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Abstract

In this thesis, we give contributions to topics which are related to array noncom-

putable (a.n.c.) Turing degrees, maximal pairs and to simplicity properties. The

outline is as follows. In Chapter 2, we introduce a subclass of the a.n.c. Turing

degrees, the so called completely array noncomputable (c.a.n.c. for short) Turing

degrees. Here, a computably enumerable (c.e.) Turing degree a is c.a.n.c. if any

c.e. set A ∈ a is weak truth-table (wtt) equivalent to an a.n.c. set. We show

in Section 2.3 that these degrees exist (indeed, there exist infinitely many low

c.a.n.c. degrees) and that they cannot be high. Moreover, we apply some of the

ideas used to show the existence of c.a.n.c. Turing degrees to show the stronger

result that there exists a c.e. Turing degree whose c.e. members are halves of

maximal pairs in the c.e. computably Lipschitz (cl) degrees, thereby solving the

first part of the first open problem given in the paper by Ambos-Spies, Ding,

Fan and Merkle [ASDFM13].

In Chapter 3, we present an approach to extending the notion of array

noncomputability to the setting of almost-c.e. sets (these are the sets which

correspond to binary representations of left-c.e. reals). This approach is initiated

by the Heidelberg Logic Group and it is worked out in detail in an upcoming

paper by Ambos-Spies, Losert and Monath [ASLM18], in the thesis of Losert

[Los18] and in [ASFL+]. In [ASLM18], the authors introduce the class of sets

with the universal similarity property (u.s.p. for short; throughout this thesis,

sets with the u.s.p. will shortly be called u.s.p. sets) which is a strong form of

array noncomputability in the setting of almost-c.e. sets and they show that sets

with this property exist precisely in the c.e. not totally ω-c.e. degrees. Then it

is shown that, using u.s.p. sets, one obtains a simplified method for showing

the existence of almost-c.e. sets with a property P (for certain properties P)

that are contained in c.e. not totally ω-c.e. degrees, namely by showing that

u.s.p. sets have property P. This is demonstrated by showing that u.s.p. sets

are computably bounded random (CB-random), thereby extending a result from

Brodhead, Downey and Ng [BDN12]. Moreover, it is shown that the c.e. not

totally ω-c.e. degrees can be characterized as those c.e. degrees which contain

an almost-c.e. set which is not cl-reducible to any complex almost-c.e. set. This



affirmatively answers a conjecture by Greenberg.

For the if-direction of the latter result, we prove a new result on maximal

pairs in the almost-c.e. sets by showing the existence of locally almost-c.e. sets

which are halves of maximal pairs in the almost-c.e. sets such that the second

half can be chosen to be c.e. and arbitrarily sparse. This extends Yun Fan’s

result on maximal pairs [Fan09]. By our result, we also get a new proof of one of

the main results in Barmpalias, Downey and Greenberg [BDG10], namely that

in any c.e. a.n.c. degree there is a left-c.e. real which is not cl-reducible to any

ML-random left-c.e. real.

In this thesis, we give an overview of some of the results from [ASLM18] and

sketch some of the proofs to illustrate this new methodology and, subsequently,

we give a detailed proof of the above maximal pair result.

In Chapter 4, we look at the interaction between a.n.c. wtt-degrees and the

most commonly known simplicity properties by showing that there exists an

a.n.c. wtt-degree which contains an r-maximal set. By this result together with

the result by Ambos-Spies [AS18] that no a.n.c. wtt-degree contains a dense

simple set, we obtain a complete characterization which of the classical simplicity

properties may hold for a.n.c. wtt-degrees.

The guiding theme for Chapter 5 is a theorem by Barmpalias, Downey and

Greenberg [BDG10] in which they characterize the c.e. not totally ω-c.e. degrees

as the c.e. degrees which contain a c.e. set which is not wtt-reducible to any

hypersimple set. So Ambos-Spies asked what the above characterization would

look like if we replaced hypersimple sets by maximal sets in the above theorem.

In other words, what are the c.e. Turing degrees that contain c.e. sets which

are not wtt-reducible to any maximal set. We completely solve this question

on the set level by introducing the new class of eventually uniformly wtt-array

computable (e.u.wtt-a.c.) sets and by showing that the c.e. sets with this property

are precisely those c.e. sets which are wtt-reducible to maximal sets. Indeed,

this characterization can be extended in that we can replace wtt-reducible by

ibT-reducible and maximal sets by dense simple sets. By showing that the c.e.

e.u.wtt-a.c. sets are closed downwards under wtt-reductions and under the join

operation, it follows that the c.e. wtt-degrees containing e.u.wtt-a.c. sets form

an ideal in the upper semilattice of the c.e. wtt-degrees and, further, we obtain



a characterization of the c.e. wtt-degrees which contain c.e. sets that are not

wtt-reducible to any maximal set. Moreover, we give upper and lower bounds

(with respect to ⊆) for the class of the c.e. e.u.wtt-a.c. sets. For the upper bound,

we show that any c.e. e.u.wtt-a.c. set has array computable wtt-degree. For the

lower bound, we introduce the notion of a wtt-superlow set and show that any

wtt-superlow c.e. set is e.u.wtt-a.c. Besides, we show that the wtt-superlow c.e.

sets can be characterized as the c.e. sets whose bounded jump is ω-computably

approximable (ω-c.a. for short); hence, they are precisely the bounded low sets as

introduced in the paper by Anderson, Csima and Lange [ACL17]. Furthermore,

we prove a hierarchy theorem for the wtt-superlow c.e. sets and we show that

there exists a Turing complete set which lies in the intersection of that hierarchy.

Finally, it is shown that the above bounds are strict, i.e., there exist c.e. e.u.wtt-

a.c. sets which are not wtt-superlow and that there exist c.e. sets whose wtt-degree

is array computable and which are not e.u.wtt-a.c. (where here, we obtain the

separation even on the level of Turing degrees). The results from Chapter 5 will

be included in a paper which is in preparation by Ambos-Spies, Downey and

Monath [ASDM19].





Zusammenfassung

In dieser Arbeit leisten wir Beiträge die im Zusammenhang mit array noncompu-

table (a.n.c.) Turinggraden, maximalen Paaren und Simplizitätseigenschaften

stehen. Die Gliederung ist wie folgt. In Kapitel 2 führen wir eine Teilklasse der

a.n.c. Turinggrade ein, die sogenannten completely array noncomputable (kurz

c.a.n.c.) Turinggrade, ein. Hierbei ist ein rekursiv aufzählbarer (r.a.) Turinggrad

a c.a.n.c. falls jede r.a. Menge A ∈ a weak truth-table (wtt)-äquivalent zu einer

a.n.c. Menge ist. Wir zeigen in Abschnitt 2.3, dass solche Grade existieren (in der

Tat gibt es unendlich viele niedrige c.a.n.c. Grade) and dass sie nicht hoch sein

können. Außerdem wenden wir einige der Ideen, die wir nutzen, um die Existenz

von c.a.n.c. Turinggraden zu zeigen, an, um das stärkere Ergebnis zu zeigen, dass

es einen r.a. Turinggrad gibt, dessen r.a. Mengen Hälften von maximalen Paaren

in den r.a. cl-Graden sind, womit wir zugleich den ersten Teil des ersten offenen

Problems im Paper von Ambos-Spies, Ding, Fan und Merkle [ASDFM13] lösen.

In Kapitel 3 präsentieren wir einen Zugang um den Begriff der array noncom-

putability auf den Kontext der almost-c.e. Mengen (diese Mengen entsprechen

gerade den Binärdarstellungen linksberechenbarer reeller Zahlen) zu erweitern.

Dieser Zugang wurde initiiert von der Heidelberger Logik-Gruppe und ist im

Detail in den Arbeiten von Ambos-Spies, Losert und Monath [ASLM18], in der

Doktorarbeit von Losert [Los18] und in [ASFL+] ausgearbeitet. In [ASLM18]

führen die Autoren die Klasse der Mengen mit der universal similarity property

(kurz u.s.p.; in der gesamten Arbeit werden Mengen mit der u.s.p. einfach als

u.s.p. Mengen bezeichnet) ein welche eine starke Form der array noncompu-

tability im Kontext der almost-c.e. Mengen darstellt und sie zeigen, dass die

Mengen mit dieser Eigenschaft gerade in den r.a. not totally ω-c.e. Turinggraden

existieren. Anschließend wird gezeigt, dass man mit Hilfe von u.s.p. Mengen eine

vereinfachte Methode erhält, um die Existenz von almost-c.e. Mengen mit einer

Eigenschaft P (für gewisse Eigenschaften P) nachzuweisen, die in r.a. not totally

ω-c.e. Graden enthalten sind, nämlich, indem man zeigt, dass u.s.p. Mengen die

Eigenschaft P haben. Dies wird demonstriert, indem gezeigt wird, dass u.s.p.

Mengen computably bounded zufällig (CB-zufällig) sind, womit zugleich ein

Ergebnis von Brodhead, Downey and Ng [BDN12], verschärft wird. Weiterhin



wird gezeigt, dass man die r.a. not totally ω-c.e. Grade als diejenigen r.a. Grade

charakterisieren kann, welche eine almost-c.e. Menge enthalten, die nicht cl-

reduzierbar auf eine komplexe almost-c.e. Menge ist. Dies bejaht eine Vermutung

von Greenberg.

Für die Wenn-dann-Richtung des letztgenannten Resultats beweisen wir ein

neues Ergebnis über maximale Paare in den almost-c.e. Mengen, indem wir

zeigen, dass es lokal almost-c.e. Mengen gibt, die Hälfte eines maximalen Paares

in den almost-c.e. Mengen sind, sodass die zweite Hälfte als r.a. und beliebig dünn

gewählt werden kann. Dies erweitert Yun Fans Ergebnis über maximale Paare

[Fan09]. Mit unserem Ergebnis bekommen wir zudem einen neuen Beweis eines

der Hauptresultate in Barmpalias, Downey und Greenberg [BDG10], nämlich

dass es in jedem r.a. a.n.c. Grad eine linksberechenbare reelle Zahl gibt, die nicht

cl-reduzierbar auf eine ML-zufällige linksberechenbare reelle Zahl ist.

In dieser Arbeit geben wir einen Überblick zu einigen der Resultate von

[ASLM18] und skizzieren einige der Beweise, um diese neue Methodik zu illus-

trieren und geben anschließend einen detaillierten Beweis des obigen Ergebnisses

über maximale Paare an.

In Kapitel 4 betrachten wir die Interaktion zwischen a.n.c. wtt-Graden und

den allgemein bekannten Simplizitätseigenschaften, indem wir zeigen, dass es

a.n.c. wtt-Grade gibt, welche r-maximale Mengen enthalten. Zusammen mit dem

Ergebnis von Ambos-Spies [AS18], dass kein a.n.c. wtt-Grad Mengen enthalten

kann, die dense simple sind, erhalten wir eine vollständige Charakterisierung

welche der klassischen Simplizitätseigenschaften für a.n.c. wtt-Grade gelten

können.

In Kapitel 5 ist das Leitthema ein Theorem von Barmpalias, Downey und

Greenberg [BDG10], in dem sie die r.a. nicht total ω-c.e. Grade als diejenigen

r.a. Grade charakterisieren, welche eine r.a. Menge enthalten die nicht wtt-

reduzierbar auf eine hypersimple Menge ist. So stellte Ambos-Spies die Frage

wie obige Charakterisierung aussähe wenn man im obigen Theorem hypersimple

durch maximal ersetzt. Mit anderen Worten, welches sind die r.a. Turinggrade

die eine r.a. Menge enthalten, die nicht wtt-reduzierbar auf eine maximale Menge

sind. Wir beantworten diese Frage vollständig auf der Ebene der Mengen, indem

wir die neue Klasse der eventually uniformly wtt-array computable (e.u.wtt-a.c.)



Mengen einführen und indem wir zeigen, dass Mengen mit dieser Eigenschaft

gerade diejenigen Mengen sind, welche auf maximale Mengen wtt-reduzierbar

sind. In der Tat lässt sich diese Charakterisierung dahingehend erweitern, dass wir

wtt-reduzierbar durch ibT-reduzierbar and maximale Mengen durch dense simple

Mengen ersetzen können. Indem wir zeigen, dass die r.a. e.u.wtt-a.c. Mengen

nach unten gegen wtt-Reduktionen und gegen die Join-Operation abgeschlossen

sind, folgt, dass die r.a. wtt-Grade, die eine e.u.wtt-a.c. Menge enthalten, ein

Ideal im oberen Halbverband der r.a. wtt-Grade bilden und weiterhin erhalten

wir eine Charakterisierung der r.a. wtt-Grade, die r.a. Mengen enthalten, die

nicht wtt-reduzierbar auf maximale Mengen sind.

Außerdem geben wir obere und untere Schranken (bzgl. ⊆) für die Klasse

der r.a. e.u.wtt-a.c. Mengen an. Für die obere Schranke zeigen wir, dass jede

r.a. e.u.wtt-a.c. Menge array computable wtt-Grad hat. Für die untere Schranke

führen wir den Begriff der wtt-superlow Mengen ein und zeigen, dass jede wtt-

superlow r.a. Menge e.u.wtt-a.c. ist. Außerdem zeigen wir, dass die wtt-superlow

r.a. Mengen als diejenigen r.a. Mengen charaktersiert werden können, deren

bounded jump ω-computably approximable (kurz ω-c.a.) ist. Somit sind sie gerade

die bounded low Mengen, so wie sie in der Arbeit von Anderson, Csima und

Lange [ACL17] eingeführt werden. Weiterhin beweisen wir einen Hierarchiesatz

für die wtt-superlow r.a. Mengen und wir zeigen, dass es eine Turing-vollständige

Menge gibt, die im Durchschnitt dieser Hierarchie liegt. Schließlich wird noch

gezeigt, dass die obigen Schranken strikt sind, d.h., dass es r.a. e.u.wtt-a.c.

Mengen gibt, die nicht wtt-superlow sind und dass es r.a. Mengen gibt, deren

wtt-Grad array computable ist, aber nicht e.u.wtt-a.c. sind (wobei wir hier die

Trennung sogar auf der Ebene der Turing Grade erhalten). Die Ergebnisse aus

Kapitel 5 werden in einem Paper, das in zusammen von Ambos-Spies, Downey

und Monath [ASDM19] vorbereitet wird, enthalten sein.
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Chapter 1

Preliminaries

In this chapter, we provide the notation and the definitions that we use throughout

this thesis. More specific notation and definitions are introduced in the respective

chapters. We assume the reader to be familiar with the basic concepts of

computability theory as it is given, e.g., in the book of Soare [Soa87] or in the

book of Downey and Hirschfeldt [DH10]. Most of our notation is adapted from

these two sources. In particular, we assume familiarity with the concept of

(oracle) Turing machines and that of partial computable functions.

The set of all natural numbers is denoted by ω and natural numbers are

denoted by lower case letters such as e, i, j or k, l,m, n, or x, y, z. Throughout this

thesis, we are mainly dealing with natural numbers, so unless otherwise stated,

when we refer to numbers we always mean natural numbers. In constructions or

approximations, we use lower case letters like s, t to refer to the stage number or

to the number of steps of approximation, respectively. Subsets of ω are denoted

by upper case letters like A,B,C, or V,W,X, Y, Z. A set A ⊆ ω is identified

with its characteristic function, so we have A = A(0)A(1) . . . , where we write

A(x) = 1 for x ∈ A and A(x) = 0, otherwise. In particular, we identify the

power set of ω with 2ω, the set of all infinite binary sequences. The set of all

finite binary sequences is denoted by 2<ω. Elements of 2<ω are called (binary)

strings or sometimes nodes, where the latter term is mainly used when we deal

with tree constructions. Strings are denoted by lower case Greek letters such as

α, β, γ, δ, or σ, τ . The empty string is denoted by λ. For any string σ, we write

1



|σ| for the length of σ and σ(i), where i < |σ| for the (i+ 1)st bit of σ. For any

two strings σ, τ , we write σ ⊑ τ if σ is an initial segment of τ and we write σ ⊏ τ

if σ ⊑ τ and σ ̸= τ hold. The concatenation of two strings σ, τ is denoted by στ .

The lexicographical ordering on strings is denoted by ≤lex and σ ≤lex τ holds

for two strings σ, τ if and only if either σ ⊑ τ holds or if σ(i) < τ(i) holds for

the least i < min{|σ|, |τ |} such that σ(i) ̸= τ(i). For any set A and any number

n ∈ ω, we write A ↾ n for the unique string σ of length n such that σ(i) = A(i)

holds for all i < n. We often identify strings with numbers, where a string α may

be identified with the n ∈ ω if and only if 1α equals the binary representation

of n+ 1. The set of all finite sequences of natural numbers is denoted by ω<ω.

We identify ω<ω with the disjoint union
⋃︁
k∈ω ω

k, where ω0 = {λ} (that is, the

empty sequence of ω<ω is also denoted by λ), where we identify ω1 with ω and

where ωk denotes the set of all tuples of numbers of length k for k ≥ 2.

We denote the standard pairing function by ⟨·, ·⟩ : ω2 → ω, i.e., it holds that

⟨x, y⟩ = (x+y)(x+y+1)
2

+x. Note that ⟨·, ·⟩ is a computable bijection which is strictly

increasing in both arguments. Moreover, ⟨·, ·⟩ induces for any k ≥ 1 computable

bijections ⟨·, . . . , ·, ⟩k : ωk → ω and a computable bijection ⟨. . . ⟩∗ : ω<ω → ω

by letting ⟨·⟩1 be equal to the identity function, by letting ⟨x0, . . . , xk⟩k+1 =

⟨⟨x0, . . . , xk−1⟩k , xk⟩ for all k ∈ ω and all x0, . . . , xk and by letting ⟨λ⟩∗ = 0 and

by letting ⟨x0, . . . , xn−1⟩∗ = ⟨n− 1, ⟨x0, . . . , xn−1⟩n⟩+ 1 for all (x0, . . . , xn−1) ∈
ω<ω with n > 0. By abuse of notation, we write ⟨x0, . . . , xn−1⟩ instead of

⟨x0, . . . , xn−1⟩n if n is clear from the context and, in the same way, we write

⟨x0, . . . , xn−1⟩ instead of ⟨x0, . . . , xn−1⟩∗ if it is clear from the context that the

length of (x0, . . . , xn−1) varies. For any e ∈ ω, we let ω[e] = {⟨e, x⟩ : x ∈ ω}.
Partial functions are denoted by lower case Greek letters like φ, ψ and total

functions are denoted by lower case letters such as f, g, h. For a partial function

φ, we let dom(φ) be the domain of φ and we write φ(x) ↓ if x ∈ dom(φ) and

φ(x) ↑, otherwise. Turing functionals are denoted by upper case Greek letters

like Φ,Ψ. As usual, for a Turing functional Φ, a set A and a number x, we

write ΦA(x) instead of Φ(A, x), where A is called the oracle in this context. The

use functional of a Turing functional is denoted by its corresponding lower case

Greek letter. So given a Turing functional Φ and an oracle A, the use function

of ΦA is denoted by φA, where we let φA(x) be the greatest oracle query in the

2



computation of ΦA(x) on input x. Given a Turing functional Φ or a partial

computable function φ we let, for any oracle A and any x, s ∈ ω, ΦA
s (x), φ

A
s (x)

and φs(x) denote the approximation of ΦA(x), φA(x) and φ(x) within s steps of

computation, respectively.

We fix a Goedel numbering of all Turing functionals {Φe}e∈ω and a Goedel

numbering of all partial computable functions {φe}e∈ω and let {We}e∈ω, where
We = dom(φe), denote the induced standard enumeration of all computably

enumerable (c.e.) sets. For given e, s ∈ ω, we let We,s = dom(φe,s). We adapt

the now commonly used Lachlan notation for approximations of computations,

i.e., given a Turing functional Φ and a set A which is approximated by a sequence

of sets {As}s∈ω in the limit we let ΦA(x)[s] = ΦAs
s (x). By approximations in the

limit, we refer to the discrete topology of the natural numbers, i.e., a sequence of

sets {As}s∈ω (a sequence of functions {fs}s∈ω) approximates a set A (a function

f) in the limit if, for every x, As(x) = A(x) (fs(x) = f(x)) holds for almost all

stages, i.e., for all but finitely many stages. We follow the usual convention on

converging computations, i.e., for any oracle A and any numbers e, x, y, s ∈ ω

if ΦA
e,s(x) ↓= y then max{e, x, y, φAe (x)} < s and, similarly, if φe,s(x) ↓= y then

max{e, x, y} < s; in particular, it holds that We,s ⊆ ω ↾ s.

Let us recall the use principle for Turing functionals.

Theorem 1.0.1 (Use Principle). Let A and B be two given sets, let Φ be a Turing

functional and let x, y ∈ ω. Then ΦA(x) ↓= y and B ↾ φA(x)+1 = A ↾ φA(x)+1

imply that ΦB(x) ↓= y and φB(x) = φA(x).

When we attempt to define a Turing functional Ψ in stages s along with a

computable enumeration {As}s∈ω of a c.e. set A, we follow the standard procedure

as it is described, e.g., in [DH10, p.29 f.]. In the following, we shortly recall how

this is done. Let x ∈ ω be given. Initially, we set ΨA(x)[0] ↑. At some stage s+1

of the construction, we may declare ΨA(x)[s+ 1] ↓= y and declare its use to be

ψA(x)[s+ 1] = z for some values y, z ∈ ω (in some cases, we have z = s). Then

for any stage t > s, we keep ΨA(x)[t+ 1] = ΨA(x)[t] and ψA(x)[t+ 1] = ψA(x)[t]

unless we enumerate a number n ≤ z into A at stage t+ 1. In the latter case,

we may let ΨA(x)[t+ 1] ↑ and henceforth repeat the procedure after stage t+ 1.

In order to make sure that eventually ΨA(x) ↓ holds, we have to make sure that
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ψA(x) stabilizes, i.e., that there exists a stage s such that ψA(x)[t] = ψA(x)[s]

holds for all t > s. If A and the computable enumeration {As}s∈ω are given

then we may also follow this procedure with the restriction that, for any stage s

such that ΨA(x)[s] ↓ and ψA(x)[s] ↓ holds, we may declare ΨA(x)[s+ 1] ↑ only if

As+1 ↾ ψA(x)[s] + 1 ̸= As ↾ ψA(x)[s] + 1 holds.

Next, we summarize the reducibilities which are considered in this thesis.

Definition 1.0.2. Let A and B be any two sets. Then we say that

(i) A is Turing reducible to B, denoted by A ≤T B, if there exists e ∈ ω such

that A = ΦB
e .

(ii) A is weak truth-table reducible (wtt) to B, denoted by A ≤wtt B, if there

exists e ∈ ω and a computable function f : ω → ω such that A = ΦB
e and

such that φBe (x) ≤ f(x) holds for all x. More precisely, given a computable

function f , we write A ≤f−T B and say that A is f -bounded Turing

reducible to B if A ≤wtt B holds and f witnesses this fact.

(iii) A is truth-table reducible (tt) to B, denoted by A ≤tt B, if there exist

computable functions g : ω → ω<ω and h : ω × 2<ω → {0, 1} such that,

for any x, it holds that A(x) = h(x,B(y0) . . . B(yn−1)), where g(x) =

(y0, . . . , yn−1).

(iv) A is computable Lipschitz (cl) reducible to B, denoted by A ≤cl B, if there

exists e ∈ ω such that A = ΦB
e and if there exists a constant c ∈ ω such

that φBe (x) ≤ x+ c holds for all x.

(v) A is identity bounded Turing (ibT) reducible to B, denoted by A ≤ibT B,

if A ≤id−T B, where id is the identity function.

(vi) A is many-one reducible to B, denoted by A ≤m B, if there exists a

computable function f : ω → ω such that A(x) = B(f(x)) holds for any x.

(vii) A is one-one reducible to B, denoted by A ≤1 B, if there exists a computable

one-one function f : ω → ω such that A(x) = B(f(x)) holds for any x.
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For any of the above reducibilities r, we say that A and B are r-equivalent and

denote it by A ≡r B if A ≤r B and B ≤r A hold. We write A <r B if A ≤r B

and B ̸≤r A hold, and we let degr(A) = {B ⊆ ω : A ≡r B} be the r-degree of A.

For any of the above reducibilities r, we denote the r-degrees by lower case

bold face letters such as a, b, etc. (where we tacitly assume that the reducibility

is clear from the context). An r-degree a is c.e. if it contains a c.e. set. For any

two r-degrees a and b, we write a ≤ b if there exist sets A ∈ a and B ∈ b such

that A ≤r B holds and we write a < b if a ≤ b and a ̸= b holds. Since all of

the above reducibilities are reflexive and transitive, it follows that the induced

relation ≡r is an equivalence relation, the r-degrees are the equivalence classes

of ≡r and the induced ≤-relation is a partial ordering on the set of all r-degrees.

Moreover, we write a∨b (a∧b) for the least upper bound (greatest lower bound)

of a and b for two r-degrees a and b, if it exists. Note that the least upper bound

always exists for two r-degrees a and b for all reducibilities r ∈ {m, tt, wtt, T}
and it is given by degr(A⊕B) for any A ∈ a and B ∈ b, where A⊕B is the join

of the sets A and B which is given by A⊕B = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B};
and a∨b exists for r ∈ {ibT, cl} if there exist disjoint c.e. sets A ∈ a and B ∈ b

in which case it is given by degr(A ∪B).

By definition, r-degrees only contain sets. However, we may extend the

definition of Turing reducibility to functions and sets by saying that a function f

is Turing reducible to a function g (f is Turing reducible to a set A) and denote it

by f ≤T g (f ≤T A), too, if there exists e ∈ ω such that f = Φ
graph(g)
e (f = ΦA

e )

holds, where graph(g) = {⟨x, g(x)⟩ : x ∈ ω}. Then, for any function f and any

two sets A,B, it holds that f ≤T A and A ≤T B imply that f ≤T B. Thus, we

may write f ≤T a for a function f and a Turing degree a meaning that f ≤T A

holds for some set A ∈ a.
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Chapter 2

Completely Array

Noncomputable Degrees

2.1 Introduction

Array noncomputable sets are introduced by Downey, Jockusch and Stob in 1990

[DJS90] as the class of computably enumerable (c.e.) sets that comprehend a

certain type of permitting, called multiple permitting. Permitting is a technique

in computability theory that is used to construct a c.e. set A which is Turing

below a c.e. set B, where B may be given or may be under construction as well.

In a simple permitting argument, for instance, we may put a number x into A

only if a number y ≤ x enters B at the same stage or later. In this case we say

that x is permitted by B. Note that simple permitting ensures that A ≤ibT B.

So in any construction where the set A has to meet an infinite sequence

of requirements {Re}e∈ω such that each Re may be eventually satisfied by

enumerating one number into A (for example, consider the requirements for

making A simple), we can argue that simple permitting can be guaranteed by

any noncomputable c.e. set B in order to meet all requirements. To wit, suppose

that we have appointed numbers x0 < x1 < . . . , so called followers, at stages

s0 < s1 < . . . , respectively for the sake of a fixed requirement Re, each of

them awaiting to be permitted by B. Then, by effectivity of the construction,

the strictly increasing sequences {xi}i∈ω and {si}i∈ω are computable. So, by
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2.1. INTRODUCTION

noncomputability of the set B, eventually one of them is permitted; hence, while

waiting for a stage s such that one of the x0 < · · · < xn is permitted by B, it

suffices to appoint a new follower xn+1 at a stage sn+1 > sn to finally meet Re.

In a multiple permitting argument, the requirements become more intricate in

such a way that a follower x needs to be permitted more than once (for example,

x may be associated with enumerating many numbers x1, . . . , xn into A for the

sake of one requirement). Then B being merely noncomputable may not be

sufficient any more to permit all of x1, . . . , xn to enter A. Downey, Jockusch and

Stob define the notion of array noncomputable (a.n.c.) sets as a property of

c.e. sets such that the sets with this property capture such multiple permitting

arguments, where the number of permissions needed for x is bounded by f(x),

where f is a fixed computable function which does not depend on the requirement.

In [DJS90], the authors show that any non-low2 degree is a.n.c., i.e., contains an

a.n.c. set, that the a.n.c. degrees are closed upwards and that there is a low a.n.c.

set. Moreover, Downey, Jockusch and Stob characterize the a.n.c. degrees as those

degrees a which, given a computable function f , can compute a function g ≤T a

which is not f -c.e., i.e., does not have a computable approximation {gs}s∈ω such

that the number of stages s such that gs+1(x) ̸= gs(x) is bounded by f(x) (Note

that the term f -c.e. is nowadays replaced by f -computably approximable (f -c.a.).

Since we refer here to results in the literature where mainly the former term is

used, we stick to the former term as well in this and the following chapter.). In a

follow up of [DJS90], Downey, Jockusch and Stob [DJS96] extend the definition of

a.n.c. degrees to the class of all degrees via a domination property (see Theorem

2.2.4 below; here and in the following, we refer to c.e. a.n.c. degrees as a.n.c.

degrees) and show that this definition coincides with the definition of a.n.c.

degrees in the class of c.e. degrees.

In the literature, there are many examples that demonstrate that the multiple

permitting technique as provided by the a.n.c. degrees comprehends the combi-

natorics of a wide class of constructions in computability theory. For instance,

a.n.c. degrees may be characterized as those degrees which contain maximal pairs

both in the c.e. and the left-c.e. computable Lipschitz (cl) degrees ([ASDFM13]

and [BDG10], respectively), they can be characterized as the c.e. sets which have

infinitely often the highest Kolmogorov complexity possible among all c.e. sets
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2.2. PRELIMINARIES

([Kum96]) and a.n.c. degrees are precisely those c.e. degrees which contain left-c.e.

reals that are not cl-computable by any 1-random left-c.e. real ([BDG10]), to

mention but a few results in this respect. For more on cl-maximal pairs in the c.e.

sets, we refer the reader to Section 2.5 and, for cl-maximal pairs in the left-c.e.

reals, we refer the reader to Chapter 3.

In this chapter, we contribute further results to the class of a.n.c. degrees

by introducing a subclass of the a.n.c. degrees, called the completely array

noncomputable degrees. The outline of this chapter is as follows. In Section 2.2,

we recall the definitions of a.n.c. sets and degrees and recall basic properties

about them. Then in Section 2.3, we give the definition of completely array

noncomputable degrees and we show that such degrees exist (Theorem 2.3.3). In

Section 2.4, we prove that they form a proper subclass of the array noncomputable

degrees by showing that any high c.e. degree does not have this property (Theorem

2.4.2). Finally, in Section 2.5 we review the relation between a.n.c. degrees and

maximal pairs and strengthen Theorem 2.3.3 by showing that there exists a

Turing degree whose c.e. members are all halves of maximal pairs (Theorem

2.4.2). The latter result gives an affirmative answer to the first part of the first

open problem in [ASDFM13].

2.2 Preliminaries

We begin this section with the basic definitions of a.n.c. sets and degrees and

state some of the basic results about a.n.c. degrees. We start with the notion of

a very strong array.

Definition 2.2.1 ([DJS90]). A very strong array (v.s.a. for short) is a sequence

of finite sets F = {Fn}n∈ω such that there exists a computable function f : ω → ω

such that for all n, it holds that Fn = Df(n) (i.e., f(n) is the canonical index

of Fn), 0 < |Fn| < |Fn+1| and Fm ∩ Fn = ∅ holds for all m ̸= n. A v.s.a.

F = {Fn}n∈ω is called complete if
⋃︁
n∈ω Fn = ω holds.

Based on very strong arrays, array noncomputability is defined for c.e. sets

as follows.
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Definition 2.2.2. Given a v.s.a. F = {Fn}n∈ω, a c.e. set A is F -array noncom-

putable (F -a.n.c.) if, for every c.e. set B,

∃n (A ∩ Fn = B ∩ Fn) (2.1)

holds. A is called array noncomputable (a.n.c.) if it is F-a.n.c. for some v.s.a.

F ; and a c.e. (wtt-) degree a is array noncomputable if a contains an array

noncomputable set. Finally, a c.e. set A and a c.e. (wtt-) degree a are called

array computable (a.c.) if they are not array noncomputable.

Note that in the original definition of very strong arrays given in [DJS90], it

is required that every v.s.a. is complete. Definition 2.2.1 follows the one given

in [DH10]. However, this does not affect the notion of array noncomputability

for wtt-degrees. Namely, as shown in [ASFL+], every a.n.c. set A in the sense of

Definition 2.2.2 is F -a.n.c. for a complete v.s.a. F = {Fn}n∈ω. Moreover, since

c.e. sets are closed under finite variation, (2.1) is equivalent to

∃∞n (A ∩ Fn = B ∩ Fn). (2.2)

Downey, Jockusch and Stob show in [DJS90, Theorem 2.5] that a.n.c. Turing

degrees are closed upwards and that array noncomputability for wtt-degrees does

not depend on the choice of the very strong array. We summarize this in the

following theorem.

Theorem 2.2.3 ([DJS90]). Let r ∈ {wtt, T}, let F be a v.s.a. and let A,B be

c.e. sets such that A is a.n.c. and such that A ≤r B holds. Then there exists an

F-a.n.c. set C such that C ≡r B holds.

In their later sequel paper [DJS96], Downey, Jockusch and Stob define a.n.c.

degrees in terms of a domination property which extends the definition of a.n.c.

degrees to the class of all degrees and they show that this definition is equivalent

on the level of c.e. degrees. In the following theorem, for future reference,

we subsumize this and the following characterization which classifies the a.n.c.

degrees in terms of the Ershov hierarchy and which becomes an important

connection when we look at stronger forms of multiple permitting in Chapter 3.

10
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Theorem 2.2.4 (Theorem 1.6 of [DJS90] and Proposition 1.4 of [DJS96]). For

a c.e. degree degree a, the following are equivalent.

1. a is a.n.c.

2. For every computable function f there exists a function g ≤T a such that g

is not f -c.e.

3. For every f ≤wtt 0
′ there exists a function g ≤T a such that g(n) ≥ f(n)

for infinitely many n ∈ ω.

2.3 Completely Array Noncomputable Degrees

Exist

Next, let us focus on the c.e. wtt-degrees inside a given a.n.c. degree. For that,

recall the following result from Downey, Jockusch and Stob ([DJS90, Corollary

3.14]).

Theorem 2.3.1. The c.e. array computable wtt-degrees form an ideal in the

class of the c.e. wtt-degrees.

By Downey and Stob [DS93, Theorem 9.5 (1)], a.n.c. Turing degrees cannot

be contiguous, i.e., they must contain at least two c.e. wtt-degrees. Hence,

we may conclude by Theorem 2.2.3 and by the density of the c.e. wtt-degrees

([LS75]) that any a.n.c. Turing degree contains infinitely many a.n.c. wtt-degrees.

However, this leaves the question open whether all the c.e. wtt-degrees inside

a given a.n.c. Turing degree may be a.n.c., too. This inspires the following

definition.

Definition 2.3.2. A c.e. Turing degree a is called completely array noncom-

putable (completely a.n.c. or c.a.n.c. for short) if, for any c.e. set W ∈ a there

is an array noncomputable c.e. set B ≡wtt W .

In the following, we prove that such degrees indeed exist.

Theorem 2.3.3. There exists a completely array noncomputable degree a.
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Proof. In the following, fix a complete v.s.a. F = {Fn}n∈ω. For the proof of

Theorem 2.3.3 we construct a c.e. set A and auxiliary c.e. sets Be (e ∈ ω) in

stages s, where As and Be,s denote the finite set of numbers that are enumerated

into A and Be by stage s, respectively such that A and the sets Be meet for all

m ∈ ω the requirements

Rm : (A = Φ
We0
e1 & We0 = ΦA

e2
) ⇒ (Be ≤wtt We0 & ∃n (Be ∩ Fn = Wd ∩ Fn)),

where m = ⟨e, d⟩ and e = ⟨e0, e1, e2⟩.
By Theorem 2.2.3, meeting all requirements ensures that a = degT (A) has the

desired properties. Before we give the formal construction, let us first give the

strategy of a single requirement. It is then easy to see that all requirements can

be met by a straightforward finite injury argument, where the priority ordering

is as usual, i.e., Rm has higher priority than Rm′ , denoted by Rm < Rm′ if and

only if m < m′. In the following, fix m and let e, d ∈ ω be such that m = ⟨e, d⟩
and ei (i ≤ 2) be such that e = ⟨e0, e1, e2⟩.

At a stage s+ 1 when the strategy for Rm starts we appoint a set Fn with

Be,s ∩ Fn = ∅, assign it to Rm and initialize all requirements of lower priority,

i.e., if Rm′ is assigned Fn′ at stage s then this assignment is cancelled and Rm′

has to choose a set Fn′′ with n′′ > n′ later. More specifically, we assign Fs to

Rm at the stage s + 1 when the strategy for Rm starts. By making sure that

only one requirement may be assigned a set Fn at each stage, this ensures that

Be,s ∩ Fn = ∅ holds and, further, that the assignment of sets to requirements is

strictly increasing with respect to the priority ordering, that it is is nondecreasing

with respect to the stage number and that the question whether a set Fn ever

becomes assigned to some requirement Rm in the course of the construction is

decidable. Namely, if Fn is not assigned to any requirement by stage n+ 1 then

it is never assigned to any requirement (in particular, Fn ∩Be = ∅ holds in the

latter case).

Then at stages t > s we attempt to make Be∩Fn = Wd∩Fn by letting Be copy

Wd, i.e., if Be,t ∩ Fn ̸= Wd,t ∩ Fn holds then we let Be,t+1 = Be,t ∪ (Wd,t+1 ∩ Fn).
Obviously, this strategy ensures that Be,t ∩ Fn ⊆ Wd,t ∩ Fn holds for all t > s

and Be ∩ Fn = Wd ∩ Fn holds in the limit.
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In order to guarantee that at the same time Be ≤wtt We0 holds, we have to

define a computable function fe such that, for given n and stage t, if Be changes

on Fn at stage t + 1 then We0 changes below fe(n) at a stage t′ + 1 ≥ t + 1.

Then we can argue that Be(x) can be computed from We0 ↾ fe(n) for all x ∈ Fn

uniformly in n; hence, Be ≤ge−T We0 holds where ge(x) = fe(h(x)) and h(x) is

the unique index such that x ∈ Fh(x) holds (note that h(x) is computable since

F is complete).

The idea behind the value fe(n) for given n is based on the following three

observations. First, we do not need any permission from We0 if Fn is never

assigned to any requirement of the form R⟨e,d′⟩ for some d′ ∈ ω. So it suffices to

let fe(n) = 0 in the latter case. For the remainder of the argument, w.l.o.g. we

may assume that Fn is assigned to Rm in the course of the construction, say at

stage s+ 1 as above.

Then second, we need at most |Fn| permissions from We0 for the sake of

meeting Rm since there are at most |Fn| many numbers that may be enumerated

into Wd ∩ Fn.
Third, we only have to make sure that Be ≤T We0 holds if the hypothesis of

Rm (hence, for all requirements R⟨e,d′⟩ with d
′ ∈ ω) is true. So in the following,

w.l.o.g., we may assume that the hypothesis of all requirements R⟨e,d′⟩ (d
′ ∈ ω)

holds. However, since the question whether the hypothesis of Rm holds is not

decidable, we approximate this question in the course of the construction by the

following length of agreement function,

l(e, s) = µx(As(x) ̸= Φ
We0
e1 (x)[s] or We0,s(x) ̸= ΦA

e2
(x)[s]). (2.3)

Then in order to get the desired permissions from We0 for numbers x ∈ Be ∩ Fn
when needed, we wait until a stage s′ > s appears such that there exists a

triple of sequences of numbers ({xi}i<|Fn|, {yi}i<|Fn|, {zi}i<|Fn|) such that, for all

i < |Fn|,
(i) xi ∈ ω[m],

(ii) z|Fn|−1 < l(e, s′),

(iii) xi < yi < zi and zi < xi+1 if i < |Fn| − 1,
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(iv) yi > φ
We0
e1 (xi)[s

′],

(v) zi > max{φAe2(u)[s
′] : u ≤ yi}, and

(vi) {x0, . . . , x|Fn|−1} ∩ As′ = ∅
hold. Indeed, such a stage s′ > s exists if the hypothesis of Rm is true. Then at

the least such stage s′ > s, we assign such a triple ({xi}i<|Fn|, {yi}i<|Fn|, {zi}i<|Fn|)

to Rm at stage s′ + 1 where, in the following, the numbers of the form xi in

({xi}i<|Fn|, {yi}i<|Fn|, {zi}i<|Fn|) of sequences are called followers of Rm. Then

we delay the above copying strategy for Be on Fn as follows.

Call a stage t+ 1 critical (w.r.t. Rm) if t > s′ and it holds that Be,t ∩ Fn ̸=
Wd,t ∩ Fn and l(e, t) > z|Fn|−1. Then at any such stage t + 1, we choose the

largest xi ̸∈ At, enumerate it into A and correct Be on Fn by copying Wd ∩ Fn.
Then, by the use principle, We0 has to enumerate a number ≤ φ

We0
e1 (xi)[t] after

stage t in case that the hypothesis of Rm holds. However, by (v), We0 cannot

change below yi between s
′ and t since we put followers in reversed order into

A. Hence, by (iv), it follows that φ
We0
e1 (xi)[t] = φ

We0
e1 (xi)[s

′]. So, by (ii) and by

convention on converging computations, it suffices to let fe(n) = s′.

Note that the above argument only applies if we assume that no other

requirement enumerates a number below zi by stage t into A. So, in order to make

the strategies for different requirement compatible, we define a restraint function

r : ω2 → ω, where r(m, s) denotes the restraint which is imposed onRm by higher

priority requirements. It is initially set to zero and it is increased at any stage

such that Rm is initialized (by convention on converging computations, it suffices

to let r(m, s+ 1) = s in this case). In particular, every time Rm is initialized

it has to wait to be assigned a new triple ({xi}i<|Fn|, {yi}i<|Fn|, {zi}i<|Fn|) along

with a new set Fn.

For any stage s, we say that a triple ({xi}i<|Fn|, {yi}i<|Fn|, {zi}i<|Fn|) is suit-

able for Rm and Fn at stage s + 1 (or suitable for short) if (i)–(vi) hold for

({xi}i<|Fn|, {yi}i<|Fn|, {zi}i<|Fn|) and such that r(m, s) ≤ x0 holds.

This explains the basic concept of how to define sets A and Be that meet all

requirements. We now turn to the formal construction.

Construction.
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Stage 0. Let A0 = Be,0 = ∅ and r(m, s) = 0 for all e,m ∈ ω.

Stage s + 1. Let As and Be,s be given for all e ∈ ω. We say that Rm

requires attention at stage s+ 1 if m ≤ s and either

(I) no set is assigned to Rm, or

(II) Fn is assigned to Rm, no follower is assigned to Rm and there exists

a suitable triple ({xi}i<|Fn|, {yi}i<|Fn|, {zi}i<|Fn|) for Rm and Fn at

stage s+ 1, or

(III) Fn is assigned to Rm, ({xi}i<|Fn|, {yi}i<|Fn|, {zi}i<|Fn|) is assigned to

Rm and s+ 1 is critical.

Let m be minimal such that Rm requires attention at stage s+1 and let

e, d ∈ ω such that m = ⟨e, d⟩. Say that Rm receives attention and act

according to the clause via which Rm requires attention.

If (I) holds, assign Fs to Rm.

If (II) holds, let ({xi}i<|Fn|, {yi}i<|Fn|, {zi}i<|Fn|) be the least suitable

triple for Rm and Fn (w.r.t. to the lexicographical ordering of triples

of numbers, where we assume that sequences of numbers are also

ordered lexicographically). Assign ({xi}i<|Fn|, {yi}i<|Fn|, {zi}i<|Fn|)

to Rm.

If (III) holds, let i < |Fn| be largest such that xi ̸∈ As. Let As+1 =

As ∪ {xi}, Be,s+1 = Be,s ∪ (Wd,s+1 ∩ Fn) and, for all e′ ̸= e, let

Be′,s+1 = Be′,s.

In any case, initialize all requirements Rm′ with m′ > m, i.e., cancel

their assigned set and their assigned sequence (if any). Moreover, for all

m′ > m, let r(m′, s+1) = s and, for allm′ < m, let r(m′, s+1) = r(m′, s).

This ends the formal construction.

Verification
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We prove in a series of claims that A and the sets Be meet the requirements.

Before, let us give some general remarks on the construction which will be tacitly

used in the proofs of the claims below. Unless otherwise stated, they can be

proven by a straightforward induction on the stage number s.

First of all, the construction is effective and {As}s∈ω and {Be,s}s∈ω are

computable enumerations of A and Be for all e ∈ ω, respectively. Hence, A and

all sets Be are c.e. sets. For any stage s there exists a unique m ≤ s such that

Rm receives attention at stage s+ 1. So for any s, there is at most one number

that is enumerated into A at stage s+ 1 and there is at most one e such that

Be,s+1 ̸= Be,s holds.

More precisely, a number x may be enumerated into A or a set Be at a stage

s+ 1 only if there exists a requirement R⟨e′,d⟩ which receives attention via (III)

at stage s+ 1 (where e′ = e if x enters Be). In any case, s+ 1 is critical w.r.t.

R⟨e′,d⟩, R⟨e′,d⟩ is assigned a set Fn and a sequence {xi}i<|Fn| and, if x enters A

then there exists i < |Fn| such that x = xi and it holds that x < l(e′, s); and if

x enters Be then x ∈ Fn ∩Wd,s+1 \Wd,s. In particular, As ∪Be,s ⊆ ω ↾ s for all

e ∈ ω.

Furthermore, any requirement Rm is assigned at most one set of F and at

most one sequence at any stage, if Fn is the assigned set to Rm at a stage s then

m ≤ n < s, if Rm gets Fn assigned via (I) at stage s+1 then n = s; and if Rm is

assigned a sequence then it is also assigned a set Fn and the sequence assigned to

Rm has length |Fn|. In particular, if Fn is assigned to R⟨e,d⟩ then Be,n ∩ Fn = ∅.
The assignment of sets to requirements is strictly increasing in the index of the

requirement and nondecreasing in the stage number i.e., if Rm is assigned Fn

and Rm′ is assigned Fn′ at stage s then m < m′ implies n < n′ and if Rm is

assigned Fn at stage s and Fn′ at stage s′ then s ≤ s′ implies n ≤ n′. Moreover,

if n < n′ holds in the latter case then Rm is initialized at a stage t ∈ (s, s′).

Thus, from the way sets Fn are assigned to requirements and at which stages

numbers may enter A or a set Be, we may deduce that for any numbers e, d, n ∈ ω

and any stage s such that R⟨e,d⟩ is assigned Fn at stage s, it holds that

Be,s ∩ Fn = Wd,s̃ ∩ Fn, (2.4)
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where s̃ is the largest stage less than or equal to s such that R⟨e,d⟩ receives

attention via (III) at stage s̃.

Besides, if a requirement Rm gets a sequence {xi}i<|Fn| assigned at a stage

s+ 1, it gets {xi}i<|Fn| assigned via (II). So {xi}i<|Fn| is suitable for Rm and Fn

at stage s+ 1. So by (i) in the definition of a suitable sequence, only Rm may

enumerate one of the followers xi into A.

Finally, the function r(m, s) is computable and nondecreasing in s, r(m, s) ≤ s

holds for all m and s and r(m, s+ 1) ̸= r(m, s) holds only if Rm is initialized by

a higher priority requirement at stage s+ 1.

Now the first claim states that the action of each requirement is finitary and

that the restraint functions reach a finite limit.

Claim 1. Every requirementRm requires attention only finitely often, it eventually

gets a permanent set assigned and r∗(m) = lims→∞ r(m, s) exists.

Proof. The proof is by induction on m. Fix m ∈ ω and suppose the claim to

be true for all m′ < m. Then by inductive hypothesis, there is a stage s0 such

that no requirement Rm′ with m′ < m requires attention after stage s0. So

r(m, s) = r(m, s0) for all s ≥ s0 by construction; hence, r∗(m) exists. Moreover,

after stage s0, Rm is not initialized so if it requires attention at a stage s ≥ s0,

it receives attention and acts. Thus, any set or sequence that is assigned to

Rm after stage s0 is permanently assigned to Rm. If Rm is not assigned a set

at stage s0 already, Rm requires attention at stage s0 + 1 via (I) so Rm gets a

permanent set assigned. Then after stage s0 + 1, Rm may require attention at

most once via (II) and at most |Fn| many times via (III) after stage s0. Hence,

the claim holds for Rm.

By construction, the set D ⊆ ω which consists of all numbers n such that Fn

gets assigned to a requirement in the course of the construction is computable

and infinite. So we may fix a computable enumeration {nk}k∈ω of the elements

of D in order of magnitude and, for k ∈ ω, let ek and dk be such that Fnk
is

assigned to R⟨ek,dk⟩ at stage nk + 1. By computability of D and by effectivity of

the construction, the sequences {ek}k∈ω and {dk}k∈ω are computable, too.

17



2.3. COMPLETELY ARRAY NONCOMPUTABLE DEGREES EXIST

For the next two claims, fix e such that the hypothesis of R⟨e,d⟩ holds for all

d. We show that there exists a computable function fe such that Be(x) can be

computed from We0 ↾ fe(n) for all x ∈ Fn uniformly in n. To that end, let P be

the binary predicate such that, for any m, s ∈ ω, P (m, s) holds if and only if

either Rm is initialized or Rm receives attention via (II) at stage s+ 1. Then for

any n ∈ ω, let

fe(n) =

⎧⎪⎨⎪⎩
0 if ∀k ≤ n (nk = n ⇒ ek ̸= e),

µs > n(P (⟨e, dk⟩ , s)) if ∃k ≤ n (nk = n & ek = e)
(2.5)

Then we first show that fe is indeed total and computable.

Claim 2. fe is total and computable.

Proof. First note that fe(n) is well defined since for any n ∈ D there is a unique

k such that n = nk. So by computability of D and computability of the sequences

{ek}k∈ω and {dk}k∈ω, it suffices to show that given n such that Fn is assigned to

a requirement of the form R⟨e,d⟩ for some d ∈ ω, either R⟨e,d⟩ is initialized or it

requires attention via (II) after stage n.

For a proof by contradiction, suppose that Fn is permanently assigned to

R⟨e,d⟩ and R⟨e,d⟩ does not require attention via (II) after stage n. So r∗(⟨e, d⟩) =
r(⟨e, d⟩ , n) ≤ n since R⟨e,d⟩ is not initialized after stage n. Then since the

hypothesis of R⟨e,d⟩ holds, let {xi}i<|Fn|, {yi}i<|Fn| and {zi}i<|Fn| be defined by

induction on i < |Fn| such that

x0 = ⟨⟨e, d⟩ , n+ 1⟩ ,

yi = max{φWe0
e1 (xi), xi + 1},

zi = max({φAe2(u) : u ≤ yi} ∪ {yi + 1}), and

xi+1 = ⟨⟨e, d⟩ , zi + 1⟩ (i < |Fn| − 1)

holds and let s > n be the least stage such that φ
We0
e1 (xi)[s] = φ

We0
e1 (xi) and

φAe2(u)[s] = φAe2(u) holds for all u ≤ yi and all i < |Fn| and such that z|Fn|−1 <

l(e, s). By definition, r∗(m) < x0 and xi ̸∈ As for all i < |Fn| since by xi ∈ ω[⟨e,d⟩],
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none of the xi is ever enumerated into A after stage n as they may be enumerated

into A only if R⟨e,d⟩ receives attention via (III) after stage n. But then {xi}i<|Fn|,

{yi}i<|Fn| and {zi}i<|Fn| satisfy (i)–(vi) at stage s+1; hence, {xi}i<|Fn| is suitable

for R⟨e,d⟩ and Fn at stage s+ 1 so R⟨e,d⟩ does require attention via (II) at stage

s+ 1, contrary to assumption.

Next, we show that based on fe, it holds that Be ≤ge−T We0 with ge(x) =

fe(h(x)), where recall that h(x) ∈ ω is such that x ∈ Fh(x) holds for all x ∈ ω.

Claim 3. Be ≤ge−T We0 .

Proof. Let x ∈ ω be arbitrary and let n = h(x). It suffices to show that if x is

enumerated into Be at a stage t+1 then there exists a stage t′ ≥ t and a number

y < fe(n) such that y enters We0 at stage t′ + 1. So suppose that x enters Be

at stage t+ 1. Then as Be,t+1 ∩ Fn ̸= Be,t ∩ Fn, Fn is assigned to a requirement

R⟨e,d⟩, R⟨e,d⟩ is assigned a sequence {xi}i<|Fn| and R⟨e,d⟩ receives attention via

(III) at stage t+1. So t+1 is critical (w.r.t. to R⟨e,d⟩) and we may fix the i < |Fn|
such that xi is enumerated into A at stage t+1 and, furthermore, we may fix the

stage s+ 1 < t+ 1 such that R⟨e,d⟩ gets {xi}i<|Fn| assigned. In particular, s > n

and R⟨e,d⟩ receives attention via (II) at stage s+ 1. So {xi}i<|Fn| is suitable for

R⟨e,d⟩ and Fn at stage s+ 1.

By assumption, R⟨e,d⟩ is assigned Fn at any stage s′ ∈ (n, t+ 1]. So R⟨e,d⟩ is

not initialized at any such stage. Thus, s is the least stage greater than n such

that R⟨e,d⟩ receives attention via (II) at stage s+ 1; hence, fe(n) = s by (2.5).

Now by construction, we can argue that there exists a sequence of critical stages

s < t|Fn|−1 < t|Fn|−2 < · · · < ti = t such that, for any j with i ≤ j < |Fn|, R⟨e,d⟩

receives attention via (III) and xj is enumerated into A at stage tj + 1.

Since t + 1 is critical, it holds that xi < l(e, t). So by the fact that the

hypothesis of R⟨e,d⟩ holds, there exists a number y < φ
We0
e1 (xi)[t] and a stage

t′ ≥ t such that y enters We0 at stage t′ + 1. Thus, the claim follows if we show

that φ
We0
e1 (xi)[t] = φ

We0
e1 (xi)[s] holds since φ

We0
e1 (xi)[s] < fe(n).

To that end, observe that for any m > ⟨e, d⟩, r(m, s + 1) = s since Rm

is initialized by R⟨e,d⟩ at stage s + 1. So after stage s, no number below s is

enumerated into A by any requirement of lower priority than R⟨e,d⟩. Moreover,
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since R⟨e,d⟩ is not initialized at any stage s′ ∈ (n, t+ 1], no requirement of higher

priority enumerates a number into A at any such stage. Hence, by (iii) and since

followers are enumerated in reversed order, it follows that

At ↾ zi = As ↾ zi

which, by (v), implies that

We0,t ↾ yi = We0,s ↾ yi,

which, by (iv) implies φ
We0
e1 (xi)[t] = φ

We0
e1 (xi)[s].

Finally, we show that all requirements are met. Fix m ∈ ω in the following.

Claim 4. Rm is met.

Proof. For a proof by contradiction, suppose that Rm is not met. Let e, d ∈ ω

be such that m = ⟨e, d⟩. Then the hypothesis of R⟨e,d′⟩ holds for all d
′ ∈ ω but

either Be ≤wtt We0 or ∃n (Be ∩ Fn = Wd ∩ Fn) fail. By Claim 3, Be ≤wtt We0

holds so Be ∩ Fn ̸= Wd ∩ Fn holds for all n. By Claim 1, fix the set Fn which is

permanently assigned to Rm (so Rm is not initialized after stage n). By (2.4),

Be,t ∩Fn = Wd,t̃ ∩Fn for any t > n where t̃ is the largest stage less than or equal

to t such that Rm receives attention at stage t̃+ 1. By Claim 3, fe is total and

computable. So since Rm is not initialized after stage n, by (2.5), we may fix

the least stage s > n such that Rm receives attention via (II) at stage s+ 1. So

Rm is permanently assigned a sequence {xi}i<|Fn| after stage s since a sequence

assigned to a requirement is cancelled only if the corresponding set which is

assigned to the requirement is cancelled as well.

Now since the hypothesis of Rm holds, x|Fn|−1 < l(e, t) and Be,t ∩ Fn ̸=
Wd,t ∩ Fn hold for sufficiently large t. So since {xi : i < |Fn|} ∩ As = ∅ by

(vi), we can argue that there exists a sequence of stages t0 < · · · < t|Fn|−1

such that s < t0 and such that Rm receives attention via (III) at stage ti + 1

for each i < |Fn|. Hence, by definition of (III) and by (2.4), it follows that

Wd,t0 ∩ Fn ̸= ∅ and Wd,ti+1
∩ Fn ̸= Wd,ti ∩ Fn for all i < |Fn| − 1. In particular,

Wt|Fn|−1
∩ Fn = Fn as Wd is a c.e. set. However, for the least stage t > t|Fn|−1
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such that Be,t ∩ Fn ≠ Wd,t ∩ Fn (which exists by assumption), we infer that

|Wd ∩ Fn| > |Fn| which is impossible.

Since every requirement is met by Claim 4 and since meeting the requirements

ensures that A is completely array noncomputable, this completes the proof of

Theorem 2.3.3.

By Theorem 2.3.1, it is not hard to show that if a c.a.n.c. degree is the join

of two c.e. degrees then one of them must be c.a.n.c., too.

Lemma 2.3.4. Let a0 and a1 be c.e. degrees such that a0 ∨ a1 is c.a.n.c. Then

either a0 or a1 is c.a.n.c.

Proof. Suppose not. Then we may choose c.e. sets Ai ∈ ai for each i ≤ 1 such

that the wtt-degree of Ai is array computable. But then degwtt(A0⊕A1) ⊆ a0∨a1

is c.e. and array computable by Theorem 2.3.1, contrary to assumption.

Now we get the following two results as immediate corollaries using Sacks’

splitting theorem [Sac63].

Corollary 2.3.5. For every c.a.n.c. degree a there exists a low c.a.n.c. degree

b such that b < a.

Corollary 2.3.6. There exists infinitely many low c.a.n.c. degrees.

2.4 High Degrees Are Not Completely Array

Noncomputable

We now turn to the question which c.e. degrees may be completely a.n.c. and

which may not. As a first observation which follows from [DJS90], we may derive

that the complete Turing degree is not completely array noncomputable.

Theorem 2.4.1. 0′ is not completely array noncomputable.

Proof. By [DJS90, Theorem 3.15], 0′ is the join of two c.e. array computable

degrees a1 and a2. So for any two c.e. sets A1 ∈ a1 and A2 ∈ a2, A1 ⊕ A2 is

Turing complete and has array computable wtt-degree by Theorem 2.3.1.
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As our next result we show that no high c.e. degree is be completely a.n.c.

Before we give the proof we would like to notice that this result is shown

independently by other people. For instance, Downey and Ng [DN18] show that

any high c.e. degree is the join of two array computable c.e. degrees, thereby

strengthening the above result from [DJS90]; hence, by Theorem 2.3.1, any high

c.e. degree contains an array computable wtt-degree. Moreover, Ambos-Spies

shows in [AS18] that no a.n.c. wtt-degree contains a dense simple set. Hence,

since a c.e. degree is high iff it contains a dense simple set by Martin [Mar66],

we get the same result again.

Here, we give a direct proof of this statement.

Theorem 2.4.2. Let a be a high c.e. Turing degree. Then there exists a c.e. set

B ∈ a such that degwtt(B) is array computable.

Proof. For the proof of Theorem 2.4.2, fix a high c.e. set A ∈ a and a very strong

array F = {Fn}n∈ω. We construct B and auxiliary c.e. sets {Ve}e∈ω in stages s,

where Bs and Ve,s denote the finite set of numbers which are enumerated into B

and Ve by stage s, respectively, such that B and {Ve}e∈ω meet the requirements

for all e, n ∈ ω,

R⟨e,n⟩ : We0 = Φ
B,φe2
e1 ⇒ We0 ∩ Fn ̸= Ve ∩ Fn,

where e = ⟨e0, e1, e2⟩ and e < n and such that B meets the global requirement

B ≡T A. Here, we let, for any oracle X and any e0, e1, y ∈ ω,

Φ
X,φe1
e0 (y) =

⎧⎨⎩ΦX
e0
(y) if ΦX

e0
(y) ↓, φe1(y) ↓ and φXe0(y) ≤ φe1(y),

↑ otherwise.

Since a.n.c. wtt-degrees are closed upwards and since, by Theorem 2.2.3, array

noncomputability for wtt-degrees is independent of the choice of very strong

array, making sure that for all e, almost all requirements R⟨e,n⟩ are met and

that A ≡T B holds implies that B has the desired properties. Before giving the

formal construction, let us first present the idea behind it and introduce some of

the concepts to be used in the construction.
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We begin with the strategy for making B ≡T A. For this purpose, we have to

ensure both A ≤T B and B ≤T A. For the former, we define a total computable

function γ : ω2 → ω (called a marker function) such that, for any x, s ∈ ω,

γ(x, s) < γ(x+ 1, s), (2.6)

γ(x, s) ≤ γ(x, s+ 1), (2.7)

γ∗(x) = lim
s→∞

γ(x, s) exists, (2.8)

γ(x, s) ̸= γ(x, s+ 1) ⇒ Bs+1 ↾ γ(x, s) + 1 ̸= Bs ↾ γ(x, s) + 1, (2.9)

x ∈ As+1 \ As ⇒ γ(x, s) ̸= γ(x, s+ 1). (2.10)

In the following, numbers of the form γ(x, s) are called markers. From a marker

function γ as above, we can compute A using B as an oracle as follows. Given x,

compute with oracle B the least stage s such that B ↾ γ(x, s)+1 = Bs ↾ γ(x, s)+1

holds. Such a stage exists by (2.8). Then for any stage t > s, γ(x, t) = γ(x, s)

holds by (2.9); hence, A(x) = As(x) holds by (2.10). Note that we did not use

(2.6) and (2.7) for the definition of a Turing reduction from A to B; however, in

the construction we make sure that only markers enter B (see the definition of

Bs below). So by (2.6) and (2.7), we can argue that γ(x, s) ̸∈ Bs holds for all

x, s.

For the definition of γ, we fix a computable enumeration {As}s∈ω of A such

that |As+1 \As| = 1 and let as be the unique element that enters A at stage s+1

(note that such that a computable enumeration of A exists since high sets are

noncomputable hence infinite). Then the idea is to define a computable sequence

of numbers {xs}s∈ω such that xs ≤ as holds for all s, to let, for all x, s ∈ ω,

γ(x, 0) = ⟨x, 0⟩

γ(x, s+ 1) =

⎧⎨⎩γ(x, s) if x < xs,

⟨x, s+ 1⟩ otherwise.

(2.11)

and to let Bs = {γ(xt, t) : t < s}. Then {Bs}s∈ω is a computable enumeration of

B, (2.10) follows by the fact that xs ≤ as holds and (2.6), (2.7) and (2.9) follow

directly from the definition of γ and {Bs}s∈ω. So it remains to define {xs}s∈ω

23



2.4. HIGH DEGREES ARE NOT COMPLETELY ARRAY
NONCOMPUTABLE

such that (2.8) holds and, for the sake of B ≤T A, to make sure that A can

compute, given x, the least stage s such that xt > x holds for all t ≥ s. Namely,

by (2.6) and by definition of B this implies that B(x) = Bs(x) holds; hence,

B ≤T A. Since this will immediately follow from the strategy of how to meet

the requirements R⟨e,n⟩, we describe next how the latter are met.

In the following, fix e, n with e < n. Then the strategy for R⟨e,n⟩ starts at a

stage s+ 1 such that We0,s(z) = Φ
B,φe2
e1 (z)[s] holds for all z ∈ Fn and such that

Fn ̸⊆ Ve,s and We0,s∩Fn = Ve,s∩Fn hold. At stage s+1 we put the least number

x ∈ Fn \ Ve,s into Ve. Note that if s+ 1 fails to exist then, since we ensure that

Ve,0 = ∅ holds, either the hypothesis of R⟨e,n⟩ does not hold orWe0 ∩Fn ̸= Ve∩Fn
holds. In both cases, R⟨e,n⟩ is met trivially. Hence, in the following, we may

assume that s+ 1 exists. Now obviously, the above strategy does not prevent

We0 from copying Ve on Fn. The important observation is that if s′ > s0 + 1 is

the least stage such that We0,s′(z) = Φ
B,φe2
e1 (z)[s′] holds for all z ∈ Fn and such

that Fn ̸⊆ Ve,s′ and We0,s′ ∩ Fn = Ve,s′ ∩ Fn hold then there must be a number

y ≤ max{φe2(z) : z ∈ Fn} and a stage t ∈ [s, s′) such that y enters B at stage

t + 1. So the above strategy for R⟨e,n⟩ fails only if there exist more than |Fn|
many numbers that enter B below max{φe2(z) : z ∈ Fn} after stage s+ 1.

Thus, as |Fn| ≥ n+ 1 holds and since only markers may enter B, the idea

is to bound the number of markers below max{φe2(z) : z ∈ Fn} by n before we

start the strategy for R⟨e,n⟩ by ensuring that xs0 ≤ min{n, as0} holds at the first

stage s0+1 such that We0,s0(z) = Φ
B,φe2
e1 (z)[s0] holds for all z ∈ Fn (in particular,

we make sure that s0 < s holds). In this way, by (2.11) and by convention on

converging computations, all markers γ(x, s0) with x ≥ n are moved to a greater

value than max{φe2(z) : z ∈ Fn}. Thus, by performing the above strategy at

stages t ≥ s such that We0,t(z) = Φ
B,φe2
e1 (z)[t] holds for all z ∈ Fn and such that

Fn ̸⊆ Ve,t and We0,t ∩ Fn = Ve,t ∩ Fn hold, we make sure that R⟨e,n⟩ is met.

Now in order to combine this strategy with the requirement to make B ≤T A

we make sure that, given x, A can compute a stage s such that xt > x for all t > s.

For that, we make use of the fact that A is high. By Martin’s characterization

of high c.e. degrees [Mar66], we may fix a dominating function f ∗ ≤T A, i.e., for

every total, computable h : ω → ω, h(n) < f ∗(n) holds for almost every n. So

fix a Turing functional Φ such that f ∗ = ΦA holds. Then, for any x, s ∈ ω, we
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define

f(x, s) =

⎧⎨⎩ΦA(x)[s] if ΦA(x)[s] ↓,

0 otherwise.

Note that f(x, s) approximates f ∗ in the limit and that the least modulus of

convergence of f ,

m∗(x) = µs(∀t ≥ s (f(x, t) = f(x, s)))

is computable by A since A is c.e. and it is also a dominating function since, for

any computable function h such that m∗(n) < h(n) holds for infinitely many n,

it follows that the function n ↦→ f(n, h(n)) is a total computable function which

is not dominated by f ∗. In the construction, we make sure that the markers

γ(x, s) with x ≥ n are moved above max{φe2(z) : z ∈ Fn} at a stage s+ 1 only

if there exists n′ ≤ n such that f(n′, s + 1) ̸= f(n′, s). So if the hypothesis of

R⟨e,n⟩ holds, it follows that φe2 is total; hence, the function he which maps k to

the least stage s such that Fk ⊂ dom(φe2,s) holds is total and computable.

Thus, given e such that the hypothesis of some (hence any) requirement

R⟨e,n⟩ holds we can argue that, for almost all n, it holds that he(n) < m(n);

whence, for almost all n, there exists a stage such s that all markers γ(x, s) with

x ≥ n are moved to a greater value than max{φe2(z) : z ∈ Fn} at stage s + 1.

Hence, by the above strategy, R⟨e,n⟩ is met for almost all n for any such number

e.

This explains the basic strategy of how to define sets B and Ve with the

desired properties. We now proceed to the formal construction (recall that Bs is

determined by γ and in turn that γ is determined by {xs}s∈ω by (2.11)).

Construction.

Stage 0. Let Ve,0 = ∅ for all e ∈ ω.

Stage s + 1. Let xs′ for all s′ < s (hence Bs) and Ve,s be given for

all e ∈ ω. We say that Rm requires attention at stage s + 1 if m ≤ s
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and for the unique e, n such that e < n and m = ⟨e, n⟩, it holds that
∀z ∈ Fn (φe2(z)[s] ↓) and either

(I) γ(n, s) ≤ max{φe2(z) : z ∈ Fn} and f(n, s+ 1) ̸= f(n, s), or

(II) max{φe2(z) : z ∈ Fn} < γ(n, s), ∀z ∈ Fn (We0,s(z) = Φ
B,φe2
e1 (z)[s]),

We0,s ∩ Fn = Ve,s ∩ Fn and Fn ̸⊆ Ve,s.

Let M(I) (M(II)) be the set of all numbers m such that Rm requires

attention via (I) ((II)). Then we let xs = min({as}∪{n : ∃e < n (⟨e, n⟩ ∈
M(I))}) and for all e < n such that ⟨e, n⟩ ∈M(II) holds, we let Ve,s+1 =

Ve,s ∪ {min(Fn \ Ve,s)}, and we let Ve,s+1 = Ve,s, otherwise.

This ends the formal construction.

Verification

We prove in a series of claims that the so constructed sets B and Ve (e ∈ ω) have

the desired properties. Before that, let us give some general remarks about the

construction that will be tacitly assumed in the proofs below. Unless otherwise

stated, they can be shown by induction on the stage number.

First of all, the construction is effective so {xs}s∈ω is a computable sequence

of numbers and {Ve,s}s∈ω is a computable enumeration of Ve. So, by (2.11), γ is

a total computable function, Ve is a c.e. set for all e and {Bs}s∈ω is a computable

enumeration of B; hence, B is a c.e. set as well.

Furthermore, we note that at any stage s+ 1 such that a requirement R⟨e,n⟩

requires attention, it follows that φe2,s(z) ↓ holds for all z ∈ Fn. Then in the first

claim, we show that any requirement requires attention at most finitely often

Claim 1. Every requirement requires attention only finitely often.

Proof. Fix numbers e, n with e < n. Then on the one hand, for any stage s

such that R⟨e,n⟩ requires attention via (I) at stage s+ 1, it holds that xs ≤ n by

construction. So, by (2.11) and by convention on converging computations, it

follows that max{φe2(z) : z ∈ Fn} < γ(n, s); hence, R⟨e,n⟩ may require attention

26



2.4. HIGH DEGREES ARE NOT COMPLETELY ARRAY
NONCOMPUTABLE

via (I) at most once. On the other hand, by construction, R⟨e,n⟩ may require

attention via (II) at most |Fn| many times.

Then based on Claim 1, we can easily show that γ satisfies (2.8).

Claim 2. For all x there exist at most finitely many stages s such that xs ≤ x.

In fact, given x, A can compute a stage s such that xt > x holds for all t ≥ s.

In particular, (2.8) holds.

Proof. Let x ∈ ω be given. By Claim 1, fix the least stage s such that no

requirement R⟨e,y⟩ with e < y ≤ x requires attention via (I) at any stage t ≥ s

and such that A ↾ x+ 1 = As ↾ x+ 1 holds. We claim that xt > x holds for all

t ≥ s and that A can compute s. For the former, suppose for a contradiction that

t ≥ s is such that xt ≤ x. Then we distinguish between the following cases. If

xt = at holds then At+1 ↾ x+ 1 ̸= As ↾ x+ 1, contrary to choice of s. Otherwise,

by construction, it follows that there exists e < xt such that R⟨e,xt⟩ requires

attention via (I) at stage t+ 1, again contrary to choice of s.

So in order to complete the proof, we have to show that A can compute s

given x. So let x be given. Now by definition of s, it suffices to argue that A can

compute the least stage s0 such that no requirementR⟨e,y⟩ with e < y ≤ x requires

attention via (I) at any stage t ≥ s0 since then it follows that s = max{s0, s1}
holds, where s1 is the least stage such that A ↾ x + 1 = As1 ↾ x + 1 holds.

However, it holds that s0 ≤ max{m∗(y) : y ≤ x} since any requirement R⟨e,y⟩

may only require attention via (I) at a stage t+ 1 if f(y, t+ 1) ̸= f(y, t) holds.

So since m∗ is computable from A, it follows that s0 is computable from A, too,

by effectivity of the construction.

So since xs ≤ as holds for all stages s by definition of {xs}s∈ω, it follows by
Claim 2 that (2.8) holds; hence A ≤T B holds since (2.6), (2.7), (2.9) and (2.10)

hold by definition of γ and by definition of B. Next, we show that B ≤T A holds,

too.

Claim 3. B ≤T A.
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Proof. Let x ∈ ω be given. Then by Claim 2, compute with oracle A the least

stage s such that xt > x holds for all t ≥ s. But then it follows from (2.6) and

by definition of B that B(x) = Bs(x) holds.

Finally, we can show that for any e, almost all requirements R⟨e,n⟩ (e < n)

are met. In the following, fix e.

Claim 4. For almost all n, R⟨e,n⟩ is met.

Proof. If the hypothesis of R⟨e,n⟩ does not hold for some n > e, it does not hold

for any n > e. Thus, R⟨e,n⟩ is met for all n > e. So w.l.o.g, we may assume

that the hypothesis of R⟨e,n⟩ holds for all n > e. For a proof by contradiction,

suppose that R⟨e,n⟩ is not met for infinitely many n > e. We claim that there

is a computable function which is not dominated by f ∗. For given n, let he(n)

be the least stage s such that φe2,s(z) ↓ for all z ∈ Fn (note that he is total and

computable).

In the following, fix n > e such that R⟨e,n⟩ is not met. We claim that

R⟨e,n⟩ never requires attention via (II). Otherwise, let s0 be the least and, by

Claim 1, let s1 be the last stage s such that R⟨e,n⟩ requires attention via (II) at

stage s+ 1. Then s0 ≥ he(n) since requiring attention requires that φe2,s(z) ↓
holds for all z ∈ Fn. Moreover, by construction, it holds that Ve0,s0 ∩ Fn = ∅,
γ(n, s0) > max{φe2(z) : z ∈ Fn} and Ve ∩ Fn = Ve1,s1 ∩ Fn since {Fn}n∈ω is a

very strong array and no other requirement enumerates numbers into Ve ∩ Fn.
Now if Fn ̸⊆ Ve, we claim that R⟨e,n⟩ is met. Namely, by definition of (II),

the enumeration of min(Fn \ Ve,s1) into Ve at stage s1 + 1 yields Ve,s1+1 ∩ Fn ̸=
We0,s1 ∩ Fn. However, as We0 ∩ Fn = Ve ∩ Fn and We0,s1 ∩ Fn = Ve,s1 ∩ Fn hold,

it follows by the assumption that Fn ̸⊆ Ve that R⟨e,n⟩ requires attention after

stage s1 contrary to choice of s1.

Hence, in order to show that R⟨e,n⟩ never requires attention via (II), it suffices

to show that Fn ̸⊆ Ve. For that, we argue as follows. For any stage s such that

R⟨e,n⟩ requires attention via (II) at stage s+1, there exists a stage t ∈ (s, s1] and

a number γ(x, t) ≤ max{φe2(z) : z ∈ Fn} that enters B at stage t+ 1, because
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We0 enumerates y = min(Fn \ Ve,s) at a stage t′ ∈ (s, t] and because it holds that

ΦBs
e1,s

(y) = We0,s(y) = 0 ̸= We0,s1(y) = Φ
Bs1
e1,s1(y).

However, since only markers enter B, by (2.6) and (2.7) and by choice of s0, it

holds that |{x : γ(x, s0) ≤ max{φe2(z) : z ∈ Fn}}| ≤ n since requiring attention

via (II) entails that max{φe2(z) : z ∈ Fn} < γ(n, s0). So in particular, at most n

numbers below max{φe2(z) : z ∈ Fn} may enter B after stage s0. Hence, We0

changes at most n times on Fn since We0,s0 ∩ Fn = Ve,s0 ∩ Fn = ∅ and, for each

change of We0 on Fn, it enumerates at most one number into We0 ∩ Fn since we

do so by construction. By the fact that R⟨e,n⟩ is not met, this implies

|Ve ∩ Fn| = |We0 ∩ Fn| ≤ n < |Fn|

since {Fn}n∈ω is a very strong array.

SoR⟨e,n⟩ never requires attention via (II). In particular,We0∩Fn = Ve∩Fn = ∅
holds. But then we conclude that γ(n, s) ≤ max{φe2(z) : z ∈ Fn} holds for all

stages s and that R⟨e,n⟩ never requires attention via (II). Otherwise, since the

hypothesis of R⟨e,n⟩ holds, it follows by construction that there exists a stage

s′ > s such that R⟨e,n⟩ requires attention via (II), contrary to what we have just

proven.

Summarizing, if R⟨e,n⟩ is not met then for all stages s ≥ h(n), it holds that

γ(n, s) ≤ max{φe2(z) : z ∈ Fn} and We0 ∩ Fn = Ve ∩ Fn = ∅ and R⟨e,n⟩ never

requires attention via any clause. However, this implies that f(n, s) = f(n, he(n))

holds for all stages s ≥ he(n); hence, f
∗(n) = f(n, he(n)) holds for any n such that

R⟨e,n⟩ is not met. However, as there are infinitely many such n by assumption, f ∗

does not dominate the computable function mapping n to f(n, he(n)), contrary

to choice of f ∗.

Since A ≡T B holds by Claims 2 and 3 and by construction and since for all

e, almost all requirements R⟨e,n⟩ are met by Claim 4, it follows that B has the

desired properties. This completes the proof of Theorem 2.4.2.

We complete this section by giving a yet different proof of Theorem 2.4.2

which is due to an idea of Merkle and which uses the notion of anti-complex sets
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which is due to Franklin, Greenberg and Stephan [FGSW13]. A set A is called

anti-complex if, for every computable order h and almost all numbers n it holds

that C(A ↾ h(n)) ≤ n, where C denotes the plain Kolmogorov complexity. In

[FGSW13], Franklin et al. show that anti-complex sets can be characterized as

those sets which have c.e. traceable wtt-degree (Theorem 1.3 in [FGSW13]) and

that, for c.e. wtt-degrees, c.e. traceability coincides with array computability

(Theorem 1.5 in [FGSW13]). So it suffices to prove the following.

Theorem 2.4.3 (Merkle: private communication). Every high c.e. degree a

contains a c.e. anti-complex set A.

Proof. Fix a high c.e. set B ∈ a. We first claim that there exists a dominating

function f ∗ which has a computable approximation f : ω2 → ω such that f ∗ and

f have the following properties:

f(x, s) ≤ f(x, s+ 1), (2.12)

m∗
f (x) ≤ f ∗(x), and (2.13)

f ∗ ≡T B, (2.14)

where m∗
f(x) = µs(∀t ≥ s (f(x, t) = f(x, s)). Such functions f ∗ and f can be

obtained as follows. By [Mar66], let g∗ ≤T B be a dominating function. Fix a

Turing functional Φ such that g∗ = ΦB and a computable enumeration {Bs}s∈ω
of B, where w.l.o.g., we may assume that φB(x) ≥ x holds for all x ∈ ω. Let

m∗(x) = µs(ΦB(x)[s] ↓ & B ↾ φB(x)[s] + 1 = Bs ↾ φ
B(x)[s] + 1) (2.15)

and

g(x, s) =

⎧⎨⎩ΦB(x)[s] if ΦB(x)[s] ↓,

0 otherwise,
,

m(x, s) =

⎧⎨⎩µt < s(P (x, t, s)) if ∃t < s (P (x, t, s)),

s otherwise,

where P ⊆ ω3 is the computable ternary predicate such that, for all x, t, s ∈ ω,
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P (x, t, s) holds iff ΦB(x)[t] ↓ and Bs ↾ φB(x)[t]+1 = Bt ↾ φB(x)[t]+1. Note that

g,m are computable, m∗ is total by totality of g∗, m(x, s) is nondecreasing in s by

construction and m and g approximate m∗ and g∗ in the limit, respectively. More

precisely, g(x, s) = g∗(x) , m(x, s) = m∗(x) and, moreover, φB(x)[s] = φB(x)

hold for all s ≥ m∗(x) by (2.15); hence, Bs(x) = B(x) holds for all s ≥ m∗(x) as

φB(x) ≥ x. It follows that B ≤T m
∗ holds since B(x) = Bm∗(x)(x) and m

∗ ≤T B

holds since, given x, B can compute a stage s such that the inner clause of (2.15)

which defines m∗(x) holds. We then let

f(x, s) = max({g(x, t) : t ≤ s} ∪ {m(x, s)}),

f ∗(x) = lim
s→∞

f(x, s)

and claim that f and f ∗ have the required properties. First, f(x, s) is computable

given, it is nondecreasing in s (so (2.12) holds) and f ∗(x) exists since f(x, s) =

f(x,m∗(x)) holds for all s ≥ m∗(x). This implies that m∗
f(x) ≤ m∗(x) by

definition of m∗
f (so (2.13) holds) which in turn implies that f ∗ ≤T m∗. In

addition m∗ ≤T f
∗ holds as f ∗ majorizes m∗; hence, (2.14) holds.

Given f and f ∗ as above, we let A = {⟨x, y⟩ : y ≤ f ∗(x)}. Then A is c.e. by

(2.12) and A ≡T B holds by (2.14). So it remains to show that A is anti-complex.

For that, it suffices to show that, for all computable orders h and almost all

numbers n, it holds that C(A ↾ h(n)) ≤ n+ O(1). Namely, suppose the latter

and fix constants ci (i ≤ 1) such that C(A ↾ h(2n+ i)) ≤ n+ ci holds for almost

all n and all i ≤ 1. Then for c = max{c0, c1}, it follows that C(A ↾ h(n)) ≤ n
2
+c;

hence, C(A ↾ h(n)) ≤ n holds for almost all n.

Now fix a computable order h. Then since f ∗ is dominating, let n0 be such

that f(n) ≥ h(n) holds for all n ≥ n0. Now fix any number n ≥ n0. Then the

fact that n bits of information are enough to describe A ↾ h(n) follows from the

following observation. Let k < h(n) be given and let x, y be such that k = ⟨x, y⟩.
Then we distinguish between the following cases:

(1) x ≥ n. This implies y ≤ k < h(n) ≤ h(x) ≤ f ∗(x) since x ≥ n0; hence

k ∈ A.

(2) x < n. Then we distinguish between the following subcases.
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(a) h(n) ≤ f ∗(x). Then k ∈ A follows analogously as in(1).

(b) f ∗(x) < h(n). Then by (2.13), it follows that k ∈ A iff y ≤ f(x, h(n))

holds.

Using this case distinction, the idea is to let M be a Turing machine which is

defined as follows. On input σ ∈ {0, 1}<ω, the ouput M(σ) is a binary string of

length h(|σ|) such that, for all x, y with ⟨x, y⟩ < h(|σ|),

M(σ)(⟨x, y⟩) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if either x ≥ |σ|, or

x < |σ| and σ(x) = 1, or

x < |σ|, σ(x) = 0 and y ≤ f(x, h(|σ|)),
0 otherwise.

By the above case distinction, M(σn) = A ↾ h(n) holds for all n ≥ n0, where, for

given n, σn is the binary string of length n such that, for all x < n, σn(x) = 1 iff

h(n) ≤ f ∗(x) holds. It follows that C(A ↾ h(n)) ≤ n + O(1) for all n ≥ n0 by

definition of C.

2.5 Completely Array Noncomputable Degrees

and Maximal Pairs

In this section, we strengthen Theorem 2.3.3 by showing that there exists a c.e.

degree such that all c.e. sets in that degree are halves of (cl-)maximal pairs.

Recall that a pair of c.e. sets (A,B) is a cl-maximal pair in the c.e. sets if there

is no c.e. set C such that A ≤cl C and B ≤cl C holds and that a c.e. set A is half

of a cl-maximal pair if there exists a c.e. set B such that (A,B) is a cl-maximal

pair.

The existence of cl-maximal pairs in the c.e. sets is shown independently by

Barmpalias [Bar05] and Fan and Lu [FL05] and, as mentioned before, Ambos-

Spies, Ding, Fan and Merkle [ASDFM13] show that halves of maximal pairs can

be found in exactly the a.n.c. degrees. Moreover, they show that c.e. cl-maximal

pairs coincide with the corresponding maximal pairs in the c.e. identity bounded

Turing (ibT-) degrees using bounded shifts, where ibT-reducibility is introduced
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by Soare [Soa04]. So here and in the following chapters, we may refer to cl- or

ibT-maximal pairs simply as maximal pairs.

Ambos-Spies ([AS16]) improves the above result from [ASDFM13] by showing

that halves of maximal pairs of c.e. sets occur exactly in the a.n.c. wtt-degrees.

In fact, for one direction, he shows the following.

Theorem 2.5.1 (Theorem 2.1 in [AS16]). If A is half of a maximal pair then

there exists an a.n.c. set C ≡ibT A.

However, the converse is not true.

Theorem 2.5.2 (Theorem 3.1 in [AS16]). There exists an a.n.c. set A which is

not half of a maximal pair.

In view of Theorem 2.3.3, this raises the question whether there exists a

Turing degree whose c.e. members are all halves of maximal pairs. We can give

an affirmative answer, thereby solving the first part of the first open problem in

[ASDFM13].

Theorem 2.5.3. There exists a c.e. Turing degree a such that every c.e. set

A ∈ a is half of a maximal pair.

Hence, by Theorem 2.5.1, we immediately get the existence of completely

a.n.c. degrees as corollary.

Corollary 2.5.4. There exists a completely a.n.c. degree a.

Remark 2.5.5. The idea of the proof of Theorem 2.5.3 bears some analogy

to the one that is used in Theorem 2.3.3 and combines it with the strategy for

constructing a maximal pair as demonstrated in [ASDFM13]. So let us first

recall the strategy for constructing a maximal pair (A,B) as presented there. The

requirements are of the form

R : A ̸= Φ̂W , or B ̸= Ψ̂W ,

where A and B are the c.e. sets under construction, Φ̂, Ψ̂ are ibT-functionals

and W is a given c.e. set. Then the strategy for meeting R is as follows. We
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assign an interval [a, b] to R such that A and B are empty on [a, b] when the

attack on R starts and such that b ≥ 2a holds. Then at stages s+ 1 such that

∀x ∈ [a, b] (As(x) = Φ̂W (x)[s] & Bs(x) = Ψ̂W (x)[s]), (2.16)

and [a, b] ̸⊆ As ∪ Bs, we enumerate a number x ∈ [a, b] \ As into A at stage

s+ 1 in case [a, b] ̸⊆ As holds; otherwise, we choose a number x ∈ [a, b] \Bs and

enumerate it into B at stage s+ 1. The claim is that this strategy meets R. For

a proof by contradiction, suppose that R is not met. Then for every x that is

enumerated into one of the sets A or B, W enumerates a number y ≤ x at a

later stage since Φ̂ and Ψ̂ are ibT-functionals. However, by choice of b there are

2|[a, b]| = 2(b−a+1) > b+1 many numbers in [a, b] that may be enumerated into

A or B while W may choose at most b+ 1 numbers to respond to each attack.

Now the proof of Theorem 2.5.3 is as follows.

Proof of Theorem 2.5.3. For the proof of Theorem 2.5.3, fix a computable num-

bering {Φ̂e}e∈ω of the ibT-functionals. Then we construct a c.e. set A and

auxiliary c.e. sets Ve (e ∈ ω) in stages s, where As and Ve,s denote the finite sets

of numbers that are enumerated into A and Ve by stage s, respectively, such that

A and the sets Ve meet the requirements

Rm : (A = Φ
We0
e1 & We0 = ΦA

e2
) ⇒ We0 ̸= Φ̂

Wd0
d1

or Ve ̸= Φ̂
Wd0
d2

, (2.17)

for all m ∈ ω, where m = ⟨e, d⟩, e = ⟨e0, e1, e2⟩ and d = ⟨d0, d1, d2⟩. Clearly,

meeting all the requirements ensures that a = degT (A) has the desired properties.

Before we give the formal construction, let us first introduce the idea how to

meet a single requirement. Based on this, it is easy to see that all requirements

can be met by a finite injury argument, where a requirement Rm has higher

priority than Rm′ if and only if m < m′. So in the following, fix m and let e, d

be such that m = ⟨e, d⟩ and let ei and di (i ≤ 2) be such that e = ⟨e0, e1, e2⟩ and
d = ⟨d0, d1, d2⟩.

Now in order to meet a requirement Rm, the idea is to apply the above

maximal pair strategy to Ve and We0 . However, this is not possible a priori since

we do not have any control over the numbers that are put into We0 . For this
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purpose, we take some of the ideas used in the proof of Theorem 2.3.3 and make

them compatible with the above maximal pair strategy.

More precisely, we say that, for a stage s, an interval [a, b] and a triple of

sequences ({xi}i≤a, {yi}i≤a, {zi}i≤a) are suitable for Rm at stage s+1 (or suitable

for short) if, for all i ≤ a, it holds that

(i) xi ∈ ω[e],

(ii) r(m, s) ≤ a ≤ xi < yi < zi and zi < xi+1 if i < a,

(iii) za ≤ b < l0(e, s),

(iv) yi > φ
We0
e1 (xi)[s],

(v) zi > max{φAe2(u)[s] : u ≤ yi},

(vi) {x0, . . . , xa} ∩ As = ∅, and

(vii) [a, b] ∩ Ve,s = ∅,

where l0 : ω
2 → ω is defined as

l0(e, s) = µx(As(x) ̸= Φ
We0
e1 (x)[s] or We0,s(x) ̸= ΦA

e2
(x)[s]) (2.18)

and where r(m, s) denotes the restraint which is imposed on Rm by higher

priority requirements. As in Theorem 2.3.3, r(m, s) is increased at any stage

s+ 1 such that there is a requirement of higher priority than Rm that acts at

stage s+ 1 (where it is sufficient to let r(m, s+ 1) = s in this case).

Call a stage t+1 critical (w.r.t. Rm) if Rm is assigned an interval [a, b] and a

triple of sequences ({xi}i≤a, {yi}i≤a, {zi}i≤a) and it holds that {xi : i ≤ a} ̸⊆ At

or [a, b] ̸⊆ Ve,t and it holds that b < min{l0(e, s), l1(m, s)}, where

l1(m, s) = µx(We0,s(x) ̸= Φ̂
Wd0
d1

(x)[s], or Ve,s(x) ̸= Φ̂
Wd0
d2

(x)[s]). (2.19)

Then the strategy is as follows. At the least stage s + 1 such that there

exists an interval [a, b] and a triple of sequences ({xi}i≤a, {yi}i≤a, {zi}i≤a) which
are suitable for Rm at stage s+ 1, we assign [a, b] and ({xi}i≤a, {yi}i≤a, {zi}i≤a)
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to Rm at stage s+ 1 and initialize all lower priority requirements, i.e., for any

m′ > m the triple of sequences and the interval which are assigned to Rm′ (if

any) are cancelled and Rm′ has to choose a new suitable interval and triple of

sequences after stage s + 1. Then at critical stages t + 1 > s + 1, we put the

largest xi ̸∈ At into A if {xi : i ≤ a} ̸⊆ At holds and otherwise we put the least

x ∈ [a, b] \ Ve,t into Ve and again initialize all requirements of lower priority at

stage t+ 1.

Note that the notion of suitability for an interval [a, b] and a triple of sequences

({xi}i≤a, {yi}i≤a, {zi}i≤a) for a requirement R⟨e,d⟩ only depends on e and that

the restraint function r(m, s) is nondecreasing in m, i.e., r(m, s) ≤ r(m′, s) holds

for all m ≤ m′. Thus, any interval and triple of sequences which is suitable

for a requirement R⟨e,d⟩ is also suitable for any requirement R⟨e,d′⟩ with d
′ < d;

hence, we can argue that R⟨e,d⟩ gets a suitable interval and triple of sequences

assigned only if all R⟨e,d′⟩ with d
′ < d are assigned suitable intervals and triples of

sequences. This becomes important when we have to argue that any requirement

R⟨e,d⟩ whose hypothesis is true eventually gets a permanent sequence assigned.

Hence, if the hypothesis of R⟨e,d⟩ holds then, by definition of critical stages,

it is not hard to show that the interval [a, b] and the triple of sequences

({xi}i≤a, {yi}i≤a, {zi}i≤a) meet R⟨e,d⟩ since we have b−a+1+a+1 > b+1 many

numbers to put into Ve and A, respectively, while Wd may respond at most b+ 1

many times.

This describes the basic idea for constructing c.e. sets A and Ve which meet

all requirements Rm. We now turn to the formal construction.

Construction.

Stage 0. Let A0 = Ve,0 = ∅ and r(m, s) = 0 for all e,m ∈ ω.

Stage s + 1. Let As and Ve,s be given for all e ∈ ω. We say that Rm

requires attention at stage s + 1 if m ≤ s and for the unique e, d such

that m = ⟨e, d⟩, either

(I) no triple of sequences and no interval are assigned toRm and there ex-

ists an interval [a, b] and a triple of sequences ({xi}i≤a,{yi}i≤a,{zi}i≤a)
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which are suitable for Rm, or

(II) [a, b] and ({xi}i≤a, {yi}i≤a, {zi}i≤a) are assigned to Rm and s+ 1 is

critical.

If there is no requirement that requires attention at stage s + 1, let

As+1 = As, Ve,s+1 = Ve,s for all e ∈ ω and r(m, s + 1) = r(m, s) for all

m ∈ ω. Otherwise, let m be minimal such that Rm requires attention

at stage s+ 1. Say that Rm receives attention and act according to the

clause via which Rm requires attention.

If (I) holds, let a be the least number such that there exists b ∈ ω and

a triple of sequences ({xi}i≤a, {yi}i≤a, {zi}i≤a) such that [a, b] and

({xi}i≤a, {yi}i≤a, {zi}i≤a) are suitable forRm at stage s+1. Then, for

this a, let ({xi}i≤a, {yi}i≤a, {zi}i≤a) be the least triple of sequences

(w.r.t. to the lexicographical ordering of triples of numbers, where we

assume that sequences of numbers are also ordered lexicographically)

such that there exists b such that [a, b] and ({xi}i≤a, {yi}i≤a, {zi}i≤a)
are suitable for Rm at stage s + 1 and, for this a and this triple

of sequences ({xi}i≤a, {yi}i≤a, {zi}i≤a), choose the least b such that

[a, b] and ({xi}i≤a, {yi}i≤a, {zi}i≤a) are suitable for Rm at stage s+1.

Assign [a, b] and ({xi}i≤a, {yi}i≤a, {zi}i≤a) to Rm.

If (II) holds, distinguish between the following two cases. If {xi :
i ≤ a} ̸⊆ As holds, let i ≤ a be largest such that xi ̸∈ As and let

As+1 = As ∪ {xi} and Ve,s+1 = Ve,s for all e ∈ ω. Otherwise, let

Ve,s+1 = Ve,s ∪ {x} for the least x ∈ [a, b] \ Ve,s and let As+1 = As.

In either case, let Ve′,s+1 = Ve′,s for all e
′ ̸= e.

In any case, initialize all requirements Rm′ with m′ > m, i.e., cancel

their assigned interval and their assigned triple of sequences (if any).

Moreover, for all m′ > m, let r(m′, s + 1) = s and for all m′ ≤ m, let

r(m′, s+ 1) = r(m′, s).

This ends the formal construction.
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Verification

We prove in a series of claims that the so construced sets A and Ve meet

the requirements. Before that, let us give some general remarks about the

construction which will be tacitly used in the proofs of the claims below. Unless

otherwise stated, they can be shown by an easy induction on the stage number.

First of all, the construction is effective and {As}s∈ω and {Ve,s}s∈ω are com-

putable enumerations of A and Ve, respectively, for all e ∈ ω. Hence, A and all

sets Ve are c.e. sets. The restraint function r is computable, r(m, s) is nonde-

creasing in m and in s, r(m, s) ≤ s holds for all m, s and r(m, s+ 1) ̸= r(m, s)

holds only if a requirement Rm′ with m′ < m requires attention at stage s+ 1.

At any stage s+1 at most one requirement receives attention and numbers are

enumerated into A or Ve only if a requirement requires attention via (II) (where

a requirement Rm may enumerate numbers into Ve only if there exists d ∈ ω

such that m = ⟨e, d⟩) and, in any case, at any stage, a number is enumerated

into at most one of the sets A or Ve for at most one e ∈ ω.

More precisely, if x is enumerated into A or Ve at stage t + 1 then for the

unique m ∈ ω such that Rm receives attention via (II) at stage t + 1, Rm

is assigned an interval [a, b] and a triple of sequences ({xi}i≤a, {yi}i≤a, {zi}i≤a),
where, at the stage s+1 < t+1 when Rm gets ({xi}i≤a, {yi}i≤a, {zi}i≤a) and [a, b]

assigned, [a, b] and ({xi}i≤a, {yi}i≤a, {zi}i≤a) are suitable for Rm. So r(m, s) ≤
x < min{l0(e, t), l1(⟨e, d⟩ , t)} and x ∈ [a, b] hold. So, since Rm initializes all

requirements of lower priority at stage s + 1, only Rm may enumerate x into

A at stage t + 1 and, after stage t + 1, any requirement Rm′ with m < m′

may enumerate only numbers into A or Ve which are greater than b. Hence, by

convention on converging computations, it holds that As ∪ Ve,s ⊆ ω ↾ s for all

e ∈ ω.

Finally, by the weak monotonicity of the restraint r(m, s) in m, it follows

that if a requirement R⟨e,d⟩ requires attention via (I) at stage s + 1 then all

requirements R⟨e,d′⟩ with d
′ < d which are not assigned an interval and a triple

of sequences at stage s also require attention via (I). So if R⟨e,d⟩ is assigned an

interval and a triple of sequences at a stage s then all requirements R⟨e,d′⟩ with

d′ < d are assigned an interval and a triple of sequences, too.
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Now the first claim states that the action of each requirement is finitary and

that the restraint reaches a finite limit.

Claim 1. Every requirement Rm requires attention only finite often and r∗(m) =

lims→∞ r(m, s) exists.

Proof. For a proof by induction onm, suppose the claim to be true for allm′ < m.

By inductive hypothesis, let s0 be a stage such that Rm is not initialized after

stage s0. So r∗(m) = r(m, s0) exists and it holds that whenever Rm requires

attention after stage s0, it receives attention and acts. Then after stage s0,

Rm may require attention at most once via (I). If it does not require attention

via (I) it neither does require attention via (II) so the claim holds in this case.

Otherwise, if Rm does require attention via (I) at a stage s1 > s0 then it gets an

interval [a, b] and a triple of sequences ({xi}i≤a, {yi}i≤a, {zi}i≤a) assigned. Thus,
by definition of (II), Rm may require attention at most b+ 2 many times after

stage s1. So the claim holds in this case, too.

Based on Claim 1, we can show that all requirements are met.

Claim 2. Rm is met.

Proof. For a proof by contradiction, suppose that Rm is not met and let e, d be

such that m = ⟨e, d⟩. Then the hypothesis holds for Rm but the conclusion of

Rm fails. Then let us first show that Rm is eventually permanently assigned an

interval and a triple of sequences. For that, by Claim 1, suppose s0 is a stage

such that Rm is not initialized at any stage s ≥ s0. So lims→∞ r(m, s) = r(m, s0)

and whenever Rm requires attention after stage s0 it receives attention and acts.

If Rm is assigned an interval and a triple of sequences at stage s0 then this

interval and triple of sequences are permanently assigned to Rm by choice of s0.

So w.l.o.g., we may assume that Rm is not assigned an interval and a triple of

sequences at stage s0. Hence, it suffices to show that there is a stage s ≥ s0 such

that Rm requires attention via (I) at stage s+ 1.

Suppose that this is not the case. Let a = r(m, s0) and let {xi}i≤a, {yi}i≤a
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and {zi}i≤a be defined by induction on i ≤ a such that

x0 = ⟨e, a⟩ ,

yi = max{φWe0
e1 (xi), xi + 1},

zi = max({φAe2(u) : u ≤ yi} ∪ {yi + 1}),

xi+1 = ⟨e, zi + 1⟩ (i < a),

let b = za and let s ≥ s0 be the least stage such that both φ
We0
e1 (xi)[s] = φ

We0
e1 (xi)

and φAe2(u)[s] = φAe2(u) hold for all u ≤ yi and all i ≤ a and such that za < l0(e, s)

(note that such an interval [a, b] and such sequences {xi}i≤a, {yi}i≤a and {zi}i≤a
exist since, by assumption, the hypothesis of Rm holds). Then, by definition,

we may argue that ({xi}i≤a, {yi}i≤a, {zi}i≤a) satisfies (i)–(v). Moreover, by

construction, all numbers that are enumerated into A or Ve by requirements of

higher priority than Rm must be less than r(m, s0) and, for all requirements

R⟨e′,d′⟩ of lower priority than Rm, we can distinguish between the following two

cases. If e′ ̸= e then neither any of the xi’s may be enumerated into A by

the action of R⟨e′,d′⟩ by (i) in the definition of suitability nor any number may

be enumerated into Ve by the action of R⟨e′,d′⟩. Otherwise, d < d′ holds since

R⟨e′,d′⟩ has lower priority than Rm. However, in the latter case, R⟨e′,d′⟩ may

be assigned a suitable interval and triple of sequences only after Rm is already

assigned such objects. So it follows that (vi) and (vii) hold, too. Hence, [a, b] and

({xi}i≤a, {yi}i≤a, {zi}i≤a) are suitable for Rm at stage s+ 1; hence, Rm requires

attention via (I) after stage s0, contrary to assumption.

Thus, we may fix the least stage s ≥ s0 such that Rm is permanently assigned

an interval [a, b] and a triple of sequences ({xi}i≤a, {yi}i≤a, {zi}i≤a) at stage s+1.

Since Ve,s ∩ [a, b] = {xi : i ≤ a} ∩As = ∅ and b < min{l0(e, t), l1(m, t)} holds for

sufficiently large stages t, we can argue that there exists a sequence of stages

s < t0 < t1 < · · · < tb+1 such that Rm receives attention via (II) at stage ti + 1

(hence each ti + 1 is a critical stage). So, by construction, for any i ≤ a, xi is

enumerated into A at stage ta−i + 1 and, for any i ∈ [a, b], i is enumerated into

Ve at stage ti + 1.

As in the proof of Claim 3 of Theorem 2.3.3, we can argue that if xi is

enumerated into A at stage ta−i + 1 (i ≤ a) then there exists a y′i < yi and a

40



2.5. COMPLETELY ARRAY NONCOMPUTABLE DEGREES AND
MAXIMAL PAIRS

stage t′ > ti such that y′i enters We0 at stage t′ + 1. Since there may be at most

b + 2 many critical stages after stage s by construction, it follows that ti+1 is

the least critical stage > ti for any i ≤ b. Thus, it holds that t′ + 1 ≤ ti+1. We

can argue by the use principle (using the fact that Φ̂d1 is an ibT-functional)

that Wd0,ti ↾ y
′
i + 1 = Wd0,ti+1

↾ y′i + 1 cannot hold; hence, there exists y′′i ≤ y′i

and t′′ < ti+1 such that y′′i enters Wd0 at stage t′′ + 1. Likewise, since Φ̂d2 is an

ibT-functional, for any i ∈ [a, b], we can argue that the enumeration of i into Ve

at stage ti + 1 yields a change of Wd0 below i after stage ti. Hence, since Wd0

is a c.e. set, for the least stage t > tb+1 such that b < min{l0(e, t), l1(m, t)}, it
follows that |Wd0,t ↾ b+ 1| > b+ 1 which is impossible.

Since all requirements are met by Claim 2 and since meeting all requirements

ensures that degT (A) is as desired this completes the proof.
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Chapter 3

Totally ω-C.E. Degrees and

Maximal Pairs

3.1 Introduction

Totally ω-computably enumerable (totally ω-c.e.) degrees are introduced by

Downey, Greenberg and Weber in [DGW07] (Nowadays, it seems that the term

totally ω-computably approximable (ω-c.a.) is preferred for these sets and

degrees, as e.g., suggested by [DG19]. However, since the former term is the one

which is widely used in the literature, we stick to the originally introduced notion

in this chapter.). A degree a is totally ω-c.e. if every function g ≤T a has a

computable approximation {gs}s∈ω such that the number of mind changes of gs(x)

is bounded by a computable order h, where recall that a function h : ω → ω is

an order if it is nondecreasing and has unbounded range. Since by 2. of Theorem

2.2.4, a c.e. degree a is array computable iff there exists a computable order h

such that any g ≤T a is h-c.e., it can be easily seen that the class of c.e. not

totally ω-c.e. degrees is a subclass of the a.n.c. degrees. Indeed, the motivation

for introducing not totally ω-c.e. degrees is that these degrees provide a stronger

form of multiple permitting, called not totally ω-c.e. permitting which is also

introduced in [DGW07].

The authors demonstrate the not totally ω-c.e. permitting technique by

showing that the c.e. not totally ω-c.e. degrees can be characterized as those c.e.
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degrees which bound a critical triple, where recall that three incomparable c.e.

degrees a0, a1 and b form a critical triple if a0∨b = a1∨b and every c.e. degree

c which is below a0 and a1 is below b, thereby showing that the totally ω-c.e.

degrees are definable in the Turing degrees. Later on, more instances of the fact

that not totally ω-c.e. permitting captures the combinatorics of a wide class

of constructions were given. For example, Barmpalias, Downey and Greenberg

[BDG10] prove that any not totally ω-c.e. degree contains a set which is not wtt-

reducible to any hypersimple set; Brodhead, Downey and Ng [BDN12] show that

any not totally ω-c.e. contains a computably bounded random set. Furthermore,

Downey and Greenberg [DG19] transfer the idea behind totally ω-c.e. degrees to

certain ordinals higher than ω and show that a c.e. degree bounds an embedding

of the nondistributive lattice M3 iff it is not totally < ωω-c.e.

In this chapter, we extend the notion of a.n.c. sets to the setting of almost-c.e.

sets which is in the style of Definition 2.2.2, where recall that a set A is almost-c.e.

if it has a computable approximation {As}s∈ω such that, for every number x and

every stage s, x may either be enumerated into A at stage s+ 1 or it may be

removed from A, but in the latter case some number y < x must be put into A at

the same stage (so, when identifying sets with real numbers from the unit interval

[0, 1], almost-c.e. sets just correspond to the left-c.e. reals, see Proposition 3.2.2

below).

The problem is that one cannot simply define array noncomputability for

almost-c.e. sets in the straightforward way. Namely, as shown in [ASFL+], given

a very strong array F = {Fn} and an almost-c.e. set A there exists an almost-c.e.

set B such that A and B are not F -similar, where we say for two sets A and B

and a v.s.a. F that A and B are F -similar if (2.2) holds.

The solution is to require for the almost-c.e. set A to be F-similar only to

those almost-c.e. sets B for which there exists a computable almost enumeration

which is compatible with F (such sets are called F -a.c.e.; see Definition 3.3.1).

Then it is not hard to show that almost-c.e. sets which are array noncomputable in

this sense (such sets are called F -a.c.e-a.n.c.; see Definition 3.3.2) exist precisely

in the a.n.c. wtt-degrees (see Theorem 3.3.4 and Corollary 3.3.5).

It is a well known fact that no c.e. set is F-a.n.c. with respect to all v.s.a.

F (see Theorem 2.2 in [DJS90]). In contrast to this, Losert shows in [Los18]
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that there are almost-c.e. sets which are F -similar to all F -a.c.e. sets for all very

strong arrays F . If an almost-c.e. set A has this property then we say that A

has the universal similarity property (u.s.p. for short). Now crucially, it is shown

in [Los18] that u.s.p. sets exist precisely in the not totally ω-c.e. degrees. So

u.s.p. sets are the generic sets for the not totally ω-c.e. degrees as a.n.c. sets are

generic for the a.n.c. (wtt-) degrees.

The decisive advantage of introducing the notions of array noncomputability

for almost-c.e. and that of u.s.p. sets is that they provide a much more modularized

approach for investigating properties of almost-c.e. sets contained in a.n.c. (or

not totally ω-c.e.) degrees. Namely, in all of the above mentioned results and

the ones from Chapter 2 that show that any a.n.c. degree (c.e. not totally ω-c.e.

degree) contains a c.e. or an almost-c.e. set with a certain property P, the

constructions are arranged in more or less the same way; a construction, possibly

taken from elsewhere in computability theory showing that an almost-c.e. set

A with property P exists is combined either with multiple or not totally ω-c.e.

permitting (which ensures that A ≤T a holds) and with coding (so a ≤T A

holds). So usually one has to take into account that both the permitting and

the coding are made compatible in order to make the construction work.

Now using the above definition of array noncomputability (and that of

the universal similarity property) for almost-c.e. sets enables us to avoid the

permitting part in the following sense. If we attempt to show that any a.n.c.

degree contains an almost-c.e. set A with a certain property P , where P can be

ensured by meeting a certain (not necessarily effective) list of requirements Re

(e ∈ ω) then by the above result it suffices to prove that there exists a v.s.a. F
such that, for every e, there exists an F -a.c.e. set Ae such that every set which

is F -similar to Ae meets Re. So P holds for any F -a.c.e.-a.n.c. set. Similarly, if

we can show that, for every e, there exists a v.s.a. Fe and an Fe-a.c.e. set Ae

such that every set which is Fe-similar to Ae meets Re then every u.s.p. set has

property P ; hence, any c.e. not totally ω-c.e. degree has an almost-c.e. set with

property P. An in-depth elaboration of the properties that are in this sense

forced by u.s.p. sets is given in [ASFL+].

Thus, by introducing the concept of array noncomputability for almost-c.e.

sets, we benefit in three aspects. First of all, we obtain a new characterization
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of the c.e. not totally ω-c.e. degrees in terms of a uniform form of multiple

permitting. Second, we get simpler proofs of some of the above mentioned

results. For instance, we can strengthen the result by Brodhead, Downey and

Ng [BDN12] by showing that any u.s.p. set is computably bounded random

(CB-random). So any c.e. not totally ω-c.e. degree contains a left-c.e. real which

is CB-random (Theorem 3.4.4 and Corollary 3.4.5).

Moreover, we also get new results by showing that a c.e. degree is not totally

ω-c.e. if and only if it contains an almost-c.e. set which is not cl-reducible to

any complex almost-c.e. set, thereby affirmatively answering a conjecture by

Greenberg (Theorem 3.4.19). For the if direction, we prove a new and quite

involved result on maximal pairs in the almost-c.e. sets which extends a result

of Yun Fan [Fan09] (see Lemma 3.4.7). With the latter result we are also able

to give a different proof of one the main results by Barmpalias, Downey and

Greenberg [BDG10], namely that any c.e. a.n.c. degree contains a left-c.e. real

which is not cl-reducible to any Martin-Löf random left-c.e. real (see Theorem

3.4.10).

All the results presented below will be published in the upcoming paper by

Ambos-Spies, Losert and Monath [ASLM18]. For more on notions related to

the universal similarity property and its relations to a.n.c. and not totally ω-c.e.

degrees, we refer the reader to [Los18] and [ASL].

The outline of this chapter is as follows. In Section 3.2, we give the basic

definitions needed for this chapter. Then in Section 3.3, we give the definitions

of array noncomputability in the context of almost-c.e. sets and that of the

universal similarity property and state (without proof) the main result in this

respect that the Turing degrees of u.s.p. sets capture the class of the c.e. not

totally ω-c.e. degrees.

In Section 3.4, we demonstrate the above described modularized approach on

how to find sets in not totally ω-c.e. degrees with certain properties using u.s.p.

sets with two examples. First, in Subsection 3.4.1, we roughly sketch the idea of

how to show that u.s.p. sets are computably bounded (CB-) random. Second,

in Subsection 3.4.2, we state and prove in detail that u.s.p. sets are halves of

maximal pairs in the almost-c.e. sets, where the second halves may be chosen to

be c.e. and a subset of a given infinite, computable set D.
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In Subsection 3.4.3, we show how this result on maximal pairs forms the

basis to prove that u.s.p. sets are not cl-reducible to any complex almost-c.e. set;

hence, any c.e. not totally ω-c.e. degree contains a set which is not cl-reducible

to any complex almost-c.e. set. Moreover, we also cite the result (without proof)

that the c.e. not totally ω-c.e. degrees are in fact characterized by the property to

contain an almost-c.e. set which is not cl-reducible to any complex almost-c.e. set.

Finally, in Section 3.5, we give a short summary on the results of this chapter.

3.2 Preliminaries

We start with the definition of almost-c.e. sets and degrees.

Definition 3.2.1. A computable almost-enumeration of a set A is a strong

array {As}s∈ω such that lims→∞As(x) = A(x) (x ∈ ω) and such that A0 = ∅ and

∀ s ∀ x (x ∈ As \ As+1 ⇒ ∃ y < x (y ∈ As+1 \ As)), (3.1)

or, equivalently,

∀ s∀ x (As ↾ x ≤lex As+1 ↾ x) (3.2)

holds. A set A is almost computably enumerable ( almost-c.e. or a.c.e. for short)

if there is a computable almost-enumeration of A.

Then it is not hard to show that almost-c.e. sets are just the analogue of

left-c.e. reals on the set level. The proof of the following result may be found in

[DH10, Theorem 5.1.7].

Proposition 3.2.2 ([CHKW98]). A real α ∈ [0, 1] is left-c.e. iff α = 0.A for an

almost-c.e. set A.

In order to define array noncomputability for almost-c.e. sets, we need a few

auxiliary notions. Recall from Definition 2.2.1 that an infinite sequence of finite

sets F = {Fn} is a very strong array (v.s.a.) if the sets Fn are uniformly given

by their canonical index such that they are mutually disjoint, nonempty and

growing in size. For our purposes, it is sometimes convenient to restrict ourselves
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to very strong arrays where the components of the array are intervals which are

nicely ordered and which cover all of ω.

Definition 3.2.3. An infinite sequence of finite sets F = {Fn}n∈ω is called a

very strong array of intervals (v.s.a.i. for short) if F is a very strong array such

that all sets Fn are intervals and such that max(Fn) < min(Fn+1) holds for all

n ∈ ω. F is called a complete very strong array of intervals (c.v.s.a.i.) if F is a

very strong array of intervals such that F is complete, i.e.,
⋃︁
n∈ω Fn = ω holds.

Moreover, when defining array noncomputability for almost-c.e. sets, the

following notion will be useful.

Definition 3.2.4. Let F = {Fn}n∈ω be a v.s.a. and let A and B be any sets. A

and B are F-similar (A ∼F B for short) if (2.2) holds for A and B, i.e.,

∃∞n (A ∩ Fn = B ∩ Fn).

So in particular, a c.e. set A is a.n.c. iff there exists a v.s.a. F such that A is

F -similar to all c.e. sets.

3.3 Array Noncomputability and Almost-C.E.

Sets

By a result of Ambos-Spies et al. [ASFL+], no almost-c.e. set is F -similar to all

almost-c.e. sets in the straightforward sense. So the idea is to require that the

computable almost-enumeration of a set is compatible with F in the following

sense.

Definition 3.3.1 ([ASLM18]). Let F = {Fn}n∈ω be a very strong array. A

computable almost-enumeration {As}s∈ω is F-compatible if, for any n, s ∈ ω,

As ∩ Fn ≤lex As+1 ∩ Fn

(i.e., to be more precise, As(x0) . . . As(xm) ≤lex As+1(x0) . . . As+1(xm) where

x0, . . . , xm are the elements of Fn in increasing order) and, for any x ̸∈
⋃︁
n∈ω Fn
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and any s ∈ ω, As(x) ≤ As+1(x). A set A is F-compatibly almost-c.e. (F-

almost-c.e. or F-a.c.e. for short) if there is an F-compatible computable almost-

enumeration {As}s∈ω of A. And A is purely F-almost-c.e. if A is F-almost-c.e.

and A ⊆
⋃︁
n∈ω Fn.

Then we are ready to define what it means for an almost-c.e. set (degree) to

be array noncomputable.

Definition 3.3.2 ([ASLM18]). (a) Let F = {Fn}n∈ω be a very strong array. A

set A is F-array noncomputable for the F-almost-c.e. sets (F-a.c.e.-a.n.c. for

short) if A is almost-c.e. and, for all F-almost-c.e. sets B, A ∼F B, i.e., (2.2)

holds.

(b) A set A is array noncomputable for the almost-c.e. sets ( a.c.e.-a.n.c. for

short) if A is F-a.c.e.-a.n.c. for some v.s.a. F .

(c) A degree a is array noncomputable for the almost-c.e. sets ( a.c.e.-a.n.c.

for short) if there is an a.c.e.-a.n.c. set A in a.

Note that, just as in the case of c.e. sets, it does not matter for Definition

3.3.2 whether we require that (2.1) or (2.2) holds.

Proposition 3.3.3 ([ASLM18]). Let F = {Fn}n∈ω be a very strong array. An

almost-c.e. set A is F-a.c.e.-a.n.c. if and only if, for all F-almost-c.e. sets B,

(2.1) holds.

Now, by the following theorem, we may deduce that a.c.e.-a.n.c. degrees and

a.n.c. degrees coincide, where note that this also holds for wtt-degrees. Hence,

the class of a.c.e.-a.n.c. (wtt-) degrees is closed upwards.

Theorem 3.3.4 ([ASLM18]). Let F = {Fn}n∈ω be a v.s.a. Then the following

hold.

1. For any a.c.e.-a.n.c. set A there is an F-a.n.c. set B such that A ≡wtt B.

In fact, for any a.c.e.-a.n.c. set A and any a.c.e. set B̂ such that A ≤wtt B̂,

there is an F-a.n.c. set B such that B̂ ≡wtt B.

49



3.3. ARRAY NONCOMPUTABILITY AND ALMOST-C.E. SETS

2. For any a.n.c. set A there is an F-a.c.e.-a.n.c. set B such that A ≡wtt B.

Moreover, B can be chosen to be a purely F-a.c.e. set. In fact, for any

a.n.c. set A and any a.c.e. set B̂ such that A ≤wtt B̂, there is a purely

F-a.c.e. set B such that B is F-a.c.e.-a.n.c. and B̂ ≡wtt B.

The following corollaries are immediate.

Corollary 3.3.5 ([ASLM18]). Let a be a wtt-degree (Turing degree). Then a is

a.n.c. iff a is a.c.e.-a.n.c.

Corollary 3.3.6 ([ASLM18]). Let a and b be c.e. wtt-degrees (Turing degrees)

such that a is a.c.e.-a.n.c. and a ≤ b. Then b is a.c.e.-a.n.c.

Corollary 3.3.7 ([ASLM18]). Let F be a v.s.a. and let A be a.c.e.-a.n.c. There

is a purely F-a.c.e. set B such that B is F-a.c.e.-a.n.c. and wtt-equivalent to A.

3.3.1 The Universal Similarity Property

We proceed to give the definition of the universal similarity property for an

almost-c.e. set A.

Definition 3.3.8 ([ASLM18]). An almost-c.e. set A has the universal similarity

property if A is F-a.c.e.-a.n.c. for all very strong arrays F , i.e., if, for any

v.s.a. F and any F-a.c.e. set B, A is F-similar to B.

The justification of why it often suffices to consider (complete) very strong

arrays of intervals instead of all very strong arrays is given by the following

proposition for which we say that a v.s.a. F̂ = {F̂n}n∈ω dominates a v.s.a.

F = {Fn}n∈ω if, for any number n, there is a number m such that Fm ⊆ F̂n.

Proposition 3.3.9 ([ASLM18]). (a) For any v.s.a. F = {Fn}n∈ω there is a

complete very strong array of intervals F̂ = {F̂n}n∈ω which dominates F .

(b) Let F̂ = {F̂n}n∈ω and F = {Fn}n∈ω be very strong arrays such that

F̂ dominates F . Then any F̂-a.c.e.-a.n.c. set (F̂-a.n.c. set) is F-a.c.e.-a.n.c.

(F-a.n.c.).
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Note that, as shown in Theorem 2.2 of [DJS90], the analogue of Definition

3.3.8 in the setting of c.e. sets does not hold. To wit, w.l.o.g., we may assume that

A is noncomputable (hence infinite) since computable sets are never F -similar

to all c.e. sets for any given v.s.a. F . So we may choose an infinite computable

subset B of A. Then, based on B, we may define a v.s.a.i. F = {Fn} such that

B ∩ Fn ̸= ∅ holds for all n; hence, A is not F -similar to the empty set. Now for

the construction of sets with the universal similarity property, it is useful to note

that, by Proposition 3.3.9, it suffices to consider complete very strong arrays of

intervals.

Proposition 3.3.10 ([ASLM18]). Let A be an almost-c.e. set such that, for any

complete v.s.a.i. F , A is F-a.c.e.-a.n.c. Then A has the universal similarity

property.

Then in order to formulate the main existence result for u.s.p. sets, recall the

definition of totally ω-c.e. degrees.

Definition 3.3.11. A function g is ω-c.e. if there is a computable approximation

{gs}s∈ω of g and a computable function h such that, for any x ∈ ω,

|{s : gs+1(x) ̸= gs(x)}| < h(x).

A set A is totally ω-c.e. if any function g ≤T A is ω-c.e. A Turing degree is

totally ω-c.e. if it contains a totally ω-c.e. set.

Then the main existence result is as follows.

Theorem 3.3.12 ([ASLM18]). For a c.e. Turing degree a the following are

equivalent.

(i) There is an almost-c.e. set A with the universal similarity property in a.

(ii) a is not totally ω-c.e.
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3.4 Properties of Sets with the Universal Simi-

larity Property

We continue to present two applications of Theorem 3.3.12 which show that c.e.

not totally ω-c.e. degrees contain almost-c.e. sets with certain properties.

3.4.1 U.S.P. Sets and CB-Randomness

For the first application for which we state the results without proof, we need to

recall the definitions of Martin-Löf randomness and that of computably bounded

randomness.

Definition 3.4.1 ([ML66]). 1. A Martin-Löf test (or ML-test for short) is

a uniform c.e. sequence {Un}n∈ω of c.e. sets Un ⊆ {0, 1}∗ such that, for

n ∈ ω, µ([Un]) < 2−n.

2. A real α ∈ {0, 1}ω passes an ML-test {Un}n∈ω if α ̸∈
⋂︁
n∈ω[Un]; and

{Un}n∈ω covers α otherwise.

3. A set A passes the ML-test {Un}n∈ω (is covered by {Un}n∈ω) if the charac-

teristic sequence α of A passes the ML-test {Un}n∈ω (is covered by {Un}n∈ω).

4. A real α (set A) is Martin-Löf random (or ML-random for short) if α (A)

passes all ML-tests.

Definition 3.4.2 ([BDN12]). 1. For any function f : ω → ω, an ML-test

{Un}n∈ω is f -bounded (or an f -test for short) if, for n ∈ ω, |Un| ≤ f(n).

2. A Martin-Löf test {Un}n∈ω is computably-bounded (or a CB-test for

short) if {Un}n∈ω is f -bounded for some computable function f .

3. A real α (set A) is f -Martin-Löf random (or f -ML-random for short) if α

(A) passes all f -tests.

4. A real α (set A) is computably-bounded random (or CB-random for

short) if α (A) passes all CB-tests (i.e., if α (A) is f -ML-random for all

computable functions f).

52



3.4. PROPERTIES OF SETS WITH THE UNIVERSAL SIMILARITY
PROPERTY

Then in order to show that any u.s.p. set A is CB-random, we need the

following lemma.

Lemma 3.4.3 ([ASLM18]). Let f be a computable function. There is a c.v.s.a.i.

F = {Fn}n∈ω such that any F-a.c.e.-a.n.c. set A is f -ML-random.

Then it is easy to prove the following theorem.

Theorem 3.4.4 ([ASLM18]). Any almost-c.e. set with the universal similarity

property is CB-random.

Proof. Fix an almost-c.e. set A with the universal similarity property. Then, for

any e ∈ ω, consider the requirement

Re : A is fe-ML-random

where fe denotes the (e+1)st total computable function in a list of all total com-

putable functions {fe}e∈ω. Clearly, by Definition 3.4.2, meeting all requirements

Re ensures that A is CB-random. Then, given e, we may fix a c.v.s.a.i. Fe as

given by Lemma 3.4.3. Now since A is Fe-a.c.e.-a.n.c., the claim immediately

follows.

Then from Theorems 3.3.12 and 3.4.4, we may deduce the following corollary.

Corollary 3.4.5 ([ASLM18]). Let a be a c.e. Turing degree which is not totally

ω-c.e. There is an almost-c.e. set A ∈ a such that A is CB-random.

3.4.2 U.S.P. Sets and Maximal Pairs

Having introduced maximal pairs for the class of the c.e. sets in Section 2.5,

we continue to consider maximal pairs in the almost-c.e. sets. In contrast to

halves of maximal pairs in the c.e. sets which, by [ASDFM13], exist precisely

in the a.n.c. (wtt-) degrees, Fan and Yu [FY11] show that any noncomputable

almost-c.e. set is half of an ibT-maximal pair in the almost-c.e. sets. The Fan-Yu

result implies that there is an ibT-maximal pair in the almost-c.e. sets where

one of the halves is c.e. This fact is previously shown by Fan [Fan09] already,

by using a more direct argument. By the following observation of Downey and

Hirschfeldt, however, no pair of c.e. sets is ibT-maximal in the almost-c.e. sets.
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Lemma 3.4.6 (Downey and Hirschfeldt [DH10], Theorem 9.14.6). If A is c.e.

and B is a Martin-Löf random almost-c.e. set then A ≤ibT B.

Here we strengthen Fan’s theorem that there is a maximal pair (A,B) in the

almost-c.e. sets where B is c.e. in two directions. We show that the c.e. set B

can be chosen to be arbitrarily sparse, i.e., to be a subset of any given infinite

computable set D and that it suffices to let A be any F -a.c.e.-a.n.c. set (where

the choice of F depends on D). As we point out this gives an alternative proof of

Barmpalias, Downey and Greenberg’s result that in any a.n.c. degree there is an

almost-c.e. set which is not cl-reducible to any random almost-c.e. set. Moreover,

in the next section we use our maximal pair result to characterize the Turing

degrees which contain almost-c.e. sets which cannot be reduced to any complex

almost-c.e. sets.

Lemma 3.4.7 (First Maximal Pair Lemma). Let D be an infinite computable

set. There are a c.v.s.a.i. F = {Fn}n∈ω and a c.e. set B ⊆ D such that, for any

F-a.c.e.-a.n.c. set A, (A,B) is an ibT-maximal pair in the almost-c.e. sets.

This lemma immediately implies

Lemma 3.4.8 (Second Maximal Pair Lemma). Let A be an almost-c.e. set with

the universal similarity property and let D be any infinite computable set. There

is a c.e. set B ⊆ D such that (A,B) is an ibT-maximal pair in the almost-c.e.

sets.

The proof of the First Maximal Pair Lemma is based on the following technical

lemma.

Lemma 3.4.9. Let D be an infinite computable set. There is a computable

function l such that the following hold. For any ibT-functionals Φ̂ and Ψ̂, any

almost-c.e. set V and any number a ∈ ω, there are uniformly (in Φ̂, Ψ̂, V and

a) almost-c.e. sets

AΦ̂,Ψ̂,V
a ⊆ [a, a+ l(a)]

and uniformly (in Φ̂, Ψ̂, V and a) c.e. sets

BΦ̂,Ψ̂,V
a ⊆ [a, a+ l(a)] ∩D
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such that

∃ x ∈ [a, a+ l(a)] (AΦ̂,Ψ̂,V
a (x) ̸= Φ̂V (x) or BΦ̂,Ψ̂,V

a (x) ̸= Ψ̂V (x)) (3.3)

holds.

We next show how the First Maximal Pair Lemma follows from this lemma

and defer the quite involved proof of Lemma 3.4.9 to the next subsection.

Proof of Lemma 3.4.7 assuming Lemma 3.4.9. In the following, fix computable

numberings {Φ̂e}e∈ω and {Ve}e∈ω of the ibT-functionals and the almost-c.e. sets,

respectively.

The required c.v.s.a.i. F = {Fn}n∈ω and c.e. set B are defined as follows. Fix l

as in Lemma 3.4.9 – where w.l.o.g. we may assume that l is strictly increasing – and

let I = {In}n∈ω be the unique c.v.s.a.i. such that In = [min In,min In+ l(min In)].

Let F k
n (k ≤ n) be defined by

F 0
0 = I0; F

0
1 = I1, F

1
1 = I2; F

0
2 = I3, F

1
2 = I4, F

2
2 = I5; etc.,

and, for k ≤ n, let xkn = minF k
n (hence F k

n = [xkn, x
k
n+ l(x

k
n)]). Then F is defined

by letting Fn = F 0
n ∪ · · · ∪ F n

n (n ∈ ω), and the desired set B is obtained by

letting

B ∩ F k
n = B

Φ̂k0
,Φ̂k1

,Vk2
xkn

for k = ⟨k0, k1, k2⟩ ≤ n. Since the sets BΦ̂,Ψ̂,V
a are uniformly c.e. and contained in

D, it follows that B is c.e. and B ⊆ D. So, in order to complete the proof, given

any F -a.c.e.-a.n.c. set A, it suffices to show that the pair (A,B) is ibT-maximal

in the a.c.e. sets.

For a contradiction assume not. Then there is an almost-c.e. set C such that

A ≤ibT C and B ≤ibT C. Fix k = ⟨k0, k1, k2⟩ such that C = Vk2 , A = Φ̂C
k0

and

B = Φ̂C
k1
. Define the set Â ⊆

⋃︁
n≥k F

k
n by letting

Â ∩ F k
n = A

Φ̂k0
,Φ̂k1

,Vk2
xkn

.

Then Â is I-a.c.e., hence F -a.c.e. Moreover, by (3.3) and by definition of Â and
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B, for any n ≥ k,

∃ x ∈ F k
n ⊆ Fn (Â(x) ̸= Φ̂

Vk2
k0

(x) or B(x) ̸= Φ̂
Vk2
k1

(x))

holds. Since A is F-a.c.e.-a.n.c., it follows that there is a number x such that

A(x) ̸= Φ̂
Vk2
k0

(x) or B(x) ̸= Φ̂
Vk2
k1

(x). But, by C = Vk2 , this implies that A ̸= Φ̂C
k0

or B ̸= Φ̂C
k1

contrary to choice of k0 and k1.

We close this subsection by pointing out that the First Maximal Pair Lemma

provides an alternative proof of Barmpalias, Downey and Greenberg’s result

in [BDG10] that in any a.n.c. degree there is an almost-c.e. set which is not

cl-reducible to any random almost-c.e. set. By Corollaries 3.3.5 and 3.3.7, it

suffices to show the following.

Theorem 3.4.10. There is a v.s.a. F such that no F-a.c.e.-a.n.c. set is cl-

reducible to any ML-random almost-c.e. set.

Proof. Let D = ω. Fix a v.s.a. F and a c.e. set B as in Lemma 3.4.7. We

claim that F has the required properties. For a contradiction assume that A

is F -a.c.e-a.n.c., C is ML-random and almost-c.e., and A ≤cl C. Then, for any

number m, the m-bounded left-shift C−m = {x : x+m ∈ C} of C is ML-random

and almost-c.e., too, and there exists m0 such that A ≤ibT C−m0 holds. By the

former and by Lemma 3.4.6, B ≤ibT C−m0 . So the pair (A,B) is not ibT-maximal

in the almost-c.e. sets. But this contradicts the choice of F and B.

Proof of Lemma 3.4.9

Before we turn to the proof of Lemma 3.4.9 we start with some general remarks

on the strategies for constructing maximal pairs (A,B). All of these strategies

are based on the same idea but their complexity greatly differs. In any case we

have to meet the requirements

R : A ̸= Φ̂V or B ̸= Ψ̂V

where Φ̂ and Ψ̂ are ibT-functionals and V is either a c.e. set or an almost-c.e. set

(depending on whether we consider maximal pairs in the c.e. sets or the almost-

c.e. sets). Then, in order to meet these requirements, an interval [a, a + l(a)]
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(where l is computable) is assigned to R and the definition of A ∩ [a, a+ l(a)]

and B ∩ [a, a+ l(a)] is devoted to meet R. The R-strategy only becomes active

at a stage s+ 1 such that

As ∩ [a, a+ l(a)] = Φ̂Vs
s ∩ [a, a+ l(a)] and Bs ∩ [a, a+ l(a)] = Ψ̂Vs

s ∩ [a, a+ l(a)].

(3.4)

So changing either A on [a, a+ l(a)] or B on [a, a+ l(a)] at stage s+ 1 ensures

that R is met unless V ↾ a + l(a) + 1 changes later (recall that Φ̂ and Ψ̂ are

ibT-reductions hence a convergent computation Φ̂Vs
s (x) is not V -correct only if

V ↾ x+1 ̸= Vs ↾ x+1, and similarly for Ψ̂). Then one argues that for sufficiently

large l(a) and for an appropiate order of the changes of A and B on [a, a+ l(a)],

eventually V cannot repell one of the attacks whence R is met.

The most simple instance of this strategy gives a maximal pair in the c.e. sets

(see the proof of Theorem 17 in [ASDFM13]). There it suffices to let l(a) ≥ a,

and the order in which the numbers in [a, a+ l(a)] are enumerated into A and B

does not matter, as explained in Remark 2.5.5.

In the case of the construction of a maximal pair in the almost-c.e. sets,

the strategy is somewhat more involved. Here it suffices to let l(a) = 2a and

to use A and B alternatingly for the attacks where in each case the minimal

change of the chosen set on the interval [a, a + l(a)] is done (see the proof of

Theorem 9.14.2 in Downey and Hirschfeldt [DH10]). In case of Fan’s theorem

where the pair (A,B) has to be maximal in the almost-c.e. degrees and B has

to be c.e., the strategy becomes considerably more involved – using inductive

calls of appropriate subprocedures – and the required bound l(a) becomes much

harder to describe. For the proof of Lemma 3.4.9, we will adapt Fan’s strategy.

(Note that the construction of sets AΦ̂,Ψ̂,V
a and BΦ̂,Ψ̂,V

a as in the lemma satisfying

condition (3.3) corresponds to the definition of the parts A ∩ [a, a + l(a)] and

B ∩ [a, a+ l(a)] meeting requirement R above.) Due to the additional constraint

that the c.e. set B has to be contained in the given infinite computable set D,

the definition of the function l becomes dependent on D and the strategy has to

be adjusted. In our proof – which we give now – we follow the presentation of

the proof of Fan’s theorem given in Brackmann [Bra13].
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In order to show that the definition of the function l only depends on the

given set D and not on the additional parameters of the requirements, i.e., the

ibT-functionals Φ̂ and Ψ̂ and the oracle set V , we first define l. The definition

of l is based on some auxiliary functions to be used in the formal strategy for

meeting (3.3). The intuition behind these functions will be explained when we

discuss this strategy and prove its correctness.

Definition of the function l

We now define the function l using some auxiliary functions. First let d be the

computable function defined by

d(b, k) = µz(z ≥ k & b+ z ∈ D). (3.5)

Next we define lA(b, k, n) and lB(b, k, n) by a simultaneous nested induction

on n ≥ 1 for all b, k ∈ ω where, for n ≥ 2, an auxiliary function h(b, k, n, i) is

simultaneously defined for all b, k, i ∈ ω, where the definition of h(b, k, n, i) is by

a side induction on i ∈ ω.

Definition 3.4.11. Let b, k, i ∈ ω be given. Let

lA(b, k, 1) = 0, lB(b, k, 1) = 0, and lB(b, k, 2) = d(b, k).

For n ≥ 2 let

h(b, k, n, 0) = d(b, k),

h(b, k, n, i+ 1) = lB(b+ i+ 1, h(b, k, n, i), n− 1), and

lA(b, k, n) = max({lB(b, k, n)} ∪ {i+ l̃b,k,n,i : 1 ≤ i ≤ d(b, k) + |n− 1|})

where

l̃b,k,n,i = lA(b+ i, h(b, k, n, i− 1), n− 1).

For n ≥ 3 let

lB(b, k, n) = d(b, k) + |n− 1|+ h(b, k, n, d(b, k) + |n− 1|)
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where here and in the following, |x| denotes the length of the binary representation

of x ∈ ω.

Then the function l is defined by

l(a) = lA(a, 0, 2
a+1) (3.6)

for all a ∈ ω.

The intuition behind the functions in Definition 3.4.11 is described in Remarks

3.4.13 below.

By computability and infinity of D, d is computable, and so are the other

auxiliary functions. So l is computable. Moreover, for later use note the following

properties of the auxiliary functions which are immediate by definition (for

b, k, i ∈ ω).

d(b, k) ≥ k (3.7)

∀ n ≥ 1 (lA(b, k, n) ≥ lB(b, k, n)) (3.8)

∀ n ≥ 2 (lB(b, k, n) ≥ d(b, k)) (3.9)

∀ n ≥ 3 (h(b, k, n, i+ 1) ≥ d(b+ i+ 1, h(b, k, n, i))) (3.10)

∀ n ≥ 3 (h(b, k, n, i+ 1) ≥ h(b, k, n, i)) (3.11)

Definition of the sets AΦ̂,Ψ̂,V
a and BΦ̂,Ψ̂,V

a

Now fix a, ibT-functionals Φ̂ and Ψ̂, an almost-c.e. set V , computable enu-

merations {Φ̂s}s∈ω and {Ψ̂s}s∈ω of Φ̂ and Ψ̂, respectively, and a computable

almost-enumeration {Vs}s∈ω of V . Uniformly in a, {Φ̂s}s∈ω, {Ψ̂s}s∈ω and {Vs}s∈ω,
we have to give a computable almost-enumeration {AΦ̂,Ψ̂,V

a,s }s∈ω and a computable

enumeration {BΦ̂,Ψ̂,V
a,s }s∈ω of an almost-c.e. set AΦ̂,Ψ̂,V

a and a c.e. set BΦ̂,Ψ̂,V
a , re-

spectively, such that AΦ̂,Ψ̂,V
a ⊆ [a, a+ l(a)], BΦ̂,Ψ̂,V

a ⊆ [a, a+ l(a)] ∩D, and (3.3)

hold.

In order to achieve this, by induction on n ≥ 1, we define effective procedures

Pb,k,n (b ≥ a, k ∈ ω) which, started at a stage s0 with given finite sets As0 and Bs0 ,

define a computable almost-enumeration {As}s≥s0 of a set A and a computable
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enumeration {Bs}s≥s0 of a set B. (The arbitrariness of the starting stage s0

and the initial values As0 and Bs0 is used in the inductive step: when running

procedure Pb,k,n we may invoke procedures of the form Pb′,k′,n−1 which, called at

stage s1 ≥ s0, start with the initial parameters s1, As1 , Bs1 .) We will argue that,

for the procedure Pa,0,2a+1 started at stage 0 with A0 and B0 being empty and

for the sequences {As}s∈ω and {Bs}s∈ω defined in this way, AΦ̂,Ψ̂,V
a,s = As and

BΦ̂,Ψ̂,V
a,s = Bs have the required properties.

Before we can define the procedures Pb,k,n we need some more notation. Given

a stage s and the current approximations As and Bs, we call s critical (w.r.t. As

and Bs) if (3.4), i.e.,

As ∩ [a, a+ l(a)] = Φ̂Vs
s ∩ [a, a+ l(a)] and Bs ∩ [a, a+ l(a)] = Ψ̂Vs

s ∩ [a, a+ l(a)].

holds but with l(a) replaced by lA(b, k, n) and a replaced by b. Procedure Pb,k,n

acts only at stages s+ 1 where s is critical. (If no Pb,k,n acts at stage s+ 1 then

As+1 = As and Bs+1 = Bs.)

For an interval [x, y] and a set X we identify X ∩ [x, y] with the binary string

X(x)X(x+1) . . . X(y) of length y−x+1. Finally, for a binary string σ of length

n we let σ+ be the lexicographical successor σ (of the same length), if it exists

(i.e. if σ ̸= 1n), and we let σ+ = σ otherwise. More precisely,

σ+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ if σ = 1|σ|

τ1 if σ ̸= 1|σ| and ∃τ (σ = τ0)

τ+0 if σ ̸= 1|σ| and ∃τ (σ = τ1).

Definition 3.4.12. Let b ≥ a, k ∈ ω, n ≥ 1, s0 ∈ ω and let As0 , Bs0 be any

finite sets. The procedure Pb,k,n started at stage s0 with the initial sets As0 and

Bs0 is defined by induction on n as follows.

For n = 1, Pb,k,1 consists of the following two phases.

(i) For the first critical stage s̃ ≥ s0, set As̃+1 ↾ b+ 1 = (As̃ ↾ b+ 1)+ and for

all x ≥ b+ 1, set As̃+1(x) = As̃(x).

(ii) For the first critical stage s1 > s̃, finish the procedure at stage s1.
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For n > 1, by inductive hypothesis suppose that Pb′,k′,n−1 is already defined for

all b′ and k′. Let d = d(b, k) + |n− 1|. Then Pb,k,n consists of the following four

phases.

(i)

1. Run Pb+1,h(b,k,n,0),n−1.

2. Run Pb+2,h(b,k,n,1),n−1.

...
...

i. Run Pb+i,h(b,k,n,i−1),n−1.

...
...

d. Run Pb+d,h(b,k,n,d−1),n−1.

We refer to the Pb+i,h(b,k,n,i−1),n−1-procedures of phase (i) as subprocedures

of Pb,k,n. We understand that the first subprocedure starts at stage s0 and

the (i+1)st subprocedure starts at the stage at which the ith one has finished,

if this stage exists and does not start otherwise.

(ii) If all subprocedures of phase (i) finish, let s̃ be the first criticial stage

after the stage that the last subprocedure finished. At stage s̃ + 1, set

Bs̃+1 = Bs̃ ∪ {b+ d(b, k))}.

(iii) For the first critical stage t > s̃, set At+1 ↾ b + 1 + d = (At ↾ b + 1 + d)+

and for all x ≥ b+ 1 + d, set At+1(x) = At(x).

(iv) For the first critical stage s1 > t, finish the procedure at the stage s1.

Before we turn to the verification, in the following remark we give some

intuition about the meaning of the variables b, k, n, i and how the auxiliary

functions from Definition 3.4.11 are connected with the procedures Pb,k,n.

Remark 3.4.13. Let n ≥ 1, b ≥ a, k, i ∈ ω, let s0 be a starting stage and, for

simplicity, assume that As0 and Bs0 are empty (in Claim 2 below, we need a

weaker assumption on As0 and Bs0). Then lA(b, k, n), lB(b, k, n) and h(b, k, n, i)

are defined such that the following hold.

1. b is the least and b + lA(b, k, n) is the largest number on which A may

change during the run of Pb,k,n (and they are changed if Pb,k,n finishes).
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2. If n = 1 then Pb,k,n does not enumerate any number into B. If n ≥ 2 then

b+ d(b, k) is the least and b+ lB(b, k, n) is the largest number which may

be enumerated into B during the run of Pb,k,n (and they are enumerated if

Pb,k,n finishes).

3. i is an auxiliary variable used in in the inductive step in the definition

of Pb,k,n (see phase (i) for n > 1 in Definition 3.4.12). The numbers

h(b, k, n, i) are the numbers “k′” used in phase (i) in the inductive step

for the subprocedures of Pb,k,n. For consecutive i’s, the values h(b, k, n, i)

code which numbers are enumerated into B by the ith subprocedure. More

precisely, during the run of the ith subprocedure (i ≥ 1), only numbers from

the interval [b+ i+ h(b, k, n, i− 1), b+ i+ h(b, k, n, i)] may enter B. (We

prove a slightly stronger statement in Claim 2.)

Verification

Let {As}s∈ω and {Bs}s∈ω be the sequences defined by the procedure Pa,0,2a+1

started at stage s0 = 0 with A0 = B0 = ∅, and let AΦ̂,Ψ̂,V
a,s = As and B

Φ̂,Ψ̂,V
a,s = Bs.

We will show that

AΦ̂,Ψ̂,V
a = lim

s→∞
AΦ̂,Ψ̂,V
a and BΦ̂,Ψ̂,V

a,s = lim
s→∞

BΦ̂,Ψ̂,V
a,s (3.12)

exist and have the required properties.

For this sake we prove some more general claims on the sequences {As}s≥s0
and {Bs}s≥s0 defined by the procedures Pb,k,n. We first observe that, in any

case, these sequences are a computable almost-enumeration and a computable

enumeration, respectively, and can be uniformly computed from a, {Φ̂s}s∈ω,
{Ψ̂s}s∈ω, {Vs}s∈ω, the parameters b, k, n and the initial values s0, As0 , Bs0 .

Claim 1. Let b, k ∈ ω and n ≥ 1 be given and suppose that Pb,k,n starts at stage

s0 with the finite sets As0 and Bs0 where Bs0 ⊆ D. Then {As}s≥s0 and {Bs}s≥s0
are uniformly computable in a, {Φ̂s}s∈ω, {Ψ̂s}s∈ω, {Vs}s∈ω, b, k, n, s0, As0 , Bs0.

Furthermore, it holds that
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1. ∀x∀s ≥ s0 (As ↾ x ≤lex As+1 ↾ x),

2. ∀x∀s ≥ s0 (Bs(x) ≤ Bs+1(x)),

3. ∀s ≥ s0 (Bs ⊆ D).

Proof. Uniform computability of {As}s≥s0 and {Bs}s≥s0 follows from the (uni-

form) effectivity of the procedures Pb,k,n. The second part of the claim (i.e., 1.,2.

and 3.) follows by an easy induction on n where in the inductive step, we use

the fact that b+ d(b, k) ∈ D which is clear by definition of d.

Note that Claim 1 applied to the procedure Pa,0,2a+1 with the initial values

s0 = 0 and A0 = B0 = ∅ shows that the sequences {AΦ̂,Ψ̂,V
a,s }s∈ω and {BΦ̂,Ψ̂,V

a,s }s∈ω
are uniformly computable in a, {Φ̂s}s∈ω, {Ψ̂s}s∈ω, and {Vs}s∈ω, that the former is

a computable almost-enumeration while the latter is a computable enumeration

whence (3.12) exist and the sets AΦ̂,Ψ̂,V
a and BΦ̂,Ψ̂,V

a are almost-c.e. and c.e.,

respectively. Moreover, BΦ̂,Ψ̂,V
a ⊆ D. So it only remains to show that

AΦ̂,Ψ̂,V
a ⊆ [a, a+ l(a)] and BΦ̂,Ψ̂,V

a ⊆ [a, a+ l(a)] (3.13)

and (3.3) hold. The former easily follows from the next claim which states that

the functions d(b, k), lB(b, k, n) and lA(b, k, n) are chosen in such a way that

Pb,k,n changes A only inside the interval [b, b + lA(b, k, n)] and B only inside

[b+d(b, k), b+ lB(b, k, n)], provided that As0 and Bs0 are empty on the respective

intervals.

Claim 2. Suppose that a procedure Pb,k,n starts at stage s0, finishes at stage s1

and As0 , Bs0 are finite sets such that

Bs0 ∩ [b+ d(b, k), b+ lB(b, k, n)] = ∅,

As0 ∩ [b, b+ lA(b, k, n)] = ∅.
(3.14)

Then at stage s1, it holds that

As1 ∩ [b, b+ lA(b, k, n)] = {b}. (3.15)
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Furthermore, for all s ≥ s0,

Bs ↾ b+ d(b, k) = Bs+1 ↾ b+ d(b, k),

Bs ∩ [b+ lB(b, k, n) + 1,∞) = Bs+1 ∩ [b+ lB(b, k, n) + 1,∞),

As ↾ b = As+1 ↾ b,

As ∩ [b+ lA(b, k, n) + 1,∞) = As+1 ∩ [b+ lA(b, k, n) + 1,∞).

(3.16)

Finally, if Pb,k,n does not finish then (3.16) holds for all stages s ≥ s0.

Proof. The proof is by induction on n ≥ 1. First suppose that Pb,k,n finishes

at stage s1 ≥ s0. For n = 1, the claim holds because we only change A(b)

from 0 to 1 and do not change B. For n > 1, by inductive hypothesis assume

that Claim 2 holds for n − 1 and all b′ and k′. Consider phase (i) of Pb,k,n.

Let d = d(b, k) + |n − 1| and {ti}1≤i≤d be the sequence of stages at which the

subprocedures Pb+i,h(b,k,n,i−1),n−1 finish, respectively and let t0 = s0.

In the following, we argue that the respective intervals [b, b+ lA(b, k, n)] for

A and [b+ d(b, k), b+ lB(b, k, n)] for B are big enough so that all subprocedures

Pb+i,h(b,k,n,i−1),n−1 change A and B only inside these intervals. For n = 2, during

phase (i), by inductive hypothesis, Pb+i,h(b,k,2,i−1),1 only changes A(b + i) for

1 ≤ i ≤ d(b, k)+1 from 0 to 1 during [ti−1, ti) (note that by inductive hypothesis,

A(b + i) is not changed during [s0, ti−1)). Moreover, Pb′,k′,1-procedures do not

change B. Hence, in order to show that the subprocedures of Pb,k,2 change A

and B only inside [b, b+ lA(b, k, 2)] and [b, b+ lB(b, k, 2)], respectively, it suffices

to show that lA(b, k, 2) ≥ d(b, k) + 1. But this holds since by Definition 3.4.11,

lA(b, k, 2) ≥ d(b, k) + 1 + lA(b+ d(b, k) + 1, h(b, k, 2, d(b, k)), 1)

= d(b, k) + 1 = d.

Thus, at stage td, it holds that

Atd ∩ [b, b+ lA(b, k, 2)] = {b+ 1, . . . , b+ d},
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and for all s ≥ s0,

Bs ↾ b+ 1 + d(b+ 1, d(b, k)) = Bs+1 ↾ b+ 1 + d(b+ 1, d(b, k)),

Bs ∩ [b+ lB(b, k, 2) + 1,∞) = Bs+1 ∩ [b+ lB(b, k, 2) + 1,∞),

As ↾ b+ 1 = As+1 ↾ b+ 1,

As ∩ [b+ lA(b, k, 2) + 1,∞) = As+1 ∩ [b+ lA(b, k, 2) + 1,∞).

For n ≥ 3, we first note that by (3.11), h(b, k, n, i) is nondecreasing in i. For

notational convenience, let us abbreviate (compare to Definition 3.4.11)

l̃b,k,n,i = lA(b+ i, h(b, k, n, i− 1), n− 1), and

db,k,n,i = d(b+ i, h(b, k, n, i− 1)).

Then by Definition 3.4.11 and (3.7) and (3.10), for all 1 ≤ i ≤ d = d(b, k)+|n−1|,
we have that

lB(b, k, n) ≥ (i+ h(b, k, n, i)), (3.17)

lA(b, k, n) ≥ i+ l̃b,k,n,i, (3.18)

db,k,n,i+1 ≥ h(b, k, n, i) ≥ db,k,n,i. (3.19)

In particular, by (3.19), the intervals [b+ i+db,k,n,i, b+ i+h(b, k, n, i)] (i ≤ d) are

pairwise disjoint. Hence, in order to show that during phase (i), all subprocedures

change A and B only inside the respective intervals, it suffices to show that for

all 1 ≤ i ≤ d+ 1,

Bti−1
∩ [b+ i+ db,k,n,i, b+ lB(b, k, n)] = ∅,

Ati−1
∩ [b, b+ lA(b, k, n)] = {b+ 1, . . . , b+ i− 1},

(3.20)

and for all 1 ≤ i ≤ d and s ≥ ti−1 (recall that lB(b+ i, h(b, k, n, i− 1), n− 1) =
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h(b, k, n, i)),

Bs ↾ b+ i+ db,k,n,i = Bs+1 ↾ b+ i+ db,k,n,i,

Bs ∩ [b+ i+ h(b, k, n, i) + 1,∞) = Bs+1 ∩ [b+ i+ h(b, k, n, i) + 1,∞),

As ↾ b+ i = As+1 ↾ b+ i,

As ∩ [b+ i+ l̃b,k,n,i + 1,∞) = As+1 ∩ [b+ i+ l̃b,k,n,i + 1,∞).

(3.21)

(Hence, during the run of the ith subprocedure, only numbers from [b + i +

db,k,n,i, b + i + h(b, k, n, i)] may enter B). For that matter, we show (3.20) and

(3.21) by induction on i.

For i = 1, (3.20) holds since t0 = s0 and by (3.17) (note that by (3.7),

db,k,n,1 = d(b+ 1, d(b, k)) ≥ d(b, k)). Thus, by inductive hypothesis on n− 1, we

may apply the claim to the subprocedure Pb+1,h(b,k,n,0),n−1 starting at stage s0

with As0 and Bs0 . Hence, (3.21) holds for i = 1 and (3.20) holds for i ≤ 2. Next,

assume that i ≤ d is such that (3.20) holds for all 1 ≤ j ≤ i and (3.21) holds for

all j < i. Then by (3.17), (3.18) and (3.19), it holds that

Bti−1
∩ [b+ i+ db,k,n,i, b+ i+ h(b, k, n, i)] = ∅

Ati−1
∩ [b+ i, b+ i+ l̃b,k,n,i] = ∅.

Whence, again by inductive hypothesis on n− 1, we may apply Claim 2 to the

subprocedure Pb+i,h(b,k,n,i−1),n−1 starting at stage ti−1 with Ati−1
and Bti−1

. But

this implies (3.21) for i and (3.20) for i+ 1.

Thus, for all n ≥ 2, at stage td, it holds that

Atd ∩ [b, b+ lA(b, k, n)] = {b+ 1, . . . , b+ d}, (3.22)

and for all s ≥ s0,

Bs ↾ b+ 1 + d(b+ 1, d(b, k)) = Bs+1 ↾ b+ 1 + d(b+ 1, d(b, k)),

Bs ∩ [b+ lB(b, k, n) + 1,∞) = Bs+1 ∩ [b+ lB(b, k, n) + 1,∞),

As ↾ b+ 1 = As+1 ↾ b+ 1,

As ∩ [b+ lA(b, k, n) + 1,∞) = As+1 ∩ [b+ lA(b, k, n) + 1,∞),

(3.23)
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holds. Since Pb,k,n finishes, phase (ii) is reached and there exists a least critical

stage s̃ ≥ td. At stage s̃, it holds that Bs̃+1 = Bs̃ ∪ {b + d(b, k)}. By (3.7),

b+ 1 + d(b+ 1, d(b, k)) > b+ d(b, k). So by (3.23) and since we did not change

B during (td, s̃], we have b+ d(b, k) ̸∈ Bs̃. Hence, the enumeration of b+ d(b, k)

into B at stage s̃ + 1 indeed changes B(b + d(b, k)) from 0 to 1 during phase

(ii). Since phase (iii) is reached, there exists a least critical stage t > s̃. At stage

t+ 1, we replace At ↾ b+ 1 + d by (At ↾ b+ 1 + d)+. By (3.22), (3.23) and since

we do not change A during (td, t], by definition of +, we have that

At+1 ∩ [b, b+ lA(b, k, n)] = {b}.

(In particular, during phase (iii), we change A(b) from 0 to 1.) During phase (iv),

we change neither A nor B. But this implies (3.15) and, for all s ≥ s0, (3.16).

Finally, if Pb,k,n does not finish, then the above argument shows that (3.16)

holds for all s ≥ s0 (the details are left to the reader).

Note that Claim 2 implies (3.13) as follows. For Pa,0,2a+1 , s0 = 0 and

A0 = B0 = ∅, the hypotheses of Claim 2 are satisfied. So (3.16) holds for all

sufficiently large s. Since, by (3.8) and (3.6), lB(a, 0, 2
a+1) ≤ lA(a, 0, 2

a+1) = l(a)

and since AΦ̂,Ψ̂,V
a and BΦ̂,Ψ̂,V

a are the limit of the As and Bs, respectively, this

implies (3.13).

It remains to show that (3.3) holds. In order to do so we will argue that

the failure of (3.3) implies that the procedure Pa,0,2a+1 started at stage s0 = 0

with the sets A0 = B0 = ∅ will finish and that this in turn will imply that, for

V ↾ a + 1 viewed as a binary number, V ↾ a + 1 ≥ 2a+1 which is impossible.

Again we show this by proving a more general claim. Before we state the claim

we introduce some notation to be used in formulating and proving the claim.

We identify strings σ ∈ 2<ω with the natural number

⌜σ⌝ =
∑︂
i<|σ|

σi2
|σ|−i−1,

and likewise, we identify numbers with binary strings via their binary expansions.

We shortly write σ < τ for ⌜σ⌝ < ⌜τ⌝. Note that we have to take care about how
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exactly we identify numbers with strings (and vice versa). Namely, σ < τ does

not imply in general that σ <lex τ . But if σ and τ have the same length, then

indeed σ <lex τ ⇔ ⌜σ⌝ < ⌜τ⌝, i.e., < coincides with the lexicographical ordering.

In particular, for every binary string σ, every number y < 2|σ| corresponds to a

unique τ such that |τ | = |σ| and ⌜τ⌝ = y.

So unless otherwise stated, when we define operations that involve both

strings and numbers, we tacitly assume that all strings involved have the same

length and the lengths of binary representations of the numbers involved are at

most as long as the strings.

In this way, if σ is a binary string and y is a number such that ⌜σ⌝+ y < 2|σ|

(or if y ≤ ⌜σ⌝), we may define σ + y (σ − y) as the unique binary string τ of

length |σ| such that ⌜τ⌝ = ⌜σ⌝+ y (⌜τ⌝ = ⌜σ⌝− y). In particular, if y = 1, then

τ = σ+ (τ+ = σ).

Similarly, if y < 2|σ| and y · ⌜σ⌝ < 2|σ|, we define the product y · σ and finally,

if σ and τ are binary strings such that |σ| = |τ | and σ < τ , we write τ − σ for

the unique number z such that σ + z = τ . Note that, for any binary strings

σ, τ , it holds that στ ≥ 2|τ | · 0|τ |σ which we shortly write as στ ≥ 2|τ | · σ (this is

justified by that fact that ⌜0|τ |σ⌝ = ⌜σ⌝).

Now the claim is as follows.

Claim 3. Assume that procedure Pb,k,n starts at stage s0, finishes at stage s1, and

at stage s0, it holds that

As0 ∩ [b, b+ lA(b, k, n)] = Bs0 ∩ [b+ d(b, k), b+ lB(b, k, n)] = ∅.

Then it holds that

Vs1 ↾ b+ 1− Vs0 ↾ b+ 1 ≥ n.

Proof. The proof is by induction on n ≥ 1.

Suppose n = 1. In this case, the procedure changes A(b) at a critical stage

from 0 to 1 once during [s0, s1]. By the fact that Φ̂ is an ibT-reduction and
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{Vs}s∈ω is a computable almost enumeration, this forces Vs1 ↾ b+1 >lex Vs0 ↾ b+1.

So Vs1 ↾ b+ 1− Vs0 ↾ b+ 1 ≥ 1.

Next, suppose n + 1 > 1 and by inductive hypothesis, suppose the claim

holds for all procedures Pb′,k′,n. Let d = d(b, k) + |n| and let {ti}1≤i≤d denote the

stages at which the subprocedures Pb+i,h(b,k,n+1,i−1),n finish, respectively and let

t0 = s0 and σ = Vs0 ↾ b+ 1. We show by induction on 0 ≤ i ≤ d that

Vti ↾ b+ 1 + i ≥ 2iσ + (2i − 1)n. (3.24)

For i = 0, this holds by definition of σ. Next, assume that (3.24) holds for i < d.

Then we observe that

Vti ↾ b+ 1 + i+ 1 ≥ 2 · (Vti ↾ b+ 1 + i)

which together with the inductive hypothesis on n

Vti+1
↾ b+ 1 + i+ 1− Vti ↾ b+ 1 + i+ 1 ≥ n

yields

Vti+1
↾ b+ 1 + i+ 1 ≥ 2(Vti ↾ b+ 1 + i) + n

≥ 2i+1σ + (2i+1 − 2)n+ n

= 2i+1σ + (2i+1 − 1)n.

Hence, at stage td, it holds that

Vtd ↾ b+ 1 + d ≥ 2dσ + (2d − 1)n = 2d(σ + n)− n

By a calculation with carryovers, 2d(σ + n)− n has the form

(σ + n− 1)1d−|n|j0 . . . j|n|−1

where jl < 2 (l < |n|), since d ≥ |n|. In particular, ⌜σ⌝ + n − 1 < 2b+1

(so σ + n − 1 is a well-defined binary string of length b + 1), since otherwise
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Vtd ↾ b+ 1 ≥ 2b+1 which is impossible. Since Pb,k,n finishes, there exists a least

critical stage s̃ ≥ td and a least critical stage t > s̃. By definition of phase (ii) of

Pb,k,n, we enumerate b+d(b, k) into B at stage s̃+1. By choice of d−|n| = d(b, k)

and the fact that Ψ̂ is an ibT-reduction, there must be a stage s ∈ (s̃, t] such

that Vs ↾ b+ 1 + d(b, k) > (σ + n− 1)1d(b,k); hence,

Vs̃ ↾ b+ 1 + d(b, k) ≥ (σ + n)0d(b,k), i.e.,

Vs̃ ↾ b+ 1 ≥ σ + n.

Similarly, it must be that ⌜σ⌝+n ̸≥ 2b+1 (whence |σ+n| = b+1) since otherwise

Vt ↾ b+ 1 ≥ 2b+1. By the proof of Claim 2, A(b) changes from 0 to 1 at stage

t+ 1. Hence, since Φ̂ is an ibT-reduction, this forces a change of V below b+ 1

until stage s1, i.e., (recall that σ = Vs0 ↾ b+ 1)

Vs1 ↾ b+ 1 > (Vs0 ↾ b+ 1) + n,

or, equivalently,

Vs1 ↾ b+ 1− Vs0 ↾ b+ 1 ≥ n+ 1.

So the claim holds for n+ 1 too.

We conclude the proof of Lemma 3.4.9 by deducing (3.3) from Claim 3.

Consider the procedure Pa,0,2a+1 started at stage s = 0 with A0 = B0 = ∅. Since
V ↾ a + 1 < 2a+1 it follows by Claim 3 that the procedure does not finish. So

there are only finitely many critical stages s for the corresponding sets As and

Bs. Since A
Φ̂,Ψ̂,V
a,s = As and B

Φ̂,Ψ̂,V
a,s = Bs this implies that there is a stage s1 such

that

∀s ≥ s1 ∃ x ∈ [a, a+ l(a)] (AΦ̂,Ψ̂,V
a,s (x) ̸= Φ̂Vs

s (x) or BΦ̂,Ψ̂,V
a,s (x) ̸= Ψ̂Vs

s (x)).

However, this implies (3.3) by the use-principle. This completes the proof of

Lemma 3.4.9.
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3.4.3 Totally ω-C.E. Degrees and Complex Almost-C.E.

Sets

We conclude the results of this chapter by looking at complex almost-c.e. sets

and how they are related to sets of not totally ω-c.e. degree.

Definition 3.4.14 (Kanovich). Let h be a computable order. A set A is h-

complex if C(A ↾ n) ≥ h(n) for all n. A set A is complex if A is h-complex for

some computable order.

Kanovich (see Theorem 8.16.7 in [DH10]) shows that a c.e. set A is complex

if and only if A is wtt-complete. Since any almost-c.e. set is wtt-equivalent to

a c.e. set and since Kjos-Hanssen, Merkle and Stephan [KHMS11] observe that

the class of complex sets is closed upwards under wtt-reducibility, the complex

almost-c.e. sets coincide with the wtt-hard almost-c.e. sets.

Lemma 3.4.15. An almost-c.e. set A is complex if and only if A is wtt-hard

(for the class of c.e. sets).

Note that, for any wtt-hard almost-c.e. set C and any number m, the m-

bounded left-shift C−m = {x : x+m ∈ C} of C is wtt-hard (since C ≡cl C−m)

and almost-c.e. too and, for any set A such that A ≤cl C holds there exists

m0 such that A ≤ibT C−m0 holds. So in order to show that u.s.p. sets are not

cl-reducible to any complex almost-c.e. set, it suffices to show the following

theorem.

Theorem 3.4.16. Let A be an almost-c.e. set with the universal similarity

property and let C be a wtt-hard almost-c.e. set. Then A ̸≤ibT C.

The theorem is immediate by Lemma 3.4.8 and the following equivalence.

For the sake of completeness, we give the proof.

Lemma 3.4.17. Let A be an almost-c.e. set. The following are equivalent.

(i) A is not ibT-reducible to any wtt-hard almost-c.e. set.

(ii) For any infinite computable set D there is a computably enumerable subset

B of D such that (A,B) is an ibT-maximal pair in the almost-c.e. sets.
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Proof. (i) ⇒ (ii). The proof is by contraposition. Assume that there is an

infinite computable set D such that, for all c.e. subsets B of D, there is an

almost-c.e. set C such that A ≤ibT C and B ≤ibT C. Fix B ⊆ D such that

B is wtt-complete. Then, by B ≤ibT C, the almost-c.e. set C is wtt-hard and

A ≤ibT C.

(ii) ⇒ (i). Again, the proof is by contraposition. Fix a wtt-hard almost-c.e.

set C such that A ≤ibT C. First observe that there is a strictly increasing

computable function f such that C is f -T-hard, i.e., such that any c.e. set

B is reducible to C by an f -bounded Turing reduction. (Namely, there is a

computable function g, such that any c.e. set is g-bounded Turing reducible to

the universal c.e. set Ku = {⟨e, x⟩ : x ∈ We}, and, by choice of C, there is a

computable function h such that Ku is h-bounded Turing reducible to C. So,

since w.l.o.g. we may assume that the functions g and h are strictly increasing,

the computable function f = h ◦ g will do.) Now let D = {f(x) : x ∈ ω} be the

range of f . Then D is infinite and computable. So, in order to show that (ii)

fails, it suffices to show that, for any c.e. subset B of D, B is ibT-reducible to

C. So fix such a set B. Then there is a c.e. set B̂ such that B is the f -shift

B̂f = {f(x) : x ∈ B̂} of B̂. Since, by choice of f , B̂ ≤f -T C, this easily implies

that B ≤ibT C.

Finally, the converse of Theorem 3.4.16 holds as well.

Theorem 3.4.18. Let a be a c.e. Turing degree which is totally ω-c.e., and let

A be any almost-c.e. set in a. There is a wtt-hard almost-c.e. set B such that

A ≤ibT B.

So, in total, we have the following result which proves a conjecture by

Greenberg.

Theorem 3.4.19. For a c.e. Turing degree a, the following are equivalent.

1. a is not totally ω-c.e.

2. There exists an almost-c.e. set A ∈ a such that A ̸≤cl B holds for any

complex almost-c.e. set B.
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3.5 Summary

The main results of this chapter can be summarized as follows. First of all, we

proved that array noncomputability for almost-c.e. (wtt-)degrees coincides with

that of c.e. degrees.

Theorem. For a c.e. Turing degree (wtt-degree) a, the following are equivalent.

1. a is a.n.c.

2. a is a.c.e.-a.n.c.

3. For any v.s.a. F there exists a (purely) F-a.c.e.-a.n.c. set A ∈ a.

So, by [DJS90], a.c.e.-a.n.c. (wtt-) degrees are closed upwards.

Corollary. For any two c.e. (wtt-) degrees a and b such that a ≤ b holds and

such that a is a.c.e.-a.n.c., b is a.c.e.-a.n.c., too.

Then in contrast to c.e. a.n.c. sets, there exist almost-c.e. sets which are

F -a.c.e.-a.n.c. for all very strong arrays F . These are by definition the sets with

the universal similarity porperty. It turns out that these sets exist precisely in

the c.e. not totally ω-c.e. degrees.

Theorem. For a c.e. Turing degree a the following are equivalent.

(i) There is an almost-c.e. set A with the universal similarity property in a.

(ii) a is not totally ω-c.e.

Then for certain properties P, using u.s.p. sets facilitates to prove that c.e.

not totally ω-c.e. degrees contain sets with a certain property P by showing that

u.s.p. sets have property P . The idea is to check whether P can be forced by a

list of requirements Re, where, for each Re the attempt is to prove that there

exists a v.s.a. Fe and an Fe-a.c.e. set Be such that any set which is Fe-similar

to Be meets Re; hence, any Fe-a.c.e.-a.n.c. set meets Re and any u.s.p. set A

has property P. Moreover, if we can show that the v.s.a. Fe can be chosen

independently of the requirement Re, i.e., F = Fe holds for all e (where F = F0)
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then it follows that any a.c.e.-a.n.c. set A has property P; whence, any a.n.c.

degree contains a set with property P. This reaffirms the idea that not totally

ω-c.e. degrees provide a uniform form of multiple permitting. In this chapter, we

gave two instances of this methodology. First, we showed that any c.e. not totally

ω-c.e. degree contains an almost-c.e. CB-random set, thereby strengthening the

result from [BDN12]. In order to do that, we needed the following lemma.

Lemma. Let f be a computable function. There is a c.v.s.a.i. F = {Fn}n∈ω
such that any F-a.c.e.-a.n.c. set A is f -ML-random.

Then we may immediately deduce that we get the desired result.

Theorem. Any almost-c.e. set with the universal similarity property is CB-

random. Hence, any c.e. Turing degree a which is not totally ω-c.e. contains an

almost-c.e. set A ∈ a which is CB-random.

Secondly, we proved a conjecture by Greenberg that the c.e. not totally ω-c.e.

degrees are characterized as those c.e. degrees which contain an almost-c.e. set

which is not cl-reducible to any complex almost-c.e. set. For the if-direction, we

needed a lemma on maximal pairs.

Lemma. Let A be a an almost-c.e. set with the universal similarity property

and let D be any infinite computable set. There is a c.e. set B ⊆ D such that

(A,B) is an ibT-maximal pair in the almost-c.e. sets.

Finally, since complex almost-c.e. sets are just the almost-c.e. sets which

are wtt-hard for the class of c.e. sets by Lemma 3.4.15 and since the question

whether an almost-c.e. set A is cl-reducible to a wtt-hard almost-c.e. set can be

converted in to into the question whether, for any infinite computable set D,

A is half of a maximal pair, where the second half B is chosen to be c.e. and

a subset D by Lemma 3.4.17, this shows that any u.s.p. set is not cl-reducible

to any complex almost-c.e. set; hence, any c.e. not totally ω-c.e. set contains a

set which is not cl-reducible to any complex almost-c.e. set. So, since Theorem

3.4.18 provides the converse, in summary, we have the following result.

Theorem. For a c.e. Turing degree a, the following are equivalent.
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1. a is not totally ω-c.e.

2. There exists an almost-c.e. set A ∈ a such that A ̸≤cl B holds for any

complex almost-c.e. set B.
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Chapter 4

Multiple Permitting and

r-Maximality

4.1 Introduction

In 1944, Emil Post addressed in his paper [Pos44] the famous question whether

there exists an incomplete and noncomputable c.e. Turing degree. Today, this is

known as Post’s problem. In his paper, he also introduced the notions of simple,

hypersimple and hyperhypersimple sets. Although it is known that one cannot

solve Post’s problem using simple, hypersimple (h-simple) and hyperhypersimple

(hh-simple) sets as projected by Post, these properties have later been investigated

independently and other notions of simplicity have been proposed, e.g. maximal

sets by Myhill [Myh56]. An overview of the best known simplicity notions and

their relations among each other is given in Fig. 4.1 (see Soare [Soa87, p.211]).

maximal

r-maximal

quasi-maximal hh-simple

sh-simple fsh-simple

dense simple

h-simple simple

Figure 4.1: Most common simplicity properties and their relations among each
other. An arrow P → Q indicates that property P implies property Q but not
vice versa.
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Now given a subclass C of the c.e. sets, it is an interesting question which of

the simplicity notions may hold for sets in C. An example of a class for which

this question was investigated is the class of the array noncomputable (a.n.c.)

sets.

In [DJS90], Downey, Jockusch and Stob describe exactly which of the proper-

ties in Fig. 4.1 may hold for a.n.c. sets and which not. On the negative side, they

showed that a.n.c. sets can neither be dense simple nor strongly hypersimple

(sh-simple). On the positive side, they showed that there is a finitely strongly

hypersimple (fsh-simple) a.n.c. set.

In this chapter we address the question if the boundaries are the same if

we replace a.n.c. sets by their weak truth table (wtt) degrees. On the negative

side, recently Ambos-Spies [AS18, Theorem 3] showed that no a.n.c. wtt-degree

contains a dense simple set, thereby extending the corresponding result in [DJS90]

from sets to wtt-degrees. In contrast to [DJS90], however, we show here that

the positive bound turns out to be stronger for a.n.c. wtt-degrees than for a.n.c.

sets. More precisely, we prove the following.

Theorem 4.1.1. There exists a c.e. wtt-degree a which is a.n.c. and r-maximal.

By Theorem 4.1.1 and the result by Ambos-Spies [AS18], we completely

describe which of the simplicity properties in Fig. 4.1 may hold for any a.n.c.

wtt-degree.

The outline of this chapter is as follows. In Section 4.2, we give the basic

definitions that are needed for the proof of Theorem 4.1.1. In Section 4.3, we

give the basic idea of the proof and give the formal construction. Finally, we

verify that the construction yields a set with the required properties.

Our results in this chapter are published in [Mon18].

4.2 Preliminaries

First of all, recall the definition of an r-maximal set.

Definition 4.2.1. A c.e. set A is r-maximal if it is coinfinite and for every

computable set R, either R ∩ Ā or R̄ ∩ Ā is finite.
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For the proof of Theorem 4.1.1, it is convenient to use a characterization of

the a.n.c. wtt-degrees given by multiply permitting sets. Multiply permitting sets

have been introduced by Ambos-Spies in [AS18]. For the definition of multiply

permitting sets, recall from Definition 2.2.1 that an infinite sequence of finite

sets F = {Fn} is a very strong array (v.s.a.) if the sets Fn are uniformly given

by their canonical index such that they are mutually disjoint, nonempty and

growing in size. Then multiply permitting c.e. sets are defined as follows.

Definition 4.2.2 ([AS18]). Let F = {Fn}n∈ω be a v.s.a., let f be a computable

function, let A be a c.e. set, and let {As}s∈ω be a computable enumeration of

A. Then A is F-permitting via f and {As}s∈ω if, for any partial computable

function ψ,

∃∞n ∀x ∈ Fn (ψ(x) ↓ ⇒ A ↾ f(x) + 1 ̸= Aψ(x) ↾ f(x) + 1) (4.1)

holds. A is F-permitting via f if there is a computable enumeration {As}s∈ω
of A such that A is F-permitting via f and {As}s∈ω; A is F -permitting if A is

F-permitting via some computable f ; and A is multiply permitting if A is F-

permitting for some v.s.a. F . Finally, a c.e. wtt-degree a is multiply permitting

if there is a multiply permitting set A ∈ a.

As shown in [AS18, Lemma 2 and Theorem 2], the c.e. multiply permitting

wtt-degrees coincide with the a.n.c. wtt-degrees.

Theorem 4.2.3. For a c.e. wtt-degree a, the following are equivalent.

1. a is a.n.c.

2. a is multiply permitting.

3. Every c.e. set A ∈ a is multiply permitting.

So for the sake of proving Theorem 4.1.1, it suffices to construct a c.e. set A

which is both multiply permitting and r-maximal. Before we state the formal

construction of such a set A, let us give some idea of the proof.
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4.3 Proof of Theorem 4.1.1

The construction of A is divided into two parts. First, we construct a c.e. set

B such that B is r-maximal and such that the complement B̄ is “big enough”

(which is made precise in (4.2) below). Then we define a v.s.a. F and construct

A as a c.e. superset of B such that A is F -permitting via the identity function.

So first let us make precise what B looks like.

Lemma 4.3.1. There exists a c.v.s.a.i. G = {Gn}n∈ω and an r-maximal set B

such that

∃∞n (|Gn ∩ B̄| ≥ (n+ 1)2). (4.2)

We claim that from Lemma 4.3.1, we can define a c.e. set A as required.

Proof of Theorem 4.1.1 using Lemma 4.3.1. Fix a c.v.s.a.i. G = {Gn}n∈ω and

B as in Lemma 4.3.1 and fix a computable enumeration {Bs}s∈ω of B. Let

F = {Fn}n∈ω be the unique v.s.a. such that Fn = {xn0 , . . . , xnn}, where xn0 , . . . , xnn
are the first n+ 1 elements of Gn+1 in order of magnitude (note that Fn ⊆ Gn+1

since |Gn| ≥ n+1 for all n; hence, max(Gn) < min(Fn) as G is a c.v.s.a.i.). Then

we define a computable enumeration {As}s∈ω of A in stages s as follows, where

As denotes the finite set of numbers that are enumerated into A by stage s.

Construction of A.

Stage 0. A0 = ∅.

Stage s+ 1. Given As, let Ns be the set of all n ∈ ω such that

(a) Gn ̸⊆ As and

(b) ∃ e, x (e ≤ n & x ∈ Fn & φe,s(x) ↑ & φe,s+1(x) ↓)

hold (note that Ns ⊆ ω ↾ s and φe(x) ≤ s holds for any such e, x, s). Let

As+1 = Bs+1 ∪ As ∪ {min(Gn \ As) : n ∈ Ns}.

We claim that the so constructed set A is multiply permitting and r-maximal.

Clearly, it suffices to show that A is multiply permitting (namely, every multiply
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permitting set is noncomputable; hence, Ā is infinite, and every coinfinite c.e.

superset of an r-maximal set is r-maximal as well). To this end, let e be given.

By (4.2), fix n ≥ e such that |Gn ∩ B̄| ≥ (n + 1)2. We claim that any such n

witnesses that the inner clause of (4.1) holds for φe in place of ψ with f(x) = x.

Since by Lemma 4.3.1, there exist infinitely many such n, this proves the claim.

By construction and by convention on converging computations, it suffices to

show that Gn ̸⊆ As holds for any stage s such that (b) holds. For a proof by

contraposition, let s be a stage such that Gn ⊆ As. Now for any stage s′, a

number may enter A ∩ Gn only if (b) holds at stage s′ + 1 or if x enters B at

stage s′ + 1. But on the one hand, there are at most |Fn| · (n + 1) = (n + 1)2

numbers that may enter A ∩Gn via (b). On the other hand, Gn ∩ B̄ ≥ (n+ 1)2

by choice of n. So Gn ⊆ As can only hold if φe,s(x) ↓ holds for all x ∈ Fn; hence,

(b) cannot hold for any stage t ≥ s.

Thus, it remains to show that Lemma 4.3.1 holds.

4.3.1 Proof of Lemma 4.3.1: Construction of B

For the proof of Lemma 4.3.1, we effectively construct a c.e. set B in stages

s where Bs denotes the finite set of numbers which are enumerated into B by

stage s. Before we give the formal construction, let us discuss some of the ideas

behind it and introduce some of the concepts to be used in the construction.

We give the definition of the c.v.s.a.i. G = {Gn}n∈ω in advance. We define

{Gn}n∈ω as the unique c.v.s.a.i. such that min(G0) = 0, min(Gn+1) = max(Gn)+1

and

|Gn| = 2
n(n+1)

2 (n+ 1)2 (4.3)

holds. Then it suffices to construct B such that (4.2) holds and such that B

meets for all e the requirements

Qe : V
0
e ∪ V 1

e = ω ⇒ ∃i ≤ 1 ∀∞n (V i
e ∩Gn ⊆ B). (4.4)

where {(V 0
e , V

1
e )}e∈ω is an effective enumeration of all pairs of disjoint c.e. sets.

Such an enumeration can be easily obtained as follows. Given e = ⟨e0, e1⟩ and
stage s, let te,s be the largest stage t ≤ s such that We0,t ∩We1,t = ∅ and let
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V i
e,s = Wei,te,s for i ≤ 1. Then V 0

e,s ∩ V 1
e,s = ∅ for all e, s ∈ ω and if We0 and We1

are disjoint then V i
e = Wei for all i ≤ 1. We call a requirement Qe infinitary if

the hypothesis of Qe holds.

Clearly, it is undecidable whether a requirement is infinitary (in fact, it is

not hard to show that this question is Π2-complete). So we have to effectively

approximate this question in the course of the construction. For this we define T

as the full binary tree as a priority tree. A node α ∈ T of length n codes a guess

at which of the first n requirements are infinitary where, for e < n, α(e) = 0

codes that Qe is infinitary. Correspondingly we call e an infinitary edge of α

in this case. Then the true path TP is the infinite path through T satisfying

TP (e) = 0 iff Qe is infinitary. In order to approximate TP at stage s of the

construction we use the following length of agreement function

l(e, s) = µy(V 0
e,s(y) = V 1

e,s(y) = 0). (4.5)

By choice of the sequence {(V 0
e , V

1
e )}e∈ω, l(e, s) is nondecreasing in s for all e

and, for fixed e, it is unbounded iff Qe is infinitary. Based on l(e, s), we define

the set of α-stages by induction on |α| as follows. Every stage is a λ-stage. An

α-stage s is called α-expansionary if s = 0 or l(|α|, s) > l(|α|, t) for all α-stages
t < s. Then a stage s is an α0-stage if it is α-expansionary and an α1-stage if it

is an α-stage but not α-expansionary. The current approximation δs of TP ↾ s

at the end of stage s is the unique node α of length s such that s is an α-stage,

and we say that α is accessible at stage s + 1 if α is an initial segment of δs,

i.e., α ⊑ δs. Note that TP = lim infs→∞ δs, i.e., TP ↾ n is the leftmost node of

length n which is accessible infinitely often for every n. As usual, we say for

two nodes α and β that α has higher priority than β and denote it by α < β iff

α ⊏ β (i.e., α is a proper initial segment of β) or α is to the left of β, denoted

by α <left β, i.e., there exists γ ∈ T such that γ0 ⊑ α and γ1 ⊑ β.

Now the strategy for meeting the requirements Qe which at the same time

satisfies (4.2) is based on a variant of the e-state definition used in the construction

of a maximal set as e.g. given in [Soa87]. We assign the intervals Gn to the nodes

α ∈ T where at each stage at most one interval is assigned to each α. An unused

interval is assigned to α only at a stage where α is accessible, and the interval
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assigned to α is cancelled if α is to the right of δs. In this case, Gn is deleted, i.e.,

all elements of Gn are enumerated into B. So an interval may be permanently

assigned to α only if α is on the true path or to the left of it (we also make sure

that intervals that are never assigned to any node are deleted as well). Moreover,

for any number e, there will be only finitely many nodes to the left of TP ↾ e+ 1

which get a permanent interval assigned since only finitely many such nodes are

ever accessible. So almost all intervals which are never deleted are assigned to

nodes extending TP ↾ e+ 1 and hence have the correct guess about the type of

the first e+ 1 requirements.

Now, for any interval Gn, any node α and any stage s, the α-state of Gn

at stage s, denoted by σ(α, n, s) is a binary string of length ≤ k where k is the

number of infinitary edges of α. In the following, let e0 < e1 < · · · < ek−1 be the

infinitary edges of α. Then |σ(α, n, s)| is the greatest j ≤ k such that for any

j′ < j, l(ej′ , s) > max(Gn); hence, V
0
ej′ ,s

and V 1
ej′ ,s

partition Gn (note that for α

on the true path |σ(α, n, s)| = k for sufficiently large s). Moreover, for j′ < j, we

choose the values ij′ of σ(α, n, s)(j
′) inductively in such a way that enumerating

V
ij′
ej′ ∩Gn into B will keep |Gn ∩ B̄| at least as big as when we would enumerate

V
1−ij′
ej′ ∩Gn into B (for the precise definition of the inductive step of σ(α, n, s),

see (4.7) below). As we will show, this ensures that the inner clause of (4.2)

holds for any n such that Gn is never deleted.

Finally, in order to guarantee that requirement Qe is met it suffices to ensure

that (in the limit) almost all of the states σ(α, n, s) of intervals Gn which are

permanently assigned to ndoes α extending TP ↾ e+ 1 agree on the first k′ + 1

arguments where k′ + 1 = |{e′ ≤ e : TP (e′) = 0}|. Namely, for infinitary Qe

this ensures that there is i ≤ 1 such that σ(α, n, s)(k′) = i in almost all of the

cases above whence V i
e ∩Gn ⊆ B for almost all undeleted intervals Gn; hence,

V i
e ⊆∗ B.

Now the states can be unified in the above way as follows. Whenever intervals

Gn and Gn′ are assigned to α and β, respectively, where α < β, |α| < |β| and
σ(α, n′, s) <left σ(α, n, s) holds then the interval Gn′ is assigned to α in place of

Gn. Note that this replacement must be done even if α is to the left of δs. For

the formal definition of the states we first introduce an auxiliary notion.

For finite subsets E,F ⊆ ω the density of E inside F , denoted by ρ(E,F ),
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is defined as

ρ(E,F ) =
|E ∩ F |
|F |

, (4.6)

where we set ρ(E, ∅) = 0. Then given α ∈ T , stage s and n ∈ ω, we let

σ(α, n, s) denote the α-state of Gn at stage s and define it to be the longest

string σ ∈ {0, 1}<ω such that |σ| ≤ |{e < |α| : α(e) = 0}| and, for all j < |σ|
such that α(ej) = 0 (where ej is the (j + 1)st infinitary edge of α in order of

magnitude), l(ej, s) > max(Gn) holds and σ(j) is the least i ≤ 1 such that

ρ(V i
ej ,s
, B̄s ∩Gn \

⋃︂
l<j

V σ(l)
el,s

) ≤ 1

2
. (4.7)

We let

Vσ(α,n,s) = Gn ∩
⋃︂

j<|σ(α,n,s)|

V σ(α,n,s)(j)
ej ,s

. (4.8)

Then the construction is as follows.

Construction of B.

Stage 0. B0 = ∅.

Stage s+ 1. Let Bs be given. We say that a node α requires attention at

stage s+ 1 if |α| ≤ s and either

(i) α ⊑ δs and no interval is assigned to α, or

(ii) α ≤ δs, Gn is assigned to α and σ(α, n, s) ⊐ σ(α, n, s− 1), or

(iii) α ≤ δs, Gn is assigned to α, (ii) does not hold and there exists β > α

and n′ such that |β| > |α|, Gn′ is assigned to β and σ(α, n′, s) <left

σ(α, n, s).

Let α be the node of highest priority which requires attention at stage

s+ 1. Say that α receives attention and acts via the clause via which α

requires attention.

If (i) holds, assign Gs to α at stage s+ 1.
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If (ii) holds, enumerate all of Vσ(α,n,s) into B at stage s+ 1.

If (iii) holds, let β be the highest priority node which makes (iii)

true and let Gn′ be its assigned interval. Cancel the assignment of

Gn to α, assign Gn′ to α and enumerate all of Vσ(α,n′,s) into B at

stage s+ 1.

At stage s + 1, initialize all nodes β > α, i.e., cancel their assigned

interval (if any). After α has received attention and the assignment of

intervals to nodes has been declared at stage s+ 1, for all n ≤ s, do the

following: if Gn is not assigned to any node at stage s+ 1, delete Gn at

stage s+ 1, i.e., enumerate all of Gn into B at stage s+ 1.

This ends the formal construction.

Verification

We prove in a series of claims that the so constructed set B has the required

properties. Before, let us give some general remarks about the construction

which we will tacitly use in the proofs below. Unless otherwise stated, they can

be easily shown by induction on the stage s.

The construction is effective and {Bs}s∈ω is a computable enumeration of

B; hence, B is a c.e. set. At any stage s, there is a unique node α ≤ δs which

receives attention at stage s+ 1. For all nodes α and stages s, α is assigned at

most one interval at stage s, if Gn is the interval that is assigned to α at stage s

then |α| ≤ n < s and if α gets Gn assigned via (i) at stage s+ 1 then n = s and

Gn ∩Bs = ∅ since all intervals that are assigned to nodes by stage s have index

less than s.

Moreover, the assignment of intervals to nodes is nondecreasing in s and

strictly increasing with respect to the priority ordering, i.e., if α < β, α is assigned

Gn and β is assigned Gn′ at stage s then n < n′. Furthermore, σ(α, n, s) ⊑
σ(β, n, s) holds whenever α ⊑ β holds and if Gn is assigned to α at stage s+ 1

then

σ(α, n, s) ⊑ σ(α, n, s+ 1). (4.9)
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Hence, Vσ(α,n,s) ⊆ Vσ(α,n,s+1) in this case. A proof of (4.9) is given in Claim 1.

Finally, and importantly, for any α and n, s ∈ ω, if α gets Gn assigned at

stage s+ 1 then Gn has not been deleted at any stage t ≤ s. In particular, if Gn

is never deleted then from stage n+ 1 on, it is always assigned to a node and it

is eventually permanently assigned to a node which is on or to the left of the

true path. Now as first claim states we prove that (4.9) holds.

Claim 1. For all nodes α and all n, s ∈ ω, if Gn is assigned to α at stage s+ 1

then σ(α, n, s) ⊑ σ(α, n, s+ 1) holds.

Proof. First, note that by monotonicity of the length of agreement function

l(e, s) in s for all e, |σ(α, n, s)| ≤ |σ(α, n, s+1)| holds. So it suffices to show that

σ(α, n, s+ 1)(j) = σ(α, n, s)(j) holds for all j < |σ(α, n, s)|. We show the latter

by induction on j. Note that the claim trivially holds if Bs+1 ∩Gn = Bs ∩Gn.

So w.l.o.g., we may assume that Bs+1 ∩Gn ̸= Bs ∩Gn holds. Then since α is the

only node which may enumerate numbers into Gn, by construction, α requires

attention at stage s+1 via (ii) or (iii). In both cases, Bs+1 = Bs ∪ Vσ(α,n,s). Now
fix j < |σ(α, n, s)| and, by inductive hypothesis, assume that σ(α, n, s) ↾ j =

σ(α, n, s + 1) ↾ j holds. We have to show that σ(α, n, s + 1)(j) = σ(α, n, s)(j)

holds. Let ej be the (j + 1)st infinitary edge of α in order of magnitude. In

particular, σ(α ↾ ej, n, s) = σ(α ↾ ej, n, s + 1) holds by inductive hypothesis

since σ(α, n, t) ↾ j = σ(α ↾ ej, n, t) holds for all stages t. Then by definition

of σ(α, n, s), l(el, s) > max(Gn) holds for all l ≤ j. Hence, as this implies

V i
el,s

∩Gn = V i
el,s+1 ∩Gn for all i ≤ 1 and l ≤ j, we may deduce that

ρ(V i
ej ,s+1, B̄s+1 ∩Gn \

⋃︂
l<j

V
σ(l)
el,s+1)

= ρ(V i
ej ,s+1, B̄s+1 ∩Gn \ Vσ(α↾ej ,n,s+1))

= ρ(V i
ej ,s
, B̄s+1 ∩Gn \ Vσ(α↾ej ,n,s))

= ρ(V i
ej ,s
, B̄s ∩ V̄σ(α,n,s) ∩Gn ∩ V̄σ(α↾ej ,n,s))

= ρ(V i
ej ,s
, B̄s ∩Gn ∩ V̄σ(α↾ej ,n,s))

= ρ(V i
ej ,s
, B̄s ∩Gn \

⋃︂
l<j

V σ(l)
el,s

),
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where the second equality holds by inductive hypothesis and the fourth equality

holds since Vσ(α↾ej ,n,s) ⊆ Vσ(α,n,s). Hence, σ(α, n, s+ 1)(j) = σ(α, n, s)(j) follows

by definition of σ(α, n, s).

Then we can prove that all nodes on or to the left of the true path act only

finitely often and that the former eventually get a permanent interval assigned.

Fix e in the following.

Claim 2. Every α ≤ TP ↾ e requires attention only finitely often and if α =

TP ↾ e then α eventually gets a permanent interval assigned.

Proof. Let α ≤ TP ↾ e be given and, for any stage s let P (α, s0) be the property

If α is not initialized after stage s0

then

α requires attention only finitely often.

First, we show that P (α, s0) holds for any stage s0. Let s0 be a stage such that

α is not initialized after stage s0. Then every time α requires attention after

stage s0 it receives attention and acts. Now α requires attention via (i) at most

once after stage s0 because once α gets an interval assigned after stage s0 it is

always assigned an interval since α is not initialized. Moreover, if α does not

require attention via (i) after stage s0 it does not require attention at all since

requiring attention via (ii) or (iii) assumes that there is an interval assigned to

α. So w.l.o.g. we may assume that there is an interval which is assigned to α at

stage s0. For s ≥ s0 let n(α, s) be the index of th currently assigned interval to

α at stage s.

Then α may require attention after stage s0 only via (ii) or (iii). Now by (4.9),

we claim that αmay require attention via (iii) at most 2|α| times. For that purpose,

let σ∗(α, s) be the binary string of length |α| extending σ(α, n(α, s), s) such that,

for all |σ(α, n(α, s), s)| ≤ j < |α|, it holds that σ∗(α, s)(j) = 1. By (4.9) and by

Claim 1, for all stages s ≥ s0 such that n(α, s) = n(α, s+1), σ∗(α, s+1) ≤ σ∗(α, s)

holds. Otherwise, if n(α, s) ̸= n(α, s + 1) then by construction, α requires

attention via (iii) at stage s+ 1. In this case, σ∗(α, s+ 1) < σ∗(α, s). Whence,
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σ∗(α, s) is nondecreasing in s. But since it can decrease only 2|α| many times,

we conclude that the number of times α may require attention via (iii) is also

bounded by 2|α|. So fix the last stage s1 ≥ s0 such that α requires attention via

(iii). Then since |σ(α, n, s)| ≤ |α|, α may require attention via (ii) at most |α|
many times after stage s1. This shows that P (α, s0) holds.

So for a proof that α requires attention only finitely often it suffices to show

that α is initialized only finitely often. By construction, α may be initialized only

by a node β < α and only if β is ever accessible in the course of the construction.

Now since α ≤ TP ↾ e, there are only finitely stages s such that δs <left α.

Hence, there are only finitely many nodes β < α that may initialize α in the

course of the construction. Let n be the number of all these nodes and order

them by priority, say β0 < β1 < · · · < βn = α. But now the claim follows by an

easy induction on k ≤ n using the fact that β0 is never initialized.

Finally, if α = TP ↾ e then α is accessible infinitely often. So if s0 is a stage

such that α is not initialized after stage s0 then either α is already assigned

an interval at stage s0, or, for the least stage s1 ≥ s0 where α is accessible,

α is assigned an interval at stage s1. As argued above, this implies that α is

assigned an interval at any stage s ≥ s1. Hence, if s2 ≥ s1 is the last stage

where α requires attention then the interval that is assigned to α at stage s2 is

permanently assigned to α.

In Claim 4, we show that B̄ is infinite by proving that the inner clause

of (4.2) holds for all intervals Gn that are never deleted during the course of

the construction. Note that there are infinitely many such intervals. Namely,

by Claim 2, any node α ⊏ TP gets a permanent interval assigned which by

construction is never deleted and different from intervals which are permanently

assigned to proper initial segments of α. The proof of Claim 4 is based on a

technical claim.

Claim 3. Let α and n, s ∈ ω be given. Then ρ(Vσ(α,n,s), Gn ∩ B̄s) ≤ 1 −(︁
1
2

)︁|σ(α,n,s)|
. In particular, if Gn is assigned to α at stage s+1 then |Gn∩ B̄s+1| ≥

2−|σ(α,n,s)||Gn ∩ B̄s|.

Proof. Note that the second part of the claim follows from the first one. Namely,
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by (4.6), it suffices to show that ρ(B̄s+1, Gn) ≥ 2−|σ(α,n,s)|ρ(B̄s, Gn). For that, we

distinguish between the following two cases. If Bs+1 ∩Gn = Bs ∩Gn then the

second part of the claim holds trivially. Otherwise, Bs+1 = Bs ∪ Vσ(α,n,s) holds
by construction. Hence, by the first part of the claim,

ρ(B̄s+1, Gn) = 1− ρ(Bs+1, Gn)

= 1− ρ(Bs ∪ Vσ(α,n,s), Gn)

= 1− ρ(Bs, Gn)− (1− ρ(Bs, Gn)) · ρ(Vσ(α,n,s), B̄s ∩Gn)

= (1− ρ(Vσ(α,n,s), B̄s ∩Gn)) · ρ(B̄s, Gn)

≥ 2−|σ(α,n,s)| · ρ(B̄s, Gn),

where, for the third equality, we use that ρ(A∪B,C) = ρ(A,C)+ (1− ρ(A,C)) ·
ρ(B,C \ A) holds for arbitrary finite sets A,B and C.

The proof of the first part is by induction on m = |α|. The claim holds for

m = 0 since Vσ(λ,n,s) = ∅. So by inductive hypothesis, let m ∈ ω be given and

assume that Claim 3 holds for all α of length m. Fix a node α of length m+ 1

and let α′ = α ↾ m. Then if α(m) = 1 or |σ(α, n, s)| < |{e < |α| : α(e) = 0}|, it
follows that σ(α, n, s) = σ(α′, n, s). So the claim follows by inductive hypothesis.

Otherwise, α(m) = 0 and |σ(α, n, s)| = |{e < |α| : α(e) = 0}|. Let

i = σ(α, n, s)(m) and em be the (m + 1)st infinitary edge of α in order of

magnitude. Thus, by definition σ, l(m, s) > max(Gn) and σ(α, n, s) = σ(α′, n, s)i.

Then we observe that

ρ(Vσ(α,n,s), B̄s ∩Gn)

= ρ(Vσ(α′,n,s), B̄s ∩Gn) + (1− ρ(Vσ(α′,n,s), B̄s ∩Gn)) · ρ(V i
em,s, B̄s ∩Gn\Vσ(α′,n,s))

≤ 1−
(︃
1

2

)︃|σ(α′,n,s)|

+

(︃
1

2

)︃|σ(α′,n,s)|

· 1
2

= 1−
(︃
1

2

)︃|σ(α,n,s)|

,

where we argue that the above inequality holds as follows. Let f : [0, 1] ×
[0, 1] → [0, 1] be defined by f(x, y) = x + (1 − x)y, where [0, 1] denotes the
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unit interval of the reals numbers. Then f is nondecreasing in the sense that

f(x, y) ≤ f(x′, y′) holds for all pairs (x, y), (x′, y′) ∈ [0, 1]× [0, 1] such that x ≤ x′

and y ≤ y′. Hence, by setting x = ρ(Vσ(α′,n,s), B̄s ∩ Gn), x
′ = 1 −

(︁
1
2

)︁|σ(α′,n,s)|
,

y = ρ(V i
m,s, B̄s∩Gn\Vσ(α′,n,s)) and y

′ = 1
2
, we infer that x ≤ x′ holds by inductive

hypothesis and y ≤ y′ holds by definition of σ(α, n, s).

Now we are ready to prove that the inner clause of (4.2) holds for all intervals

Gn that are never deleted in the course of the construction.

Claim 4. For all n, if Gn is never deleted then |Gn ∩ B̄| ≥ (n+ 1)2.

Proof. Let n ∈ ω be given such that Gn is never deleted. By construction, for

any stage s ≥ n, there is a node γ such that Gn is assigned to γ at stage s+ 1.

Moreover, if Gn is assigned to γ at stage s and to γ′ at stage s + 1 then γ′

requires attention via (iii) which implies that γ′ < γ and |γ′| < |γ|. So we can

argue that there exists k ∈ ω and a sequence of stages s0 = n < s1 < · · · < sk

and nodes γ0 > γ1 > · · · > γk such that Gn ∩ Bs0 = ∅, Gn is assigned to γk at

any stage s > sk and, moreover, for any i < k, Gn is assigned to γi at stage s+1

for any s ∈ [si, si+1) and

|γi| > |γi+1|, (4.10)

Gn ∩Bsi+1
⊆ (Gn ∩Bsi) ∪ Vσ(γi,n,si+1) (4.11)

hold. Note that k ≤ n since k ≤ |γ0| by (4.10) and |γ0| ≤ n since Gn is

assigned to γ0 at stage s0 + 1. In particular, |γi| ≤ n− i by (4.10) for all i ≤ k.

Furthermore, γk must be on or to the left of the true path. Otherwise, γk would

be initialized after stage sk and Gn would be deleted. So by Claim 2, fix the least

stage sk+1 > sk such that γk does not require attention after stage sk+1. Then

Gn ∩B = Gn ∩Bsk+1
and Gn ∩Bsk+1

⊆ (Gn ∩Bsk) ∪ Vσ(β,n,sk+1). We claim that

|Gn ∩ B̄si+1
| ≥ 2−|γi||Gn ∩ B̄si | (4.12)

holds for all i ≤ k. So let i ≤ k be given. Then if Gn∩Bsi+1
= Gn∩Bsi holds then

(4.12) holds trivially. Otherwise, by Claim 1 and since σ(α, n, s) ⊑ σ(α, n, s+ 1)
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implies that Vσ(α,n,s) ⊆ Vσ(α,n,s+1) holds we may assume that, for all stages

s ∈ [si, si+1 − 1), it holds that Gn ∩ Bs = Gn ∩ Bs+1 and that Gn ∩ Bsi+1
=

(Gn ∩ Bsi) ∪ Vσ(α,n,si+1) holds. So (4.12) holds by Claim 3 and by the fact that

|σ(γi, n, si+1)| ≤ |γi| holds.
However, since Gn ∩Bs0 = ∅, this yields

|Gn ∩ B̄| ≥ 2−(|γk|+|γk−1|+···+|γ0|)|Gn| ≥ (n+ 1)2.

This completes the proof.

Finally, we show that all Q-requirements are met.

Claim 5. Qe is met.

Proof. If the hypothesis of Qe does not hold, Qe is trivially met. So we may

assume that Qe is infinitary, i.e., TP (e) = 0 holds. We have to show that

there exists i ≤ 1 and m ∈ ω such that for all n ≥ m, V i
e ∩ Gn ⊆ B. For the

proof of this statement, suppose that e = ek where ek denotes the (k + 1)st

infinitary edge of TP in order of magnitude and let M be the set of all nodes

β ⊒ TP ↾ e + 1 which eventually get a permanent interval assigned. For

β ∈ M , let nβ denote the index of the last interval assigned to β and let

σ(β, nβ) = lims→∞ σ(β, nβ, s). Note that σ(TP ↾ e + 1, nβ, s) ⊑ σ(β, nβ, s);

hence, σ(TP ↾ e+ 1, nβ) = lims→∞ σ(TP ↾ e+ 1, nβ, s) exists, too and σ(TP ↾

e + 1, nβ) ⊑ σ(β, nβ). Moreover, |σ(TP ↾ e + 1, nβ)| = k + 1 since TP ↾ e + 1

lies on the true path; hence, |σ(β, nβ)| ≥ k + 1 for any β ∈M . Now let τ be the

leftmost binary string of length k + 1 such that τ ⊑ σ(β, nβ) for infinitely many

β ∈M . We claim that

∀∞β ∈M (τ ⊑ σ(β, nβ)) (4.13)

holds and that (4.13) suffices to prove Claim 5. First, assume that (4.13) holds.

Let β0 ∈M be such that (4.13) holds for all β ∈M with β ≥ β0. Let m = nβ0

and i = τ(k). We claim that, for all n ≥ m, V i
e ∩ Gn ⊆ B holds. Fix n ≥ m.

We distinguish between the following two cases. If Gn is eventually deleted then

Gn ⊆ B. So the claim trivially holds for n. Otherwise, Gn is never deleted. Then
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by construction, there is a unique β ∈M such that n = nβ. Namely, β must be

on or to the left of the true path. But by choice of m, β cannot be to the left of

TP ↾ e+ 1 nor can β < β0 hold because, by construction, nβ < m holds in both

cases. Thus, by (4.13), σ(β, nβ)(k) = i. So, by (4.9) and since β ⊒ TP ↾ e+ 1,

β eventually enumerates Vσ(β,nβ) ⊇ V i
e ∩Gn into B.

Thus, to complete the proof, we show that (4.13) holds. By definition of τ ,

let β′
0 ∈ M be such that, for all β ∈ M with |β| ≥ |β′

0|, τ ≤ σ(TP ↾ e + 1, nβ)

holds. Fix any such node β and, by Claim 2, fix s0 such that β does not require

attention after stage s0. In particular, σ(β, nβ) = σ(β, nβ, s) for all s ≥ s0. We

claim that σ(β, nβ) ⊒ τ . Otherwise, τ <left σ(β, nβ) by choice of β. By choice

of τ , let β′ ∈ M with |β′| > |β| and β′ > β be such that σ(β′, nβ′) ⊒ τ and let

s1 > s0 be a stage such that σ(β′, nβ′ , s1) = σ(β′, nβ′). Such a β′ exists because

by construction, there are only finitely many nodes in M which have higher

priority than β. But then β requires attention via (iii) at stage s1 + 1, contrary

to choice of s0.

By Claim 5, this completes the proof of Lemma 4.3.1 and hence of Theorem

4.1.1.
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Chapter 5

Eventually Uniformly Weak

Truth-Table Array

Computability

5.1 Introduction

By a result of [BDG10], the class of the c.e. not totally ω-c.e. degrees coincides

with the class of degrees that contain a c.e. set which is not wtt-reducible to any

hypersimple set. In view of the fact that the c.e. not totally ω-c.e. degrees are a

(proper) subclass of the a.n.c. degrees, Ambos-Spies asked what kind of simplicity

notion is needed to characterize the a.n.c. Turing degrees (wtt-degrees or even

sets) in this way (for an overview of the the classical simplicity notions and the

relations between them, see Fig. 4.1)? One result pointing in this direction is

given by Ambos-Spies [AS18, Theorem 3] showing that no a.n.c. set can be wtt-

below a dense simple. In particular, we may consider the question whether the

a.n.c. sets can be characterized by being not wtt-reducible to any dense simple set.

Here, we give a negative answer to this question which we provide in two steps.

First, we give a characterization of the c.e. sets that are wtt-reducible to dense

simple sets by introducing the notion of eventually uniformly weak truth-table

array computable sets (e.u.wtt-a.c. sets for short) and by showing that the c.e.

sets with this property are precisely those that are wtt-reducible to dense simple
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sets. In fact, we show that we get the same characterization when replacing

wtt-reducibility by ibT-reducibility and dense simple sets by maximal sets (and

hence the same holds by inserting any simplicity notion between maximal and

dense simple and any reducibility between ibT- and wtt-reducibility). Second,

we give strict lower and upper bounds for the class of the c.e. e.u.wtt-a.c. sets.

For the lower bound we introduce the notion of wtt-superlow sets. They are

analogously defined as the superlow sets – a notion which goes back to work

of Mohrherr [Moh86] and Bickford and Mills [BM82] – but with the bounded

jump in place of the Turing jump and we show that any wtt-superlow set is

e.u.wtt-a.c. (but not vice versa). For the upper bound we show that any c.e.

e.u.wtt-a.c. set has array computable wtt-degree (but not vice versa). Indeed,

we can show that there is c.e. Turing degree that contains a set which is not

e.u.wtt-a.c. Furthermore, we show that there is a hierarchy of within the c.e.

wtt-superlow sets and that there are sets which lie in the intersection of this

hierarchy (so called strongly wtt-superlow sets). In fact, we show that Turing

complete strongly wtt-superlow sets exist.

In order to define e.u.wtt-a.c. and wtt-superlow sets, we need the notion of

the bounded jump operator. It is defined as an operator which is akin to the

classical Turing jump but using wtt-functionals in place of Turing ones. Analogs

of the Turing jump operator which are defined using only strong reducibilities

are already studied by Ershov [Ers70], by Gerla [Ger79] and by Coles, Downey

and LaForte in [CDL98]. However, the bounded jump of a set as we consider

it here was firstly deeply investigated by Anderson and Csima in [AC14]. On

the one hand, Anderson and Csima demonstrate that the bounded jump shares

many of the properties that the Turing jump operator has but with respect to

wtt-reductions. For instance, it is order preserving, no set is wtt-reducible to its

bounded jump and the bounded jump of the empty set is computably isomorphic

to the halting problem. Moreover, transfinite iterations of the bounded jump

and its close relationship to the Ershov hierarchy are studied by Anderson in

Csima in [AC14], by Coles, Downey and LaForte in [CDL98] and by Downey

and Greenberg in [DG19]. Note that, in the former two cases, the corresponding

authors use Kleene’s ordinal notation as a recursive approach to ordinals above

ω, while, in the latter case, Downey and Greenberg introduce so called canonical
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ordinals, i.e., ordinals whose Cantor normal form is computable. On the other

hand, Anderson, Csima and Lange consider the analog of the low/high hierarchy

for the bounded jump operator (which they call the bounded low/high hierarchy,

respectively) and demonstrate in [ACL17] that the bounded jump and the Turing

jump differ in this respect by showing the existence of both a low set which is

bounded high and high set which is bounded low.

All the results of this chapter are included in a paper that is in preparation

by Ambos-Spies, Downey and Monath [ASDM19]. The outline of this chapter

is as follows. In Section 5.2, we give the definition of the bounded jump w.r.t.

to a computable enumeration of all wtt-functionals and show that the analog

of the Recursion Theorem (with Parameters) holds for the enumeration of the

wtt-functionals as we define it. In Section 5.3, we give the definition of e.u.wtt-

a.c. sets and we state and prove the main result of this chapter, namely that

e.u.wtt-a.c. sets are characterized by being wtt- (ibT-) reducible to dense simple

(maximal) sets (Theorem 5.3.2). In Section 5.4, we show that the c.e. wtt-degrees

containing e.u.wtt-a.c. sets form an ideal in the c.e. wtt-degrees. In Section

5.5, we introduce the notion of wtt-superlow sets. We show that they form a

subclass of the e.u.wtt-a.c. sets which immediately follows from the result that

the wtt-superlow coincide with the sets which are ω-computably approximable

(ω-c.a.) (Theorem 5.5.2; this result also holds for not necessarily c.e. sets).

Thereby, we show that the wtt-superlow sets also coincide with the bounded low

sets as defined in [ACL17]. In Subsection 5.5.2, we extend Theorem 5.5.2 by

introducing the notion of wtt-jump traceable sets (Theorem 5.5.6; however, in this

case, the equivalence only holds for c.e. sets). In Subsection 5.5.3, we show that

there is a hierarchy of wtt-superlow sets (Theorem 5.5.10). In Subsection 5.5.4,

we look at strong variants of wtt-superlow sets and wtt-jump traceable sets. We

show that they are equivalent and that such sets exist (Theorem 5.5.13); in fact,

we construct a Turing complete set with this property. In Section 5.6, we show

that every e.u.wtt-a.c. set has array computable wtt-degree (Theorem 5.6.2).

Finally, in Section 5.7, we state (without proof) that the lower and the upper

bound of the c.e. e.u.wtt-a.c. sets (given by the c.e. wtt-superlow sets and the c.e.

sets having array computable wtt-degree, respectively) are strict (Theorems 5.7.1

and 5.7.3, respectively). In the latter case, we have a slightly stronger result.
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5.2 Preliminaries

Let us start by giving the definition of the bounded jump. The underlying

notation is mostly adapted from [DG19].

Definition 5.2.1 ([DG19]). For every set X ⊆ ω for any numbers e0, e1, y ∈ ω,

we define

Φ̂X
⟨e0,e1⟩(y) =

⎧⎨⎩ΦX
e0
(y) if ΦX

e0
(y) ↓, φe1(y) ↓ and φXe0(y) ≤ φe1(y),

↑ otherwise,
(5.1)

φ̂⟨e0,e1⟩ = φe1 . (5.2)

Given a set A, the (diagonal) bounded jump and the bounded jump function of

A, denoted by A† (A†
d) and Ĵ

A, respectively, are defined as

A† = {⟨e, x⟩ : Φ̂A
e (x) ↓}, (5.3)

A†
d = {e : Φ̂A

e (e) ↓}, and (5.4)

ĴA(e) = Φ̂A
e (e). (5.5)

For notational conveniences, we define the bounded jump A† of a set A such

that A† codes all computations of partial wtt-functionals instead of only the

diagonal computations, the latter one being denoted by A†
d. However, it is easy

to see that A† and A†
d are computably isomorphic (see 3. of Lemma 5.2.4).

Before we start examining some of the properties of A† and ĴA for a (c.e.) set

A, let us give some general remarks on the definition of Φ̂e and introduce some

terminology to be used below which is also mostly taken from [DG19]. First of

all, we say that a Turing functional Φ is a wtt-functional if there exists a number

e ∈ ω such that Φ = Φ̂e. Note that, for any set A and any total function g,

g ≤wtt A holds iff there exists e ∈ ω such that g = Φ̂Ae . So {Φ̂e}e∈ω incorporates

all wtt-reductions.

Using {Φ̂e}e∈ω, we may extend the definition of being wtt-reducible to a set

A to partial functions. We say that a partial function φ : ω → ω is wtt-reducible

to a set A, and denote it by φ ≤wtt A, if there exists e ∈ ω such that φ = Φ̂A
e .

Furthermore, we say for sets A and B that A is bounded computably enumerable
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in B, bounded c.e. in B or bounded B-c.e. for short, if there exists a partial

function φ which is wtt-reducible to B and such that A = dom(φ). In particular,

A† is bounded c.e. in A for all sets A.

We fix computable approximations Φ̂X
⟨e0,e1⟩,s(y) (s ≥ 0) of Φ̂X

⟨e0,e1⟩(y) where

Φ̂X
⟨e0,e1⟩,s(y) is defined iff Φ̂X

⟨e0,e1⟩(y), Φ
X
e0,s

(y) and φe1,s(y) are defined. Then,

for any c.e. set A and any fixed computable enumeration {As}s∈ω of A, we

have a canonical approximation to A†, denoted by {A†
s}s∈ω, such that, for all

numbers e, x, it holds that ⟨e, x⟩ ∈ A†
s iff Φ̂A

e (x)[s] ↓. We tacitly assume that

this approximation to A† is clear from the context whenever a c.e. set A and

a computable enumeration of A is given to or constructed by us. Note that if

Φ̂Ae (x)[s] ↓ holds for infinitely many stages s then Φ̂Ae (x) ↓ holds as the use of Φ̂e

is bounded (this does not hold for Turing functionals in general).

Moreover, we will often make use of the Recursion Theorem (with Parameters)

with respect to {Φ̂e}e∈ω. For that, we need the following definition.

Definition 5.2.2. A sequence of wtt-functionals {Ψe}e∈ω is uniformly com-

putable if {Ψe}e∈ω is uniformly computable in the sense of Turing functionals

and there exists a uniformly computable sequence of partial computable functions

{ψe}e∈ω such that, for any e ∈ ω, the use of Ψe is bounded by ψe.

Then the following lemma says that {Φ̂e}e∈ω is a Gödel numbering of the

wtt-functionals so we may argue as in the proof of the classical Recursion

Theorem (with Parameters) that the Recursion Theorem also holds for uniformly

computable sequences of wtt-functionals.

Lemma 5.2.3 (Recursion Theorem (with Parameters)). Let {Ψe}e∈ω be a se-

quence of wtt-functionals and g : ω → ω and H : ω2 → ω be total computable

functions. Then the following holds.

1. {Ψe}e∈ω is uniformly computable iff there exists a computable one-one

function f : ω → ω such that ΨA
e = Φ̂A

f(e) holds for any number e and any

set A.

2. There exists e ∈ ω such that Φ̂g(e) = Φ̂e.

3. There exists a computable function h : ω → ω such that Φ̂h(e) = Φ̂H(h(e),e)

holds for any e ∈ ω.
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Proof. For the ”only if”-part of 1., note that a sequence {Φ̂f(e)}e∈ω, where

f : ω → ω is a computable function is a uniformly computable sequence of wtt-

functionals since the use bound {φ̂f(e)}e∈ω is a uniformly computable sequence

of partial computable functions. For the ”if”-direction, by Definition 5.2.2,

we may fix computable one-one functions fi : ω → ω (i ≤ 1) such that, for

any e ∈ ω, it holds that Ψe = Φf0(e) and ψe = φf1(e). Then, by (5.1) and by

assumption on Ψe, it holds that Ψe = Φ̂f(e) for the computable one-one function

f(e) = ⟨f0(e), f1(e)⟩.
For the proofs of 2. and 3., it is easy to see that the proofs of the Recursion

Theorem and the Recursion Theorem with Parameters can be carried out in

the setting of uniformly computable wtt-functionals. In the following, we give a

sketch of the proofs by outlining the critical parts. For the former let, for any

numbers e, x ∈ ω and any set A,

ΨA
e (x) =

⎧⎨⎩Φ̂A
φe(e)

(x) if φe(e) ↓,

↑ otherwise.

Then the sequence {Ψe}e∈ω is a uniformly computable sequence of Turing func-

tionals whose use if uniformly bounded by ψe(x) = φ̂φe(e)(x). So since {ψe}e∈ω
is a uniformly computable sequence of partial computable functions, by 1., we

may fix a computable function d : ω → ω such that ΨA
e = Φ̂A

d(e) holds for any

e ∈ ω and any set A and we may let i ∈ ω be such that φi(x) = g(d(x)). Then,

by virtually the same argument as in the original Recursion Theorem, it follows

that e = d(i) is a fixed point for g.

For 3., we argue analogously. Let

ΨA
⟨x,y⟩(z) =

⎧⎨⎩Φ̂A
φx(⟨x,y⟩)(z) if φx(⟨x, y⟩) ↓,

↑ otherwise.

Then since {Ψe}e∈ω is clearly a uniformly computable sequence of Turing func-

tionals and {ψe}e∈ω, where ψ⟨x,y⟩(z) = φ̂φx(⟨x,y⟩)(z) is a uniformly computable

sequence of partial computable functions bounding the use of ΨA
⟨x,y⟩ for any

x, y ∈ ω and any set A, we may easily argue as in the proof of the Recur-
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sion Theorem with Parameters that h(x) = d(i, x) is as desired, where, by 1.,

d : ω2 → ω is chosen such that ΨA
⟨x,y⟩ = Φ̂A

d(x,y) holds and i ∈ ω is chosen such

that φi(⟨x, y⟩) = H(d(x, y), y) holds for all x, y ∈ ω.

It is natural to ask what properties bounded jump operator shares with the

classical Turing operator if we replace Turing reductions by wtt-reduction. In

the following lemma, we list some of the common properties which can be found

in [DG19, p.30 f].

Lemma 5.2.4 ([DG19]). Let A and B be any (not necessarily c.e.) sets. Then

the following holds.

1. If A ≤wtt B then there exists a strictly increasing computable function

f : ω → ω such that, for any e ∈ ω, it holds that Φ̂A
e = Φ̂B

f(e).

2. A† is 1-complete for the class of bounded A-c.e. sets. In particular, ∅′ is
computably isomorphic to ∅†.

3. There exists a strictly increasing computable function f : ω → ω such that,

for any e, x and any set A, it holds that Φ̂Ae (x) = ĴA(f(⟨e, x⟩)). Hence, A†

is computably isomorphic to A†
d.

4. A <wtt A
†.

5. A ≤wtt B implies A† ≤1 B
†.

However, not every property of the Turing jump carries over to the bounded

jump as the following lemma of [DG19] shows.

Lemma 5.2.5 ([DG19], Lemma 3.6). There is a c.e. set B and a set A such

that A† ≤1 B
† holds but A ̸≤wtt B.

The fact that the converse of 5. in Lemma 5.2.4 fails is due to the fact that

the Complement Lemma does not carry over to bounded-c.e. sets as Downey

and Greenberg also show in [DG19, Proposition 3.1(3)]. However, the proof of

Lemma 5.2.5 (and similarly for [DG19, Proposition 3.1(3)]) builds on the fact

that the set A constructed there may change its mind whether a given x is in A

or not more than once. This leaves the question open whether the Complement
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Lemma and hence the converse of 5. in Lemma 5.2.4 hold if A is chosen to be

computably enumerable. We can affirmatively answer both questions.

Lemma 5.2.6. For any sets A and B such that A is c.e. or co-c.e., if A and A

are both bounded-c.e. in B then A ≤wtt B. In particular, if A and B are both

c.e. then A† ≤1 B
† implies that A ≤wtt B holds.

Proof. For a proof of the first part of the lemma, fix sets A and B such that A

is c.e. or co-c.e. and A and A are bounded-c.e. in B. By A =wtt A w.l.o.g. we

may assume that A is computably enumerable. So fix a computable enumeration

{As}s∈ω of A and fix a number e such that A = dom(Φ̂Be ). Then we can compute

A from B by a Turing reduction whose use is computably bounded as follows.

Let f(x) = µs(x ∈ As or φ̂e,s(x) ↓). Then f is a total computable function

as φ̂e(x) ↓ holds for any number x ̸∈ A. Given x, with oracle B compute the

least stage s ≥ f(x) such that either x ∈ As or Φ̂
B
e,s(x) ↓. Then, by assumptions

on A, stage s exists and x ∈ A iff x ∈ As. Moreover, since, by convention on

converging computations, φ̂e(x) < f(x) if φ̂e(x) ↓, B ↾ f(x) can compute the

stage s.

For the second part of Lemma 5.2.6, it suffices to note that A† ≤1 B
† implies

that A and A are bounded-c.e. in B. So the second part follows from the first

part.

Next, we formulate and prove the main result of this paper.

5.3 C.E. Sets Which Are Bounded Turing Re-

ducible To Maximal Sets

For our main result, we make the following definition.

Definition 5.3.1. A set A is called eventually uniformly wtt-array computable

(e.u.wtt-a.c. for short) if there exist computable functions g, k : ω2 → {0, 1} and
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a computable order h : ω → ω such that, for all e, x,

A†(x) = lim
s→∞

g(x, s), (5.6)

k(x, s) ≤ k(x, s+ 1), (5.7)

k(x, s) = 1 ⇒ |{t ≥ s : g(x, t+ 1) ̸= g(x, t)}| ≤ h(x), (5.8)

∀e (Φ̂A
e total ⇒ ∀∞x ∃s (k(⟨e, x⟩, s) = 1)). (5.9)

For functions g, k and h as above, we say that A is eventually uniformly wtt-

array computable via g, k and h, and we let EUwttAC denote the class of all

c.e. e.u.wtt-a.c. sets.

Now the main result is as follows.

Theorem 5.3.2 (Characterization Theorem). For a c.e. set A the following are

equivalent.

(i) A is eventually uniformly wtt-array computable.

(ii) A is wtt-reducible to some maximal (quasi-maximal, hh-simple, dense

simple) set.

(iii) A is ibT-reducible to some maximal (quasi-maximal, hh-simple, dense

simple) set.

The proof consists of the following two parts. First, we prove that the

implication (i) ⇒ (iii) holds.

Theorem 5.3.3. Let A be c.e. and eventually uniformly wtt-array computable.

Then A is ibT-reducible (hence wtt-reducible) to some maximal set.

Then we show that (ii) ⇒ (i) holds.

Theorem 5.3.4. Let A and D be c.e. sets such that A ≤wtt D and D is dense

simple. Then A is eventually uniformly wtt-array computable.

By these theorems we may prove Theorem 5.3.2 as follows.
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Proof of Theorem 5.3.2 assuming Theorems 5.3.3 and 5.3.4. By the above The-

orems 5.3.3 and 5.3.4, it remains to show that the implication (iii) ⇒ (ii) holds.

However, this follows from the fact that A ≤ibT B implies that A ≤wtt B holds

for any sets A and B.

Proof of Theorem 5.3.3. Let {As}s≥0 be a computable enumeration of A and fix

computable functions ĝ, k̂ and ĥ which witness that A is e.u.wtt-a.c. according

to Definition 5.3.1. We construct a c.e. set M in stages s, where Ms denotes

the finite set of numbers which are enumerated into M by stage s such that M

is maximal and A ≤ibT M . Clearly, any such M witnesses that Theorem 5.3.3

holds.

Before we give the formal construction, let us discuss some of the ideas behind

it and introduce some of the concepts to be used in the construction. We start

with the task of making M maximal.

In order to make M maximal, it suffices to ensure that the complement of

M is infinite,

|M | = ω, (5.10)

and that M meets the requirements

Re : M ⊆∗ We or M ⊆∗ We. (5.11)

for e ∈ ω.

In order to achieve these goals, just as in the classical maximal set construction

(as for instance in Soare [Soa87]), we use n-states and “optimize” the states of

almost all elements in M . Since we use a priority tree here, however, in our

definition of the states the infinitary outcome (corresponding to the case that

We ∩M is infinite) is denoted by 0 (as common on priority trees) and not by

1 as in the classical definition of states. So here the n-state of a number x at

stage s is the unique binary string σ(n, x, s) of length n such that, for e < n,

σ(n, x, s)(e) = 0 iff x ∈ We,s,

and the (true) n-state of x is the unique binary string σ(n, x) of length n such
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that, for e < n,

σ(n, x)(e) = 0 iff x ∈ We.

Note that requirements R0, . . . ,Rn are met if almost all elements of M have

the same (n+ 1)-state. So, in order to meet the maximal-set requirements, it

suffices to guarantee that, for any n ≥ 0, almost all numbers in M have the same

n-state. In the construction of M we achieve this by attempting to minimize

the n-states of the numbers in M (which corresponds to the classical strategy of

maximizing the (classically defined) n-states).

For this sake we use the full binary tree T = {0, 1}<ω as priority tree.

Elements of T are called nodes. As usual, we say for two nodes α and β that α

has higher priority than β and denote it by α < β iff α ⊏ β (i.e., α is a proper

initial segment of β) or α is to the left of β, denoted by α <left β, i.e., there

exists γ ∈ T such that γ0 ⊑ α and γ1 ⊑ β. Nodes are viewed as states in

the following sense. A node α ∈ T of length n codes the guess that there are

infinitely many numbers in M with n-state α. Then, assuming that M is infinite,

there is a leftmost path through T such that, for any node α on this path, there

are infinitely many elements of M which have state α. So it suffices to guarantee

that almost all elements of M have state α.

In order to approximate the true path, for any node α and any stage s, we let

Vα,s = Ms ↾ s ∩ {y : σ(|α|, y, s) = α}
= Ms ↾ s ∩ {y : ∀ e < |α| (y ∈ We,s ⇔ α(e) = 0)}

and

Vα =M ∩ {y : σ(|α|, y) = α} =M ∩ {y : ∀ e < |α| (y ∈ We ⇔ α(e) = 0)},

and we use the following length of agreement function

l(α, s) = |Vα,s|. (5.12)

Based on l(α, s), we define the set of α-stages by induction on |α| as follows.

Every stage is a λ-stage. An α-stage s is called α-expansionary if s = 0 or

l(α0, s) > l(α0, t) holds for all α-stages t < s. Then a stage s is an α0-stage if it
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is α-expansionary and an α1-stage if it is an α-stage but not α-expansionary. At

stage s, the current approximation δs of the true path is the unique node α of

length s such that s is an α-stage, and we say that α is accessible at stage s+ 1

if α is an initial segment of δs, i.e., α ⊑ δs. Then the true path TP through T

is defined by TP = lim infs→∞ δs, i.e., TP ↾ n is the leftmost node of length n

which is accessible infinitely often (for every n).

Next we explore under which assumptions on M the true path TP actually

has the desired properties, i.e., satisfies that, for any n, TP ↾ n is the leftmost

node α of length n such that Vα is infinite. We start with some observations.

Note that

Vα0,s = Vα,s ∩W|α|,s and Vα1,s = Vα,s ∩W|α|,s. (5.13)

So Vα,s is the disjoint union of Vα0,s and Vα1,s,

Vα,s = Vα0,s ∪̇ Vα1,s, (5.14)

and

l(α, s) = l(α0, s) + l(α1, s). (5.15)

Note that the analog of (5.14) holds for Vα too and that the equation can be

extended to

Vα,s =
⋃̇︂

|β|=n
Vαβ,s and Vα =

⋃̇︂
|β|=n

Vαβ (5.16)

for any n ≥ 0. Next note that, for any node α, {Vα,s}s≥0 is a computable

approximation of Vα, i.e., for any number y,

Vα(y) = lim
s→ω

Vα,s(y). (5.17)

Moreover, a number y ∈ Vα,s is in Vα unless y is enumerated into M after stage

s or the |α|-state of y decreases after stage s. So, if we let

V̂α =
⋃︂

{α′:|α′|=|α| & α′≤leftα}

Vα′ ,
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then

V̂α =M ∩
(︃⋃︂
s≥0

⋃︂
{α′:|α′|=|α| & α′≤leftα}

Vα′,s

)︃
. (5.18)

In fact, if we say that α′ is stronger than α (α′ ≺ α) if α′ <left α or α ⊏ α′ (i.e.,

viewed as state, either α′ is less than α or α′ contains more information than α)

then, by definition of V̂α and (5.16), V̂α′ ⊆ V̂α for any α′ which is stronger than

α whence

V̂α =
⋃︂

{α′:α′⪯α}

Vα′ =M ∩
(︃⋃︂
s≥0

⋃︂
{α′:α′⪯α}

Vα′,s

)︃
. (5.19)

We can now state the two crucial facts on TP used in the proof.

Claim 1 (Infinity Lemma). Assume (5.10). For any node α ⊏ TP , the set

Sα of the α-stages is infinite and

lim
s→ω, s∈Sα

l(α, s) = ω. (5.20)

Moreover, if α′ is to the left of TP then Sα′ and V̂α′ are finite.

Proof. For a proof of the first part, fix α ⊏ TP . Infinity of Sα is immediate

by definition of TP . The proof of (5.20) is by induction on |α|. We distinguish

the following three cases. First assume that α = λ. Then Sα = ω and Vλ =M .

So (5.20) holds by infinity of M . Next assume that α = α̂0 for some node α̂.

Then, by α ⊏ TP there are infinitely many α̂-expansionary stages. So Sα is

infinite and (5.20) holds by definition. Finally assume that α = α̂1 for some node

α̂. Then, by α̂1 ⊏ TP there are only finitely many α̂0-stages whence l(α̂0, s) is

bounded. By the former, Sα =∗ Sα̂ while, by the latter and by (5.15), there is

a constant c such that l(α, s) + c ≥ l(α̂, s) for all stages s. So infinity of (5.20)

follows by inductive hypothesis.

For a proof of the second part, fix α′ to the left of TP , let α = TP ↾ |α′| and
let α̂ be the longest common initial segment of α′ and α. Then α̂0 ⊑ α′ and

α̂1 ⊑ α whence α̂ and α̂1 are on the true path. By definition of TP , it follows

that Sα̂0 is finite. Since, by α̂0 ⊑ α′, Sα′ ⊆ Sα̂0, Sα′ is finite too. Finally, in

order to show that V̂α′ is finite, for a contradiction assume that V̂α′ is infinite.

Since V̂α′ is the finite union of the sets Vα′′ where |α′′| = |α′| and α′′ ≤left α
′, for
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notational convenience, w.l.o.g. we may assume that Vα′ is infinite. It follows

that Vα̂0 is infinite since, by α̂0 ⊑ α′, Vα′ ⊆ Vα̂0. By (5.17) this implies that

lims→ωl(α̂0) = ω. Since, by α̂ ⊏ TP , Sα̂ is infinite, it follows that there are

infinitely many α̂-expansionary stages, hence Sα̂0 is infinite cotradicting the

above observation that Sα̂0 is finite.

Claim 2 (Maximal-Set Lemma). Assume that M is c.e. and coinfinite. If,

for any α ⊏ TP , M ⊆∗ V̂α then M is maximal.

Proof. Since V̂α is the finite union of Vα and the sets Vα′ such that α′ <left α

and |α′| = |α|, it follows by the second part of the Infinity Lemma that M ⊆∗ Vα

for all α ⊏ TP . So, for any n ≥ 0, almost all numbers in M have (n+ 1)-state

TP ↾ n+1. As pointed out before, this implies that all requirements Rn are met.

Since, by assumption,M is c.e. and coinfinite this implies thatM is maximal.

The Infinity Lemma shows that (assuming M is infinite), for any α on the

true path and for any numbers r and k, there are infinitely many stages at

which α is accessible and where we can pick k numbers greater than r of current

state α which have not yet been enumerated into M . (Note that, for meeting a

finitary requirement we typically need such a set of numbers, where later in the

construction some of this numbers may be put into M and some of the numbers

may be kept out of M .) On the other hand, the Maximal-Set Lemma tells us

that if we make sure that infinitely many of the numbers we pick in this way are

kept out of M and that, for any α ⊏ TP , up to finitely many exceptions, only

those numbers picked for α or a stronger node α′ are kept out of M then M is

maximal. These observations lead to the following strategy ensuring maximality.

We pick the numbers which become associated with a given node α for ensuring

any of the additional finitary tasks in such a way that one of these numbers is

never needed for this task (this will ensure that M infinite). Moreover, if the

task assigned to the numbers associated with a state α can be taken over by the

numbers associated with one stronger state (or, as in the following, associated

with a finite collection of stronger states) then the original attempt becomes

superfluous and we may cancel it and enumerate the corresponding numbers into

M .

Having introduced the basic technical notions needed for the maximal set
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strategy, we now turn to the second goal of the construction, namely to ensure

that the given computably enumerable e.u.wtt-a.c. set A is ibT-reducible to the

maximal set M that we construct. We first note that this part requires the

construction of a uniformly computable sequence of auxiliary wtt-functionals

{Ψα}α∈{0,1}∗ , where we denote the partial computable use bound of Ψα by ψα.

By identifying {0, 1}∗ with ω in the standard way, by Lemma 5.2.3 (Recursion

Theorem), we may assume that in advance we are given a computable function

f : {0, 1}∗ → ω such that

Ψα = Φ̂f(α) (5.21)

holds for all α ∈ {0, 1}∗. So, by letting g(⟨α, x⟩, s) = ĝ(⟨f(α), x⟩, s), k(⟨α, x⟩, s) =
k̂(⟨f(α), x⟩, s) and h(⟨α, x⟩) = ĥ(⟨f(α), x⟩), we obtain

lim
s→∞

g(⟨α, n⟩, s) =

⎧⎨⎩0 if ΨA
α (n) ↑,

1 otherwise
(5.22)

k(⟨α, n⟩, s) ≤ k(⟨α, n⟩, s+ 1) (5.23)

k(⟨α, n⟩, s) = 1 ⇒ |{t ≥ s : g(⟨α, n⟩, t+ 1) ̸= g(⟨α, n⟩, t)}| ≤ h(⟨α, n⟩) (5.24)

ΨA
α is total ⇒ ∀∞n ∃ s (k(⟨α, n⟩, s) = 1) (5.25)

and we may use these equations in the construction. In a more detail, we

construct a uniformly computable sequence of wtt-functionals {Ψ̃⟨⟨i,e⟩,j⟩}i,e,j≥0

(with {ψ⟨⟨i,e⟩,j⟩}i,e,j≥0 as uniformly computable use bound) such that, for fixed

i ≥ 0, we have a version of the construction where we define Ψ̃⟨⟨i,e⟩,j⟩ only for

j = φi(⟨i, e⟩) (that is, i is a guess for an index of the desired function f). In partic-

ular, for each i ≥ 0, we consider the functions g̃i(⟨e, x⟩ , s) = ĝ(⟨φi(⟨i, e⟩), x⟩ , s),
k̃i(⟨e, x⟩ , s) = k̂(⟨φi(⟨i, e⟩), x⟩ , s) and hi(⟨e, x⟩) = ĥ(⟨φi(⟨i, e⟩), x⟩) and we per-

form the construction w.r.t. to these functions. So in the ith version of the

construction, the reader may replace any occurence of g by g̃i, k by k̃i and h

by h̃i. Now by uniform effectivity of the construction, we may argue by 1. and

3. of Lemma 5.2.3 that there exists a computable function f̃ : ω → ω such

that, for any i, e ≥ 0, it holds that Ψ̃A

⟨⟨i,e⟩,f̃(⟨i,e⟩)⟩ = Φ̂A
f̃(⟨i,e⟩). So, for an index

i0 such that φi0 = f̃ holds, it follows (via the identification of ω with {0, 1}∗)
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that f(α) = f̃(⟨i0, α⟩), Ψα = Ψ̃⟨⟨i0,α⟩,f̃(⟨i0,α⟩)⟩, ψα = ψ̃⟨⟨i0,α⟩,f̃(⟨i0,α⟩)⟩ and g = g̃i0

(k = k̃i0 , h = h̃i0) are as desired.

Now, coming back to the second goal of the construction, in order to ensure

that A is ibT-reducible to M we use a variant of straight permitting: if a number

x enters A at a “late” stage s then, in order to indicate that x is in A we

enumerate a number y ≤ x into M at stage s or at a later stage. Note that if we

reserve a number y for such a permitting and x does not enter A then y will not

enter M too. So, in order to be compatible with the maximal set strategy, we

have to ensure that the states of the permitters y are sufficiently small. In order

to show that there are sufficiently many permitters of small state, we exploit

that A is eventually uniformly wtt-array computable. The basic idea of how to

obtain permitters (for almost all numbers x) of a given m-state α (on or to the

right of TP ) is as follows. We attempt to define a strong array {Bα
n}n≥0 of finite

sets Bα
n , in the following called (α-)blocks. The α-blocks are defined one after

the other in increasing order and we ensure that the numbers in Bα
n+1 are greater

than the numbers in Bα
n . Moreover, when an α-block becomes defined, say at

stage s+ 1 then all of its element are not in Ms and have m-state α or stronger

than α at stage s. (Note that (assuming that M is infinite), by the Infinity

Lemma, for α on or to the right of the true path we will find such numbers no

matter how large we want to make the blocks. So, for such α, all the α-blocks

will become defined.) Now the idea is that the numbers y in block Bα
n serve as

permitters for the numbers x in the interval Iαn = [maxBα
n ,maxBα

n+1] (note that

these intervals cover all numbers x ≥ maxBα
0 ). In order to guarantee that the

size (i.e., cardinality) of Bα
n is large enough to provide the required numbers of

permitters, we appropriately define the corresponding auxiliary wtt-functional

Ψα. We let ψα(n) = maxBα
n+1 (if the latter block becomes defined) be the use

of ΨX
α (n). Moreover, if ψα(n) is defined then we ensure that ΨA

α (n) is defined

too where – exploiting that, by (5.22), g(⟨α, n⟩, s) approximates the domain of

ΨA
α – we make sure that any enumeration of a number x ∈ Iαn in A is followed

by a change of g(⟨α, n⟩, s+ 1) ̸= g(⟨α, n⟩, s) at a later stage s. Now, since ΨA
α is

total, it follows by (5.25) that (for almost all n) there is a least stage sn such

that k(⟨α, n⟩, sn) = 1, and, by (5.24), the function s ↦→ g(⟨α, n⟩, s) will change
after stage sn at most h(⟨α, n⟩) times. So if we say that a number x ∈ Iαn enters
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A “late” if it does so after stage sn then h(⟨α, n⟩) permitters suffice for dealing

with all numbers in Iαn . So it suffices to let Bα
n have size h(⟨α, n⟩).

The above explains how, for a single α on or to the right of the true path,

we can ensure that A ≤ibT M and at the same time only numbers of state α or

stronger state are left in M (namely, it suffices to enumerate all numbers which

are not in any α-block into M). Moreover, by adding one more element to each

α-block we can guarantee that no α-block becomes completely enumerated into

M whence M will be infinite.

For the actual construction, however, we have to ensure that, for any α on

the true path almost all numbers left in M have state α or stronger state. We

achieve this by (1) doing the above strategy for all α and by (2) suspending the

permitting numbers in block Bα
n (in the actual construction we say that block

Bα
n becomes frozen) and enumerating them into M once we see that, for any

number x ∈ Iαn , there is a node α′ ≺ α and a number n′ such that x is in the

interval Iα
′

n′ covered by the α′-block Bα′

n′ and x is considered to be “late” relative

to this block too (i.e., k(⟨α′, n′⟩, s) = 1 if this happens at stage s + 1). As we

will show, this will provide the required improvements of states.

There is one technical problem left, however. We cannot achieve that, for

α ̸= α′, the α-blocks and α′-blocks are disjoint. So when determining the sizes

of the blocks we have to consider possible overlaps. By allowing the α′-strategy

to use a number in the intersection of the blocks Bα
n and Bα′

n′ only if α′ is

stronger than α, we have to ensure that any block Bα
n contains a core B̂α

n of size

h(⟨α, n⟩) + 1 which does not intersect any α′-block for all stronger α′. The sole

purpose of the priority tree is to resolve this problem. The interval Bα
n will be

defined by one of the nodes β which extend α and have length ⟨|α|, n⟩. As long
as Bα

n is not yet defined there will be (at most) one such β “eligible” to define

Bα
n . The stage when this node becomes eligible gives a lower bound on minBα

n

and by initializing a node its eligibility can be (temporarily) deleted. This will

suffice to avoid overlaps between α-blocks and α′-blocks for comparable α and

α′ and will give an eligible node β a bound on the sizes of the potential overlaps

in terms of the higher priority nodes currently admissible.

Having explained the ideas of the construction and some of its technical
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features we now turn to the construction. Any stage s + 1 consists of 5 steps

(Stage 0 is vacuous).

In Step 1 the blocks are defined. We let the nodes β with α ⊑ β and

|β| = ⟨|α|, n⟩ define the block Bα
n . We call such a node β a Bα

n -node and call Bα
n

the block associated with β. Moreover we call two nodes equivalent if they are

associated with the same block. If Bα
n is defined by (activity of) node β then we

say that Bα
n has priority β. As long as Bα

n is not yet defined, there will be at

most one Bα
n -node β which is eligible. This node attempts to define Bα

n . Once

Bα
n is defined, no Bα

n -node will be eligible. A node β can become eligible only at

a stage s+ 1 such that β ⊏ δs or δs <left β. Once β is eligible, β stays eligible

unless β becomes initialized. The only effect of initialization of a node is to make

it non-eligible. If initialized, a node may become eligible at a later stage again.

We write Bα
n [s] ↓ if Bα

n is defined by the end of step 1 of stage s and we write

Bα
n [s] ↑ otherwise. Moreover, Bα

n ↓ (Bα
n ↑) denotes that Bα

n is eventually defined

(never defined). For any α and n such that Bα
n is defined, we let

B̂α
n = {y ∈ Bα

n : ̸ ∃α′ ≺ α ̸ ∃n′ (Bα′

n′ ↓ & y ∈ Bα′

n′ }

be the core of Bα
n . Similarly, for s such that Bα

n [s] ↓, we let

B̂α
n [s] = {y ∈ Bα

n : ̸ ∃α′ ≺ α ̸ ∃n′ (Bα′

n′ [s] ↓ & y ∈ Bα′

n′ }

be the core of Bα
n at stage s.

In Steps 2 and 3 the partial use functions ψα respectively the wtt-functionals

Ψα are defined. We write ψα(n)[s] ↓ if ψα(n) has been defined by the end of step

2 of stage s and write ψα(n)[s] ↑ otherwise, and we write ΨA
α (n)[s] ↓ if ΨAs

α (n)

has been defined by the end of step 3 of stage s and ΨA
α (n)[s] ↑ otherwise. We

say that the α-block Bα
n is realized at stage s if ψα(n)[s] ↓ and we say that Bα

n is

truly realized at stage s if Bα
n is realized at stage s and k(⟨α, n⟩, s) = 1; and Bα

n is

realized (truly realized) if it is realized (truly realized) at some stage. Finally, we

say that x is (truly) covered by Bα
n (at stage s) – or (truly) ⟨α, n⟩-covered (at stage

s) for short – if ⟨α, n⟩ is (truly) realized (at stage s) and x ∈ [maxBα
n , ψα(n)];

and we say that x is α-covered (at stage s) if x is ⟨α, n⟩-covered (at stage s) for
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some n.

In Step 4 blocks become frozen. We say that a block Bα
n is admissible at

stage s, if it is truly realized at stage s and has not been frozen by the end of

step 4 of stage s.

In Step 5 numbers are enumerated into M , i.e., Ms+1 becomes defined.

Now, using the notation introduced above, the steps of stage s + 1 are as

follows.

Step 1 (Defining the blocks Bα
n). A Bα

n -node β requires attention at stage

s+ 1 if one of the following holds.

(a) (i) Bα
n [s] ↑

(ii) β ⊏ δs or δs <left β and |β| < s.

(iii) Neither β nor any equivalent node β′ such that β′ <left β is

eligible at stage s.

(iv) For any node β′ such that β′ ⊏ β, the block associated with β′ is

defined at stage s.

(v) For any node β′ such that β <left β
′, |β′| = |β| and β′ is not

equivalent to β, the block associated with β′ is defined at stage s.

(b) β is eligible at stage s, and there is a block B which is suitable for

the definition of Bα
n by β at stage s+ 1. Here a block B is suitable

for the definition of Bα
n by the Bα

n -node β at stage s+ 1 if B has the

following properties.

(i) r(β, s) < minB,

(ii) B ⊆
⋃︁

{α′:|α′|=|α| and α′≤leftα} Vα′,s,

(iii) The block B has cardinality |B| = F (β, s) where F (γ, s) is defined

(by induction on γ) by

F (γ, s) = 2 +H(γ) +
∑︂

{γ′:γ′<leftγ and γ′ is eligible at stage s}

F (γ′, s)

where, for a Bα′

n′ -node γ, H(γ) = h(⟨α′, n′⟩) (and where
∑︁

∅ = 0).

(Note that, at any given stage s, there are only finitely many

eligible nodes, hence F (γ, s) is well defined.)
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Fix β minimal such that β requires attention.

If (a) holds then declare that β becomes eligible, set r(β′, s+ 1) = s for all

β′ ≥ β, and initialize all nodes β′ with β < β′ (i.e., no such β′ is eligible at

stage s+ 1).

If (b) holds then let Bα
n = B for the least (w.r.t. the canonical index) block

B which is suitable for the definition Bα
n by β at stage s+ 1, let β be the

priority of Bα
n , set r(β

′, s+ 1) = s for all β′ > β, and initialize all nodes β′

such that β ≤ β′.

If no node requires attention then Step 1 of stage s+ 1 is vacuous..

Step 2 (Defining the partial computable use functions ψα). For any α and

any n such that either n = 0 or ψα(n− 1)[s] ↓, ψα(n)[s] ↑ and Bα
n+1[s] ↓,

let ψα(n) = maxBα
n+1.

Step 3 (Defining the wtt-functionals Ψα). For any α and any n such that

ψα(n)[s] ↓ let

ΨA
α (n)[s+ 1] ↓ if ΨA

α (n)[s] ↑ and g(⟨α, n⟩, s) = 0, (5.26)

and let
ΨA
α (n)[s+ 1] ↑ if ΨA

α (n)[s] ↓, g(⟨α, n⟩, s) = 1 and

As+1 ↾ ψα(n) + 1 ̸= As ↾ ψα(n) + 1.
(5.27)

In any other case let ΨA
α (n)[s+ 1] ↓ if and only if ΨA

α (n)[s] ↓.

Step 4 (Freezing blocks). A block Bα
n is freezable at stage s + 1 if the

following hold.

(i) ⟨|α|, n⟩ < s.

(ii) Bα
n is not frozen at stage s.

(iii) For any x covered by Bα
n there is a block Bαx

nx
such that αx ≺ α, Bαx

nx

is admissible at stage s, and Bαx
nx

covers x.

If there is a freezable block then choose q = ⟨m,n⟩ minimal such that there

is a freezable block Bα
n with |α| = m and fix the rightmost α such that
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|α| = m and Bα
n is freezable. Declare that Bα

n becomes frozen at stage

s+ 1.

Step 5 (Enumerating M . A number y ̸∈Ms is enumerated into M at stage

s+ 1 if (at least) one of the following hold.

(i) (Freezing) There is a block Bα
n which becomes frozen in Step 4 of

stage s+ 1 and y is in the core B̂α
n [s+ 1] of Bα

n at stage s+ 1.

(ii) (Enumerating nonblock numbers) y is not in any block defined at stage

s+1 and y is less than the maximum of a block defined at stage s+1.

(iii) (Coding A into M) There is a node α and a number n such that the

block Bα
n is admissible at stage s and

ΨA
α (n)[s] ↓ and ΨA

α (n)[s+ 1] ↑ (5.28)

or

g(⟨α, n⟩, s) = 1 and g(⟨α, n⟩, s+ 1) = 0, (5.29)

holds, and y is the least element of the core B̂α
n [s+ 1] of Bα

n at stage

s+ 1 which is not in Ms. In this case, call y an ⟨α, n⟩-coding number.

This completes the construction. In the remainder of the proof we show that

M has the required properties.

We first summarize the properties of the blocks we will need.

Claim 3. The definition of the blocks satisfies the following conditions.

(B0) If Bα
n becomes defined at stage s+ 1 (i.e., Bα

n [s+ 1] ↓ and Bα
n [s] ↑) then

Bα
n ∩Ms = ∅.

(B1) If Bα
n is defined then

Bα
n ∩M ⊆

⋃︂
{α′:|α′|=|α| and α′≤leftα}

Vα′ .

(B2) If Bα
n is defined then ⟨|α|, n⟩ ≤ minBα

n .
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(B3) If Bα
n+1 is defined then Bα

n is defined and maxBα
n < minBα

n+1.

(B4) If Bα
n is defined then, for the core

B̂α
n = Bα

n \
⋃︂

{(α′,n′): α′ ≺ α, n′ ≥ 0 and Bα′
n′ ↓}

Bα′

n′

of Bα
n , |B̂α

n | > h(⟨α, n⟩) + 1.

(B5) If Bα
n is defined and α ≺ α′ and |α′| ≤ |α| then Bα′

n is defined too.

(B6) Assume that M is infinite. Then, for any α on or to the right of the true

path, the blocks Bα
n are defined for all n.

(B7) There is an infinite path p through T = {0, 1}∗ such that, for any α, all

blocks Bα
n (n ≥ 0) are defined if and only if α is on or to the right of p.

Proof. With the exception of property (B7) the proof only depends on the

definition of the blocks and not on the other parts of the construction. In case of

(B7) we use that at any stage s+1 any number y which is enumerated into in M

at stage s+ 1 is bounded by the maximum of some block existing at this stage.

We tacitly use that the restraint function is nondecreasing in both arguments,

i.e., r(β, s) ≤ r(β′, s′) for β ≤ β′ and s ≤ s′, and that for any pair ⟨α, n⟩ and
any stage s there is at most one eligible Bα

n -node at stage s and there is no such

node if Bα
n [s] ↓.

(B0). This is immediate by clause (ii) in the definition of suitability since,

for any node α and any stage s, Vα,s ⊆Ms.

(B1). This is immediate by clause (ii) in the definition of suitability since,

for any node α and any stage s,

M ∩
⋃︂

{α′:|α′|=|α| and α′≤leftα}

Vα′,s ⊆
⋃︂

{α′:|α′|=|α| and α′≤leftα}

Vα′ .

(B2). If β is the priority of the block Bα
n and Bα

n becomes defined at stage s+1

then r(β, s) < minBα
n by clause (i) in the definition of suitability. Moreover, there

is a stage s′+1 ≤ s such that β receives attention via (a) and becomes eligible at
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stage s′+1. By clause (ii) in (a), this implies that |β| < s′ = r(β, s′+1) ≤ r(β, s).

Finally, since β is a Bα
n -node, |β| = ⟨|α|, n⟩.

(B3). Assume that Bα
n+1 becomes defined by β at stage s+ 1. Then, for the

greatest stage t < s + 1 such that β is not eligible at stage t, t + 1 ≤ s and β

receives attention via clause (a) at stage t+1. So, since there is Bα
n -node β

′ such

that β′ ⊏ β, Bα
n [t + 1] ↓ whence maxBα

n ≤ t. Moreover, r(β, t + 1) = t hence,

by t + 1 ≤ s, r(β, s) ≥ t. By the latter and by clause (i) in the definition of

suitability of a block B, it follows that t < minBα
n+1 which completes the proof

of (B3).

(B4). Assume that Bα
n is defined. Fix the node β and the stage s+ 1 such

that Bα
n has priority β and Bα

n becomes defined by activity of β at stage s+ 1.

Then, given any state α′ and any number n′ such that

α′ ≺ α, Bα′

n′ is defined and Bα′

n′ ∩Bα
n ̸= ∅, (5.30)

it suffices to show that, for the priority β′ of Bα′

n′ ,

β′ <left β, (5.31)

β′ is eligible at stage s, (5.32)

and

|Bα′

n′ | = F (β′, s) (5.33)
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hold. Namely, since different blocks have different priorities, it follows that

|B̂α
n | = |Bα

n \
⋃︁

{(α′,n′): α′ ≺ α, n′ ≥ 0 and Bα′
n′ ↓}B

α′

n′ |

≥ |Bα
n | −

∑︁
{(α′,n′): α′ ≺ α, n′ ≥ 0, Bα′

n′ ↓ and Bα′
n′ ∩Bα

n ̸= ∅} |B
α′

n′ |

≥ F (β, s)−
∑︁

{β′:β′<leftβ and β′ is eligible at stage s} F (β
′, s)

(by definition of Bα
n and by (5.30) implying (5.31) - (5.33))

≥ H(β) + 2

(by definition of F (β, s))

= h(⟨α, n⟩) + 2

(by definition of H(β))

So, assuming that (5.30) implies (5.31) - (5.33), (B4) holds.

Hence, for the remainder of the proof of (B4), fix α
′ and n′ such that (5.30)

holds, and let β′ be the priority of Bα′

n′ . We have to show that (5.31) - (5.33) hold.

Fix t < s maximal such that β is not eligible at stage t and fix t′+1 < s′+1 such

that Bα′

n′ becomes defined via β′ at stage s′+1 and t′ is maximal such that t′ < s′

and β′ is not eligible at stage t′. Note that β becomes eligible at stage t+ 1, β is

not initialized (hence eligible) at any stage u such that t+ 1 ≤ u < s+ 1, and

Bα
n is defined by β at stage s+ 1. Hence

t = r(β, t+ 1) = r(β, s) < minBα
n ≤ maxBα

n ≤ s. (5.34)

Similarly, β′ becomes eligible at stage t′ + 1, β′ is not initialized (hence eligible)

at any stage u′ such that t′ + 1 ≤ u′ < s′ + 1, and Bα′

n′ is defined by β′ at stage

s′ + 1. Hence

t′ = r(β′, t′ + 1) = r(β′, s′) < minBα′

n′ ≤ maxBα′

n′ ≤ s′. (5.35)

Moreover, any node γ with β < γ is initialized at stages t+ 1 and s+ 1, and any

node γ′ with β′ < γ′ is initialized at stages t′ + 1 and s′ + 1. Finally note that,
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by (α, n) ̸= (α′, n′), β ̸= β′ and the stages t, s, t′, s′ are mutually different.

Now, the proof of (5.31) - (5.33) is in two steps: before we prove (5.31), we

show that (5.31) implies (5.32) and (5.33). So assume (5.31). Now, if s′+1 < s+1

then (by (5.31)) β is initialized at stage s′ + 1 hence s′ + 1 < t+ 1. So, by (5.34)

and (5.35), maxBα′

n′ < minBα
n contradicting (5.30). Similarly, if s+ 1 < t′ + 1,

then by (5.34) and (5.35), maxBα
n < minBα′

n′ , again contradicting (5.30). So

t′ + 1 < s + 1 < s′ + 1 must hold. Now (5.35) is immediate by choice of

t′. Moreover, by choice of t′ too, no node γ ≤ β′ is initialized at any stage

u′ ∈ [t′ + 1, s′ + 1) whence no node γ′ < β′ becomes active at any such stage. So

a node γ′ < β′ is eligible at stage s if and only if it is eligible at stage s′. By

definition of F this implies that F (β′, s) = F (β′, s′). Equation (5.33) follows

since |Bα′

n′ | = F (β′, s′).

It remains to establish (5.31). By assumption α′ ≺ α hence α′ <left α or

α ⊏ α′. In the former case, (5.31) is immediate since α′ ⊑ β′ and α ⊑ β. So,

for the remainder of the argument assume that α ⊏ α′ and, for a contradiction,

assume that (5.31) fails, i.e. that β′ ⊏ β or β ⊏ β′ or β <left β
′. If β′ ⊏ β

then, by construction, Bα′

n′ has to be defined before β can become eligible, i.e.,

s′ + 1 < t+ 1 whence maxBα′

n′ < minBα
n contrary to (5.30). Similarly, if β ⊏ β′

then s+ 1 < t′ + 1 hence maxBα
n < minBα′

n′ contrary to (5.30).

This leaves the case that β <left β
′. If s′ +1 < t+1 or s+1 < s′ +1 then, as

above, we may conclude from (5.34) and (5.35) that (5.30) fails (note that in the

latter case, s+1 < t′ +1 by β < β′). So w.l.o.g. t+1 < s′ +1 < s+1. But since

α ⊏ α′ and since β < β′, Vα′,s′ ⊆ Vα,s′ , F (β, s
′) ≤ F (β′, s′) and r(β, s′) ≤ r(β′, s′).

So since the block Bα′

n′ is suitable for β′ at stage s′ + 1, Bα′

n′ or a subblock B of it

will be suitable for β at stage s′ + 1 too. So, since β is eligible at stage s′ + 1, β

will require attention at stage s′ + 1. Since β < β′ this contradicts the fact that

β′ receives attention. This completes the proof of (5.31) and the proof of (B4).

(B5). Fix α, α′ and n such that Bα
n ↓ and either α′ ⊏ α or α <left α

′ and

|α| = |α′|. It suffices to show Bα′
n ↓. (Then the claim follows by induction on

|α|.) Let β be the priority of Bα
n and fix the least stage s+1 at which β becomes

eligible hence requires attention via clause (a). Then the subclauses (iv) and

(v) of (a) guarantee that, for any node β′ such that either β′ ⊏ β or β <left β
′,
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|β| = |β′| and β and β′ are not equivalent, the block associated with β′ is defined

at stage s. But if α′ ⊏ α then Bα′
n is associated with the proper initial segment

β′ = β ↾ ⟨|α′|, n⟩ of β and if α <left α
′ and |α| = |α′| then Bα′

n is associated with

the node β′ = α′1|β|−|α| and β <left β
′, |β| = |β′| and β and β′ are not equivalent.

So in either case Bα′
n ↓.

(B6). The proof is indirect. Assume that M is infinite and that there is

a node α and a number n such that TP ↾ |α| ≤left α and Bα
n is not defined.

Fix q = ⟨m,n⟩ minimal such that there is a node α of length m such that

TP ↾ m ≤left α and Bα
n is not defined and fix the rightmost corresponding α.

Moreover, let β be the rightmost Bα
n -node. (Note that β = α1q−m. In particular,

α ⊑ β, |β| = q and, by TP ↾ |α| ≤left α and by definition of β, TP ↾ q ≤left β.)

We claim that there is a stage s∗ such that no node β′ with β′ < β which is

not equivalent to β requires attention after stage s∗. This is shown as follows.

Note that any node β′ with β′ < β which is not equivalent to β is element of

one of the following sets.

N0 = {β′ : |β′| ≤ |β| & β′ <left TP ↾ |β′|}
N1 = {β′ : |β′| < |β| & TP ↾ |β′| ≤left β

′}
N2 = {β′ : |β′| = |β| & TP ↾ |β| ≤left β

′ <left β & β′ is not a Bα
n -node}

N3 = {β′ : |β| < |β′| & β′ <left β}

So it suffices to show that for i ≤ 4 there is a stage si such that no node in Ni

requires attention after stage si.

i = 0. Fix t0 minimal such that TP ↾ q < δs for all stages s ≥ t0. Then no

β′ ∈ N0 can become eligible after stage t0. So whenever a node β′ ∈ N0 requires

attention at a stage s + 1 > t0, either the block associated with β′ becomes

defined (namely if β′ acts at stage s + 1) or β′ becomes initialized (namely if

a higher priority node β′′ < β′ acts at stage s + 1). In either case β′ will not

require attention after stage s+ 1. Since N0 is finite, this gives the existence of

the desired stage s0.

i = 1. Note that by minimality of q, any node β′ ∈ N1 is associated with

a block which eventually becomes defined. Since N1 is finite, this gives the

existence of the desired stage s1.
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i = 2. Note that, for any β′ ∈ N2, β
′ <left β, |β′| = |β| and β′ and β are not

equivalent. Since the block Bα
n associated with β is never defined, it follows, by

clause (v) in the definition of requiring attention via (a), that no node in N1 will

ever require attention via (a). So s2 = 0 will do.

i = 3. If β′ ∈ N3 then, for the proper initial segment β′′ = β′ ↾ |β| of β′ of

length |β|, either β′′ ∈ N2 or β
′′ is a Bα

n -node. In either case the block associated

with β′′ is never defined. So, by clause (iv) in the definition of requiring attention

via (a), β′ does not require attention via (a), hence does not require attention.

So s3 = 0 will do.

Having established the existence of s∗, we next claim that there is a stage

t∗ > s∗ and a Bα
n node β̂ such that β̂ is eligible at all stages s ≥ t∗. Since,

by choice of s∗, a Bα
n -node β

′ can be initialized at a stage s + 1 > s∗ only

if a Bα
n -node β

′′ to the left of it becomes active at stage s + 1, and since by

Bα
n ↑ this implies that β′′ acts via clause (a) hence becomes eligible at stage

s + 1, it suffices to show that some Bα
n -node β

′ will be eligible at some stage

s+ 1 > s∗. For a contradiction assume that such β′ and s+ 1 do not exist. By

minimality of q and maximality of α, we may fix a stage s∗∗ ≥ s∗ such that for

any q′ = ⟨m′, n′⟩ < n the block Bβ↾m′

n′ is defined at stage s∗∗ and, for any α′ with

|α′| = |α| and α <left α
′, the block Bα′

n is defined at stage s∗∗ too. Then, for

the rightmost Bα
n -node β and any s ≥ s∗∗, the subclauses (i) (by Bα

n ↑), (iii) (by
assumption) and (iv) and (v) (by choice of s∗∗) in the definition of requiring

attention (a) hold at stage s. So if we let s be the least stage ≥ s∗∗ such that

TP ↾ q ⊏ δs then β requires attention via (a), at stage s + 1 hence becomes

eligible (since by assumption and by choice of s∗ no higher priority node requires

attention). Contradiction.

So, for the remainder of the argument we may fix the Bα
n -node β̂ which is

permanently eligible after stage t∗. In order to get the final contradiction, we

show that, eventually, there is a stage s+ 1 > t∗ such that β̂ requires attention

via (b) at stage s+1. Since no higher priority node requires attention after stage

t∗, it follows that the block Bα
n becomes defined at stage s+ 1 contrary to choice

of α and n. Now, by choice of t∗, for any node β′ ≤ β̂, eligibility of β′ does not

change after stage t∗. So r(β̂, s) = r(β̂, t∗) and F (β̂, s) = F (β̂, t∗).

So in order to show that β̂ eventually requires attention via (b), it suffices to
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show that there is a stage s ≥ t∗ such that

|
⋃︂

{α′:|α′|=|α| and α′≤leftα}

Vα′,s| > r(β̂, t∗) + F (β̂, t∗).

But, since TP ↾ m ≤left α, this follows from the fact, that, by the assumption

that M is infinite and by the True Path Lemma, VTP ↾m is infinite.

This completes the proof of (B6).

(B7). First note that infinitely many blocks become defined. (Namely,

otherwise, it follows that M is finite since, any number y is enumerated into M

at stage s+1 is less than or equal to the maximum of a block Bα
n defined at stage

s. So, by (B6), infinitely many blocks will be defined contrary to assumption.)

Now, call a node β a block node if for all β′ ⊑ β the block associated with β′ is

defined, and let B be the set of all block nodes. Note that any initial segment of

a block node is a block node again, and any priority of a block which becomes

defined is a block node. Moreover, for ⟨α, n⟩ ≠ ⟨α′, n′⟩, the blocks Bα
n and Bα′

n′ (if

defined) have different priorities. Since infinitely many blocks become defined, we

may conclude that the set B of block nodes is an infinite subtree of the priority

tree T = {0, 1}∗.
Now, by König’s Lemma, let p be the leftmost infinite path through B. To

show that p has the required properties, first fix α on p and n ≥ 0. Then

β = p ↾ ⟨|α|, n⟩ is a block node and Bα
n is associated with β. So Bα

n is defined.

By (B4) we may conclude that, for α to the right of the path p, the blocks Bα
n

(n ≥ 0) are defined too. Finally, fix α to the left of p and, for a contradiction,

assume that Bα
n is defined for all n ≥ 0. Then, the set of priorities βn of the

blocks Bα
n , n ≥ 0, is an infinite subset of nodes in B all extending the node

α. By α <left p and by König’s Lemma this contradicts the fact that p is the

leftmost infinite path through B.

This completes the proof of (B7) and the proof of Claim 3.

Next we summarize relevant properties of the use functions ψα and the

wtt-functionals Ψα.

Claim 4. The partial functions ψα, α ∈ {0, 1}∗, are uniformly computable.

Moreover, for any α, the domain of ψα (at stage s) is an initial segment of ω,
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and ψα is strictly increasing on its domain. Finally, ψα is total if and only if the

blocks Bα
n are defined for all n ≥ 0.

Proof. Uniform computability follows by effectivity of (part 1 of) the con-

struction. The second part of the claim is immediate by definition and by (B3).

The third part is immediate by definition.

Claim 5. The functionals Ψα are uniformly computable and, for any X, α

and n such that ΨX
α (n) is defined, ψα(n) is defined and the use of ΨX

α (n) is

bounded by ψα(n). Moreover, for any α and n such that ψα(n) is defined, ΨA
α (n)

is defined too.

Proof. The proof of the first part is straightforward. For a proof of the

second part, for a contradiction assume ψα(n) ↓ and ΨA
α (n) ↓. Since Ψ is a

wtt-functional, it follows that ΨA
α (n)[s] ↑ for almost all s. Moreover, by (5.22),

g(⟨α, n⟩, s) = 0 for almost all s. So there is a least stage s0 such that ψα(n)[s0] ↓
and ΨA

α (n) ↑ and g(⟨α, n⟩, s) = 0 for all stages s ≥ s0. By clause (5.26) in the

definition of Ψ, this implies ΨA
α (n)[s0 + 1] ↓. Contradiction.

Note that the first part of Claim 5 justifies that in advance we have fixed a

computable function f satisfying (5.21).

Claim 6. Assume that ψα is total. Then the following hold.

(i) ΨA
α is total.

(ii) There is a number nα such that, for any n ≥ nα, there is a stage s such

that k(⟨α, n⟩, s) = 1.

Proof. Part (i) is immediate by the second part of Claim 5. Part (ii) follows

from part (i) by (5.23) and (5.25).

For the remaining claims we need some more notation. Let p be the unique

path through T defined in (B7). Then, for any node α such that α ⊏ p or

p <left α, all blocks B
α
n are defined. So, by Claims 4 and X6, ψα and ΨA

α are

total and we may fix nα such that lims→∞ k(⟨α, n⟩, s) = 1 for all n ≥ nα. It

follows that, for n ≥ nα, the block Bα
n will eventually become truly realized. So,

if we let xα = maxBα
nα
, then all numbers x ≥ xα are eventually truly α-covered.
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Hence, for such x we may fix nαx and sαx such that nαx is the unique n such that

x becomes covered by Bα
n and sαx is the least stage s such that x is truly covered

by Bα
nα
x
at stage s.

Claim 7. Let α ⊏ p and let x ≥ xα. There is a node α′ ⪯ α, a number n ≥ 0

and a stage t such that the block Bα′
n covers x and is admissible at all stages

s ≥ t (hence is never frozen).

Proof. Note that, by (B2), there are only finitely many blocks which may

cover x. So there is a stage t0 such that any block which covers x and becomes

frozen is frozen by stage t0. So it suffices to show that, for almost all stages

s, there is a block Bα′
n such that α′ ⪯ α, Bα′

n covers x and Bα′
n is admissible at

stage s. This is established by proving the following two facts. (a) There is a

stage s such that x is covered by a block Bα′
n where α′ ⪯ α and Bα′

n is admissible

at stage s. (b) If x is covered by a block Bα′
n which is admissible at stage s then,

at any stage s′ > s, x is covered by a block Bα′′

n′ such that α′′ ⪯ α′ and Bα′′

n′ is

admissible at stage s′.

For a proof of (a) recall that x will be truly α-covered eventually. So there

is a stage s and a number n such that the block Bα
n truly covers x at stage s.

If Bα
n is not frozen at stage s then Bα

n is admissible at stage s and we are done.

Otherwise, there is a stage ŝ ≤ s such that Bα
n becomes frozen at stage ŝ. But,

by construction, this implies that there is a block Bα′

n′ such that α′ ⪯ α, Bα′

n′

covers x and Bα′

n′ is admissible at stage ŝ. So (a) holds in this case too.

For a proof of (b), it suffices to consider the case of s′ = s + 1. (Then the

general case follows by induction.) So assume that Bα′
n covers x and is admissible

at stage s. If Bα′
n does not become frozen at stage s + 1 then we are done.

Otherwise, it follows by construction that there is a block Bα′′

n′ such that α′′ ⪯ α′,

Bα′′

n′ covers x and Bα′′

n′ is admissible at stage s+ 1. This completes the proof of

(b) and the proof of the claim.

Claim 8. Assume that Bα
n becomes defined and is never frozen. Then, for the

core B̂α
n of Bα

n , B̂
α
n ∩M ̸= ∅. Similarly, if Bα

n is defined but not frozen at stage s

then B̂α
n [s+ 1] ∩Ms ̸= ∅.

Proof. We prove the first part of the claim. The second part is obtained by

straightforward modifications of the proof.
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We first show that a number y ∈ B̂α
n can be enumerated into M only if it is

an ⟨α, n⟩-coding number. For a contradiction assume that y ∈ B̂α
n is enumerated

into M at stage s+ 1 and y is not an ⟨α, n⟩-coding number. Then y cannot be

enumerated into M as a nonblock number according to clause (ii). (Namely, if

so, Bα
n [s + 1] ↑. Hence Bα

n becomes defined at a stage t + 1 > s + 1. But, by

(B0) this implies that Bα
n ∩Ms+1 = ∅ hence y ̸∈ Bα

n . The claim follows since

B̂α
n ⊆ Bα

n .) Since Bα
n is never frozen, this leaves the case that y ∈ B̂α′

n′ [s + 1]

for some ⟨α′, n′⟩ ≠ ⟨α, n⟩ and y becomes enumerated into M since Bα′
becomes

frozen at stage s+ 1 or y is an ⟨α′, n′⟩-coding number. Since, by (B0), y can’t

be in a block which is not yet defined at stage s+ 1, it follows by y ∈ B̂α′

n′ [s+ 1]

and by definition of the core B̂α′

n′ that y ∈ B̂α′

n′ . So it suffices to show that

B̂α′

n′ ∩ B̂α
n = ∅. Since the core of a block is contained in the block this is done as

follows. If α′ = α the claim is immediate. So, by symmetry, w.l.o.g. α′ ≺ α. But

then, by definition of B̂α
n , B

α′

n′ ∩ B̂α
n = ∅.

Now, by the above and by construction, a number y ∈ B̂α
n is enumerated into

M at stage s+ 1 only if Bα
n is admissible at stage s (hence k(⟨α, n⟩, s) = 1) and

(5.28) or (5.29) holds. Moreover, at any such stage s + 1 at most one number

y ∈ B̂α
n is enumerated into M . So, by (B0) and (B4), it suffices to show that

|{s ≥ s0 : (5.28) or (5.29) holds}| < h(⟨α, n⟩) + 2 (5.36)

where s0 is minimal such that k(⟨α, n⟩, s0) = 1.

Since between any two stages s < s′ for which (5.29) holds there must be a

stage t such that g(⟨α, n⟩, t) = 0 and g(⟨α, n⟩, t+ 1) = 1,

2 · |{s ≥ s0 : (5.29) holds}| ≤ |{s ≥ s0 : g(⟨α, n⟩, s+ 1) ̸= g(⟨α, n⟩, s)}|+ 1

≤ h(⟨α, n⟩) + 1

(5.37)

where the second inequality holds by (5.24). Moreover, since ΨA
α (n) ↓ by Claim

5, any stage s at which (5.28) holds has to be followed by a stage t > s such that

ΨA
α (n)[t] ↑ and ΨA

α (n)[t+ 1] ↓, where t < s′ for the least stage s′ > s such that

(5.28) holds (if there is such a stage s′). Since, by construction, g(⟨α, n⟩, t) = 0
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and g(⟨α, n⟩, s′) = 1 for any such stage t, it follows that

|{s ≥ s0 : (5.28) holds}| ≤ |{s ≥ s0 : (5.29) holds}|

holds. So, by (5.37), (5.36) holds.

Claim 9. A ≤ibT M .

Proof. It suffices to give an effective procedure which computes A(x) from

M ↾ x+ 1 for all sufficiently large x.

Let x ≥ xλ and let s be the least stage such that there is a node α and a

number n such that

(I) Bα
n covers x at stage s,

(II) Bα
n is admissible at stage s,

(III) ΨA
α (n)[s] ↓ and g(⟨α, n⟩, s) = 1, and

(IV) M ↾ x+ 1 =Ms ↾ x+ 1.

Note that such a stage s exists. (Namely, by Claim 7, there is a block Bα
n

which covers x and which is admissible at all sufficiently large stages. So (I) and

(II) hold for all sufficiently large s. Moreover, since ΨA
α (n) ↓ (by the second part

of Claim 5), it follows that (III) holds for all sufficiently large s too (by (5.22)).

Finally, (IV) obviously holds for all sufficiently large s.) Moreover, for any stage

s, we can effectively check whether, among the finitely many blocks defined at

stage s, there is a block Bα
n satisfying (I) - (III). So we can find the above stage

s by using M ↾ x+ 1 as an oracle.

We claim that A(x) = As(x). For a proof, first note that Bα
n does not become

frozen after stage s hence is admissible at all later stages. (To wit, if Bα
n becomes

frozen at stage s′ + 1 > s then B̂α
n [s

′] is completely enumerated into M at stage

s′ + 1 whence, by the second part of Claim 8, there is a number y ∈ B̂α
n [s

′ + 1]

such that y ∈Ms′+1 \Ms′ . Since B̂
α
n [s

′ + 1] is contained in Bα
n and maxBα

n ≤ x

it follows that y ≤ x hence M ↾ x + 1 ̸= Ms ↾ x + 1 contrary to (iv).) Now,

for a contradiction, assume that A(x) ̸= As(x). Fix s′ ≥ s minimal such that

a number x′ ≤ x is enumerated into A at stage s′ + 1. Then, assuming that
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ΨA
α (n)[s

′] ↓ and g(⟨α, n⟩, s′) = 1, ΨA
α (n)[s

′ + 1] ↑ by construction. So, in any

case, there is a least stage s′′ such that s ≤ s′′ ≤ s′ and such that (5.28) or (5.29)

holds for s′ (in place of s). It follows, by construction and by Claim 8, that there

is a number y ∈ B̂α
n [s

′ + 1] which is newly enumerated into M at stage s′ + 1.

But, as observed before, this contradicts (iv).

Claim 10. M is infinite.

Proof. By (B2) and by Claim 7 there are infinitely many blocks which are

never frozen. So the claim follows by Claim 8.

Claim 11. For any node α ⊏ p there are only finitely many blocks Bα′
n such

that α ≺ α′, n ≥ 0 and Bα′
n is never frozen.

Proof. Fix α ⊏ p. By (B2) it suffices to show that any block Bα′
n such that

α ≺ α′ and xα ≤ maxBα′
n becomes frozen eventually. So fix such a block Bα′

n

and, for a contradiction, assume that Bα′
n is never frozen. Note that, by α ⊏ p

and α ≺ α′, α′ is on p or to the right of p whence Bα′
n becomes defined, say at

stage s+ 1. By Claim 7 we may fix a stage t ≥ s+ 1 such that, for any of the

finitely many numbers x covered by Bα′
n there is a block Bαx

nx
such that αx ⪯ α

(hence αx ≺ α′), Bαx
nx

covers x and Bαx
nx

is admissible at all stages t′ ≥ t. So Bα′
n

is freezable at all stages t′ ≥ t. Since there are only finitely many blocks Bα̂
n̂ such

that ⟨|α̂|, n̂⟩ < ⟨|α′|, n⟩ or ⟨|α̂|, n̂⟩ = ⟨|α′|, n⟩ and α′ <left α̂, it follows that B
α′
n

becomes frozen eventually. Contradiction.

Claim 12. The true path TP coincides with the path p.

Proof. Claim 10 and (B6) immediately imply that p ≤left TP . For a proof

of the converse, i.e., TP ≤left p, it suffices to show that, for any given node

α′ <left TP , only finitely many α′-blocks become defined. Now, by Claim 10

and by the second part of the Infinity Lemma (Claim 1), there are only finitely

many stages s such that δs <left α
′ or α′ ⊏ δs. So only finitely many α′-nodes

can become eligible, hence only finitely many α′-blocks can be defined.

Claim 13. For any α on TP , M ⊆∗ V̂α.

Proof. Fix α ⊏ TP . Since (by (B1) and (5.19)) M ∩Bα′
n ⊆ V̂α for any block
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Bα′
n such α′ ⪯ α, it suffices to show

M ⊆∗
⋃︂

{(α′,n): α′⪯α,n≥0 and Bα′
n ↓}

Bα′

n . (5.38)

For a proof of (5.38), first recall that (by Claim 12) the true path TP coincides

with the path p. So, by Claim 11, we may let B be the finite union of the blocks

Bα′
n such that α ≺ α′, n ≥ 0 and Bα′

n is never frozen. Now, call a number y

a block number if y is element of some block, and call a block number y an

α′-number if α′ is ≺-minimal such that y is in an α′-block. (Note that any

number is element of at most finitely many blocks. So α′ is well defined.) Then

it suffices to show that any number y ∈M which is not an α′-number for some

α′ ⪯ α is an element of B. So fix such y. We first observe that y is a block

number. Namely, since there are infinitely many blocks, it follows by (B2) that

there is a stage s such that y is less than the maximum of a block defined at

stage s. So if y is not a block number then y is enumerated into M at stage

s + 1 for the least such s contrary to choice of y. So we may fix α′ and the

corresponding unique n such that y is an α′-number and y ∈ Bα′
n . It suffices to

show that Bα′
n is contained in B. For a contradiction, assume that this is not

the case. Since, by choice of y, α ⪯ α′, this implies that there is a stage s+ 1 at

which Bα′
n becomes frozen. So B̂α

n [s+ 1] ⊆Ms+1 by construction. But since y is

an α′-number, y is in the core B̂α′
n of Bα′

n . Since, obviously, B̂α′
n ⊆ B̂α′

n [s+ 1] it

follows that y ∈M contrary to assumption.

This completes the proof of Claim 13.

Claim 14. M is maximal.

Proof. By effectivity of the construction and by Claims 10 and 13, the

hypotheses of the Maximal-Set Lemma (Claim 2) are satisfied.

By Claims 9 and 14, M has the required properties. This completes the proof

the Theorem 5.3.3.

In order to complete the proof of the Characterization Theorem it remains

to give to the proof of Theorem 5.3.4.
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Proof of Theorem 5.3.4. We use the following characterization of the dense sim-

ple sets in Robinson [Rob67]: a c.e. set D is dense simple if and only if D is

coinfinite and, for every strong array {Fn}n≥0 of mutually disjoint sets, there is

a number m such that

∀ n ≥ m (|Fn ∩D| < n). (5.39)

It suffices to define computable functions g, h and k witnessing that A is

eventually uniformly wtt-array computable.

Fix a wtt-functional Γ such that A = ΓD and fix a computable function γ

such that the use of ΓD is bounded by γ where w.l.o.g. γ is strictly increasing.

Moreover, fix computable enumerations {As}s≥0, {Ds}s≥0 and {Γs}s≥0 of A, D

and Γ, respectively, such that the length of agreement function

l(s) = max{y : As ↾ y = ΓDs
s ↾ y}

is strictly increasing in s. (Such enumerations can be obtained by speeding up

any given computable enumerations of A, D and Γ.) Note that this ensures

(x < l(s) & As+1(x) ̸= As(x)) ⇒ Ds+1 ↾ γ(x) + 1 ̸= Ds ↾ γ(x) + 1 (5.40)

for all numbers x and stages s.

Now the computable functions g, k : ω2 → {0, 1} and h : ω → ω are defined

as follows. Define g by letting

g(⟨e, y⟩, s) =

⎧⎨⎩1 if Φ̂As
e,s(y) ↓,

0 otherwise,

and let h be the order defined by

h(x) = (x+ 1)2.

Finally, for the definition of k, define the auxiliary uniformly partial computable
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functions φ̃e by φ̃e(x) = lims→∞ φ̃e,s(x) where

φ̃e,s(x) =

⎧⎨⎩x+max{φ̂e,s(y) : y ≤ x} if ∀ y ≤ x (φ̂e,s(y) ↓),

↑ otherwise.

Note that φ̃e is defined on an initial segment of ω, φ̃e is strictly increasing on

its domain, φ̃e majorizes φ̂e on its domain, and φ̃e is total if φ̂e is total. So, for

total Φ̂A
e , φ̃e is total, strictly increasing and bounds the use of Φ̂A

e . Now, the

0-1-valued function k is defined by letting k(⟨e, x⟩, s) = 1 iff

φ̃e,s(x) ↓ & l(s) > φ̃e(x) & |Ds ↾ γ(φ̃e,s(x)) + 1| < (⟨e, x⟩+ 1)2

2
. (5.41)

Obviously, the functions g, h and k are computable, and h is an order.

Moreover, g is the canonical approximation of A† whence (5.6) holds. So it only

remains to show that the functions g, h and k satisfy conditions (5.7) - (5.9) in

Definition 5.3.1 too.

For a proof of (5.7) it suffices to note that k is 0-1-valued and that the three

clauses in equation (5.41) that characterize the stages s such that k(⟨e, y⟩, s) = 1

persist if we replace s by a stage t ≥ s. (For the second clause, recall that the

length function l(s) is nondecreasing in s.)

For a proof of (5.8) fix x = ⟨e, y⟩ and s such that k(x, s) = 1. By definition

of g and h, it suffices to show that

|{t ≥ s : Φ̂At
e,t(y) ↓ & Φ̂

At+1

e,t+1(y) ↑}| <
(⟨e, y⟩+ 1)2

2
. (5.42)

(Namely, (5.42) guarantees that g(x, t) switches from 1 to 0 less than (x+1)2 ·2−1

times after stage s. So, since g is 0-1-valued, g may change on x after stage s at

most 2((x+ 1)2 · 2−1) (= h(x)) times.)

So fix t as in (5.42). Then At+1 ↾ φ̂e(y) + 1 ̸= At ↾ φ̂e(y) + 1. Note that, by

k(x, s) = 1, (5.41) holds. So, by φ̂e(y) ≤ φ̃e(y) (if defined), by (5.40) and by the

first two clauses in (5.41), there is a number ≤ γ(φ̃e,s(y)) that is enumerated

into D at stage t+ 1. But, by the third clause in (5.41), the latter can happen

for at most (⟨e,y⟩+1)2

2
− 1 stages t ≥ s. So (5.8) holds.
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Finally, for a proof of (5.9), fix e such that Φ̂A
e is total. Then φ̃e is total,

computable and strictly increasing (and so is γ). So we can define a computable

partition of ω into nonempty intervals {Fn}n≥0 by letting F0 = [0, γ(φ̃e(0))] and

Fn+1 = (γ(φ̃e(n)), γ(φ̃e(n+1))]. Now, since D is dense simple, there is a number

m such that (5.39) holds. So there is a constant c such that

|D ↾ γ(φ̃e(n)) + 1| = |D ↾ 1 + maxFn|

=
∑︂
n′≤n

|D ∩ Fn′| ≤ (
∑︂
n′≤n

n′) + c =
n(n+ 1)

2
+ c

for all n ≥ 0. Since, by x ≤ ⟨e, x⟩, x(x + 1) · 2−1 + c < (⟨e, x⟩ + 1)2 · 2−1 for

all sufficiently large x, it follows that, for almost all x, there is a stage sx such

that (5.41) holds for all s ≥ sx. Since lims→∞ k(⟨e, x⟩, s) = 1 for any such x, this

implies (5.9).

This completes the proof of Theorem 5.3.4.

5.4 Closure Properties of EUwttAC

In this section, we prove that EUwttAC is closed downwards under ≤wtt and

closed under join. The former holds by the following slightly more general result

where we do not require that the sets are computably enumerable.

Lemma 5.4.1. Let A and B be any (not necessarily c.e.) sets such that A ≤wtt B

and such that B is e.u.wtt-a.c. Then A is e.u.wtt-a.c., too.

Proof. Fix computable functions g, k and h such that B is e.u.wtt-a.c. via g, k and

h, and, by 1. of Lemma 5.2.4, fix a computable function f such that Φ̂Ae = Φ̂Bf(e)
for e ≥ 0. Then A is e.u.wtt-a.c. via g̃, k̃ and h̃ where g̃(⟨e, x⟩, s) = g(⟨f(e), x⟩, s),
k̃(⟨e, x⟩, s) = k(⟨f(e), x⟩, s) and h̃(⟨e, x⟩) = h(⟨f(e), x⟩) (for e, x, s ∈ ω).

For the closure under the join operation (and for some later applications),

we need the following technical lemma.
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Lemma 5.4.2. Let A0 and A1 be c.e. sets. There exist strictly increasing

computable functions f0, f1 : ω → ω such that, for all e, x ∈ ω,

Φ̂A0⊕A1
e (x) ↓ ⇔ (Φ̂A0

f0(e)
(x) ↓ & Φ̂A1

f1(e)
(x) ↓) (5.43)

and

Φ̂A0⊕A1
e (x) ↓ ⇒ ∃ i ≤ 1 (Φ̂Ai

fi(e)
(x) = Φ̂A0⊕A1

e (x)). (5.44)

Proof. Given computable enumerations {Ai,s}s≥0 of Ai (i ≤ 1), for each i ≤ 1

and e ≥ 0 define the functional Ψi,e by letting, for any set Z and any number x,

ΨZ
i,e(x) ↓ ⇔ ∃s (Φ̂A0⊕A1

e (x)[s] ↓ & Ai,s ↾ φ̂e(x) + 1 = Z ↾ φ̂e(x) + 1)

and by setting

ΨZ
i,e(x) = Φ̂A0⊕A1

e (x)[s]

for the least such s if ΨZ
i,e(x) is defined. Note that the use of ΨZ

i,e(x) is bounded

by φ̂e(x), and, for i ≤ 1, {Ψi,e}e≥0 is a uniformly computable sequence of wtt-

functionals. So, by 1. of Lemma 5.2.3, there is a strictly increasing computable

function fi such that Ψi,e = Φ̂fi(e). We claim that f0 and f1 are as desired.

Note that Φ̂A0⊕A1
e (x) ↓ trivially implies that Φ̂A0

f0(e)
(x) and Φ̂A1

f1(e)
(x) are defined.

So, assuming that Φ̂A0

f0(e)
(x) and Φ̂A1

f1(e)
(x) are defined, it suffices to show that

Φ̂Ai

fi(e)
(x) = Φ̂A0⊕A1

e (x) for some i ≤ 1. By assumption, for i ≤ 1 fix the least

stage si such that Φ̂A0⊕A1
e (x)[si] ↓ and Ai,si ↾ φ̂e(x) + 1 = Ai ↾ φ̂e(x) + 1 holds.

Then, for s = max{s0, s1}, it follows by the use-principle that Φ̂A0⊕A1
e (x) =

Φ̂A0⊕A1
e (x)[s]. So, for the least i ≤ 1 such that s = si, we may deduce that

Φ̂Ai

fi(e)
(x) = Φ̂A0⊕A1

e (x).

By applying Lemma 5.4.2, now we can prove that EUwttAC is closed under

join.

Lemma 5.4.3. Let A0 and A1 be c.e. e.u.wtt-a.c. sets. Then A0 ⊕A1 is e.u.wtt-

a.c. too.
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Proof. Fix computable functions gi, ki and hi such that Ai is e.u.wtt-a.c. via

gi, ki and hi (i ≤ 1). By Lemma 5.4.2, fix computable functions fi : ω → ω

(i ≤ 1) such that (5.43) holds. Define the functions g, k and h by letting

g(⟨e, x⟩, s) = g0(⟨f0(e), x⟩, s) · g1(⟨f1(e), x⟩, s),

k(⟨e, x⟩, s) = k0(⟨f0(e), x⟩, s) · k1(⟨f1(e), x⟩, s), and

h(⟨e, x⟩) = h0(⟨f0(e), x⟩) + h1(⟨f1(e), x⟩)

(for all e, x, s ∈ ω). We claim that A0 ⊕ A1 is e.u.wtt-a.c. via g, k and h.

Obviously, the functions g, k and h are computable. So it suffices to show

(5.6) – (5.9) for A = A0 ⊕ A1. Now, by choice of gi and ki, (5.6) is immediate

by (5.43) and (5.7) is immediate. For a proof of (5.8), note that, for any

e, x, s ∈ ω, g(⟨e, x⟩, s + 1) ̸= g(⟨e, x⟩, s) implies that g0(⟨f0(e), x⟩, s + 1) ̸=
g0(⟨f0(e), x⟩, s) or g1(⟨f1(e), x⟩, s + 1) ̸= g1(⟨f1(e), x⟩, s) and k(⟨e, x⟩, s) = 1

implies k0(⟨f0(e), x⟩, s) = k1(⟨f1(e), x⟩, s) = 1. So, by choice of gi, ki and hi,

k(⟨e, x⟩, s) = 1 implies

|{t ≥ s : g(⟨e, x⟩, t+ 1) ̸= g(⟨e, x⟩, t)}|

≤ |{t ≥ s : g0(⟨f0(e), x⟩, t+ 1) ̸= g0(⟨f0(e), x⟩, t)}|+
|{t ≥ s : g1(⟨f1(e), x⟩, t+ 1) ̸= g1(⟨f1(e), x⟩, t)}|

≤ h0(⟨f0(e), x⟩) + h1(⟨f1(e), x⟩)

= h(⟨e, x⟩).

Finally, for a proof of (5.9), fix e such that Φ̂A0⊕A1
e is total. Then, by (5.43),

Φ̂A0

f0(e)
and Φ̂A1

f1(e)
are total too. So, by choice of k0 and k1, there is a number

x0 such that lims→∞ k0(⟨f0(e), x⟩, s) = 1 and lims→∞ k1(⟨f1(e), x⟩, s) = 1 for all

x ≥ x0. By definition of k, this implies that lims→∞ k(⟨e, x⟩, s) = 1 x ≥ x0.

The above closure properties of EUwttAC show that the wtt-degrees of the

c.e. e.u.wtt-a.c. sets are an ideal in the upper semilattice of the c.e. wtt-degrees.

Moreover, by the Characterization Theorem, this ideal intersects all high c.e.
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Turing degrees.

Theorem 5.4.4. The class EUwttACwtt of the wtt-degrees of c.e. e.u.wtt-a.c. sets

is an ideal in the upper semilattice of the c.e. wtt-degrees. Moreover, for any high

c.e. Turing degree a, there is a c.e. set A ∈ a such that degwtt(A) ∈ EUwttACwtt.

Proof. The first part of the theorem is immediate by Lemmas 5.4.1 and 5.4.3.

For the second part of the theorem, note that, by Theorem 5.3.2, any maximal set

is e.u.wtt-a.c. So the claim follows by Martin’s Theorem [Mar66] which asserts

that any high c.e. Turing degree contains a maximal set.

In the remainder of the paper we relate the eventually uniformly wtt-array

computable sets to the wtt-superlow sets and to the array computable sets. As

we will show this provides strict lower respectively upper bounds. So let us first

introduce wtt-superlow sets.

5.5 Weak Truth-Table Superlow Sets

5.5.1 Wtt-Superlow Sets and EUwttAC

The definition of wtt-superlow sets is as follows.

Definition 5.5.1. A (not necessarily c.e.) set A is wtt-superlow if A† ≤tt ∅′.

In order to show that any (not necessarily c.e.) wtt-superlow set is eventually

uniformly wtt-array computable, we characterize the wtt-superlow sets in terms

of approximability of their bounded jumps. We first recall the relevant notions

needed. A total function f : ω → ω is called h-computably approximable via g

or h-c.a. via g for short, if g : ω2 → ω is a computable function and h : ω → ω

is a computable order such that f(x) = lims→∞ g(x, s) and |{s : g(x, s + 1) ̸=
g(x, s)}| ≤ h(x) (for any x), i.e., g is a computable approximation of f where

the number of mind changes of g is computably bounded by h; f is called

h-computably approximable (h-c.a.) if f is h-computably approximable (h-c-a.)

via some computable function g : ω2 → ω; and f is ω-computably approximable

or ω-c.a. for short if f is h-c.a. for some computable order h. (Note that if the

range of f is bounded, say f(x) ≤ k for all x, then we may assume that the
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approximating function g is also bounded by k. So if A is an ω-c.a. set and g

approximates A in the limit then in the following we tacitly assume that g is 0-1

valued.)

Lemma 5.5.2. Let A be any (not necessarily c.e.) set. Then the following are

equivalent.

1. A is wtt-superlow, i.e., A† ≤tt ∅′.

2. A† ≤wtt ∅′.

3. A† is ω-c.a.

4. There exists an order h such that any set B which is bounded-c.e. in A is

h-c.a.

Proof. The equivalence of the first three properties 1., 2. and 3. is immediate by

the general fact that, for any set B, B ≤tt ∅′ iff B ≤wtt ∅′ iff B is ω-c.a., see, e.g.,

[Odi99, III.8.14] and [DH10, Corollary 2.6.2]. Moreover, the implication “4. ⇒
3.” is immediate too since A† is bounded-c.e. in A. This leaves the implication

“3. ⇒ 4.”.

So suppose that A† is ω-c.a. Fix a computable function g : ω2 → {0, 1} and

a computable order ĥ such that A†(x) = lims→∞ g(x, s) and |{s : g(x, s+ 1) ̸=
g(x, s)}| ≤ ĥ(x) hold for all x. We claim that any bounded A-c.e. set is h-c.a.

for the order h(x) = ĥ(⟨x, x⟩). So let B be a bounded A-c.e. set. Fix e ∈ ω such

that B = dom(Φ̂Ae ). Then x ∈ B iff ⟨e, x⟩ ∈ A†. Define the computable function

g̃ : ω2 → {0, 1} by letting

g̃(x, s) =

⎧⎨⎩B(x) if x < e,

g(⟨e, x⟩, s) otherwise.

By definition, B(x) = lims→∞ g̃(x, s) holds for all x. So it suffices to show that

the number of mind changes of s ↦→ g̃(x, s) is bounded by h(x) for any x. The
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latter clearly holds if x < e. On the other hand, for x ≥ e we may argue that

|{s : g̃(x, s+ 1) ̸= g̃(x, s)}|

= |{s : g(⟨e, x⟩, s+ 1) ̸= g(⟨e, x⟩, s)}|

≤ ĥ(⟨e, x⟩)

≤ h(x),

where the latter inequality holds since ĥ is a computable order.

Corollary 5.5.3. Any (not necessarily c.e.) wtt-superlow set is e.u.wtt-a.c.

Proof. Assume that A is wtt-superlow. Then, by Lemma 5.5.2, A† is ω-c.a. So

we may fix a computable order h and a computable function g such that A† is

h-c.a. via g. It follows that A is eventually uniformly wtt-array computable via

g, k and h where we may let k be the constant function k(x, s) = 1.

From Lemma 5.5.2 we can further deduce that the class of the wtt-superlow

sets is closed downwards under wtt-reducibility and that the class of the c.e.

wtt-superlow sets is closed under join. So the class of the wtt-superlow c.e.

wtt-degrees is an ideal in EUwttAC.

Corollary 5.5.4. (a) Let A and B be any (not necessarily c.e.) sets such that

A ≤wtt B and B is wtt-superlow. Then A is wtt-superlow too.

(b) Let A0 and A1 be wtt-superlow c.e. sets. Then A0 ⊕ A1 is wtt-superlow

too.

Proof. (a). By wtt-superlowness of B, B† ≤wtt ∅′ while, by A ≤wtt B and by

part 5. of Lemma 5.2.4, A† ≤wtt B
†. Hence A† ≤wtt ∅′. By Lemma 5.5.2 this

implies that A is wtt-superlow.

(b). By Lemma 5.4.2 fix computable functions fi (i ≤ 1) satisfying (5.43).

Then, for all e, x ∈ ω, it holds that

⟨e, x⟩ ∈ (A0 ⊕ A1)
† ⇔ ∀i ≤ 1 (2⟨fi(e), x⟩+ i ∈ A†

0 ⊕ A†
1).

Hence, (A0 ⊕ A1)
† ≤tt A

†
0 ⊕ A†

1 ≤tt ∅′.
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5.5.2 Wtt-Superlowness and Wtt-Jump Traceability

For computably enumerable sets the equivalent characterizations of wtt-super-

lowness given in Lemma 5.5.2 can be expanded. In particular, a computably

enumerable set A is wtt-superlow iff A is wtt-jump traceable where the latter is

defined as follows.

Definition 5.5.5. A set A is h-wtt-jump traceable via {Ve}e∈ω if h is a com-

putable order and {Ve}e∈ω is a uniformly c.e. sequence of finite sets such that, for

all e ≥ 0, |Ve| ≤ h(e) and ĴA(e) ↓ implies ĴA(e) ∈ Ve; A is h-wtt-jump traceable

if there exists a uniformly c.e. sequence {Ve}e∈ω such that A is h-wtt-jump trace-

able via {Ve}e∈ω; and A is wtt-jump traceable if there exists a computable order

h such that A is h-wtt-jump traceable. If A h-wtt-jump traceable via {Ve}e∈ω
then we say that {Ve}e∈ω is an h-trace for ĴA.

Theorem 5.5.6. For a c.e. set A, A is wtt-superlow if and only if A is wtt-jump

traceable.

By Lemma 5.5.2, Theorem 5.5.6 is immediate by the following two lemmas.

In these lemmas, in addition we analyze how the relevant orders are affected if

we go from one notion to the other. (This analysis will be used below in the

proof of Lemma 5.5.12).

Lemma 5.5.7. Let A be a c.e. set, let h be a computable order, and suppose

that A† is h-c.a. Then A is ĥ-wtt-jump traceable for the computable order

ĥ(x) = ⌈h(⟨x,x⟩)
2

⌉+ 1.

Proof. We adapt some of the techniques from [Nie06, Theorem 4.1] where it is

shown that the c.e. superlow sets coincide with the c.e. jump traceable sets.

Fix a computable function g : ω2 → {0, 1} such that A† is h-c.a. via g and fix

a computable enumeration {As}s∈ω of A. We show that there exists a number

d ∈ ω and a uniformly c.e. sequence {Ve}e∈ω such that A is h′-wtt-jump traceable

via {Ve}e∈ω for the computable order h′(x) = ⌈h(⟨d,x⟩)
2

⌉. Then, obviously, A is
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ĥ-wtt-jump traceable via {V̂e}e∈ω via the uniformly c.e. sequence

V̂e =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if e < d and ĴA(e) ↑

{ĴA(e)} if e < d and ĴA(e) ↓

Ve otherwise.

Now, along with {Ve}e∈ω, we define an auxiliary wtt-functional Ψ in stages

s where, by the Recursion Theorem, we may assume that in advance we know

an index d ∈ ω such that Ψ = Φ̂d holds (the intuition behind ΨA(x) is that

its computation is a delayed version of the computation of ĴA(x)). In more

detail, we define a uniformly computable sequence of wtt-functionals {Ψ̃e}e∈ω
(intuitively, for any e ∈ ω, we have a version for the definition of Ψ, where e is

a guess for an index of Ψ). Then, in the construction, we make Ψ̃A
e (x) defined

(undefined) at a certain stage s+1 only if g(⟨e, x⟩ , s) correctly approximates the

status of definedness of Ψ̃A
e (x)[s]. Then, by the Recursion Theorem, there exists

a number d such that Ψ̃d = Φ̂d. So Ψ = Ψ̃d is as desired. Now the definition of

Ve and ΨA(e) for given e ∈ ω is as follows.

Stage 0. Let Ve,0 = ∅ and ΨA(e)[0] ↑.

Stage s + 1. Let Ve,s and ΨA(e)[s] be given. If φ̂e(e)[s] ↑ or if As+1 ↾

φ̂e(e) + 1 ̸= As ↾ φ̂e(e) + 1 holds then let ΨA(e)[s+ 1] ↑ and Ve,s+1 = Ve,s.

Otherwise, distinguish between the following cases.

(i) If ΨA(e)[s] ↑, ĴA(e)[s] ↓ and g(⟨d, e⟩ , s) = 0 then let ΨA(e)[s+ 1] ↓=
ĴA(e)[s] with use φ̂e(e) and let Ve,s+1 = Ve,s.

(ii) If ΨA(e)[s] ↓ and g(⟨d, e⟩ , s) = 1 then let ΨA(e)[s+1] = ΨA(e)[s] and

Ve,s+1 = Ve,s ∪ {ΨA(e)[s]}.

If neither of the previous cases applies then let ΨA(e)[s + 1] = ΨA(e)[s]

and Ve,s+1 = Ve,s.

By effectivity of the construction, {Ve}e∈ω is uniformly c.e. and Ψ is a wtt-
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functional. We claim that {Ve}e∈ω and the number d obtained from the Recursion

Theorem are as desired. We first prove that {Ve}e∈ω is a trace for ĴA. So let e ∈ ω

be given such that ĴA(e) ↓. Then we may fix the least stage s such that ĴA(e)[s] ↓
and A ↾ φ̂e(e) + 1 = As ↾ φ̂e(e) + 1. Since lims→∞ g(⟨d, e⟩ , s) = dom(ΨA)(e),

it follows that there exists a stage s0 such that (i) applies at stage s0 + 1. So

ΨA(e)[s0 + 1] ↓= ĴA(e) holds by construction; hence, for the least stage s1 > s0

such that (ii) applies at stage s1 + 1, it follows that ĴA(e) ∈ Ve,s1+1; hence,

ĴA(e) ∈ Ve.

It remains to show that {Ve}e∈ω is an h′-trace. For that, we observe that,

by construction, a number x may be enumerated into Ve at stage s + 1 only

if x = ΨA(e)[s] ↓. So if s0 < s1 are stages such that ΨA(e)[s0] ↓̸= ΨA(e)[s1] ↓
and such that ΨA(e)[si] enter Ve at stage si + 1 (i ≤ 1) then, by construction,

there must be a stage s such that s ∈ (s0, s1) and such that ΨA(e)[s + 1] ↑.
Thus, by (i), there exists a stage t ∈ (s, s1) such that ΨA(e)[t + 1] ↓. So, by

(ii), we can argue that each new element that enters Ve corresponds to a change

of s ↦→ g(⟨d, e⟩ , s) from 1 to 0 and back to 1. Since there are at most ⌈h(⟨d,e⟩)
2

⌉
many such stages, this completes the proof.

Lemma 5.5.8. Let A be a c.e. set. There exists a strictly increasing computable

function f : ω → ω such that, for any computable order h such that A is

h-wtt-jump traceable, A† is h̃-c.a. via the computable order h̃(x) = 2h(f(x)) + 1.

Proof. Fix a computable enumeration {As}s≥0 of A and consider the wtt-

functional Ψ such that, for any oracle X and any input e, x ∈ ω, it holds

that

ΨX(⟨e, x⟩) = µs(Φ̂A
e (x)[s] ↓ & X ↾ φ̂e(x) + 1 = As ↾ φ̂e(x) + 1) (5.45)

and, by 3. of Lemma 5.2.4, let f : ω → ω be a computable function such that

ΨX(n) = ĴX(f(n)) holds for all oracles X and all numbers n.

Now fix a computable order h and suppose that A is h-wtt-jump traceable.

By the latter, fix a uniformly c.e. sequence {Ve}e∈ω which is an h-trace for ĴA.
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Then, for all n, e, x, s ∈ ω, let

t(n, s) = max(Vf(n),s), and (5.46)

g(⟨e, x⟩ , s) =

⎧⎪⎪⎨⎪⎪⎩
1 if Φ̂A

e (x)[t(⟨e, x⟩ , s)] ↓ and

As ↾ φ̂e(x) + 1 = At(⟨e,x⟩,s) ↾ φ̂e(x) + 1,

0 otherwise.

(5.47)

We claim that A† is h̃-c.a. via g for the computable order h̃ as given by the

lemma. First of all, we show that lims→∞ g(⟨e, x⟩ , s) = A†(⟨e, x⟩) holds for all
e, x ∈ ω. First, suppose that Φ̂A

e (x) ↑. Then Φ̂A
e (x)[s] ↑ holds for almost all

stages s; hence, lims→∞ g(⟨e, x⟩ , s) = 0, as desired. Otherwise, ΨA(⟨e, x⟩) ↓;
hence, ĴA(f(⟨e, x⟩)) ≤ t(⟨e, x⟩ , s) holds for almost all s by definition of f and

by (5.47) which in turn implies that lims→∞ g(⟨e, x⟩ , s) = 1, as desired.

In order to show that the number of mind changes of s ↦→ g(⟨e, x⟩ , s) is

bounded by 2h(f(⟨e, x⟩)) + 1, by the fact that g(⟨e, x⟩ , 0) = 0, it suffices to show

that the number of stages s0 < s1 such that g(⟨e, x⟩ , s0) = 1, g(⟨e, x⟩ , s0+1) = 0

and such that s1 is the least stage greater than s0 such that g(⟨e, x⟩ , s1) = 1 is

bounded by h(f(⟨e, x⟩)). For the latter, let e, x ∈ ω be given and suppose that

s0 < s1 are as above. We claim that t(⟨e, x⟩ , s0) < t(⟨e, x⟩ , s1) holds. Otherwise,

since t(⟨e, x⟩ , s) is nondecreasing in s and by (5.47), it follows that

Φ̂A
e (x)[t(⟨e, x⟩ , s0)] ↓

and

As1 ↾ φ̂e(x) + 1 = At(⟨e,x⟩,s0) ↾ φ̂e(x) + 1.

Hence, g(⟨e, x⟩ , s) = 1 holds for all s ∈ [s0, s1), contrary to choice of stage s0.

So for any such two stages s0 < s1 there exists a number which is enumerated

into Vf⟨e,x⟩. As {Ve}e∈ω is an h-trace, this completes the proof.

5.5.3 A Hierarchy of Wtt-Superlow Sets

We conclude the section by looking at strong variants of wtt-superlowness and

by introducing a hierarchy of wtt-superlow sets. By Lemma 5.5.2 a set A is
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wtt-superlow if there is a computable order h such that A† is h-c.a. So we may

ask whether the function h depends on A or not. In this subsection we show

that in general this is the case. In fact, we show that, for any computable order

h1, there is a (faster growing) computable order h2 such that there is a c.e. set

A such that the bounded jump A† of A is h2-c.a. but not h1-c.a. and there is a

(slower growing) computable order h0 such that there is a c.e. set B such that

the bounded jump B† of B is h1-c.a. but not h0-c.a. On the other hand, in the

next subsection we will show that there are noncomputable – in fact Turing

complete – c.e. sets A such that A† is h-c.a. for all computable orders.

The key to the hierarchy results in this subsection is the following technical

lemma.

Lemma 5.5.9. Let h, ĥ, H and Ĥ be computable orders such that, for n ≥ 0,

ĥ(n) = h(⟨n, n⟩) and H(n) = 2Ĥ(n) + 1 (5.48)

and such that there are a computable order neg(n) and a strong array {Fn}n≥0

of mutually disjoint finite sets satisfying

∀ n (|Fn| = neg(n) + 1) (5.49)

and

∀ m (
∑︂

{n:neg(n)≤m}

(ĥ(maxFn) + 1) ≤ Ĥ(m)). (5.50)

There is a c.e. set A such that A† is H-c.a. but not h-c.a.

Proof. By a finite injury argument, we give a computable enumeration {As}s≥0

of a c.e. set A with the required properties. We make A† H-c.a. via the canonical

computable approximation g : ω2 → {0, 1} of A† induced by {As}s≥0 where (for

e, x ≥ 0)

g(⟨e, x⟩, s) = 1 ⇔ Φ̂A
e (x)[s] ↓ . (5.51)

For this sake it suffices to ensure that

mg(⟨e, x⟩) ≤ H(⟨e, x⟩)
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for all e, x ≥ 0 where

mg(⟨e, x⟩) = |{s : g(⟨e, x⟩, s+ 1) ̸= g(⟨e, x⟩, s)}|

is the number of mind changes of g on ⟨e, x⟩. In order to achieve this, it suffices

to meet the (negative) requirements

N⟨e,x⟩ : φ̂e(x) ↓ ⇒ |(A \ As⟨e,x⟩) ↾ φ̂e(x) + 1| ≤ Ĥ(⟨e, x⟩)

for e, x ≥ 0 where s⟨e,x⟩ is the least stage s such that φ̂e,s(x) ↓. Namely, for

any stage s such that g(⟨e, x⟩, s) = 1 and g(⟨e, x⟩, s + 1) = 0, the definition

of g implies that s ≥ s⟨e,x⟩ and As+1 ↾ φ̂e(x) + 1 ̸= As ↾ φ̂e(x) + 1. Since

g(⟨e, x⟩, s) = 1 for any other stage s such that g(⟨e, x⟩, s + 1) ̸= g(⟨e, x⟩, s), it
follows that

mg(⟨e, x⟩) ≤ 2 · |{s : g(⟨e, x⟩, s) = 1 & g(⟨e, x⟩, s+ 1) = 0}|+ 1

≤ 2 · |{s ≥ s⟨e,x⟩ : As+1 ↾ φ̂e(x) + 1 ̸= As ↾ φ̂e(x) + 1|}|+ 1

≤ 2 · |(A \ As⟨e,x⟩) ↾ φ̂e(x) + 1|+ 1

≤ 2 · Ĥ(⟨e, x⟩) + 1

= H(⟨e, x⟩)

where the last inequality holds by N⟨e,x⟩.

In order to guarantee that A† is not h-c.a., we define an auxiliary wtt-

functional Ψ together with a corresponding partial computable use bound ψ such

that

dom(Ψ) is not ĥ-c.a. (5.52)

The proof that this guarantees that A† is not h-c.a. is indirect. For a contradiction

assume that A† is h-c.a. Fix ĝ such that A† is h-c.a. via ĝ and fix e such that

Ψ = Φ̂e. Then, for x ≥ 0, the function s ↦→ ĝ(⟨e, x⟩, s) converges to dom(Ψ)(x)
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with ≤ h(⟨e, x⟩) mind changes. Since h(⟨e, x⟩) ≤ ĥ(x) for all numbers x ≥ e,

this implies that dom(Ψ) is ĥ-c.a. contrary to (5.52).

Since, for any order h, any h-c.a. set B is h-c.a. via a primitive recursive

function, condition (5.52) can be broken up into the (positive) requirements

Pn : dom(Ψ) is not ĥ-c.a. via gn.

(n ≥ 0) where {gn}n≥0 is a computable numbering of the primitive recursive

functions of type ω2 → {0, 1}.

The basic strategy for meeting requirement Pn is as follows. We pick a

number y, called (Pn-)follower, such that Pn may define Ψ and ψ on y. Then

we ensure that the follower y witnesses that Pn is met by guaranteeing

dom(ΨA)(y) = lim
s→∞

gn(y, s) ⇒ |{s : gn(y, s+ 1) ̸= gn(y, s)}| > ĥ(y). (5.53)

For this sake we pick ĥ(y)+1 numbers z0 < z1 < · · · < zĥ(y), called (Pn-)attackers,
which are not used as attackers by other strategies, let ψ(y) = zĥ(y)+1 (note that

this allows us to make a convergent computation ΨA(y)[s] ↓ divergent at stage

s+ 1 by enumerating one of the attackers into A at this stage), and define Ψ on

y as follows (where initially ΨA(y)[0] ↑). For any stage s such that ΨA(y)[s] ↑
and gn(y, s) = 0 we let ΨA(y)[s+ 1] ↓ (note that this does not require to change

the oracle As) and for any stage s such that ΨA(y)[s] ↓, gn(y, s) = 1 and there is

at least one attacker zi left which is not yet in A, we put the least such zi into A

at stage s+1 and let ΨA(y)[s+1] ↑. Obviously, if the hypothesis of (5.53) holds,

this guarantees that there are at least ĥ(y) + 1 stages s such that gn(y, s) = 1

and gn(y, s+ 1) = 0. So, in particular, (5.53) holds. Moreover, the functional Ψ

defined in this way is a wtt-functional with partial computable bound ψ on the

use.

Now, in order to make the Pn-strategies compatible with the goal of meeting

the negative requirements N⟨e,x⟩, we have to adjust the basic strategy. In

particular, it may happen that the Pn-follower may be cancelled by a negative

requirement, and the basic strategy for meeting Pn has to be started all over

again with a new follower (and new attackers).
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We say that Pn injures N⟨e,x⟩ via follower y and corresponding attacker z at

stage s+ 1 if φ̂e,s(x) ↓ (i.e., s⟨e,x⟩ ≤ s), z ≤ φ̂e(x) and Pn enumerates z into A

at stage s+ 1. So, since attackers are the only numbers which may enter A, in

order to ensure that N⟨e,x⟩ is met it suffices to guarantee that there are at most

Ĥ(⟨e, x⟩) stages at which the requirement N⟨e,x⟩ is injured. In order to achieve

this, first we ensure that if a Pn-follower y is appointed at stage s+ 1 then the

corresponding attackers zi are chosen to be ≥ s+ 1 (in the actual construction

we achieve this by letting zi = ⟨y, s+ 1, i⟩ which, in addition, ensures that the

sets of attackers associated with different followers are disjoint) whence, for any

requirement N⟨e,x⟩ such that φ̂e,s(x) ↓, Pn will not injure N⟨e,x⟩ after stage s since

φ̂e(x) < s⟨e,x⟩ ≤ s ≤ zi for any attacker zi associated with y (or with any Pn-
follower appointed later). Next we assign priorities to the requirements, and we

ensure that a negative requirement N⟨e,x⟩ cannot be injured by any lower priority

positive requirement Pn as follows. If φ̂e(x) becomes defined at stage s (i.e., if

s = s⟨e,x⟩) then N⟨e,x⟩ initializes the lower priority positive requirements Pn at

stage s by cancelling the current follower y of Pn (if any) and the corresponding

attackers. So the strategy for meeting Pn has to be restarted with a new follower

and new attackers after stage s thereby guaranteeing that the new attackers are

too large to injure N⟨e,x⟩.

Note that Pn can be injured by any higher priority negative requirement at

most once. So in order to guarantee that there will be a follower y of Pn left

which is never cancelled (whence the basic strategy using follower y will succeed

to meet Pn) it suffices to assign a reservoir of followers to Pn which is greater

than the number of the negative requriements that have higher priority than Pn.
Here we achieve this by lettingNm have higher priority than Pn iffm < neg(n)

(and by letting Pn have higher priority than Nm otherwise) and by letting the

finite set Fn be the reservoir of Pn-followers. Then there are neg(n) negative

requirements of higher priority than Pn and, by (5.49) there are neg(n) + 1

potential Pn-followers. So the positive requirements Pn are met.

It remains to show that the negative requirements N⟨e,x⟩ are met too. By

initialization, N⟨e,x⟩ can be injured only by the higher priority positive require-

ments, i.e., by the requirements Pn where neg(n) ≤ ⟨e, x⟩. Moreover, for any

such requirement Pn, N⟨e,x⟩ can be injured via one Pn-follower only. Namely, if
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N⟨e,x⟩ becomes injured by Pn via y at stage s+1 then s⟨e,x⟩ ≤ s. So the attackers

of any Pn-followers which may be appointed later are greater than s⟨e,x⟩ hence

cannot injure N⟨e,x⟩. So N⟨e,x⟩ can be injured by a single higher priority positive

requirement Pn at most ĥ(maxFn) + 1 times, since any Pn-follower y is picked

from the reservoir Fn and since y is associated with ĥ(y) + 1 attackers.

So, if we let Pn > Nm denote that Pn has higher priority than Nm, then, for

any ⟨e, x⟩ such that φ̂e(x) ↓,

|(A \ As⟨e,x⟩) ↾ φ̂e(x) + 1| ≤
∑︁

{n:Pn>N⟨e,x⟩}(ĥ(maxFn) + 1)

=
∑︁

{n:neg(n)≤⟨e,x⟩}(ĥ(maxFn) + 1)

≤ Ĥ(⟨e, x⟩)

where the last inequality holds by assumption (5.50). So the negative require-

ments N⟨e,x⟩ are met too.

Having outlined the construction, we conclude the proof by giving the formal

construction. We start with some additional notation. Let yn[s] be the follower

of Pn at stage s (if any); if yn[s] ↓ let zn,i[s] (i ≤ ĥ(yn[s])) be the attackers

associated with yn[s]; let y
n
0 < yn1 < · · · < ynneg(n) be the elements of Fn in order

of magnitude; call a negative requirement critical at stage s if φ̂e,s(x) ↓ (i.e.,

s⟨e,x⟩ ≤ s); and let

l(n, s) = |{⟨e, x⟩ < neg(n) : φ̂e,s(x) ↓}| = |{⟨e, x⟩ < neg(n) : s⟨e,x⟩ ↓≤ s}|

be the number of the negative requirements of higher priority than Pn which

are critical at stage s. (Note that s ↦→ l(n, s) is nondecreasing in s, l(n, 0) = 0

and l(n, s) ≤ neg(n) whence ynl(n,s) is a well defined element of Fn.) In the

construction all parameters persist unless explicitly stated otherwise.

Stage 0 is vacuous, i.e., A0 = ∅, Ψ and ψ are nowhere defined, and no followers

and attackers are defined.

Stage s+ 1. Requirement Pn requires attention if

(a) either n = s or n < s and l(n, s) < l(n, s+ 1) or

(b) n < s and l(n, s+ 1) = l(n, s) and
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(b1) ΨA(yn[s])[s] ↑ & gn(yn[s], s) = 0 or

(b2) ΨA(yn[s])[s] ↓ & gn(yn[s], s) = 1 and there is an attacker zn,i[s]

which is not in As.

For any requirement Pn which requires attention act as follows according

to the case via which the requirement requires attention.

(a) If n < s and l(n, s) < l(n, s + 1) declare that Pn is initialized at

stage s + 1 and cancel the follower and attackers of Pn existing at

stage s. In any case appoint yn[s+ 1] = ynl(n,s+1) as (new) Pn-follower,
assign zn,i[s+ 1] = ⟨yn[s+ 1], s+ 1, i⟩ as the corresponding attackers

(i ≤ ĥ(yn[s+ 1])), and let ψ(yn[s+ 1]) = zn,ĥ(yn[s+1])[s+ 1] + 1.

(b) Distinguish the following subcases. If (b1) holds then let ΨA(yn[s])[s+

1] ↓. If (b2) holds then let ΨA(yn[s])[s+ 1] ↑ and, for the least i such

that zn,i[s] ̸∈ As, enumerate zn,i[s] into A.

This completes the construction. The correctness of the construction follows

from the preceding discussion. A formal verification is left to the reader.

Theorem 5.5.10. Let h1 be any computable order. There are computable orders

h0 and h2 such that the following hold.

(a) There is a c.e. set A such that A† is h2-c.a. but not h1-c.a.

(b) There is a c.e. set A such that A† is h1-c.a. but not h0-c.a.

Proof. (a). Let h, ĥ, H, Ĥ be the computable orders defined by h = h1,

ĥ(n) = ⟨n, n⟩,
Ĥ(n) = n · (ĥ(⟨n, n⟩) + 1), (5.54)

and H(n) = 2Ĥ(n)+ 1 (n ≥ 0), let neg be the computable order neg(n) = n+1,

and let {Fn}n≥0 be the strong array of mutually disjoint finite sets given by

Fn = |{⟨n, k⟩ : k ≤ n}|.
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We claim that (a) holds for h2 = H. By Lemma 5.5.9 it suffices to show that

(5.49) and (5.50) hold. The former is immediate. The latter holds by

∑︁
{n:neg(n)≤m}(ĥ(maxFn) + 1) =

∑︁
{n:n+1≤m}(ĥ(⟨n, n⟩) + 1)

≤ m · (ĥ(⟨m,m⟩) + 1)

= Ĥ(m)

where the first equality holds by definition of neg(n) and Fn while the last

equality holds by definition of Ĥ.

(b). Note that, for any computable orders h̃ and ˜̃h such that h̃ dominates ˜̃h,

any ˜̃h-c.a. set is h̃-c.a. Moreover, for any computable order h̃ there is a computable

order Ĥ such that h̃ dominates the computable order H(n) = 2Ĥ(n) + 1. So

w.l.o.g. we may assume that there is a computable order Ĥ such that h1 is the

corresponding computable order H, i.e., h1(n) = H(n) = 2Ĥ(n) + 1 for n ≥ 0.

It suffices to define computable orders h, ĥ, neg and a strong array {Fn}n≥0 of

disjoint finite sets such that h, ĥ, H, Ĥ, neg and {Fn}n≥0 satisfy the hypotheses

of Lemma 5.5.9. Then (b) holds for h0 = h.

Let neg be a strictly increasing computable function such that Ĥ(neg(n)) ≥
s(n+1) where s(n) = 0+1+ · · ·+n, and let {Fn}n≥0 be the computable partition

of ω into intervals such that maxFn + 1 = minFn+1 and

|Fn| = neg(n) + 1.

Finally, let h be any computable order such that

h(⟨n, n⟩) = m iff n ∈ Fm

and let ĥ(n) = h(⟨n, n⟩).

It remains to show that (5.49) and (5.50) hold. The former is immediate

by definition of Fn. For a proof of (5.50) fix m. W.l.o.g. we may assume that

there is a number n such that neg(n) ≤ m (otherwise, (5.50) trivially holds since∑︁
∅(. . . ) = 0). So, since neg is an order, there is a greatest such n, say n0. It
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follows that∑︁
{n:neg(n)≤m}(ĥ(maxFn) + 1) =

∑︁
{n:neg(n)≤m}(n+ 1)

(by definition of h and ĥ)

≤
∑︁

{n:n≤n0}(n+ 1)

(by maximality of n0)

= s(n0 + 1)

≤ Ĥ(neg(n0))

(by definition of neg)

≤ Ĥ(m)

(by neg(n0) ≤ m)

which completes the proof of (5.50) and the proof of the theorem.

5.5.4 Strongly Wtt-Superlow Sets

We show next that there is a c.e. set – in fact a Turing complete set – A such

that A† is h-c.a. for any order h.

Definition 5.5.11. A set A is strongly wtt-superlow if A† is h-computably

approximable for any computable order h; and A is strongly wtt-jump traceable

if A is h-wtt-jump traceable for any order h such that h(0) > 0.

We first observe that the equivalence of wtt-superlowness and wtt-jump

traceability for c.e. sets extends to strong wtt-superlowness and strong wtt-jump

traceability.

Lemma 5.5.12. Let A be a c.e. set. A is strongly wtt-superlow if and only if A

is strongly wtt-jump traceable.

Proof. First assume that A is strongly wtt-superlow. Then, given a computable

order h such that h(0) > 0, we have to show that A is h-wtt-jump traceable. Let

h′ be a computable order such that ⌈h
′(⟨x,x⟩)

2
⌉+ 1 ≤ h(x) for all x ≥ 0. Then, by

assumption, A†, is h′-c.a. But, by Lemma 5.5.7, this implies that A is h-wtt-jump

traceable.

Now assume that A is strongly wtt-jump traceable. Then, given a computable

order h, we have to show that A† is h-c.a. Since any set which is h-c.a. is h′-c.a.
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for any finite variant h′ of h, w.l.o.g. we may assume that h(0) ≥ 3. Fix a strictly

increasing computable function f as in Lemma 5.5.8 and let h′ be a computable

order such that h′(0) = 1 and 2h′(f(x)) + 1 ≤ h(x) for x ≥ 0 (note that, by

h(0) ≥ 3 such h′ exists). Then, by assumption, A is h′-wtt-jump traceable. But,

by Lemma 5.5.8, this implies that A† is h-c.a.

Theorem 5.5.13. There exists a Turing complete set A which is strongly wtt-

superlow.

Proof. Fix a Turing complete set K and fix a computable enumeration {Ks}s≥0

of K. Then we construct A in stages s, where As denotes the finite set of

numbers enumerated into A by stage s and, for all e, we construct a uniformly

c.e. sequence Ve = {V e
n }n≥0 such that A and Ve meet for any e the requirement

Re : If φe is an order with φe(0) > 0

then ∀∞n [|V e
n | ≤ φe(n) and (ĴA(n) ↓ ⇒ ĴA(n) ∈ V e

n )].

Note that meeting Re for all numbers e ensures that we can find an h-trace for

any given order h with h(0) > 0. For a verification, given h, let e be such that

h = φe and suppose Re is met. Then take {V e
n }n≥0 as given by the construction

and let n0 be such that the conclusion of Re holds for all n ≥ n0. Then the

sequence Ṽe = {Ṽ e
n }≥0, where

Ṽ e
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V e
n if n ≥ n0,

∅ if n < n0 and ĴA(n) ↑,

{ĴA(n)} otherwise.

is uniformly c.e. as Ṽe is a finite variation of Ve and, by the fact that h(0) > 0,

it is easy to see that Ṽe is an h-trace for ĴA.

In order to make A Turing complete, we define a total computable function
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γ : ω2 → ω (called a marker function) such that, for any x, s ∈ ω,

γ(x, s) < γ(x+ 1, s), (5.55)

γ(x, s) ≤ γ(x, s+ 1), (5.56)

γ∗(x) = lim
s→∞

γ(x, s) exists, (5.57)

x ∈ Ks+1 \Ks ⇒ γ(x, s+ 1) ̸= γ(x, s), (5.58)

γ(x, s+ 1) ̸= γ(x, s) ⇒ As+1 ↾ γ(x, s) + 1 ̸= As ↾ γ(x, s) + 1, (5.59)

where in the following, numbers of the form γ(x, s) are called markers. Then

from a marker function γ as above, we can compute K using A as an oracle

as follows. Given x, compute with oracle A the least stage s such that A ↾

γ(x, s) + 1 = As ↾ γ(x, s) + 1 holds. Such a stage exists by (5.57). Then for

any stage t > s, γ(x, t) = γ(x, s) holds by (5.59); hence, K(x) = Ks(x) holds by

(5.58). Note that we did not use (5.55) and (5.56) for the definition of a Turing

reduction from K to A; however, in the construction we make sure that only

markers enter A (see the definition of As below). So by (5.55) and (5.56), we

can argue that γ(x, s) ̸∈ As holds for all x, s.

For the definition of γ, we fix a computable enumeration {Ks}s∈ω of K such

that |Ks+1 \Ks| = 1 and let as be the unique element that enters K at stage

s + 1 (note that such that a computable enumeration of K exists since K is

noncomputable hence infinite). Then the idea is to define a computable sequence

of numbers {xs}s∈ω such that xs ≤ as holds for all s, to let, for all x, s ∈ ω,

γ(x, 0) = ⟨x, 0⟩

γ(x, s+ 1) =

⎧⎨⎩γ(x, s) if x < xs,

⟨x, s+ 1⟩ otherwise,

(5.60)

and to let As = {γ(xt, t) : t < s}. Then {As}s≥0 is a computable enumeration

of A, (5.58) follows by the fact that xs ≤ as holds and (5.55), (5.56) and (5.59)

follow directly from the definition of γ and {As}s≥0. So it remains to make sure

that (5.57) holds, i.e., we have to define {xs}s≥0 in such a way that for any x

there are only finitely many stages s such that xs ≤ x holds. Since this will
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immediately follow from the strategy of how to meet the requirements Re for all

e, let us proceed in explaining how this is done. In the following, fix e ≥ 0.

In order to measure at stage s of the construction whether we should believe

that φe is an order or not, we check whether

∀x < s (φe,s(x) ↓ ⇒ ∀y ≤ x (0 < φe,s(y) ↓≤ φe,s(x))) (5.61)

holds, i.e., whether the domain of φe,s is an initial segment of ω, whether φe(0) > 0

holds and whether φe,s is nondecreasing on its domain. If a stage s appears

such that (5.61) fails then we cancel Re at stage s+ 1 and stop working on Re

immediately. Since Re is trivially met if (5.61) fails at a stage s and since the

question whether (5.61) holds for given e, s is decidable, w.l.o.g. we may assume

in the following that (5.61) holds for all stages s.

Furthermore, at any stage s, we define a nondecreasing function n(e, s) and

a finite and strictly increasing sequence of numbers {yek}k<n(e,s) by induction

on k as follows. We let ye0 = 0 and let yek+1 be the least y > yek such that

φe(y) > φe(y
e
k) holds, if such a y exists and we let yek+1 be undefined at stage s,

otherwise; and we let n(e, s) be the least k such that yek is undefined at stage s

(such a k exists as dom(φe,s) is finite). In the following, we write yek,s ↓ (yek,s ↑) if
yek is defined (undefined) at stage s and we write yek ↓ (yek ↑) if there is (no) stage

s such that yek,s ↓ holds. So by definition, yek,s ↓ (yek ↓) holds iff (there exists a

stage s such that) k < n(e, s). Moreover, note the following properties about

n(e, s) and {yek,s}k<n(e,s).
For k > 0, yek is the kth number where φe takes a value which is greater

than ever before. So by (5.61), φe(y
e
k) > k holds if yek,s ↓. For all k, s ≥ 0,

yek,s ↓ implies that yek′,s ↓ holds for all k′ < k; hence, n(e, s) is nondecreasing in

s. Besides, yek ↑ holds if and only if n(e, s) ≤ k holds for all s and n(e, s) has

bounded range if and only if φe is bounded or not total. So we may assume in

the following that yek ↓ holds for all k.

Then we may define a computable enumeration {V e
n,s}s≥0 of V e

n as follows.

First of all, we keep V e
n,s = ∅ for all stages s unless there exists k such that

yek+1,s ↓ and n ∈ [yek, y
e
k+1). Then if k < e, i.e., n < yee holds, we make sure that

no element is ever enumerated in to V e
n ; hence, let V

e
n = ∅ holds for all n < yee.
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So assume that k ≥ e holds. Then we define V e
n,s = ∅ for any stage s unless

ĴA(n)[s] ↓ holds. Now for any such stage s, we distinguish between the following

two cases. If φ̂n(n)[s] ↓ and γ(k, s) ≤ φ̂n(n) holds then we make sure that γ(k, s)

is moved at stage s + 1 by defining xs ≤ k; otherwise, we enumerate ĴA(n)[s]

into V e
n at stage s+ 1. Note that ĴA(n)[s] is enumerated into V e

n at stage s+ 1

only if φ̂n(n) < γ(k, s) holds since γ(k, s) ≤ φ̂n(n) implies that γ(k, t) ≤ φ̂n(n)

holds for all t < s by (5.56). In the same way, we can argue that, once γ(k, s) is

moved at stage s+ 1, it follows that φ̂n(n) < γ(k, t) holds for all t > s by (5.56)

and by convention on converging computations. So for each n ∈ [yek, y
e
k+1) there

exists at most one stage s such γ(k, s) is moved at stage s+ 1.

Then for the definition of {xs}s≥0, by the above strategy, it suffices to let

xs = as for a given stage s+1 unless there exists a requirement Re and numbers

k, n ≥ 0 such that k ≥ e, yek+1,s ↓, n ∈ [yek, y
e
k+1), φ̂n(n)[s] ↓ and γ(k, s) ≤ φ̂n(n)

holds. In that case, we define xs to be the minimum of as and all k for which there

exist numbers e, n such that the just described situation holds. Note that, as

{yek}k<n(e,s) is strictly increasing and by convention on converging computations,

max{e, k, n} ≤ s holds; so since the question whether yek,s ↓ and φ̂n(n)[s] ↓ at

stage s is computable given e, k, n, s, it follows that the sequence {xs}s≥0 is

computable.

So in total, for fixed k, the marker γ(k, s) may be moved by the above strategy

at most yek+1 − yek many times for each e and only for e ≤ k holds. Thus, we

may argue that (5.57) holds. For fixed e, n such that the hypothesis of Re holds,

we may argue that at most k + 1 many numbers may enter V e
n in the course of

the construction, where k is the unique number such that n ∈ [yek, y
e
k+1) holds.

Namely, if k < e then V e
n = ∅. Otherwise, by the above strategy, a number x

may enter V e
n at stage s+ 1 only if x = ĴA(n)[s] ↓ and only if φ̂n(n) < γ(k, s).

So, by definition of γ, by definition of {As}s≥0 and by the use-principle, ĴA(n)

may take at most k + 1 values in the course of the construction. So, since

k < φe(y
e
k) ≤ φe(n) holds by (5.61), it follows that |V e

n | ≤ φe(n). Finally, since

ĴA(n)[s] ∈ V e
n,s holds for all sufficiently large stages s, ĴA(n) ∈ V e

n holds if

ĴA(n) ↓ holds.

This gives the main idea of how to define {xs}s≥0 and Ve with the required

properties. We now proceed to the formal construction.
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Definition of Ve and {xs}s≥0.

Stage 0. Let V e
n,0 = ∅ for all e, n (x0 is defined at stage 1).

Stage s+ 1. Let V e
n,s be given for all e, n and let xs−1 be given if s > 0.

We say that a requirement Re requires attention at stage s+ 1 if e ≤ s,

Re is not cancelled at stage s and either

(1) (5.61) does not hold, or

(2) (1) does not hold and there exist k ≥ e and n such that k+1 < n(e, s),

n ∈ [yek, y
e
k+1), Ĵ

A(n)[s] ↓ and γ(k, s) ≤ φ̂n(n), or

(3) (1) does not hold, there exist k ≥ e and n such that k + 1 < n(e, s),

n ∈ [yek, y
e
k+1), Ĵ

A(n)[s] ↓, (2) does not hold and ĴA(n)[s] ̸∈ V e
n,s.

If no requirement requires attention at stage s+1 let xs = as and V
e
n,s+1 = V e

n,s

for all e, n. Otherwise, for any e such that Re requires attention at stage s+1,

do the following. If (1) holds, cancel Re at stage s+ 1 and let xs = as. If (2)

holds, let ke,s be the least k for which there exists n such that (2) hold for k, n

accordingly, and let xs = min({ke,s : Re requires attention via (2)} ∪ {as}).
If (3) holds then for any n for which there exists k such that (3) hold for k, n

accordingly let V e
n,s+1 = V e

n,s ∪ {ĴA(n)[s]}.

This ends the formal construction.

Verification

We prove in a series of claims that A and Ve have the required properties. Before

stating these claims let us first give some general remarks about the construction

that will be tacitly used below. If not stated otherwise they can be shown by a

straightforward induction on the stage number s.

First of all, the construction is effective so {xs}s≥0 is a computable sequence.

So γ(x, s) is a computable function, (5.55), (5.56) hold by (5.60), (5.58) holds by
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definition of {xs}s≥0 and (5.59) holds by definition of {As}s≥0; hence, {As}s≥0

is a computable enumeration of A, i.e., A is a c.e. set.

Moreover, Ve is uniformly c.e. (in fact, {V e
n }⟨e,n⟩≥0 is uniformly c.e.). For any

e, n, a number x may enter V e
n at a stage s + 1 only if Re requires attention

via (3). So x = ĴA(n)[s] ↓ and there exists k such that e < k + 1 < n(e, s),

n ∈ [yek, y
e
k+1) and γ(k, s) > φ̂n(n) by definition of (3).

Then for the first claim, we say that Re requires attention via (2) respectively

via (3) with respect to (k, n) at stage s+ 1 if k and n witness accordingly that

(2) respectively (3) holds for Re at stage s+ 1. Fix e, k, n in the following.

Claim 1. There are at most finitely many stages such that Re requires attention

via (2) or (3) with respect to (k, n), respectively.

Proof. We may assume that there is no stage s such that Re requires attention

via (1) since, otherwise, Re is cancelled at stage s+1; hence, Re does not require

attention after stage s with respect to (k, n). Further, we may assume that there

exists a stage s such that k+1 < n(e, s), n ∈ [yek, y
e
k+1) and Ĵ

A(n)[s] ↓ holds since

otherwise, Re will never require attention with respect to (k, n). In particular,

φ̂n(n) ↓ holds. Now if Re requires attention via (2) at stage s+ 1 with respect

to (k, n) then xs ≤ k holds by construction; hence, for all t > s, it holds that

γ(k, t) ≥ ⟨k, s+ 1⟩ > s > φ̂n(n); whence, Re requires attention via (2) w.r.t. to

(k, n) at most once in the course of the construction. Finally, since φ̂n(n) ↓ and

since ĴA(n)[s] may change only if a number < φ̂n(n) enters A after stage s, Re

may require attention via (3) w.r.t. (k, n) at most φ̂n(n) many times.

Then based on Claim 1, we can show that (5.57) holds.

Claim 2. For any k there exist at most finitely many stages s such that γ(k, s) ̸=
γ(k, s+ 1).

Proof. Let k ≥ 0 be given and, for a proof by induction on k suppose the claim

to be true for all k′ < k. By inductive hypothesis and since the infinite sequence

{as}s≥0 is injective (hence lims→∞ as = ∞), we may fix a stage s0 such that

γ∗(k′) = γ(k′, s0) holds for all k
′ < k and as > k holds for all s ≥ s0. Then by

(5.60), for any stage s ≥ s0, γ(k, s + 1) ̸= γ(k, s) may only hold if there exist
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e, n such that Re requires attention via (2) w.r.t. (k, n) at stage s + 1; so in

particular, e ≤ k. So the claim follows by Claim 1 since for any k there can

be at most yek+1 − yek many n such that Re requires attention via (2) w.r.t. to

(k, n).

So, in particular, γ∗(k) = lims→∞ γ(k, s) exists for all k ≥ 0. Finally, we can

show that all requirements are met.

Claim 3. Re is met.

Proof. Since Re is trivially met if the hypothesis of Re does not hold, w.l.o.g.,

we may assume that φe is total, φe(0) > 0 holds and that φe is an order function.

In particular, (5.61) holds for every stage s, lims→∞ n(e, s) = ∞ so {yek}k≥0 is an

infinite, strictly increasing computable sequence and Re never requires attention

via (1) in the course of the construction.

Thus, in order to show that the conclusion of Re holds, it suffices to prove

that |V e
n | ≤ φe(n) holds for all n and that ĴA(n) ∈ V e

n holds for all n ≥ yee in

case that ĴA(n) ↓ holds. For the former, note that |V e
n | ≤ φe(n) holds for any

n < yee since Re may not require attention via (3) w.r.t. (k, n) for any k < e;

hence, no number may enter V e
n for any such n in the course of the construction.

So it suffices to prove that |V e
n | ≤ φe(n) holds for n ≥ yee. Fix n ≥ yee, fix the

unique k ≥ e such that n ∈ [yek, y
e
k+1) and fix the least stage s such that a number

enters V e
n at stage s + 1. Then it must be that Re requires attention via (3)

w.r.t. (k, n) at stage s + 1. So ĴA(n)[s] ↓, ĴA(n)[s] enters V e
n at stage s + 1

and by definition of (3), it holds that γ(k, s) > φ̂n(n). So by (5.55), the only

markers which may be below φ̂n(n) at stage s are of the form γ(k′, s) for k′ < k.

Furthermore, by (5.60), if γ(k′, s) is moved after stage s then γ∗(k) > φ̂n(n)

holds by convention on converging computations. So any γ(k′, s) with k′ < k

may change the computation of ĴA(n) at most once after stage s, i.e., ĴA(n)

may take at most k+1 different values in the course of the construction; whence,

at most k + 1 many numbers may enter V e
n .

It remains to argue that ĴA(n) ∈ V e
n holds if ĴA(n) ↓. The latter implies

that ĴA(n)[s] ↓= ĴA(n) holds for almost all stages s. So, by construction, we

are done if we show that there exists a stage s such that γ(k, s) > φ̂n(n) holds,
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where k is the unique number such that n ∈ [yek, y
e
k+1) holds since then it follows

by (3) in the definition of requiring attention and by (5.56) that Re eventually

enumerates ĴA(n). So suppose γ(k, s) ≤ φ̂n(n) holds for all stages s ≥ s0, where

s0 is least such that φ̂n(n)[s0] ↓ (note that ĴA(n) ↑ if φ̂n(n) ↑). Since by (2) in

the definition of requiring attention, γ(k, s) is moved at the first stage s > s0

such that ĴA(n)[s] ↓ holds, this implies that ĴA(n)[s] ↑ holds for all s > s0,

contrary to the assumption that ĴA(n) ↓. Hence, a stage as required exists. This

completes the proof of Claim 3.

Since meeting all the requirements ensures that A is Turing complete and

strongly-wtt jump traceable, this completes the proof of Theorem 5.5.13.

We conclude this section by showing that the class of the strongly wtt-

superlow sets is downward closed under wtt-reducibility and that the class of

the c.e. strongly wtt-superlow sets is closed under join. Compare with the

corresponding results for the eventually uniformly wtt-array computable sets

(Lemmas 5.4.1 and 5.4.3) and the wtt-superlow sets (Corollary 5.5.4).

Theorem 5.5.14. (a) Let A and B be any (not necessarily c.e.) sets such that

A ≤wtt B and B is strongly wtt-superlow. Then A is strongly wtt-superlow too.

(b) Let A0 and A1 be strongly wtt-superlow c.e. sets. Then A0⊕A1 is strongly

wtt-superlow too.

Proof. (a). Given a computable order h, it suffices to show that A† is h-c.a. By

1. of Lemma 5.2.4 fix a strictly increasing computable function f such that, for

e ≥ 0, Φ̂A
e = Φ̂B

f(e), hence

A†(⟨e, x⟩) = B†(⟨f(e), x⟩)

for e, x ≥ 0. Now, since f is strictly increasing and so is ⟨·, ·⟩ (in either argument),

⟨f(e), x⟩ ≤ f(⟨e, x⟩). So, for any order h′ and any h′-bounded computable

approximation g′ of B†, g defined by g(⟨e, x⟩) = g′(⟨f(e), x⟩) is a computable

approximation of A† and g is h′(f(n))-bounded. Since, for any computable order

h there is a computable order h′ such that h′(f(n)) ≤ h(n) for n ≥ 0, and since,

by assumption, B† is h′-c.a. for any computable order h′, this shows that A† is

h-c.a.
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(b) Given a computable order h, it suffices to show that (A0 ⊕ A1)
† is h-c.a.

Fix strictly increasing computable functions f0, f1 : ω → ω as given by Lemma

5.4.2, let f(n) = f0(n) + f1(n) and let h′ be a computable order such that

h′(f(n)) ≤ h(n) for n ≥ 0. Then, since A0 and A1 are strongly wtt-superlow, we

may fix h′-bounded computable approximations gi of A
†
i (i ≤ 1). Now define g

by

g(⟨e, x⟩, s) = min{g0(⟨f0(e), x⟩, s), g1(⟨f1(e), x⟩, s)}.

By (5.43), g is a computable approximation of (A0⊕A1)
†. Moreover, by definition

of g and by choice of g0 and g1, g is ĥ-bounded by for the computable order ĥ

defined by

ĥ(⟨e, x⟩) = h′(⟨f0(e), x⟩) + h′(⟨f1(e), x⟩) ≤ 2h′(f(⟨e, x⟩)).

But, since f majorizes f0 and f1 and f and ⟨·, ·⟩ are strictly increasing, it follows

by choice of h′ that ĥ(n) ≤ h′(f(n)) ≤ n for n ≥ 0. So (A0 ⊕ A1)
† is h-c.a.

5.6 EUwttAC and Array Computable Sets

Having introduced a hierarchy of subclasses of EUwttAC, we continue to show

that the class of c.e. sets having array computable (a.c.) wtt-degree are a

superclass of EUwttAC, i.e., no e.u.wtt-a.c. c.e. set can be wtt-equivalent to an

array noncomputable (a.n.c.) set. For this purpose, we use the fact that a.n.c.

wtt-degrees, i.e., the wtt-degrees which contain an a.n.c. set can be characterized

as those c.e. wtt-degrees whose c.e. members are all multiply permitting by [AS18,

Lemma 2 and Theorem 2] (see also Theorem 4.2.3). Recall from Definition 4.2.2

that a c.e. set A is multiply permitting if there exists a very strong array (v.s.a.)

F = {Fn}n∈ω (i.e., {Fn}n∈ω is an infinite sequence such that the sets Fn are

uniformly given by their canonical index, such that they are mutually disjoint,

nonempty and growing in size), a computable function f and a computable

enumeration of A such that, for any partial computable function ψ, (4.1) holds,

i.e.,

∃∞n ∀x ∈ Fn (ψ(x) ↓ ⇒ A ↾ f(x) + 1 ̸= Aψ(x) ↾ f(x) + 1).
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Then by [AS18, Lemma 1], it turns out that the property of being multiply

permitting for a c.e. set does not depend on the choice of the very strong array.

Lemma 5.6.1 ([AS18]). Let A be multiply permitting and let F = {Fn}n∈ω be

a v.s.a. Then A is F-permitting.

Using Lemma 4.2.3, we can show that the following holds.

Theorem 5.6.2. Let A be multiply permitting. Then A is not e.u.wtt-a.c.

Proof. Suppose that A is multiply permitting. For a proof by contradiction,

suppose that A is e.u.wtt-a.c. Fix computable functions g, k : ω2 → {0, 1} and a

computable order h which witness that A is e.u.wtt-a.c. according to Definition

5.3.1. Let F = {Fn}n∈ω be the unique very strong array such that each Fn is

an interval such that |Fn| = ĥ(n), where ĥ(n) = ⌊h(⟨n,n⟩)+1
2

⌋ (note that ĥ is a

computable order) and such that min(Fn+1) = max(Fn) + 1 holds for all n. By

Lemma 5.6.1, we may fix a computable function f and a computable enumeration

{As}s∈ω such that A is F -permitting via f and {As}s∈ω, where, w.l.o.g., we may

assume that f is strictly increasing.

Then we define a wtt-functional Γ in stages s where, by Lemma 5.2.3, we

may assume that in advance we know a number d such that Γ = Φ̂d holds. In

particular, by (5.6), lims→∞ g(⟨d, n⟩ , s) = 1 holds iff n ∈ dom(ΓA). In more

detail, we define a uniformly computable sequence of wtt-functionals {Γ̃e}e∈ω
and we declare Γ̃Ae (n) to be defined (undefined) at a stage s+1 only if g(⟨e, n⟩ , s)
correctly approximates (the status of definedness of) Γ̃Ae (n)[s] (so below the

reader may replace Γ by Γ̃e and any occurence of d in any of the functions g

and k by e). Then, by 1. and 2. of Lemma 5.2.3 there exists d ∈ ω such that

Γ̃d = Φ̂d. So d and Γ = Γ̃d are as desired.

Then the definition of Γ is as follows, where we stick to the convention that

ΓA(n)[s+ 1] = ΓA(n)[s] holds for any n and any stage s unless otherwise stated.

Fix n in the following.

Definition of ΓA(n).

Stage 0. Let ΓA(n)[0] ↑.
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Stage s + 1. Let ΓA(n)[s] be given. Then we destinguish between the

following two cases.

(1) If ΓA(n)[s] ↑ and g(⟨d, n⟩ , s) = 0 hold then declare ΓA(n)[s+ 1] ↓.

(2) If ΓA(n)[s] ↓, g(⟨d, n⟩ , s) = 1, k(⟨d, n⟩ , s) = 1 and it holds that

As+1 ↾ f(max(Fn)) + 1 ̸= As− ↾ f(max(Fn)) + 1, where s− is the

largest stage ≤ s such that ΓA(n)[t] ↓ holds for all t ∈ [s−, s], then

declare ΓA(n)[s+ 1] ↑.

By definition, Γ is a Turing functional and since, by clause (2), the use of Γ on

input n is bounded by f(max(Fn)), it follows that Γ is indeed a wtt-functional.

Moreover, by (1), we may argue that ΓA is total as we keep ΓA(n)[s] ↑ for any stage
s unless (1) holds. However, as g(⟨d, n⟩ , s) correctly approximates the question

whether or not x ∈ dom(ΓA) holds, it follows that, for any stage s such that

ΓA(n)[s] ↑ there exists a least stage t ≥ s such that ΓA(n)[t] ↑ and g(⟨d, n⟩ , t) = 0.

So for the least s such that As ↾ f(max(Fn)) + 1 = A ↾ f(max(Fn)) + 1 and

ΓA(n)[s] ↓, it follows that ΓA(n)[t] ↓ for all t > s. Hence, by (5.9), we may fix

n0 ∈ ω such that lims→∞ k(⟨d, n⟩ , s) = 1 holds for all n ≥ n0. Likewise, we can

argue that for any stage s such that ΓA(n)[s] ↓ there exists a least stage t ≥ s

such that ΓA(n)[t] ↓ and g(⟨d, n⟩ , t) = 1. In particular, the clauses (1) and (2)

always apply alternatingly to ΓA(n).

Now consider the partial computable function ψ : ω → ω which is defined as

follows. Given n, let xn0 < · · · < xn
ĥ(n)−1

be the elements of Fn. Then ψ(xni ) is

defined inductively such that, for all i < ĥ(n)− 1, it holds that

ψ(xn0 ) = µs(P (n, s)),

ψ(xni+1) = µs(s > ψ(xni ) & P (n, s) & ∃t ∈ (ψ(xni ), s) (Γ
A(n)[t] ↑)),

where P (n, s) holds iff ΓA(n)[s] ↓, g(⟨d, n⟩ , s) = 1 and k(⟨d, n⟩ , s) = 1 holds.

Note that, for all n, it holds that either dom(ψ) ∩ Fn = ∅ or Fn ⊂ dom(ψ).

Namely, by definition, ψ(xni ) ↓ can only hold if ψ(xnj ) ↓ holds for all j < i and, if

ψ(xni ) ↓ holds for some i < ĥ(n) then, by (4.1) and since lims→∞ g(⟨d, n⟩ , s) = 1

holds, there exists a stage t > ψ(xni ) such that (2) applies at stage t in the
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definition of ΓA(n); hence, by (5.7), by definition of P (n, s) and by totality of

ΓA, we may infer that ψ(xni+1) ↓ holds. So since lims→∞ k(⟨d, n⟩ , s) = 1 holds

for all n ≥ n0, it follows that there exist infinitely many n such that ψ(xn0 ) ↓;
hence, Fn ⊂ dom(ψ) holds. However, for any such n, by definition of Γ, it

follows that, for any i ≤ ĥ(n), there exists two stages ψ(xni ) ≤ s0 < s1 such

that g(⟨d, n⟩ , si + 1) ̸= g(⟨d, n⟩ , si) holds for all i ≤ 1; and, if i < ĥ(n) then

s1 < ψ(xni+1) holds. So for any n ≥ d such that ψ(xn0 ) ↓ holds the number of

mind changes of s ↦→ g(⟨d, n⟩ , s) after stage ψ(xn0 ) is at least

2ĥ(n) > h(⟨n, n⟩) > h(⟨d, n⟩)

so (5.8) fails for any such n. However, as there are infinitely many n ≥ d such

that ψ(xn0 ) ↓, we conclude that (5.8) fails, contrary to the assumption that A is

e.u.wtt-a.c. This completes the proof.

Corollary 5.6.3. Let A be c.e. and e.u.wtt-a.c. Then any c.e. set B which is

wtt-equivalent to A is array computable.

Proof. By Lemma 4.2.3 and Theorem 5.6.2.

5.7 Separations

In the preceding sections we have given lower and upper bounds for the class of the

c.e. e.u.wtt-a.c. sets in terms of wtt-superlowness respectively array computability:

any wtt-superlow set is e.u.wtt-a.c. (Corollary 5.5.3) and any c.e. set which is

wtt-equivalent to a c.e. e.u.wtt-a.c. set is array computable (Corollary 5.6.3).

We conclude our investigations of the e.u.wtt-a.c. sets by showing that these

inclusions are proper. In fact, in case of the second inclusion we get a slightly

stronger result by showing that there is an array computable c.e. Turing degree

which contains a c.e. set which is not e.u.wtt-a.c. We start with the separation

of wtt-superlowness and eventually uniform wtt-array computability on the c.e.

sets. In order to separate the c.e. wtt-superlow sets from the c.e. e.u.wtt-a.c.

sets, by the Characterization Theorem 5.3.2, it suffices to show the following.
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Theorem 5.7.1 ([ASDM19]). There is a maximal set M which is not wtt-

superlow.

Corollary 5.7.2. There is an e.u.wtt-a.c. c.e. set which is not wtt-superlow.

Proof. Immediate by the Characterization Theorem 5.3.2 and 5.7.1.

And for the second separation we state (without proof) the result that there

is an array computable Turing degree which contains a c.e. set which is not

e.u.wtt-a.c. Again by the Characterization Theorem 5.3.2 it suffices to prove the

following theorem.

Theorem 5.7.3 ([ASDM19]). There is a c.e. set A such that the Turing degree

of A is array computable and such that A is not wtt-reducible to any maximal

set.

Corollary 5.7.4. There is an array computable c.e. Turing degree a which

contains a computably enumerable set which is not eventually uniformly wtt-array

computable.

Proof. Immediate by the Characterization Theorem 5.3.2 and Theorem 5.7.3.
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Chapter 6

Conclusion

In this last chapter we would like to give an outlook for further research. We

start with some questions related to the results in Chapter 2. There we have

shown that there are c.a.n.c. c.e. degrees, i.e., c.e. (Turing) degrees a such that

any c.e. set in a is wtt-equivalent to an array noncomputable set, and we have

shown that there is a c.e. degree b such that any c.e. set in b is half of an

ibT-maximal pair in the c.e. sets. Moreover, any degree with the latter property

is c.a.n.c. since Ambos-Spies [AS16] has shown that the a.n.c. c.e. wtt-degrees

coincide with the c.e. wtt-degrees which contain halves of ibT-maximal pairs in

the c.e. sets. The question, however, whether the converse is true too remains

open though in [AS16] it is shown that there is an a.n.c. set which is not half of

any ibT-minimal pair in the c.e. sets.

Question 1. Is there a c.a.n.c. degree which contains a c.e. set which is not

half of any ibT-maximal pair in the c.e. sets?

Moreover, related to these notions, we may take up the following question

from [ASDFM13] and ask the corresponding question for the c.a.n.c. degrees.

Question 2. Characterize the c.e. Turing degrees all of whose c.e. members are

halves of ibT-maximal pairs in the c.e. sets.

Question 3. Characterize the c.a.n.c. degrees.

More specifically we may ask about the possible jumps of the c.a.n.c. degrees.

By Theorem 2.4.2, we know that c.a.n.c. degrees cannot be high. On the other
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hand, by Lemma 2.3.4 we know that the c.a.n.c. degrees are downward dense

(whence there are low c.a.n.c. degrees). So the following question is of particular

interest.

Question 4. Is there a high2 c.a.n.c. degree?

Concerning Chapter 3 we know that, by Theorem 3.4.19, the wtt-degrees of

sets with the universal similarity property cannot be complete (note that this

also follows from a more direct argument as demonstrated in [ASLM18]). So in

particular, the u.s.p. sets cannot be closed upwards in the wtt-degrees of (almost)-

c.e. sets. Furthermore, Ambos-Spies and Losert have introduced in [ASL] variants

of the universal similarity property in the setting of c.e. sets characterizing the

c.e. not totally ω-c.e. degrees, e.g., the universally a.n.c. sets and the uniformly

multiply permitting (u.m.p.) sets, amongst others. They show, using u.m.p.

sets, that the c.e. not totally ω-c.e. degrees can be characterized as those c.e.

degrees below which the 7-elemented lattice S7 can be embedded. Moreover,

Losert used these variants in [Los18] in order to investigate the distribution of

the wtt-degrees containing u.s.p. sets by showing, e.g., that every u.s.p. set is

wtt-equivalent to a uniformly multiply permitting set and that any uniformly

multiply permitting set computes a u.s.p. set. However, the following question is

still unsolved.

Question 5. Is there a c.e. set which is wtt-incomplete and which cannot be

wtt-computed by any u.s.p. set?

Finally, concerning Chapter 5, we showed that the e.u.wtt-a.c. c.e. sets can

be characterized as the c.e. sets which are wtt-computable by maximal sets.

Since the notion of e.u.wtt-a.c. sets is invariant under wtt-equivalence this gives

rise to a characterization of the c.e. wtt-degrees that contain c.e. sets which

are not wtt-reducible to any maximal sets. Moreover, if we define a c.e. Turing

degree a to be e.u.wtt-a.c. (wtt-superlow) if all c.e. sets in a are e.u.wtt-a.c. (wtt-

superlow), then the above characterization of the c.e. e.u.wtt-c.a. wtt-degrees

trivially carries over to the c.e. Turing degrees. Since multiply permitting sets

are not e.u.wtt-a.c., it follows that any a.n.c. Turing degree contains a c.e. set

which is not wtt-reducible to any maximal set. However, since, by Theorem 5.7.3

162



there exists an array computable c.e. Turing degree which contains a c.e. set

which is not wtt-reducible to any maximal set, it follows that neither the a.n.c.

Turing degrees nor the c.e. not totally ω-c.e. Turing degrees capture the class of

the c.e. e.u.wtt-a.c. Turing degrees. So we ask:

Question 6. Which notion of (anti-)permitting corresponds to the class of

e.u.wtt-a.c. Turing degrees?

Finally, by Theorem 5.7.3, it follows that there exists a c.e. Turing degree

which is array computable but not e.u.wtt-a.c. However, we do not have a

separation of the e.u.wtt-a.c. and the wtt-superlow Turing degrees. So the

following question remains an open problem.

Question 7. Does there exist an e.u.wtt-a.c. Turing degree which is not wtt-

superlow?
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[ML66] Per Martin-Löf, The definition of random sequences, Information

and Control 9 (1966), no. 6, 602–619.

[Moh86] Jeanleah Mohrherr, A refinement of low n and high n for the r.e.

degrees, Zeitschrift für Mathematische Logik und Grundlagen der

Mathematik 32 (1986), no. 1, 5–12.

168



BIBLIOGRAPHY

[Mon18] Martin Monath, A c.e. weak truth table degree which is array non-

computable and r-maximal, Sailing Routes in the World of Compu-

ation, Lecture Notes in Computer Science, Springer International

Publishing, 2018, pp. 297–306.

[Myh56] John Myhill, The lattice of recursively enumerable sets, The Journal

of Symbolic Logic 21 (1956), no. 2, 220.

[Nie06] André Nies, Reals which compute little, Logic Colloquium ’02, Lec-

ture Notes in Logic, vol. 27, Assoc. Symbol. Logic, La Jolla, CA,

2006, pp. 261–275.

[Odi99] Piergiorgio Odifreddi, Classical recursion theory, North-Holland

Publishing Co., Amsterdam, 1999.

[Pos44] Emil L. Post, Recursively enumerable sets of positive integers and

their decision problems, Bulletin of the American Mathematical

Society 50 (1944), no. 5, 284–316.

[Rob67] Robert W. Robinson, Simplicity of recursively enumerable sets, The

Journal of Symbolic Logic 32 (1967), no. 2, 162–172.

[Sac63] Gerald E. Sacks, On the degrees less than 0′, Annals of Mathematics.

Second Series 77 (1963), no. 2, 211–231.

[Soa87] Robert I. Soare, Recursively enumerable sets and degrees, Springer-

Verlag, Berlin, 1987.

[Soa04] , Computability and differential geometry, Bulletin of Sym-

bolic Logic 10 (2004), no. 4, 457–486.

169



170



Errata

In the following, we provide a list of errata.

• Page 11, line 10: Replace ”inside a given a.n.c. degree” by ”inside a

given a.n.c. Turing degree”.

• Page 15, line -3: Replace ”for all m′ < m” by ”for all m′ ≤ m”.

• Page 30, line 2: Replace ”for every computable order h” by ”for ev-

ery computable order h, where an order is a nondecreasing, unbounded

function”.

• Page 67, line -3: Replace ”σi” by ”σ(i)”.

• Page 94, line -8 and -9: Replace ”no set is wtt-reducible to its bounded

jump” by ”no set wtt-computes its bounded jump”.

• Page 105, line 9: Replace ”Assume (5.10)” by ”Assume that M is

coinfinite”.

• Page 118, line -12: Replace ”i ≤ 4” by ”i < 4”.

• Page 150, line -13: Replace ”and only for e ≤ k holds” by ”such that

e ≤ k”.
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