) |S| ≥ max{4, δ} for every
i = 1, . . . , |V (P∗)|

3 .
�

3.3.4. Tightness. We call a bound tight if it is optimal up to a constant factor. Clearly,
any graph G contains at most n− 1 independent pendant pairs, hence the order of the lower
bound in Theorem 3.15 is tight. The order of the number of vertices left after contraction
in Theorem 3.15 and that of the number of pendant pairs in Theorem 3.16 are also tight;
consider the unions of n

δ+1 many disjoint cliques (i.e. complete subgraphs) Kδ+1.

30 3. GENERALIZED CUT TREES FOR EDGE-CONNECTIVITY

Each of the conditions δ(G) ≥ 5, λ(G) ≥ 4 and κ(G) ≥ 3 in Theorems 3.15 and 3.16 is
tight, as the graph in Figure 3.3 can be arbitrarily large and satisfies δ(G) = 4, λ(G) = 3 and
κ(G) = 2 but has only a constant number of pendant pairs. Also the simpleness condition in
both results is indispensable: Consider the path graph on n vertices whose two end edges
have multiplicity δ and all other edges have multiplicity δ/2. This graph has precisely 2
pendant pairs, each at one of its ends.

Figure 3.3. The bone graph G, whose only pendant pairs are the ones contained
in the two K5 (those form the only leaf nodes of the pendant pair tree). Hence,
G has exactly 20 pendant pairs.

3.4. Contraction-Based Sparsification Preserving Small Cuts

In the recent algorithm of Kawarabayashi and Thorup [KT18], a crucial sparsification
step is to contract vertex subsets of G such that O((n logc n)/δ) vertices and O(n logc n) edges
remain for some constant c and all non-trivial min-cuts are preserved, where n := |V (G)|.
We will show the existence of two such contraction-based sparsifications by considering
two cut tree called δ-edge-connectedness tree which covers the pairs {v, w} of vertices with
λG(v, w) < δ, and non-trivial min-cut tree which covers the pairs of vertices which are
separated by some non-trivial min-cut.

By inheriting the argument using large leaf- and V2-nodes for pendant trees to these new
cut trees, we will prove that the contraction of every node in these trees leaves only O(n/δ)
vertices and O(n) edges. In this way, all cuts of size less than δ and all non-trivial min-cuts
will be preserved, respectively.

3.4.1. The δ-Edge-Connectedness Tree. By definition, every pendant pair of a graph
G is δ(G)-edge-connected. Hence, most of the results about pendant pairs can be transferred
directly to statements about δ-edge-connected pairs. In particular, Lemma 3.6 gives the
following corollary.

Corollary 3.17. Every simple graph G contains a set S of at least δ(G) + 1 vertices
such that λG(v, w) ≥ δ(G) for every v, w ∈ S.

More generally, Theorems 3.15 and 3.16 still hold without further ado when we replace
the binary pendant pair relation with the δ-edge-connectedness relation on vertex pairs.
We now show how these arguments give the first sparsification result described above. To
this end, we will use the following relaxation of both Gomory-Hu and pendant trees. A
k-edge-connectedness tree (also known as partial Gomory-Hu tree [BHKP07]) is a cut tree
which covers {{v, w} : λG(v, w) < k}.

A k-edge-connectedness tree T exists for every graph, as we can contract all edges that
induce cuts of size larger than k in a Gomory-Hu tree. Moreover, T can be computed
similarly as in the approach that was used in Proposition 3.4, and hence in deterministic

3.4. CONTRACTION-BASED SPARSIFICATION PRESERVING SMALL CUTS 31

time O(nθflow). For randomized algorithms, [BHKP07] showed that T can be constructed
in expected running time Õ(m+ nk2), where m := |E(G)|.

In this section, we focus on the case that k = δ, i.e. on the δ-edge-connectedness tree
T . By Property (i) of Definition 3.1, every node of T is δ-edge-connected and therefore a
subset of a δ-edge-connected component of G. By Property (ii) and (iii), no δ-edge-connected
component intersects two (not necessarily adjacent) nodes A and B of T , as A and B are
separated by a cut of size less than δ. Hence, the nodes of every δ(G)-edge-connectedness
tree are precisely the δ-edge-connected components of G.

3.4.1.1. Contractions Preserving Small Cuts. Now we relate T to any pendant tree T ′ of
G. Since T ′ is pendant, every node of T ′ is δ-edge-connected and therefore a subset of some
node of T . Hence, the vertex partition of every pendant tree refines the partition of V (G) into
δ-edge-connected components. It is also not hard to see that, given a δ-edge-connectedness
tree T , there is a pendant tree T ′, such that contracting all edges e ∈ E(T ′) with c(e) ≥ δ
gives T .

Theorem 3.18. Contracting every δ(G)-edge-connected component of a simple graph G
satisfying δ(G) > 0 leaves O(|V (G)|/δ(G)) vertices and O(|V (G)|) edges.

Proof. If 1 ≤ δ ≤ 4, then δn ≤ 4n and hence there are trivially at most n ≤ 4n/δ =
O(n/δ) many vertices left after the contractions. If δ ≥ 5, consider any pendant tree T ′
of G and contract every node of T ′. Since the partition of any pendant tree refines the
partition of V (G) into the δ-edge-connected components of G, Theorem 3.15 implies that
these contractions leave only O(n/δ) vertices.

Now let T be a δ-edge-connectedness tree of G and consider the edges that are left
after the contractions. Every remaining edge is contained in some edge-cut of G that is
induced by an edge of T . Since T is a δ-edge-connectedness tree, every such edge-cut has
size at most δ − 1. By the result above, T has O(n/δ) nodes. Hence, there are at most
O(n/δ) · (δ − 1) = O(n) edges left. �

Note that the graph after contraction may have multiedges. The following is a fundamental
corollary of Theorem 3.18. Despite its generality, it appears to be unknown so far.

Corollary 3.19. Every simple graph G with δ(G) > 0 has O(|V (G)|/δ(G)) many
δ(G)-edge-connected components.

It was recently shown [LST18] that every simple graph G that satisfies 0 < λ(G) < δ(G)
has O((n/δ)2) min-cuts, we will give a proof of this result in Section 3.4.2. We now strengthen
this to cuts of size not much larger than λ(G) as follows.

Theorem 3.20. Every simple graph G that satisfies 0 < λ(G) < δ(G) has O((|V (G)|
δ(G))2)

cuts of size less than min{3
2λ(G), δ(G)}.

Proof. Henzinger and Williamson [HW96] proved that in any connected graph H the
number of cuts of size less than 3

2λ(H) is at most O(|V (H)|2). Let G′ be the graph obtained
from G by contracting every δ-edge-connected component. This preserves every cut of size
less than δ. As contractions do not decrease the edge-connectivity of any vertex pair, G′ has
precisely the same cuts of size less than δ as G. Thus, we can count the number of these
cuts in G′ instead of in G. Since λ(G′) = λ(G) > 0, δ(G′) > 0 and G′ is connected. Applying
Theorem 3.18 to G and [HW96] to H := G′ therefore shows that G has O((n/δ)2) cuts of
size less than min{3

2λ, δ}. �

32 3. GENERALIZED CUT TREES FOR EDGE-CONNECTIVITY

Theorem 3.21. Given any real number α ≥ 1, every simple graph G that satisfies
0 < λ(G) < δ(G) has O((|V (G)|

δ(G))b2αc) cuts of size at most min{α · λ(G), δ(G)− 1}.

Proof. Karger [Kar00] proved that in any connected graph H the number of cuts of
size at most α · λ(H) is in O(|V (H)|b2αc). Again, let G′ be the graph obtained from G by
contracting every δ-edge-connected component. Applying Theorem 3.18 to G and [Kar00]
to H := G′ shows that G has O((n/δ)b2αc) cuts of size at most min{αλ, δ − 1}. �

The same approach can also be used to strengthen various other upper bounds known on
the number of small cuts.

3.4.2. The Non-Trivial Min-Cut Tree. Although the δ(G)-edge-connectedness tree
preserves all (not necessarily minimum) cuts of size less than δ, it does not preserve cuts of
size δ. However, one cannot expect to preserve all cuts of size δ by contracting vertex subsets
within the desired bounds, as the complete graph Kδ+1 shows. Hence, we will preserve only
non-trivial min-cuts. To this end we consider a new cut tree, which will imply an upper
bound on the number of non-trivial min-cuts.

A non-trivial min-cut tree T is a cut tree which covers the pairs of vertices which are
separated by some non-trivial min-cuts, and satisfies the following additional property: (iv)
for every AB ∈ E(T), CAB is a non-trivial min-cut. It is clear that Property (iv) implies
Properties (ii) and (iii).

Property (i) implies that all non-trivial min-cuts will be preserved if every node is
contracted. Property (iv) is equivalent to saying that no leaf node is a singleton and
c(AB) = λ for all AB ∈ E(T).

Unlike pendant trees, non-trivial min-cut trees do not exist for every graph. To see this,
consider any cycle of length at least four. As every edge is contained in a non-trivial min-cut,
every leaf node A of a non-trivial min-cut tree T is an independent set of size at least two in
G. Then the tree edge AB ∈ E(T) satisfies c(AB) ≥ 4, which contradicts Property (iv). We
conclude that not every graph with λ(G) = 2 has a non-trivial min-cut tree. However, we
will show that non-trivial min-cut trees exist for all simple graphs G with λ(G) 6= 0, 2.

3.4.2.1. Construct Non-Trivial Min-Cut Tree from Cactus Representation. We call a
multigraph K a cactus if it is 2-edge-connected, contains no self-loops, and each edge in K
belongs to exactly one cycle (which may be of length 2, i.e. a pair of parallel edges). This is
equivalent to saying that all maximal 2-connected subgraphs of K are cycles. Note that an
edge min-cut in K is exactly two edges from a cycle in K. We call vertices of K nodes. Let C
be a cycle in K and v be a node in C. We denote by K[C, v] the component containing v of
the graph obtained from K by deleting the two edges incident to v in C. We denote by C(G)
the set of all min-cuts of G and by NC(G) that of all non-trivial min-cuts of G.

A cactus representation (K, ϕ) of G consists of a cactus K and a mapping ϕ from V (G)
to V (K) such that (a) for every min-cut X in G, there is a min-cut Y in K with X = ϕ−1(Y)
and (b) for every min-cut Y in K, ϕ−1(Y) is a min-cut in G. A node v in K is empty if
ϕ−1(v) is empty, a singleton if ϕ−1(v) consists of exactly one vertex of G, and a k-junction if
v is contained in exactly k cycles of K. A cactus representation (K, ϕ) of G is minimal if
one cannot get another cactus representation by contracting an edge of K and revising the
mapping correspondingly.

It has been proven by Dinits et al. [DKL76] that every graph G admits a cactus
representation for C(G). Furthermore, Kawarabayashi and Thorup [KT18] showed that a
cactus representation can be computed in near-linear time. We first consider some lemmas

3.4. CONTRACTION-BASED SPARSIFICATION PRESERVING SMALL CUTS 33

which help us to show that a non-trivial min-cut tree can be constructed from a cactus
representation in near-linear time for simple graphs G with λ(G) 6= 0, 2.

Lemma 3.22. Given a cactus representation (K, ϕ) of G. Let C be a cycle of length larger
than 2 in the cactus K and let u and v be adjacent nodes in C. Then G has exactly λ(G)/2
edges between ϕ−1(K[C, u]) and ϕ−1(K[C, v]); in particular, λ(G) is even.

Proof. Let X1 := ϕ−1(K[C, u]), X2 := ϕ−1(K[C, v]) and X3 := V −X1 −X2. As (K, ϕ)
is a cactus representation, X1, X2 and X3 are min-cuts in G, respectively. This implies that
d(X1, X2) + d(X1, X3) = d(X2, X3) + d(X2, X1) = d(X3, X1) + d(X3, X2) = λ(G). Therefore,
d(X1, X2) = λ(G)/2. �

Proposition 3.23. Let G be a simple graph with λ(G) 6= 0, 2. Then a non-trivial min-cut
tree T of G can be computed in time Õ(|E(G)|).

Proof. Let (K, ϕ) be a minimal cactus representation of G. Note that all min-cuts of G
are represented by the min-cuts of K. We can simply use |V (K)| − 1 uncrossing min-cuts
(each of them constitutes of exactly two edges in some cactus cycle) to split the cactus nodes,
from which a cut tree will result. The edges of this tree will represent some but possibly not
all min-cuts of G, nevertheless, all min-cuts of G will be preserved if we contract the vertex
sets represented by the tree nodes. We will choose these |V (K)| − 1 uncrossing min-cuts of K
carefully for each cycle in K in order to fulfill the Properties (i) and (iv).

Let C be a cycle v1v2 . . . vlv1 of length l in K. If there are two distinct cactus nodes say
v1 and vi (1 < i ≤ l) in C with |ϕ−1(K[C, v1])| > 1 and |ϕ−1(K[C, vi])| > 1. We split K with
the l− 1 cuts {v1, v2, . . . , vj} (for j = 1, . . . , i− 1) and {vi, vi+1, . . . , vj} (for j = i, . . . , l− 1).
Each of these l − 1 cuts represents some non-trivial min-cut of G.

If, for every cactus node v in C except v1, we have |ϕ−1(K[C, v])| = 1, we claim that l = 2.
Otherwise, if l > 2, then by Lemma 3.22, λ must be even. By our condition λ 6= 0, 2, we have
λ ≥ 4. By Lemma 3.22, there are λ/2 ≥ 2 edges between ϕ−1(K[C, v2]) and ϕ−1(K[C, v3]),
which is not possible since |ϕ−1(K[C, v2])| = |ϕ−1(K[C, v3])| = 1 and G is simple. We split
this cycle of length 2 with the only possible cut. By the minimality of (K, ϕ), we know that
the cactus node v2 is a 1-junction singleton in C and all non-trivial min-cuts will be preserved
if we contract the vertex set ϕ−1(v1) ∪ ϕ−1(v2).

We now have a tree on V (K) obtained by splitting the cycles in K. The cuts represented
by the tree edges are non-trivial min-cuts in G, except those obtained from some cycle of
length 2 and containing 1-junction singleton. As we discussed before, those tree edges can
be simply contracted. We also contract it if there is an edge which has an empty node
as its endvertex. It is clear that after these modifications all non-trivial min-cuts are still
preserved, the tree nodes form a partition of V (G) and all cuts represented by the tree
edges are non-trivial. Therefore we obtain a non-trivial min-cut tree. We use the result of
Kawarabayashi and Thorup [KT18] to find a cactus representation of G in near-linear time.
All the steps afterwards including verifying the minimality of (K, ϕ), searching cuts for each
cactus cycle and contracting several tree edges can be done in linear time. We conclude that
a non-trivial min-cut tree can be constructed in near-linear time. �

3.4.2.2. Contractions Preserving Non-Trivial Min-Cuts. The following lemma assures
that leaf nodes must have size Ω(δ).

Lemma 3.24. Every non-trivial min-cut A ⊂ V (G) of a simple graph G satisfies |A| ≥
δ(G). In particular, every leaf node A of a non-trivial min-cut tree of G satisfies |A| ≥ δ(G).

34 3. GENERALIZED CUT TREES FOR EDGE-CONNECTIVITY

Proof. For the first claim, let p := |A|. Then δ ≥ λ ≥ ∑v∈A(d(v)−(p−1)) ≥ pδ−p(p−1)
implies p ≥ δ, as p > 1. The second claim follows directly from the first. �

We remark that cut tree covering pairs of vertices separated by non-trivial min-cut also
exists for graph with λ = 0, 2 if we do not require Property (iv) in addition, but then
Lemma 3.24 does not always hold for such cut tree.

The following analogues of Lemmas 3.9 and 3.10 will ensure that the number of vertices
will decrease by a factor of Ω(δ) when contracting all nodes of a non-trivial min-cut tree.

Lemma 3.25. Let T be a non-trivial min-cut tree of a simple graph G. Let A′A,AB,BB′
be edges in T such that A,B ∈ V2. If |A|+ |B| > 2, |A|+ |B| ≥ δ(G)/2.

Proof. Let p := |A| and q := |B|. It is clear that ∑v∈A∪B d(v, CA′A) ≤ λ ≤ δ,∑
v∈A∪B d(v, CB′B) ≤ δ and d(v, CA′A) + d(v, CB′B) ≥ d(v) − (p + q − 1). Therefore,

2δ ≥ ∑v∈A∪B(d(v, CA′A) +d(v, CB′B)) ≥ ∑v∈A∪B(d(v)− (p+ q−1)) ≥ (p+ q)(δ− (p+ q−1)),
which gives p+ q ≥ p+q−2

p+q−1 · δ ≥
1
2 · δ if we assume p+ q > 2. �

Lemma 3.26. Let T be a non-trivial min-cut tree of a simple graph G. Let A be a node
in Vr with neighborhood B1, . . . , Br ∈ V2 in T such that |A| = |B1| = · · · = |Br| = 1. Then
δ(G) ≤ r2 + r.

Proof. Let A := {vA}. For every 1 ≤ i ≤ r, let Bi := {vi} and B′i 6= A be the node
that is adjacent to Bi in T . Write Ci := CB′iBi

. Since every vi or vA can have at most r
neighbors in {vA, v1, . . . , vr}, we have, for every 1 ≤ i ≤ r, d(vi) ≤ r + ∑r

j=1 d(vi, Cj), and
d(vA) ≤ r + ∑r

i=1 d(vA, Ci). On the other hand, we have, for every 1 ≤ i ≤ r, d(vA, Ci) +∑r
j=1 d(vj, Ci) ≤ λ ≤ δ. Therefore, ∑r

i=1(δ + d(vA, Ci) + ∑r
j=1 d(vj, Ci)) ≤

∑r
i=1(d(vi) +

d(vA, Ci)+∑r
j=1 d(vj, Ci)) ≤

∑r
i=1(r+∑r

j=1 d(vi, Cj)+δ), which implies r2 ≥ ∑r
i=1 d(vA, Ci) ≥

d(vA)− r ≥ δ − r. �

Now we present an alternative proof of the sparsification result in [LST18].

Theorem 3.27. Let G be a simple graph with δ(G) > 0 and let T be a non-trivial min-cut
tree of G. Then contracting every node of T leaves O(|V (G)|/δ(G)) vertices and O(|V (G)|)
edges.

Proof. We can assume δ ≥ 7, as otherwise δn ≤ 6n, which implies that there are at most
n ≤ 6n/δ = O(n/δ) vertices left after the contractions. We can also assume that |V (T)| > 1,
as otherwise the contraction leaves precisely 1 = O(n/δ) vertex; in particular, we have
V0 = ∅. Since δ ≥ 7, Lemma 3.26 implies that there are no distinct nodes B1, B2, B3 ∈ V2
satisfying B1B2, B2B3 ∈ E(T). We conclude by Lemma 3.25 that, for every 2-path P,∑
S∈V int

2 ∩V (P) |S| = |V int
2 ∩ V (P)| · Ω(δ). By Lemmas 3.24 and 3.12, the number of vertices

3.4. CONTRACTION-BASED SPARSIFICATION PRESERVING SMALL CUTS 35

can be bounded as follows.
n =

∑
S∈V (T)

|S|

≥
∑

S∈V1∪V>2

|S|+
∑

2-path P

 ∑
S∈V int

2 ∩V (P)
|S|

≥ |V1| · Ω(δ) +

∑
2-path P

(
|V int

2 ∩ V (P)| · Ω(δ)
)

= (|V1|+ |Vext
2 |+ |V>2|) · Ω(δ) + |V int

2 | · Ω(δ)
= |V (T)| · Ω(δ).

Therefore, |V (T)| = O(n/δ) vertices and at most (|V (T)| − 1) · λ = O(nλ/δ) ≤ O(n) edges
will be left if all nodes of T are contracted. �

3.4.3. Tightness. We show that the above results are tight, except for the cases in
which this was already shown. The following graph shows that the bounds of Corollaries 3.17
and 3.19 and Theorems 3.18 and 3.27 (vertex- and edge-bound) are tight. Let n ≥ 3(δ + 1),
δ ≥ 2 and assume that n is a multiple of δ + 1 (the last assumption can be avoided by a
simple modification of the construction). Then the graph G obtained from the cycle on
n/(δ + 1) vertices by replacing all vertices with a copy of Kδ+1 shows tightness.

Although this fixes λ(G) = 2, this example can be readily generalized to tight graphs
having larger and even λ such that λ < δ/2. To do so, obtain a graph G′ from G by adding
λ/2 − 1 cycles that are vertex-disjoint from the first initial cycle C, but visit exactly the
same complete subgraphs in the same order as C.

Bibliography

[AMLM13] E. Álvarez Miranda, I. Ljubić, and P. Mutzel, The maximum weight connected subgraph problem,
Facets of Combinatorial Optimization (M. Jünger and G. Reinelt, eds.), Springer, Berlin, 2013,
p. 245–270.

[BHKP07] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi, An Õ(mn) Gomory-Hu tree construction
algorithm for unweighted graphs, Proceedings of the 39th Annual Symposium on Theory of
Computing (STOC’07), 2007, pp. 605–614.

[Bon75] J. A. Bondy, Pancyclic graphs: Recent results, Infinite and finite sets, Vol. I (Colloq. Keszthely,
1973; Dedicated to P. Erdős on his 60th birthday) (A. Hajnal, R. Rado, and V.T. Sós, eds.),
Colloq. Math. Soc. János Bolyai, vol. 10, North-Holland, Amsterdam, 1975, pp. 181–187.

[Cai93] M.-C. Cai, The number of vertices of degree k in a minimally k-edge-connected graph, J. Combin.
Theory Ser. B 58 (1993), no. 2, 225–239.

[CFY04] G. Chen, G. Fan, and X. Yu, Cycles in 4-connected planar graphs, European J. Combin. 25
(2004), 763–780.

[Cho77] S. A. Choudum, Some 4-valent, 3-connected, planar, almost pancyclic graphs, Discrete Math. 18
(1977), no. 2, 125–129.

[CHW09] Q. Cui, Y. Hu, and J. Wang, Long cycles in 4-connected planar graphs, Discrete Math. 309
(2009), no. 5, 1051–1059.

[CN89] N. Chiba and T. Nishizeki, The hamiltonian cycle problem is linear-time solvable for 4-connected
planar graphs, J. Algorithms 10 (1989), no. 2, 187–211.

[CNAO85] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, A linear algorithm for embedding planar graphs
using PQ-trees, J. Comput. System Sci. 30 (1985), no. 1, 54–76.

[Din70] E. A. Dinic, Algorithm for solution of a problem of maximum flow in a network with power
estimation, Soviet Math Doklady 11 (1970), 1277–1280.

[DKL76] E. A. Dinits, A. V. Karzanov, and M. V. Lomonosov, On the structure of a family of minimal
weighted cuts in a graph, Studies in Discrete Optimization (in Russian) (Nauka, Moscow) (A. A.
Fridman, ed.), 1976, pp. 290–306.

[FJMv02] G. Fijavž, M. Juvan, B. Mohar, and R. Škrekovski, Planar graphs without cycles of specific
lengths, European J. Combin. 23 (2002), no. 4, 377–388.

[Fra94] A. Frank, On the edge-connectivity algorithm of Nagamochi and Ibaraki, Laboratoire Artemis,
IMAG, Université J. Fourier, Grenoble, 1994.

[Gar05] N. Garg, Saving an epsilon: a 2-approximation for the k-MST problem in graphs, Proceedings of
the 37th Annual ACM Symposium on Theory of Computing (STOC’05), 2005, pp. 396–402.

[Hie73] C. Hierholzer, Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung
zu umfahren, Math. Ann. 6 (1873), no. 1, 30–32.

[HK08] M. Horňák and Z. Kocková, On planar graphs arbitrarily decomposable into closed trails, Graphs
Combin. 24 (2008), no. 1, 19–28.

[HRW17] M. Henzinger, S. Rao, and D. Wang, Local flow partitioning for faster edge connectivity, Proceed-
ings of the 28th Annual Symposium on Discrete Algorithms (SODA’17), 2017, pp. 1919–1938.

[HW96] M. Henzinger and D. P. Williamson, On the number of small cuts in a graph, Inform. Process.
Lett. 59 (1996), 41–44.

[INS+12] T. Ito, T. Nishizeki, M. Schröder, T. Uno, and X. Zhou, Partitioning a weighted tree into subtrees
with weights in a given range, Algorithmica 62 (2012), no. 3-4, 823–841.

[Kar73] A. V. Karzanov, On finding a maximum flow in a network with special structure and some
applications, Matematicheskie Voprosy Upravleniya Proizvodstvom (in Russian) (1973), 81–94.

36

BIBLIOGRAPHY 37

[Kar00] D. R. Karger, Minimum cuts in near-linear time, J. ACM 47 (2000), no. 1, 46–76.
[KT18] K. Kawarabayashi and M. Thorup, Deterministic edge connectivity in near-linear time, J. ACM

66 (2018), no. 1, 4:1–4:50.
[LS18] O.-H. S. Lo and J. M. Schmidt, A cut tree representation for pendant pairs, Proceedings of the

29th International Symposium on Algorithms and Computation (ISAAC’18), 2018, pp. 38:1–38:9.
[LST18] O.-H. S. Lo, J. M. Schmidt, and M. Thorup, Contraction-based sparsification in near-linear time,

Manuscript available online at www.arxiv.org/abs/1810.03865, 2018.
[Mad71] W. Mader, Existenz gewisser Konfigurationen in n-gesättigten Graphen und in Graphen genügend

großer Kantendichte, Math. Ann. 194 (1971), 295–312.
[Mad73] , Grad und lokaler Zusammenhang in endlichen Graphen, Math. Ann. 205 (1973), 9–11.
[Mad74] , Kantendisjunkte Wege in Graphen, Monatsh. Math. 78 (1974), no. 5, 395–404.
[Mad95] , On vertices of degree n in minimally n-edge-connected graphs, Combin. Probab. Comput.

4 (1995), no. 1, 81–95.
[Mad96] , On vertices of degree n in minimally n-connected graphs and digraphs, Combinatorics,

Paul Erdős is eighty, Vol. 2 (Keszthely, 1993) (D. Miklós, V.T. Sós, and T. Szőnyi, eds.), Bolyai
Soc. Math. Stud., vol. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 423–449.

[Mal71] J. Malkevitch, On the lengths of cycles in planar graphs, Recent Trends in Graph Theory (Proc.
Conf., New York 1970) (M. Capobianco, J.B. Frechen, and M. Krolik, eds.), Lecture Notes in
Mathematics, vol. 186, Springer, Berlin, 1971, p. 191–195.

[Mal78] , Cycle lengths in polytopal graphs, Theory and Applications of Graphs (Proc. Conf.,
Michigan 1976) (Y. Alavi and D.R. Lick, eds.), Lecture Notes in Computer Science, vol. 642,
Springer, Berlin, 1978, p. 364–370.

[Mal88] , Polytopal graphs, Selected Topics in Graph Theory (L. Beineke and R. Wilson, eds.),
vol. 3, Academic Press, 1988, p. 169–188.

[Moh18] S. Mohr, Personal communication, 2018.
[MT] T. Madaras and M. Tamášová, Minimal unavoidable sets of cycles in plane graphs with restricted

minimum degree and edge weight, Manuscript.
[NI92] H. Nagamochi and T. Ibaraki, Computing edge-connectivity in multigraphs and capacitated graphs,

SIAM J. Discrete Math. 5 (1992), no. 1, 54–66.
[Plu75] M. D. Plummer, Problems, Infinite and finite sets, Vol. III (Colloq. Keszthely, 1973; Dedicated

to P. Erdős on his 60th birthday) (A. Hajnal, R. Rado, and V.T. Sós, eds.), Colloq. Math. Soc.
János Bolyai, vol. 10, North-Holland, Amsterdam, 1975, pp. 1549–1550.

[San97] D. P. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997), 341–345.
[SW97] M. Stoer and F. Wagner, A simple min-cut algorithm, J. ACM 44 (1997), no. 4, 585–591.
[Tho83] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983), no. 2, 169–176.
[Tre89] M. Trenkler, On 4-connected, planar 4-almost pancyclic graphs, Math. Slovaca 39 (1989), no. 1,

13–20.
[Tut56] W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956), 99–116.
[TY84] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test

acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput. 13 (1984),
no. 3, 566–579.

[TY94] R. Thomas and X. Yu, 4-connected projective-planar graphs are hamiltonian, J. Combin. Theory
Ser. B 62 (1994), 114–132.

[Vyg11] J. Vygen, Splitting trees at vertices, Discrete Math. 311 (2011), no. 1, 67–69.
[WL02] W. Wang and K.-W. Lih, Choosability and edge choosability of planar graphs without 5-cycles,

Appl. Math. Lett. 15 (2002), no. 5, 561–565.

Symbol Index

(S, l,M, n), 6
(K, ϕ), 34
A−B, vii
C, 14
CT , 4
CAM , 24
Cext, 14
Cint, 14
E(G), vii, viii
EG(X,Y), EG(v, Y), vii
G− F , vii
G−W , vii
G[W], vii
G∗, viii
Gext, 14
Gint, 14
NG(v), vii
Qu,v, 7
R, vii, 23
T [vw; v], viii
T ∗, 7
T ∗[r̃], 7
T (a), viii
T

(a)
v , viii
V (G), vii, viii
Vi(T), Vi, 5
[u, v]C , [u, v], viii
T , 24
Vext

2 , 29
V int

2 , 29
Vk, 26
V>k, 26
δ(G), δ, vii
κ(G), κ, viii
λ(G), λ, viii
λG(u, v), viii
dxe, vii
bxc, vii
C(G), 34
K, 34
K[C, v], 34
NC(G), 34
Q(T ; c, k),Q, 7
X, vii

ρ([u, v]), 4
ρ(wv,i), 4
θflow, 26
|X|, vii
|x|, vii
c(AB), 24
c([u, v]), 4
c(v), 4, 14
dG(X), dG(v), vii
dG(X,Y), dG(v, Y), vii
ev,i, 4
f = O(g), vii
f = Ω(g), vii
f = o(g), vii
u+, viii
uv, vii, viii
v−, viii
v1v2 . . . vtv1, vii
v1v2 . . . vt, vii
wv,i, 4
CS(G), 13

38

Index

i-triangle, 17
k-edge-connected, viii
component, viii

adjacent
faces, viii
vertices, vii

binary relation, vii, 23
irreflexive, vii
symmetric, vii

cactus, 34
representation, 34
minimal, 34

connected
component, vii
graph, viii

contract, viii
cut, viii
u-v-, viii
minimum, viii

min-, viii
trivial, viii

cycle, vii
directed, viii
Hamilton, 14
square, 17

cycle spectrum, 13

degree, vii
minimum, vii

discharge, 6
last, 6

dual graph, viii

edge, vii
directed, viii

edge set, vii, viii
edge-connectivity, viii
endvertex
edge, vii
path, vii

Euler tour technique, 4

face, viii

forest, viii

graph
k-connected, viii
bone, 32
complete, viii
directed, viii
hamiltonian, 13
planar, viii
plane, viii
simple, viii
undirected, vii

incident, vii

leaf, viii
length
cycle, vii
path, vii

Mohr’s transformation, 14, 15
multigraph, viii

neighbor, vii
node, 24, 34
k-junction, 34
empty, 34
leaf, 26
singleton, 34

overload, 6
overload-discharge process, 6
overload-discharge quadruple, 6
associated with u, v, 7
maximal, 7

overloading, 5
k-overloading, 5
path, 5
subtree, 5

pancyclic, 13
almost, 13

path, vii
2-, 26
directed, viii

pendant pair, 23

39

40 INDEX

pendant pairs
dependent, 29
independent, 29

planar embedding, viii

separate, viii
singleton, vii
size
cut, viii
path, vii
set, vii

subgraph, vii
induced, vii
spanning, vii

subtree, viii
support
subtree, 7
vertex, 7

tree, viii
k-edge-connectedness, 32
cut, 24
Gomory-Hu, 24, 25
non-trivial min-cut, 34
pendant, 25

vertex, vii
vertex set, vii, viii
vertex-connectivity, viii

	Preface
	Notation
	Part I.
	Chapter 1. Subtrees of Specified Weight
	1.1. Introduction
	1.2. An Overload-Discharge Approach
	1.3. Support Vertices and Support Subtree
	1.4. Overloading Vertices and Discharges
	1.5. Proof of the Lemma 1.1
	1.6. Some Examples

	Chapter 2. Cycles of Specified Length
	2.1. Overview of Cycle Spectra of Planar Graphs
	2.2. Cycles of Length Close to Medium-Length
	2.3. Planar Hamiltonian Graphs
	2.4. 3-Connected Planar Hamiltonian Graphs

	Part II.
	Chapter 3. Generalized Cut Trees for Edge-Connectivity
	3.1. Introduction
	3.2. Cut Trees
	3.3. Pendant Trees and Pendant Pairs
	3.4. Contraction-Based Sparsification Preserving Small Cuts

	Bibliography
	Symbol Index
	Index

