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Abstract 

In many computer games checking whether one object is visible from another is very 

important. Field of Vision (FOV) refers to the set of locations that are visible from a 

specific position in a scene of a computer game. Once computed, an FOV can be used to 

quickly determine the visibility of multiple objects from a given position. 

This thesis summarizes existing algorithms for FOV computation, describes their 

limitations, and presents new algorithms which aim to address these limitations. We first 

present an algorithm which makes use of spatial data structures in a way which is new for 

FOV calculation. We then present a novel technique which updates a previously 

calculated FOV, rather than re-calculating FOV from scratch. We then compare our 

algorithms to existing FOV algorithms and show that they provide substantial 

improvements to running time and efficiency of memory access. 
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Summary for Lay Audience 

In many computer games checking whether one object is visible from another is very 

important. Field of Vision (FOV) refers to the set of locations that are visible from a 

specific position in a scene of a computer game. The scene may contain vision-blocking 

objects, which prevent some locations within the scene from being visible. Once 

computed, an FOV can be used to quickly determine the visibility of multiple objects or 

locations from a given position. 

This thesis summarizes existing algorithms for FOV computation, describes their 

limitations, and presents new algorithms which aim to address these limitations. We first 

present an algorithm which uses a more efficient way to store and access vision-blocking 

objects within a scene. We then present a novel technique which updates a previously 

calculated FOV, rather than re-calculating FOV from scratch. We then compare our 

algorithms to existing FOV algorithms and show that they provide substantial 

improvements to running time and efficiency of computer memory access. 
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Chapter 1  

1 Background 

This chapter gives a background on Field of Vision (FOV) and other visibility techniques 

in computer games. This includes an explanation of what FOV is, descriptions of several 

FOV algorithms, and a brief comparison of them. 

1.1 An Introduction to Field of Vision 

A field of vision is the set of locations that are visible from a specific position in a scene 

of a computer game. FOV is calculated over a two-dimensional finite grid, referred to as 

the FOV grid. One grid cell is specified as the source of vision and is referred to as the 

FOV source cell. Some grid cells are also specified as representing vision-blocking 

objects in the game. An FOV algorithm must determine which cells are visible from the 

source and which cells are not visible based on the cells that are vision-blocking. The 

resulting grid with cells labelled as visible and non-visible is called the field of vision. 

Figure 1 gives an example of FOV in a game. The scene of a simple 2D game is shown 

on the left with the FOV grid superimposed in pink. On the right a representation of the 

FOV grid is shown: the source cell is marked with an S, vision-blocking cells are marked 

with a pattern, and non-visible cells are darkened. FOV grids are usually calculated at a 

relatively low resolution, as this provides better performance. In Figure 1 each grid cell 

corresponds to a 48x48 pixel region  

 

Figure 1: An example of FOV in a game with simple 2D graphics [1].  
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Calculating an FOV is useful in computer games with a top-down perspective. In these 

games the player views the game world from above and thus sees much more of the game 

world than an individual character inside the game. This influences game design, and 

results in several situations where FOV is useful. For example, these games may wish to 

convey to the player which areas of the world their character cannot see by visually 

darkening them. This visual effect is referred to as a fog of war and is calculated using 

FOV (see Figure 1). 

An example of games which use fog of war is the action real-time strategy genre. These 

games place two teams of players on a large map with each player controlling one 

character. Fog of war is an extremely important visual effect in these games as a player’s 

strategy is very dependent on which areas of the game map their character can see. Fog of 

war allows a player to quickly see which areas are not visible and make decisions based 

on that information. Action real-time strategy games are very popular, the most 

significant games in the genre are League of Legends [2] and Defense of The Ancients 2 

[3], each with tens of millions of active players. 

FOV is also useful for determining visibility, which is a common task for most computer 

games. A game environment will likely have objects which obstruct movement and 

vision, such as walls or trees, and it is important that game actors interact with these 

objects realistically. Actors may need to take visibility into account when making 

decisions, such as an enemy checking if it can see the player before attacking them. 

The simplest approach to determining visibility is through a line of sight check. For two 

points A and B, if the straight line connecting A to B does not intersect any vision-

blocking objects then A can see B. A line of sight check has a non-trivial performance 

cost, as there may be many objects within a scene that would need to be checked for 

intersection. Despite this, lines of sight can work well in applications where a relatively 

small number of visibility checks are needed. 
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Line of sight checks are adequate for calculations involved in actor decision-making, in 

games that have a relatively small number of actors who do not need completely accurate 

visibility information. As an example, if an enemy turns a corner and wishes to attack the 

player, it would not be realistic for them to attack the instant they saw any part of the 

player. A game could, for example, perform a single line of sight check from the enemy 

to the player once every 250 milliseconds while still maintaining perfectly believable 

enemy behavior. 

However, games with a top-down perspective may have many actors which need rapid 

and accurate visibility information. FOV is useful to these games as it allows visibility 

information to be quickly referenced from the FOV grid itself, rather than repeatedly 

performing line of sight checks. 

Classical real-time strategy games are an example of a genre of game where many 

visibility calculations are needed, and line of sight checks are not sufficient. In these 

games players control armies of up to hundreds of characters in real-time, and they are 

expected to react to player input nearly instantly. Characters may be given an instruction 

such as ‘attack the first enemy you see’ and will be expected to immediately attack the 

first visible enemy, the moment they become visible, from among hundreds of potential 

enemies. Field of vision allows a real-time strategy game to compute the area which a 

given character can see once and then check if any enemies are within it, instead of 

performing many line of sight checks for each character. 
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League of Legends by Riot Games [2] is an excellent example of how FOV grid 

resolution affects game quality. The game uses an FOV grid size of 128x128 cells, which 

spans the entire game map. This results in a fog of war which is adequate for gameplay 

but visually blocky and unrealistic (see Figure 2). The game was originally released in 

2009 and has undergone significant development since then, including a visual overhaul 

in 2016. As part of that overhaul Riot Games wanted to improve the visual quality of 

their fog of war. They experimented with increasing the FOV grid size but deemed it to 

be too large of a performance bottleneck [4]. They instead opted to treat the FOV as an 

image, and upscale/blur it to increase the perceived quality. 

Figure 2 gives an example of FOV in League of Legends before image filtering is 

applied. The character at the top-left cannot see the region to the bottom-right because it 

is out of its range of visibility. The visible region is circular, but because of the low FOV 

resolution the edge of the region appears as a series of jagged lines, rather than a smooth 

curve. This is in contrast to the other visual elements of the game, which are well 

detailed. This clearly highlights the performance constraints of existing FOV algorithms, 

especially as demand for realism in games increases. 

 

Figure 2: An example of fog of war in League of Legends before image filtering 
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1.2 Other Visibility Techniques in Computer Games 

There are many other visibility techniques used in computer games which are 

conceptually similar to FOV. These problems relate to drawing objects within a game to 

the screen. We provide a brief survey of these problems and some of their solutions and 

explain why these solutions are not applicable to actor decision-making, where FOV is 

useful. 

The data which comprises an image displayed on a computer screen is referred to as a 

frame buffer. A frame buffer is a two-dimensional array with width and height matching 

the resolution of the screen. Each location within this array stores information about one 

pixel of an image. Every pixel includes a red, green, and blue component, which combine 

to specify the color of that pixel. 

Creating a complete frame buffer is a very computationally intensive process, so much so 

that specialized hardware is widely available for this sole purpose. This hardware is 

referred to as a graphics card, and it contains its own memory and graphics processors 

(GPUs) which are designed to rapidly render objects to the frame buffer and then display 

that frame buffer on the screen. Graphics cards have led to massive leaps in the number 

and complexity of objects which can be rendered on a screen, but their specialized nature 

means that they are only suitable for scene rendering within a game. They are not suitable 

for processing other aspects of a game, such as actor decision-making, which must be 

performed by a computer’s central processor (CPU). 

Graphics rendering requires many visibility calculations, and line of sight checks do not 

give adequate performance for this task. For instance, if a shadow needs to be drawn, the 

computer cannot calculate it with acceptable speed using line of sight, as a line of sight 

check would need to be performed for each pixel on the display for every rendered frame. 

The most common monitors can display over 2 million pixels at 60 frames per second, 

which means that accurately rendering a single shadow would require a ridiculously large 

number of line of sight checks. 
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There is a large body of academic work on visibility determination techniques designed 

for the graphics card which address various graphical visibility challenges. Examples of 

this work include hidden surface removal and shadow calculation. These techniques are 

briefly explained below. 

If one object is obscured behind another, it is important that the further object is not 

rendered to the frame buffer on top of the closer object. Hidden Surface Removal (HSR) 

techniques are used to solve this problem, by ensuring that the occluded region of the 

further object is not included in the framebuffer for the scene. 

The classic approach to correctly rendering objects of varying distances is the painter’s 

algorithm [5]. When rendering a scene using the painter’s algorithm, the objects in the 

scene are rendered to the frame buffer in order from furthest to closest to the viewpoint. 

By rendering objects from furthest to nearest, the painter’s algorithm ensures that closer 

objects are always rendered on top of further objects. This approach works well for 

simpler scenes but is not useful in modern computer graphics. 

Modern GPUs are optimized to render large batches of objects at once, and not one object 

at a time. Rendering objects in large batches results in substantially better performance 

than rendering individually. Complex scenes are made of many objects, and so batching 

them into as few GPU operations as possible is important for performance. This makes 

the painter’s algorithm unsuitable for these cases, as it requires that everything be sorted 

and then rendered individually. 

Modern computer graphics also make use of moving objects and changing terrain. The 

painter’s algorithm requires that the objects in a scene be stored in a data structure which 

allows for rapid sorting based on the position of the viewpoint, but such data structures 

are very slow to build or update. Because of this, the painter’s algorithm is also 

unsuitable for scenes with moving objects, as the data structure which stores them would 

need to be constantly updated. 
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The more modern approach to correctly and efficiently render objects of varying 

distances is to add a per-pixel depth value to the framebuffer, which is called a z-buffer 

[6]. When deciding whether to write color values for a given pixel, the GPU compares 

the existing z-buffer value for that pixel with the incoming z-buffer value. If the current 

z-buffer value is less (i.e. closer) than the incoming value, that pixel is not written to. 

Using a z-buffer ensures that distant objects are not rendered over near ones regardless of 

the order geometry is rendered in. Z-buffer use is nearly ubiquitous in modern computer 

graphics, and it is a standard feature of both GPU hardware and graphics programming 

languages [7]. 

Hidden Surface Removal (HSR) techniques can also improve the performance of 

rendering of a 3D scene by identifying which objects in a scene are not visible from the 

viewpoint from where the scene is being rendered. As non-visible objects do not affect 

the rendered output, skipping the rendering of them improves performance with no 

change to the resulting frame buffer. On large complex scenes this provides a substantial 

performance improvement over rendering everything regardless of visibility. These HSR 

algorithms often make conservative approximations, as it is better to render some small 

portion of non-visible objects if it means an HSR algorithm can be much faster. There are 

many different HSR algorithms for dealing with different situations in which all or part of 

an object may not be visible.  
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The most simple HSR technique which improves rendering performance is view frustum 

culling [8]. The view frustum is the region of space which is visible from the viewpoint 

from where the scene is being rendered. Objects which do not intersect the view frustum 

can be skipped, as they are guaranteed to not be visible. When testing for intersection 

with the view frustum, the shape of objects is often approximated to increase speed, with 

the trade-off that objects which are just outside of the frustum will occasionally be 

rendered. View frustum culling is universally useful but does not completely remove 

non-visible objects on its own. In a scene where closer objects (such as a wall) occlude 

further objects, view frustum culling will not be useful for skipping those further objects. 

HSR techniques which concern themselves with skipping the rendering of objects which 

are occluded behind other objects are called occlusion culling techniques. These 

techniques are more complex than techniques like view frustum culling but are very 

important for performance in denser environments where a small number of objects may 

occlude a large number of objects. 

One occlusion culling technique is portal-based occlusion culling [9]. Portal-based 

occlusion culling represents a game environment as a number of “rooms” connected via 

“portals”. Rooms may be any region in 3D space, and Portals are the boundaries between 

these regions. This representation can be most intuitively used indoors, where rooms are 

actual rooms and portal are doors or windows. These rooms and portals can then be 

represented as a graph where rooms are nodes and portals are edges. These rooms are 

then pre-processed to generate a ‘potentially visible set’ for a given room R. This 

potentially visible set is a collection of all rooms which are visible from at least one point 

in R. The set includes at least all nodes adjacent to R in the graph. Then, when rendering 

graphics, all rooms which are not in the potentially visible set can be skipped. 

Visibility calculations are also useful for rendering shadows in 3D graphics. In computer 

graphics, an area is considered to be in shadow if it is not visible from a light source. As 

discussed previously, lines of sight are not adequate for this purpose, and so various 

techniques exist for the purpose of generating shadows. 
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Shadow Mapping [10] is the most common technique used for creating shadows cast 

from light sources in 3D. To create a shadow map, a z-buffer is rendered from the 

perspective of the light source. This z-buffer is then referred to as that light source’s 

shadow map. For each pixel of a given surface, its distance from the light source is 

compared to the corresponding value on the shadow map, and if the shadow map has a 

smaller distance value then that pixel is rendered as being in shadow. A visual example of 

this process is shown in Figure 3. This technique is popular due to its performance, but 

attaining that performance requires rendering the shadow map at a reduced resolution, 

which results in somewhat blocky and imprecise shadows. 

Shadow Volumes [11] are an alternative approach to creating shadow effects. A shadow 

volume is a representation of the space a shadow occupies, which is created using the 

shape of the object casting the shadow. This shadow volume is then used to determine 

whether a given surface is in shadow or illuminated. This results in precise (not blocky) 

shadows at better performance than high resolution shadow maps, but worse performance 

and higher complexity than lower resolution shadow maps. 

 

Figure 3: A demonstration of shadow mapping. The images represent: 

(a) the scene without shadows, (b) the scene from the perspective of the light source, 

(c) a visualization of the shadow map (lighter = closer), (d) the shadow map 

projected onto the scene, (e) a visualization of which pixels are in shadow (white = 

shadowed), and finally (f) the scene with mapped shadows applied. 
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Intuitively, it may seem that the above techniques could be suitable for calculating an 

FOV. Shadow mapping seems especially suited to this, as it is also a grid-based 

representation of visibility from a given source position. However, because these 

techniques are designed for GPUs, they are not suitable for processes such as the 

computation of actor behavior, which is performed by the CPU. 

Algorithms designed for GPUs take advantage of the specialized nature of these 

processors and so they would be much slower if they ran on the CPU. Even assuming 

these algorithms could produce an FOV, they would not offer competitive performance 

when run on the CPU. The output from an FOV algorithm must be available to the CPU, 

as it will need to be referenced by other algorithms which run on the CPU, such as those 

that control actor behavior. 

If algorithms designed for GPUs must be executed on the graphics card, and an FOV 

must be available to the CPU, could an FOV be computed on the graphics card, and then 

transferred to the CPU? Unfortunately, this will also not offer competitive performance 

due to the nature of CPU and graphics card interaction. Graphics cards accept rendering 

commands from the CPU, but do not necessarily execute them immediately as they are 

received. The CPU does not need to wait while the graphics card does work, so 

commands that the CPU issues enter a queue for the graphics card to execute [12]. The 

CPU has no access to this queue and cannot know what specific tasks the graphics card is 

currently performing. The graphics card may even choose to wait until the queue has 

many commands in it before starting execution. Because of this, if the CPU requests an 

FOV from the graphics card it has no assurance that the FOV calculation will start in a 

timely manner. The CPU may end up waiting until an entire frame buffer is finished 

before the FOV is computed and sent to it. 
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It should be noted that graphics cards can be used for more than just rendering graphics to 

a display. Technologies such as Nvidia’s CUDA [13] have enabled graphics cards to run 

general-purpose algorithms. These algorithms are faster when run on the graphics card as 

they take advantage of its many GPUs. CUDA and similar technologies have enabled 

graphics cards to benefit specific areas of Computer Science in a way similar to how they 

benefit graphics rendering. Unfortunately, these technologies do nothing to address the 

concerns raised previously for FOV calculation using GPUs. This is because there is still 

no assurance of when FOV calculations will start, as the graphics card might be busy 

with rendering queued graphical operations. 

Because of the above limitations, graphical visibility techniques are not able to 

effectively calculate an FOV and therefore cannot effectively solve the same problems 

which FOV solves. While there is certainly a conceptual overlap between FOV and these 

techniques, FOV calculation is a distinct subject with specific applications to processes 

which are executed by the CPU. 

  



12 

 

 

 

1.3 Existing FOV Algorithms 

There are several algorithms for calculating FOV. However, these algorithms have not 

been formally analyzed to prove their correctness and to compute their complexities. 

They are designed by implementors whose primary goals were to produce a game, not 

research FOV. To the best of our knowledge this paper is the first effort to perform a 

systemic evaluation of these algorithms. Unless otherwise noted, the discussed algorithms 

are part of programming folklore, and so have no known author. We summarize the most 

popular FOV algorithms and the ones most relevant to our discussion of FOV. 

Perhaps the most obvious method for determining the visibility of a cell is to trace a line 

from the FOV source to that cell and check for intersection with vision-blocking cells. 

Lines cast from the FOV source in a specific direction are a building block of all FOV 

algorithms. We refer to these lines as visibility rays, or simply rays. 

When describing an FOV algorithm, a rule must be established which dictates the 

specific circumstances in which a grid cell is visible from the source cell. By following 

such a rule, we can determine whether a calculated FOV is correct. This is important as a 

grid discretizes 2D space and implementors may have differing ways that they wish to 

define visibility. We refer to these rules as visibility definitions. Consider a source cell S 

and destination cell D. We consider the three most common definitions of visibility: 

Strict FOV defines that D is visible from S if a ray can be traced from the center of S to 

the center of D without intersecting any vision-blocking cells. Many implementors find 

this definition overly restrictive, as it results in many non-visible cells. 

Shadowcast FOV defines that D is visible from S if a ray can be traced from the center of 

S to anywhere on D without intersecting any vision-blocking cells. This definition is 

popular as it results in more visible cells than strict FOV and is used by the popular 

Recursive Shadowcasting algorithm. 

Permissive FOV defines that D is visible from S if a ray can be traced from anywhere on 

S to anywhere on D without intersecting any vision-blocking cells. This definition is 

useful because it is symmetrical. FOV symmetry is explained on the next page. 
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It should be noted that the shadowcast and permissive FOV definitions define ‘anywhere 

on a cell’ in a way which may not be intuitive. If a ray can reach any point on or in a cell, 

including just grazing its edge or corner, then that cell is visible. This behavior comes out 

of the desire to have vision-blocking cells be visible, to simulate seeing the face of a wall 

or similar vision-blocking object. Strict FOV also accomplishes this by always 

considering the destination cell to not be vision-blocking. 

 

Figure 4: A simple grid with a correctly calculated FOV for strict (left), shadowcast 

(middle), and permissive (right). The rays which define the bounds of visible space 

are shown with bolded black lines. 

Another important property of an FOV definition is FOV symmetry. An FOV is 

symmetrical if visibility, or lack of visibility, is always shared between any two cells (see 

Figure 5). This is important for some implementors. Of our three visibility definitions, 

strict and permissive are both symmetrical, and shadowcast is not. 

  

Figure 5: Lines of visibility for shadowcast FOV (left) and strict FOV (right).  

The asymmetry of shadowcast FOV is shown, as B can see A but not vice-versa. 
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The concept of visibility rays leads to an obvious first FOV algorithm: Mass Ray FOV. 

For every cell D within the grid, this algorithm traces a ray from the center of the FOV 

source cell to the center of D (see Figure 6). If that ray intersects no vision-blocking cells, 

then D is set to visible, otherwise it is set to not visible. Note that a ray is not considered 

to intersect with a cell if it just grazes its corner. This produces a correct FOV for the 

strict FOV definition. 

 

Figure 6: An example of Mass Ray FOV on a simple grid. Rays cast are on the left, 

and the calculated FOV grid is on the right. Unobstructed rays are shown in green, 

obstructed rays are shown in red. 

Mass Ray FOV directly checks for visibility on a per-cell basis. This is in many ways 

equivalent to performing a line of sight check for each cell. This leads to very poor 

performance, as for an n*n grid, n2 cells must be considered. The number of cells that a 

ray intersects increases linearly with n. This gives a total time complexity of O(n3) for 

Mass Ray FOV. 
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A straightforward optimization to Mass Ray FOV is to assign visibility values to many 

cells which intersect a given ray, instead of just the destination cell. An algorithm based 

on this approach is Perimeter Ray FOV. Perimeter Ray FOV casts a ray to every cell 

along the perimeter of the grid and sets to visible every cell intersected by the ray that is 

located between the source and the first vision-blocking cell the ray intersects. 

Perimeter Ray FOV has much better performance than mass-ray FOV, as now only 4n-4 

rays are cast, instead of n2. This leads to an O(n2) time complexity. However, the 

algorithm does check some cells several times. Specifically, cells close to the FOV 

source will be set to visible numerous times. This is a large improvement over mass ray 

FOV, but shows that there are still ways to improve performance further. 

This algorithm produces a result similar to the shadowcast FOV definition, but it is 

unfortunately not the same. It is common for there to be some portion of a cell which is 

visible from the source, but for the algorithm to not cast a ray in a direction which finds 

that visible portion of the cell. This results in Perimeter Ray FOV producing an incorrect 

output for the shadowcast FOV definition in many cases (see Figure 7). Increasing the 

number of perimeter rays (e.g. one ray cast to each of a cell’s four corners) would reduce 

this inaccuracy but would not eliminate it. 

 

Figure 7: An example of Perimeter Ray FOV on a simple grid. Ray casts are on the 

left, the calculated FOV is in the middle. On the right there is an example of a 

visibility ray reaching a cell which was incorrectly set to not visible. 
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As the previous two algorithms have demonstrated, determining visibility by directly 

casting a ray to a cell is not ideal. This is not the only way to make use of rays however. 

More intelligent FOV algorithms cast rays to the edges of vision-blocking cells, so that 

these define the boundary between visible and non-visible space. These algorithms then 

traverse through visible cells in increasing order of distance from the FOV source, using 

these rays to determine when to stop traversal. This results in few rays being cast and 

reduces the number of duplicated cell traversals. 

One algorithm based on this approach is Recursive Shadowcasting by Björn Bergström 

[14]. This algorithm computes the FOV in 8 iterations, each handling one 45 degree 

octant of the FOV grid (see Figure 8). The algorithm described below is written for octant 

1, and mirroring operations are performed when accessing cells to process the remaining 

7 octants.  

 

 

Figure 8: An example of Shadowcasting octants, numbered 1-8. 

Note that the octants are centered on the FOV source, not the center of the grid. 
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The algorithm for octant 1 processes the cells by rows moving away from the FOV 

source. Each row starts at the cell touching the leftmost part of the octant and ends with 

the cell touching the rightmost part. When vision blocking cells are encountered, the 

algorithm moves the left or right edge of the octant inward for all future rows (see Figure 

9). This correctly handles visibility shrinking as vision-blocking cells are encountered. If 

the blocking cell is in the middle of a visible region, the algorithm recursively calls itself 

to handle the two new visible regions. 

Figure 9 shows an example of Recursive Shadowcasting. The algorithm first processes 

rows 1 to 3 (shown with blue arrows) without encountering any vision-blocking cells. On 

row 4, two vision-blocking cells are encountered, splitting the visible region in two and 

causing the algorithm to recursively call itself. The recursive call then processes the 

visible region to the left (shown in pink) while the main iteration of the algorithm 

continues processing the visible region to the right. Recall that even if a ray just grazes 

the edge of a cell, that entire cell must be set to visible. 

 

Figure 9: An example of Recursive Shadowcasting on a simple grid. 
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The algorithm for octant 1 is given below: 

Algorithm: recursiveShadowcasting (G, S, T, left, right) 

Input: FOV grid G, source cell S, distance integer T, visibility rays left & right 

When first called: cells in G are not visible, T is 1, left & right are edges of the octant 

Result: cells in G which are visible from S are set to visible 

boolean inBlocking = false 

for each row R in the part of G between left and right,  

                              starting from T rows away from S { 

      increment T by 1 

      for each cell C in R, starting from the cell intersecting left, 

                                         and ending with the cell intersecting right { 

            set C to visible 

            if C is vision-blocking and inBlocking is false then { 

                  inBlocking = true 

                  recursiveShadowcasting (G, S, T, left, 

                        ray from center of S to top-left corner of C) 

            } else if C is not vision-blocking and inBlocking is true then { 

                  inBlocking = false 

                  left = ray from center of S to bottom-left corner of C 

            } 

      } 

      if inBlocking is true then return 

}   
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Another algorithm is Precise Permissive FOV by Jonathon Duerig [15]. This algorithm 

produces output for the permissive FOV definition, which makes it an important 

alternative to Recursive Shadowcasting for implementors that desire FOV symmetry. 

The algorithm has a similar approach to Recursive Shadowcasting. It processes cells 

contained within a left and right ray, changes the rays based on encountered vision-

blocking cells, and makes recursive calls when visibility is split. It differs from 

Shadowcasting in a few keys ways however: 

- Precise Permissive FOV operates on quadrants of the FOV grid, rather than 

octants. This means fewer mirroring operations are required. 

- Instead of processing the cells by rows, the algorithm uses diagonal lines 

(see Figure 10). 

- The algorithm performs a recursive call for every blocking cell which is fully 

contained between the left and right rays, whereas Shadowcasting performs a 

recursive call once for each group of consecutive blocking cells in a row. 

- The algorithm casts rays from the edges of the source cell, instead of from the 

center, to match the permissive FOV definition. 

Figure 10 shows an example of Precise Permissive FOV. First the algorithm moves 

though diagonals until it encounters a vision-blocking cell that is fully contained between 

the left and right rays. Then, the algorithm recursively calls itself, each iteration now has 

its own left and right ray which bound the set of cells that it processes. The final 

computed FOV is shown on the right. 

 

Figure 10: An example of Precise Permissive FOV on a simple grid. 
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The algorithm for quadrant 1 is given below: 

Algorithm: precisePermissiveFOV (G, S, T, left, right) 

Input: FOV grid G, source cell S, distance integer T, rays left & right 

When first called: cells in G are not visible, T is 1, left & right are edges of the quadrant 

Result: cells in G which are visible from S are set to visible 

for each diagonal line L in the part of G between left and right,  

                                             starting from T lines away from S { 

      increment T by 1 

      for each cell C in L, starting from the cell intersecting left, 

                                         and ending with the cell intersecting right { 

            Set C to visible 

            if C is vision-blocking then { 

                  if C is the only cell in L then { 

                        return 

                  } else if C is the first cell in L then { 

                        left = ray from top-left corner of S to bottom-right corner of C 

                  } else if C is the last cell in L then { 

                        right = ray from bottom-right corner of S to top-left corner of C 

                  } else { 

                        precisePermissiveFOV (G, S, T, left, 

                              ray from bottom-right corner of S to top-left corner of C ) 

                        left = ray from top-left corner of S to bottom-right corner of C 

                  } 

            } 

      } 

} 
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1.4 Analysis of Existing FOV Algorithms 

We now analyze the performance of the four FOV algorithms discussed in Chapter 1.3. 

This analysis will help highlight the performance characteristics of these algorithms, so 

that we may then propose improvements. The existing research on FOV algorithms is 

very limited. To the best of our knowledge, there is a single study of FOV algorithms 

made by Jice in 2009 [16]. This study tests several FOV algorithms in a variety of cases 

but has several shortcomings which we address below. 

Firstly, Jice ran each FOV algorithm multiple times with the same input and reported 

statistics on the performance results. Repeatedly running an FOV algorithm may be 

problematic because the performance of each run of the algorithm will be affected by the 

CPU cache. The CPU cache is a relatively small amount of extremely fast memory which 

the computer attempts to populate with recently referenced data. The FOV algorithms 

which we have described in Chapter 1.3 perform large numbers of memory accesses, and 

so having some or all of the FOV grid stored in the cache will substantially enhance their 

performance. However, in a computer game the FOV will be computed as needed, in 

between many other computations, and so the FOV grid would not be consistently stored 

in the cache. Running FOV algorithms many times without ensuring the grid is not 

present in the cache will result in unrealistic performance data. In our analysis each run of 

an FOV algorithm uses an entirely new grid. This ensures that the CPU cache will be 

filled with old FOV grids which the algorithms are no longer using, thus effectively 

clearing it. 

The work in [16] also compares the differences in the visibility grid computed by the 

tested FOV algorithms. Such an analysis may be helpful to implementors who wish to 

decide on a visibility definition, but it is not useful for comparing the performance of 

FOV algorithms. Jice assigns a score to each algorithm based on its visual output, but 

even Jice admits that the scoring system is largely arbitrary. This is why in our analysis 

we use a limited number of visibility definitions and do not attempt to rank them, so as to 

focus our analysis on the properties of the algorithms. 
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The work in [16] uses FOV algorithm implementations present in the Doryen library [12] 

(also referred to as LIBTCOD). This library provides many game related functions, but it 

is not specifically focused on providing a lightweight or efficient implementation of FOV 

algorithms. In [16] no comparisons are made between the implementations in the Doryen 

library and other implementations of FOV algorithms. Because of this, the results 

presented in [16] may be influenced by inefficiencies present in the Doryen library. We 

compare the Doryen library’s implementation of FOV algorithms to our own 

implementations to determine if such inefficiencies exist. 

Finally, while [16] presents overall performance statistics for each FOV algorithm 

studied, it does not examine what causes differences in performance between the 

algorithms. Some algorithms are shown to have superior performance in certain 

situations, but [16] makes no attempt to determine why. We will choose test cases which 

highlight specific performance characteristics in order to better understand differences 

between each FOV algorithm.  

We tested all four algorithms described in Chapter 1.3. We used our own 

implementations of each algorithm as well as the Doryen implementation of Perimeter 

Ray FOV, Recursive Shadowcasting, and Permissive FOV. The Doryen library does not 

include an implementation of Mass Ray FOV. For all algorithms we did not consider the 

time spent initializing the FOV grid to not visible. 
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Figure 11: Examples of each testing environment in a simple 9x9 grid 

We tested using three environments, shown in Figure 11. Each environment was tested at 

grid sizes ranging from 128*128 to 4096*4096. These sizes cover a realistic range of 

values which game implementors may choose to use. Square grids were chosen as they 

are the most common environment shape used by games which use FOV. This range 

includes the current grid size of League of Legends [2] (128*128) and the size that 

League of Legends visually upscales its grid to (512*512) [4]. 

Note that while monitors commonly have a display resolution below 4096*4096, game 

environments may be much larger in size than the area visible on screen. This means that 

if the FOV grid has a size greater than the monitor’s resolution, only a region of the grid 

will be visible. 

The first environment is an entirely empty FOV grid, which is the worst-case with respect 

to the number of cells which must be set to visible. This environment is purely a test of 

how efficiently each algorithm assigns visibility statuses to cells. 

The second environment is a 5x5 enclosed space with the FOV source in its center. This 

is almost a best-case scenario with respect to the number of cells which must be set to 

visible. This effectively tests how each algorithm performs when the number of cells 

which are visible is very small, regardless of the size of the FOV grid. 

The third environment is a mostly enclosed FOV grid with a three cell wide corridor 

extending in each cardinal direction. This environment is designed to be close to a worst-

case scenario for Recursive Shadowcasting and Permissive FOV when compared to other 

FOV algorithms such as Perimeter Ray FOV. 
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Table 1: Mean running times of our algorithm implementations in environment 1 

Grid Size Mass Ray Perimeter Ray Shadowcasting Permissive 

128*128 5,160 μs 257 μs 75 μs 95 μs 

256*256 37,965 μs 1,004 μs 343 μs 317 μs 

512*512 291,654 μs 4,161 μs 1,744 μs 2,022 μs 

1024*1024 2,319,475 μs 21,444 μs 11,720 μs 9,341 μs 

2048*2048 19,257,575 μs 112,544 μs 49,381 μs 47,443 μs 

4096*4096 178,968,245 μs 636,215 μs 242,105 μs 394,429 μs 

 

Table 2: Mean running times of Doryen implementations in environment 1 

Grid Size Perimeter Ray Shadowcasting Permissive 

128*128 785 μs 299 μs 728 μs 

256*256 3448 μs 1,204 μs 2,911 μs 

512*512 13,993 μs 4,566 μs 11,913 μs 

1024*1024 65,036 μs 19,592 μs 50,597 μs 

2048*2048 264,784 μs 80,121 μs 180,286 μs 

4096*4096 1,065,233 μs 339,157 μs 710,267 μs 

The O(n3) time complexity of Mass Ray FOV is clearly shown in Table 1: the algorithm 

is substantially slower than all others and its running time increases by roughly a factor of 

8 each time the dimensions of the FOV grid are doubled. The other algorithms all 

demonstrate an O(n2) time complexity, by roughly quadrupling their running time when 

the dimensions of the grid double. 

Shadowcasting and Permissive FOV have similar performance, with Shadowcasting 

performing best at high grid sizes. Both Shadowcasting and Permissive FOV are much 

faster than Perimeter Ray FOV in all cases. This difference is explained by the lower 

number of duplicated cell assignments performed by Shadowcasting and Permissive 

FOV. 

The Doryen library implementations of these algorithms exhibit the same O(n2) time 

complexity but they are slower than our implementations. In particular, the Doryen 

implementation of Permissive FOV is very slow, making it appear much worse than 

Recursive Shadowcasting. 
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Table 3: Mean running times of our algorithm implementations in environment 2 

Grid Size Mass Ray Perimeter Ray Shadowcasting Permissive 

128*128 519 μs 18 μs 1.2 μs 10.2 μs 

256*256 1,953 μs 35 μs 1.2 μs 10.2 μs 

512*512 7,711 μs 77 μs 1.2 μs 10.2 μs 

1024*1024 30,999 μs 139 μs 1.2 μs 10.2 μs 

2048*2048 130,333 μs 280 μs 1.3 μs 10.3 μs 

4096*4096 502,211 μs 555 μs 1.5 μs 10.8 μs 

 

Table 4: Mean running times of Doryen implementations in environment 2 

Grid Size Perimeter Ray Shadowcasting Permissive 

128*128 112 μs 2 μs 50 μs 

256*256 356 μs 2 μs 183 μs 

512*512 1,633 μs 1.9 μs 761 μs 

1024*1024 8,035 μs 2 μs 3835 μs 

2048*2048 33,064 μs 2.1 μs 27.9 μs 

4096*4096 144,008 μs 2.3 μs 29.4 μs 

While Mass Ray FOV and Perimeter Ray FOV do benefit from only having to assign 

visibility statuses to cells in a small area, their running times still increase as the grid size 

increases. This is because the number of rays that these algorithms cast is dependent on 

the grid size and is not affected by the vision-blocking cells. 

The running times of Recursive Shadowcasting and our implementation of Permissive 

FOV remain constant as the size of the grid increases because the block of visible cells 

which they traverse does not change. For these algorithms an arbitrarily large FOV grid 

will produce almost the same running time as the smallest possible grid which is able to 

contain all visible cells. 

The Doryen implementation of Permissive FOV exhibits unusual behavior in this 

environment. Its running time increases as the grid size increases up to 1024*1024 

because it allocates and initializes an amount of memory that depends on the size of the 

FOV grid. The more memory that is allocated, the larger the running time of the 

algorithm becomes. However, the amount of this memory which the algorithm actually 

uses depends on the number of visible cells, and so most of the memory is unused in this 

environment. 
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At grid sizes of 2048*2048 and above the running time of Doryen Permissive FOV 

decreases. We suspect that this is caused by ‘lazy allocation’, which is a technique where 

a computer will only allocate or initialize memory when a program actually uses it. At 

higher grid sizes the amount of unused memory is large enough for lazy allocation to 

trigger, which causes a reduction in the running time of the algorithm.  

Table 5: Mean running times of our algorithm implementations in environment 3 

Grid Size Mass Ray Perimeter Ray Shadowcasting Permissive 

128*128 908 μs 37 μs 19 μs 59 μs 

256*256 4,994 μs 115 μs 56 μs 127 μs 

512*512 16,758 μs 298 μs 225 μs 327 μs 

1024*1024 72,343 μs 845 μs 608 μs 852 μs 

2048*2048 333,513 μs 2,545 μs 2,066 μs 2,960 μs 

4096*4096 1,450,916 μs 9,470 μs 7,588 μs 8,857 μs 

 

Table 6: Mean running times of Doryen implementations in environment 3 

Grid Size Perimeter Ray Shadowcasting Permissive 

128*128 166 μs 351 μs 533 μs 

256*256 482 μs 1,207 μs 2205 μs 

512*512 1,697 μs 4,922 μs 8,305 μs 

1024*1024 8,847 μs 20,103 μs 32,638 μs 

2048*2048 34,033 μs 72,732 μs 115,242 μs 

4096*4096 161,096 μs 306,555 μs 471,515 μs 

Environment 3 was chosen specifically to make Shadowcasting and Permissive FOV 

perform a large number of ray casts. Both Shadowcasting and Permissive FOV have 

much worse performance when compared to Perimeter Ray FOV in this environment 

than in environment 1. The more efficient cell traversal of Shadowcasting and Permissive 

FOV is less effective here, as the performance of these algorithms is reduced due to the 

number of rays they must cast. 

The Doryen library implementations of Shadowcasting and Permissive FOV performed 

very poorly here. Clearly the Doryen implementation of these algorithms is managing 

rays and ray casting in an inefficient manner, as the algorithms are slower than our 

implementation by a factor of up to 50. The relative difference in running time increases 

as grid size increases, because a higher size will result in more rays being cast. 
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From these three test cases, we can make the following conclusions: 

In terms of running time Recursive Shadowcasting is the most efficient algorithm, 

however Permissive FOV is competitive with it in most cases. Perimeter Ray FOV 

generally performs poorly but becomes competitive with Shadowcasting and Permissive 

FOV when those algorithms must cast many visibility rays. Mass Ray FOV performs 

extremely poorly in all cases and is clearly not a useful FOV algorithm.  

The study given in [16] is significantly affected by inefficiencies present in the Doryen 

library. The Doryen implementations of FOV algorithms perform almost universally 

worse than our own, sometimes by large margins, and in some cases exhibit unusual 

behavior which is inconsistent with how the FOV algorithms work. While [16] would be 

useful to an implementor who plans to work with the Doryen library, it is not a useful 

experimental evaluation of the FOV algorithms themselves. 

Existing FOV algorithms are very well suited to environments with few visible cells but 

struggle when many cells are visible. The most efficient algorithms are almost 

completely unaffected by the size of the FOV grid in environment 2 but have running 

times which scale quadratically with grid size in environments 1 and 3. This makes sense 

based on the design of Shadowcasting and Permissive FOV, as these algorithms only 

scan cells which they will set to visible. As a result their performance is primarily 

dependent on how many cells will be visible in an environment. 

As performance is most dependent on cell visibility assignments, the algorithms do not 

scale well to higher grid sizes. In realtime applications such as computer games, an 

algorithm which takes even a few milliseconds to complete may have a negative impact 

on the gameplay experience. In the worst-case scenario of environment 1, Recursive 

Shadowcasting becomes problematic at grids of size 512*512 and would certainly be 

unusable at grids of size 1024*1024 and above. A better FOV algorithm must improve 

the process of assigning visibility values to cells, either by assigning fewer visibility 

statuses, or assigning statuses more efficiently. 
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1.5 Correctness Issues with Recursive Shadowcasting 

While developing and testing our own implementation of the Recursive Shadowcasting 

algorithm, we noticed certain cases where the algorithm as described in [14] produces 

incorrect output. We describe this issue and a solution below. 

When Recursive Shadowcasting traverses a row of the grid, it scans all cells in that row 

which intersect the area defined by its visibility rays. If a cell even just grazes a visibility 

ray, it must be set to visible. However, in certain cases a visibility ray will intersect a 

vision-blocking cell and become blocked. In the example provided in Figure 12, the 

visibility ray on the right intersects a vision-blocking cell at point A and hence it should 

not be extended beyond that point. However, the algorithm as described in [14] would 

continue the ray all the way to point B and thus incorrectly set cell C to visible. It is 

therefore important for an implementation of Recursive Shadowcasting to check for 

intersections and handle them appropriately. In the example provided in Figure 12, when 

traversing the topmost row the algorithm must stop at the cell intersecting point A, 

instead of the cell intersecting point B. 

 

 

Figure 12: An example of Recursive Shadowcasting producing incorrect output. The 

visibility rays are shown on the left. The resulting FOV output is shown in the 

center. The correct output is shown on the right. 
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This error will sometimes cause a single cell to be incorrectly set to visible. To the best of 

our knowledge no existing implementation of Recursive Shadowcasting addresses this 

problem. This is likely because the error will only affect one vision-blocking cell which 

is at the edge of a visible region, and so the error is not easily noticed. 

This error can be fixed by modifying the Recursive Shadowcasting algorithm: Rows are 

traversed as described in Chapter 1.3, except an additional check occurs when the final 

cell of a row is reached. When the algorithm is considering the final cell, before assigning 

it a visibility status, it checks if the previous cell (i.e. the second to last cell in the row) is 

vision-blocking. If the previous cell is vision-blocking, then the algorithm checks if the 

visibility ray intersects it, and if so the algorithm does not assign a status of visible to the 

final cell, but ends its current recursive iteration. This check is not performed if the row 

being scanned only includes one cell. 

Note that while our example of this error uses octant 1, where the algorithm traverses by 

rows from left to right, this error may occur in any octant. Because of this, this check 

must be performed while calculating the FOV for the other 7 octants as well. In some 

octants this traversal will be by columns instead of rows. 

Adding this check to the Recursive Shadowcasting algorithm does not significantly affect 

performance and ensures that the algorithm always produces correct output according to 

the definition of shadowcast visibility. Our implementation of Recursive Shadowcasting 

that was tested in Chapter 1.4 includes this check. 
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Chapter 2  

2 Improving FOV Calculation 

This chapter covers our first new approach to FOV calculation: an FOV algorithm based 

on a compact and efficient representation of vision-blocking cells.  

2.1 Grouping Vision-Blocking Cells 

The FOV algorithms which we have discussed perform two essential operations: 

determining which cells are visible from the source, and storing this information in the 

FOV grid. For both operations, the algorithms scan the entire FOV grid and therefore 

have time complexities which at best depend linearly on the number of grid cells. This 

results in poor performance at large grid sizes, as the number of cells depends 

quadratically on the size of the grid. 

We know that each time an FOV algorithm is run the visibility status of some cells must 

be different, as otherwise there would be no reason to calculate a new FOV. However, the 

positions of vision-blocking cells within the grid can be expected to change infrequently, 

or not at all. Therefore, a compact representation for vision-blocking cells could be 

computed once and used for many FOV calculations. 

We can process vision-blocking cells in an efficient manner by grouping adjacent vision-

blocking cells. The time complexity of determining which areas are visible and which are 

not will then depend on the number of vision-blocking groups, and not necessarily on the 

number of individual vision-blocking cells. In most environments increasing the FOV 

grid size will increase the number of vision-blocking cells but will increase the number of 

vision-blocking groups by a smaller amount. Therefore, as grid size increases an 

algorithm whose performance depends on the number of vision-blocking groups will 

likely have better performance than an algorithm with performance depending on the 

number of vision-blocking cells.  

 

 



31 

 

 

 

This grouping of vision-blocking cells allows us to assign visibility statuses to cells 

efficiently as well. Existing FOV algorithms assign visibility status on a per-cell basis. 

By grouping vision-blocking cells and computing the area of the FOV grid that the group 

occludes, we can determine the visibility of a large region of the grid at once. We can 

then store visibility statuses of cells in this region in whichever order we like. 

This is important because, as previously discussed in Chapter 1.4, the efficiency of 

algorithms which frequently access memory is affected by the CPU cache. In addition to 

storing recently accessed data the CPU cache will also store data that is located nearby, 

this is called spatial locality. If a program accesses memory in a manner that takes 

advantage of this property of caching, it will be significantly faster, and is said to be 

taking advantage of spatial locality. 

Typically cells in an FOV grid will be laid out from left to right and top to bottom in 

adjacent memory locations. In other words, the first row of cells in the grid would be 

stored from left to right in consecutive memory locations, then the second row would be 

stored immediately after, and so on. This means that if we assign visibility status to cells 

by rows from left to right we will take maximal advantage of spatial locality, which will 

significantly accelerate the process of writing visibility statuses to cells (see Figure 13). 

 

Figure 13: How cells within the region occluded by one vision-blocking cell would be 

assigned not visible status. Cells are shown in the grid above and are shown laid out 

in memory below. A double line in memory indicates when a new row begins. 
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Some existing FOV algorithms make some use of spatial locality, but only in a limited 

way. Mass Ray FOV and Perimeter Ray FOV both access grid cells which intersect the 

rays that they cast and so will only incidentally benefit from spatial locality when those 

rays happen to intersect cells in the same order in which they are stored in memory. 

Permissive FOV traverses the cells of the grid by diagonals, and so it does not 

significantly benefit from spatial locality either. 

Recursive Shadowcasting does take advantage of spatial locality however. As already 

discussed in Chapter 1.3, Recursive Shadowcasting moves by along the cells of the grid 

by rows from left to right when processing Octant 1. However, when the Recursive 

Shadowcasting algorithm is mirrored on the other 7 octants the cell traversal order 

changes as well (see Figure 14). For four of the eight octants the algorithm will traverse 

cells by columns and will therefore not take advantage of spatial locality. 

 

Figure 14: Cell traversal order of Recursive Shadowcasting for each octant. 

Additionally, while Recursive Shadowcasting will make use of spatial locality when it 

traverses by rows, this traversal will be split when the algorithm encounters vision 

blocking cells and recursively calls itself. This splitting will reduce the spatial locality of 

the algorithm.  
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2.2 Splitting Vision-Blocking Groups into Rectangles 

As shown in Figure 15, adjacent vision-blocking cells form vision-blocking rectilinear 

polygonal regions. If any holes are inside of these polygonal regions, we can fill them 

with vision-blocking cells without affecting the resulting FOV. A rectilinear polygon 

without holes is called a simple rectilinear polygon. These simple polygons can be 

dissected into rectangles. We show an FOV algorithm that can use these vision-blocking 

rectangles to efficiently determine which regions of the grid are non-visible. 

 

Figure 15: Vision blocking cells (left) being transformed into a  

rectilinear polygon (center), and then a set of rectangles (right). 

There are many ways to partition rectilinear polygons into rectangles, but we want to do 

so in a way which minimizes the number of rectangles. This is a well-studied problem 

which can be solved in polynomial time. We summarize one way to partition simple 

rectilinear polygons into a minimal number of rectangles, first described in [18]. 

All vertices of a rectilinear polygon can be separated into two categories: concave and 

convex. A vertex is concave if its internal angle is 270 degrees and convex if that angle is 

90 degrees (see Figure 16 (a), where concave vertices are highlighted in red). The internal 

angle of a vertex is the angle inside the polygon which is formed by the two edges 

touching that vertex. A horizontal or vertical line which is entirely within a rectilinear 

polygon and which connects exactly two concave vertices is a chord of that polygon (see 

Figure 16 (b), where chords are labelled and colored). 
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We construct a graph based on all the chords of a given rectilinear polygon: Each chord is 

a node of the graph, and chords which intersect each other are connected by an edge. All 

horizontal chords can only intersect vertical chords, and vice-versa, which means the 

resulting graph will be bipartite. A bipartite graph is a graph where the nodes can be 

separated into two groups, such that no nodes in the same group are connected by an 

edge. 

We then determine a maximum independent set of the bipartite graph, which is the 

largest set of nodes no two of which are adjacent to each other (see Figure 15 (c), which 

shows a bipartite graph of chords with a maximum independent set highlighted in red). 

The problem of finding a maximum independent set of an arbitrary graph is NP-hard, 

however for bipartite graphs a maximum independent set can be found in polynomial 

time, such as with an algorithm by Hopcroft and Karp [19].  The polygon is then cut 

along the chords that are part of the maximum independent set, which creates the smallest 

number of rectilinear polygons that do not have any chords [18] (see Figure 16 (d), which 

shows only the chords that cut the polygon). 

Finally, these chord-less rectilinear polygons are partitioned into rectangles using their 

concave vertices. For each concave vertex, a polygon is cut along a horizontal or vertical 

line which extends from that vertex to the other side of the polygon (see Figure 16 (e), 

which shows these final cuts in green). The choice between horizontal or vertical is 

arbitrary, either will result in the same number of rectangles. The polygons which result 

from this final process will all be rectangles, and as shown in [18] it is not possible to 

partition the original polygon into fewer of them. 

 

Figure 16: A figure showing the segmentation of a rectilinear polygon. 
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Having grouped vision blocking cells into rectangles, we now discuss how to use them to 

calculate the FOV. Of the four corner points of a rectangle, two are relevant to 

determining the visible space from a given FOV source. We refer to these two points as 

the relevant points of a rectangle. The relevant points of a rectangle are the two points 

which are farthest apart from each other, among all points which are not occluded behind 

that rectangle (see Figure 17). Rays traced from each relevant point away from the FOV 

source define the boundary between space which is occluded behind the rectangle, and 

space which is not. The area between, but not including, both rays and the visible faces of 

a rectangle is all space which is not visible because of that rectangle. 

 

Figure 17: Rays cast from relevant points for two separate source positions. The 

area occluded by the rectangle is darkened. Two corners of the rectangle are 

occluded on the left, while only one is on the right. Relevant points are highlighted 

in red. 

We use rectangles to represent groups of vision-blocking cells instead of other more 

complex polygons because rectangles are the only convex polygons which can be 

accurately represented on a grid. Convex polygons are useful for representing vision-

blocking cells because, as we have shown, they can easily be processed to determine 

relevant points and grid cell visibility. 
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2.3 Storing Rectangles in a Quadtree 

Vision-blocking rectangles need to be stored in a data structure that allows us to process 

them efficiently. We must use a data structure which allows us to represent rectangles 

within 2D space. Such data structures are called spatial data structures. The spatial data 

structure we have chosen to use is the quadtree [20]. 

Each node of a quadtree represents a region of the FOV grid and it contains all rectangles 

that intersect that region. The quadtree has a parameter L that bounds the minimum 

number of rectangles that must intersect the region represented by a node that would 

force that region to be split into four quadrants of the same size. The first node of a 

quadtree represents the entire grid and is referred to as the root node. If more than L 

rectangles are within the grid, the grid is split and the root is given four child nodes which 

each represent a quadrant of the grid (see Figure 18). If a node represents a region of the 

grid that intersects more than L rectangles, that node is given 4 children each representing 

one quadrant of the region represented by the node. Nodes are added to the quadtree and 

regions are split into smaller regions until all regions intersect at most L rectangles. 

A node which has children is referred to as an internal node, and a node with no children 

is a leaf node. Rectangles are stored within leaf nodes; each internal node stores its four 

child nodes. It should be noted that a rectangle can be contained within multiple leaf 

nodes, as it can intersect more than one leaf node's region. 

 

Figure 18: A grid with two vision-blocking cells (left), its quadtree representation 

with L=1 (right), and the space represented by each node (middle). 
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Quadtrees can be built and updated quickly. The ability to efficiently update a quadtree is 

important, as game implementors may want to be able to change vision-blocking terrain 

as a game progresses without having to rebuild the entire spatial data structure. 

The algorithm for building a quadtree from a grid of vision-blocking cells is shown in 

pseudocode below: 

Subroutine: buildQuadtree(N, G, L) 

Input: quadtree node N, FOV grid G, bound L 

When first called: N will be the root node representing the entire FOV grid 

Output: N will be the root of a quadtree that contains all rectangles in its region 

If the region that N represents intersects more than L rectangles then { 

      Add 4 child nodes to N, each representing one quadrant of N’s region. 

      for each child node C of N { 

            buildQuadtree(C, G, L) 

      } 

} else { 

      Store in N all rectangles in G which intersect N’s region 

} 
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2.4 Handling Cases Involving Multiple Rectangles 

The description in Chapter 2.2 of how to determine the region occluded by a rectangle 

only considers one rectangle in isolation. However, in order to accurately and quickly 

calculate the entire FOV there are certain cases where we must consider multiple 

rectangles. We describe two cases where several rectangles must be considered when 

processing a vision-blocking rectangle. The first case is important for correctness and the 

second is important for performance. 

Note that when we state that a cell is within the occluded region of a rectangle, we mean 

that the entire cell is within that occluded region. This is consistent with the shadowcast 

FOV definition. 

Consider two adjacent vision-blocking rectangles which share part of a side (see Figure 

19). There are some cells which are not fully contained in either of their occluded 

regions. If these rectangles are processed individually these cells will remain as visible, 

which will result in an incorrect output. 

 

Figure 19: An example of two adjacent rectangles with their touching sides 

highlighted in red. The area occluded behind each rectangle is shown on the left and 

center, and the incorrect FOV which will result from considering them individually 

is shown on the right. 
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To resolve this issue, we extend the size of adjacent vision-blocking rectangles, so that 

they overlap. We refer to this process as extending a rectangle. This will ensure that no 

occluded cells will be set as visible. Note that a rectangle is only extended for the 

purposes of visibility calculation and this does not affect the size of the rectangle stored 

in the quadtree. 

To extend a rectangle R1, we first determine its relevant points. For each relevant point P, 

we check if P also belongs to any other rectangle. This check can be efficiently 

performed using the quadtree. We recursively traverse the nodes of the quadtree which 

represent those regions containing P until we reach a leaf node. Upon reaching a leaf 

node we check all rectangles stored in it (except R1) to see if any of them contains P. If 

some rectangle R2 contains P, we check if R2 occludes P, i.e. if P is behind R2. If P is 

not occluded, we extend the size of R1 by one row or column so that it overlaps with R2. 

In the example in Figure 19, we extend the rectangle R1 by one column to the right as its 

rightmost relevant point is visible and it intersects rectangle R2. However, we would not 

extend R2, as the relevant point at the top-left corner of R2 is occluded behind R1. 

 

Figure 20: The example from Figure 19, now adjusted to give correct output. The 

expanded region of R1 is shown in red on the left. 
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If a rectangle R1 is partially or completely occluded behind another rectangle R2, then 

their occluded regions will intersect and processing them will result in some cells being 

set to not visible twice. This does not affect the correctness of our algorithm but it is an 

important performance consideration as there may be a large number of occluded 

rectangles. We can reduce the number of cells whose visibility statuses are computed 

more than once by ignoring the cells within a rectangle R1 which are entirely occluded 

behind another rectangle R2. We refer to this as shrinking R1. Note that a rectangle is 

only shrunk for the purposes of visibility calculation and this does not affect the size of 

the rectangle stored in the quadtree. 

Directly determining the area of a rectangle R which is occluded behind other rectangles 

is computationally intensive. We would need to test for intersection between R and the 

regions occluded by all other rectangles. However, instead of doing this, we use the 

visibility statuses of the cells of the FOV grid that have already been determined. Once a 

rectangle has been processed, the FOV grid will contain visibility statuses for the cells in 

the area that the rectangle occludes. Therefore, to be able to take advantage of the cell 

visibility statuses already stored in the FOV grid we must order the rectangles such that a 

given rectangle is only processed after having processed all the rectangles which occlude 

it. We will discuss later how to order rectangles in this way; for now let us assume that 

we are processing rectangles in this order. 

 

 

 

 

 

 

 



41 

 

 

 

To shrink a rectangle R, we first determine its relevant points. For each relevant point P 

we consider the FOV grid cell inside of R which contains P. If that cell is currently set to 

not visible, we reduce the size of R by one row or column such that R no longer includes 

that cell. The decision between removing a row or column is always made to minimize 

the number of cells that are removed from the side of the rectangle which is closest to the 

FOV source. An example of shrinking a rectangle is given below. We repeat this process 

of finding relevant points and removing rows or columns from a rectangle until the 

rectangle is either reduced to nothing, or it is not possible to shrink it any further. 

Figure 21 describes the rectangle shrinking process. On the left, part of R1 is occluded 

behind R2 and there is significant overlap between the regions occluded by both 

rectangles. If this grid were to have many more rows above the ones shown in the figure, 

the number of duplicated cell visibility computations would be quite significant. We 

compute the relevant points of R1 and find that the bottom-left corner cell of R1 is not 

visible, so we remove the leftmost column of R1 so that it no longer includes that cell. 

This process is repeated once more, as R1’s new bottom left corner is also not visible. In 

total we remove 4 cells from R1. This shrunk version of R1 is shown on the right, where 

the overlapping of the occluded regions has been reduced significantly. 

 

Figure 21: A figure showing rectangle occlusion and shrinking. 
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2.5 Ordering Rectangles and Calculating the FOV 

In order to shrink a rectangle as described in Chapter 2.4, we must process a rectangle 

only after having processed all rectangles which occlude it. Unfortunately, it seems that 

the only way to order rectangles in this manner is to directly check for intersection of a 

rectangle with the area occluded by every other rectangle, which would be 

computationally expensive. However, the quadtree can be used to quickly generate an 

ordering for rectangles that will ensure we will process most rectangles only after 

processing all rectangles which occlude them. This will allow our algorithm to shrink 

many rectangles. As shrinking rectangle is purely a performance optimization, not being 

able to shrink all rectangles will not affect the correctness of the algorithm.   

To produce this ordering, we must calculate the distance between the FOV source and a 

vision-blocking rectangle and also the distance between the FOV source and the region 

represented by a node of the quadtree. Rectangles and node regions are both axis-aligned 

rectangular areas. We define the distance between the FOV source and a rectangular area 

as the distance between the source and the closest point to the source in that area. 

Determining which point within a rectangular area R is the closest to the source can be 

done quite easily. Let (X1, Y1) and (X2, Y2) be the corners of R which are closest to the 

FOV source. Without loss of generality we may assume that X1 ≤ X2 and Y1 ≤ Y2. Let 

(X, Y) be the coordinates of the FOV source. We then consider two cases: 

If X1 < X2 then { 

      if        X < X1 then (X1, Y1) is the closest point of R to the FOV source 

      else if X > X2 then (X2, Y2) is the closest point of R to the FOV source 

      else                          (X, Y1) is the closest point of R to the FOV source 

} else if Y1 < Y2 then { 

      if        Y < Y1 then (X1, Y1) is the closest point of R to the FOV source 

      else if Y > Y2 then (X2, Y2) is the closest point of R to the FOV source 

      else                          (X1, Y) is the closest point of R to the FOV source 

} 
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We traverse the quadtree to produce an ordering of rectangles, as follows. For an internal 

node of the quadtree, we process its children in order from closest to furthest from the 

FOV source. For a leaf node, we process its rectangles in order from closest to furthest 

from the FOV source. As a rectangle can be stored in more than one node, we only 

process each rectangle the first time it is encountered. 

The algorithm for traversing the quadtree and processing rectangles in the order specified 

above to compute the FOV is given below: 

Algorithm: rectangleBasedFOV(N, S, G) 

Input: quadtree node N, FOV source cell S, FOV grid G 

When first called: N will be the root node of the quadtree, all cells in G are set to visible 

Output: cells in G which are not visible from S are set to not visible 

If N is a leaf then { 

      for each rectangle R in N, from closest to farthest from S { 

            if R has not already been processed then { 

                  Extend R if its visible relevant points overlap with another rectangle 

                  Shrink R if it is occluded by another rectangle 

                  Let E = region occluded behind R 

                  for each row X in E { 

                        Set to not visible the cells in X contained in E, from left to right 

                  } 

            } 

      } 

} else if N is not a leaf then { 

      for each child node C of N, from closest to farthest from S { 

                  rectangleBasedFOV(C, S, G) 

      } 

} 
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2.6 A Brief Evaluation of Rectangle-Based FOV 

Before moving on to describe an algorithm which updates an existing FOV, we will 

briefly compare Rectangle FOV to Recursive Shadowcasting. We choose to compare to 

Recursive Shadowcasting because it is the most popular existing FOV algorithm and 

because our Rectangle-Based FOV algorithm uses the shadowcast FOV definition. Note 

that this is not meant as a comprehensive analysis of our Rectangle-Based FOV 

algorithm; we will include that in our full analysis in Chapter 4. Our intention is to get an 

impression of how the performance of our algorithm scales with grid size and number of 

vision-blocking rectangles before we move on to describe further improvements to FOV 

calculation. 

When comparing algorithms, it is important to note that Recursive Shadowcasting (and 

all other existing FOV algorithms) starts with a grid whose cells have been initially set to 

non-visible, while our algorithm starts with cells initially set to visible. This means that in 

an environment with many non-visible cells Recursive Shadowcasting will need to 

modify relatively few values, while the Rectangle FOV algorithm will need to modify 

many values. In an environment with many visible cells the opposite will be true. We do 

not want our performance evaluation to be influenced by this, so we will test with an 

environment where half of the cells are visible. This will minimize the performance 

impact of the difference in initial visibility statuses between the two algorithms. 

More specifically, we tested both our algorithm and Recursive Shadowcasting in one 

environment where the FOV source is in the center of the FOV grid and is surrounded by 

vision-blocking rectangles which make up the shape of a square (see Figure 22). The area 

inside of this square (the visible area) is almost exactly half of the FOV grid. In order to 

determine how our algorithm scales as the number of rectangles grows, we performed 

experiments with different numbers of vision-blocking rectangles. In the simplest case, 

there are four vision-blocking rectangles. In more complex cases there are many vision-

blocking rectangles (see Figure 22). Additionally, we tested at various different grid 

sizes, just as in Chapter 1.4. 
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Figure 22: An example of our testing environment on a 13x13 grid, where roughly 

half of all cells are occluded. The left grid has 4 vision-blocking rectangles, the right 

grid has 20. As the size of the grid increases, the maximum possible number of 

vision-blocking rectangles does as well. 

 

 

Table 7: Mean running times of Shadowcasting and Rectangle FOV 

for the environments shown in Figure 22.  

  Rectangle FOV 

Grid Size Shadowcasting 4 Rectangles 40 Rectangles 400 Rectangles 

128*128 37 μs 13 μs 94 μs N/A 

256*256 169 μs 32 μs 127 μs 1,142 μs 

512*512 770 μs 96 μs 194 μs 1,552 μs 

1024*1024 5,652 μs 293 μs 494 μs 2,391 μs 

2048*2048 24,090 μs 1,000 μs  2,053 μs  5,869 μs  

4096*4096 112,008 μs 3,499 μs 7,454 μs 16,064 μs 

Note that Recursive Shadowcasting is not affected by the number of vision-blocking 

rectangles. Additionally, 400 rectangles were not used at a size of 128*128, as it is not 

possible to represent our testing environment with that many rectangles at that number of 

cells. 
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The running time of Recursive Shadowcasting on this environment is roughly half of the 

running time observed for the open environment in Chapter 1.4. This is because there are 

almost exactly half as many cells to scan and set to visible. The performance of Recursive 

Shadowcasting is primarily determined by the number of visible cells, and it is not 

affected by the number of vision-blocking rectangles. 

When using only four vision-blocking rectangles, Rectangle FOV is much more efficient 

than Recursive Shadowcasting. The superior performance of Rectangle FOV is due to its 

more efficient manner of assigning visibility statuses to grid cells. As discussed 

previously, Rectangle FOV makes use of spatial locality by assigning cell visibility 

statuses by grid rows from left to right. Assigning statuses to cells in a sequential manner 

is fast because the CPU cache stores both memory that is being accessed, and memory 

nearby. Rectangle FOV benefits the most from spatial locality when the area occluded by 

a rectangle is very large, as this ensures that a large number of cells occupying 

consecutive memory locations will be assigned a visibility status. This means that when 

only four vision-blocking rectangles are present in our test environment, the benefit of 

spatial locality is very significant. This is unlike Recursive Shadowcasting, which only 

assigns cells by rows on four of its eight octants. 

In addition to the use of spatial locality, Rectangle FOV also needs to perform fewer CPU 

calculations than Recursive Shadowcasting when assigning cell visibility statuses. 

Recursive Shadowcasting computes visibility on a per-cell basis, which means that the 

number of CPU instructions the algorithm executes for each grid cell is relatively large. 

Rectangle FOV instead determines the cells within each row of a rectangle’s occluded 

region, and then simply assigns them a visibility status. This means that the number of 

CPU instructions which Rectangle FOV executes per grid cell will be relatively small, 

and it will instead execute a larger number of instructions per rectangle. Because of this, 

if the number of cells being assigned a visibility status in each row of the grid is very 

large, Rectangle FOV will require fewer CPU instructions to assign visibility statuses to 

the same number of cells as Recursive Shadowcasting. 
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As the number of vision-blocking rectangles in the environment increases, the 

performance benefits of Rectangle FOV lessen. If Rectangle FOV must assign visibility 

statuses to cells spread over many occluded areas, then the algorithm cannot benefit as 

much from spatial locality. This is because small occluded regions will result in relatively 

few cells being assigned a visibility status each time that a row of an occluded region is 

processed. An increase in the number of rectangles will also result in more CPU 

instructions, as Rectangle FOV must perform several calculations for each rectangle in 

order to determine the region it occludes. Even though the performance benefits of 

Rectangle FOV lessen as the number of vision-blocking rectangles increases, it is still 

able to outperform Shadowcasting at high grid sizes. 

In the environment used for this test (see Figure 22) each rectangle occludes roughly the 

same area, and as the number of rectangles become large the area occluded by each 

rectangle becomes relatively small. Additionally, these rectangles only partially occlude 

each other, so rectangle shrinking will not be able to significantly improve performance. 

Rectangle FOV may perform better in an environment where a small number of 

rectangles near the FOV source occlude a large number of rectangles that are farther 

away from the source. We include such environments in our full analysis in Chapter 4. 

Rectangle-Based FOV is able to calculate an FOV more quickly than Recursive 

Shadowcasting in many cases, but it has some unfortunate shortcomings. The amount of 

time the algorithm needs per rectangle is significant and can cause the algorithm to 

perform poorly at low grid sizes compared to Recursive Shadowcasting. Rectangle 

shrinking helps with this, but unfortunately we cannot guarantee it will be useful in all 

cases. Most significantly, Recursive Shadowcasting is known to have a very low running 

time in environments with a small number of visible cells. Environments with few visible 

cells, such as indoor environments, are very common in computer games. Because of 

this, in such games we would expect Recursive Shadowcasting to have superior or at 

least similar performance as Rectangle FOV even at high grid sizes.  
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Chapter 3  

3 Updating an Existing FOV 

In this chapter we describe a second new FOV algorithm which attempts to improve 

performance by updating an existing FOV instead of computing one from scratch. 

3.1 An Overview of FOV Updating 

In Chapter 2 we represented vision-blocking cells in an efficient manner using a quadtree, 

which allowed us to efficiently determine and assign grid cell visibility statuses. 

However, the approach in Chapter 2 has performance which depends on the number of 

vision-blocking rectangles and may spend a large amount of time computing cell 

visibility statuses in environments where many cells are not visible. We now describe an 

FOV algorithm which needs to assign visibility statuses to far fewer cells than any 

algorithm discussed so far. 

When the FOV needs to be calculated in a computer game, most often it is because the 

FOV source is moving to an adjacent cell. Because of this, it is likely that most FOV grid 

cells will have the same visibility status between two FOV calculations. Therefore, we 

may be able to compute the new FOV more efficiently if we update a previously 

calculated FOV instead of calculating it from scratch. 

When updating an FOV, two source points must be considered: S1, the source for which 

the FOV was previously calculated, and S2, the new source for which we must update the 

FOV. We will consider all cases where S2 is adjacent to S1 in a horizontal or vertical 

direction. Note that that all possible movements of the FOV source can be represented as 

a combination of single-cell movements which are horizontal or vertical. 

A vision-blocking rectangle will have two relevant points when considering S1, and two 

relevant points when considering S2. These are often the same points but can vary 

depending on how the FOV source moves. We trace rays from each relevant point, away 

from that point’s FOV source. Because the FOV source moves, all four rays will always 

be different, even if some relevant points are the same, as shown in Figure 23. 
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These four rays form two ray pairs. Ray pairs are chosen based on the proximity of their 

relevant points. In most cases at least one pair will be made of rays which share a relevant 

point. The area between the two rays and possibly the rectangle, is called a cone (see 

Figure 23). Cones represent the space which is occluded behind a rectangle from either S1 

or S2, but not both. The two cones made by a rectangle represent space where the 

visibility status may change when updating the FOV. 

The point within a cone that is closest to both S1 and S2 is said to be the origin of the 

cone. 

 

Figure 23: Cones made by a rectangle, S1, and S2. Origins are shown with a dot.  

In Figure 23, the left cone is formed from two rays which share a point, and the right 

cone is formed from two rays with close relevant points. In this figure, as the FOV source 

moves from S1 to S2, the left cone defines space losing visibility and the right cone 

defines space gaining visibility. 

 

 

 



50 

 

 

 

An algorithm based on two FOV sources and cones of changing visibility will be more 

complex than previously discussed algorithms. We provide a summary of this algorithm 

below, and we devote the rest of Chapter 3 to explaining it in full detail. 

Not all cones of changing visibility should be treated equally. Some cones may contain 

other cones or may be entirely occluded behind rectangles. Chapter 3.2 discusses 

different cone types and how our algorithm will treat them. This section concludes by 

explaining that we only need to process cones whose origins are visible from both FOV 

sources. All other cones can either be ignored or will be processed as a part of processing 

other cones. 

It is important to order cones so they are processed in the correct order to correctly update 

the FOV. Chapter 3.3 describes a process to order the cones using the quadtree and 

proves that such an ordering ensures a correct updating of an FOV. 

Determining the visibility of a cone from an FOV source may be computationally 

expensive but is necessary to produce the desired ordering for the cones. Chapter 3.4 

describes how the visibility of a cone can be efficiently determined. 

Cones may intersect rectangles, and it is important to know when this occurs. For 

example, if a cone which represents a region that is gaining visibility intersects a 

rectangle, it is important to stop processing the region of the cone occluded that rectangle 

so as to avoid setting the cells within that region to visible. Chapter 3.5 describes how to 

efficiently determine which rectangles intersect a cone. 

Chapter 3.6 details the algorithm for processing a cone. Processing every cone in the 

correct order, while accounting for rectangle intersections, will correctly update the FOV.  
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3.2 Inverting Cones to Update an FOV 

Definition: Inverting a cone means to invert the visibility status of all grid cells which are 

within the cone and are visible from either S1 or S2. 

Cones must be inverted to update the FOV. Consider all the cones defined by a given set 

of rectangles for the FOV sources S1 and S2. Some cones may be partially or completely 

hidden from S1 or S2. It is helpful to separate cones into three categories as follows: 

If the origin of a cone is visible to both S1 and S2, that cone is said to be fully visible.  

If the origin of a cone is visible from S1 or S2, but not both, that cone is said to be 

transitioning visible (when moving from S1 to S2 the origin either becomes visible or not 

visible).  

If the origin of a cone is neither visible from S1 nor from S2, that cone is said to be not 

visible. 

 

Figure 24: Rectangle B has cones that are not visible (left), transitioning visible 

(center), and visible (right). 

When inverting cones, it is important to consider cases where cones may intersect. If two 

cones intersect and they are both inverted, some cells may have their visibility status 

inverted twice. Inverting a cell twice may result in an incorrect visibility status for that 

cell. Figure 24 contains a few examples of cone intersection. 
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In the center image of Figure 24, the right cone from rectangle A completely encloses the 

two cones made by Rectangle B. Inverting both the right cone made by A and the right 

cone R made by B would incorrectly invert the visibility status of cells in R. However, 

the left cone L of B only contains space which is not visible to either FOV source, and 

therefore inverting it and the right cone of A will not result in any cells within L changing 

visibility status. 

In the right image of Figure 24 the right cone of rectangle A and the left cone of rectangle 

B intersect. The space within this intersection is not visible to either FOV source, which 

means that no cells within the intersection will have their visibility status changed by the 

inversion. So, inverting both cones will not result in incorrect visibility statuses, as the 

visibility status of the intersection of the two cones will not change. 

Lemma 1: Inverting non-visible cones does not affect the visibility status of any cells. 

Proof: By definition, when a cone is inverted, the only cells whose visibility status is 

changed are those which are visible from either S1 or S2. Since cells in a non-visible cone 

are not visible to either source, inverting a non-visible cone will result in no cells 

changing visibility status.                                                                         □ 

Lemma 2: Each transitioning visible cone must be completely within a fully visible cone. 

Proof: By definition, the origin of a transitioning visible cone is visible from one source 

and not the other. Therefore, the origin of a transitioning cone T (and thus the entire cone 

T) must be inside another cone C, as cones by definition define space which is visible 

from one source and not the other. Cone C cannot be a non-visible cone, as if it were then 

T would have to be non-visible as well. If C is a transitioning visible cone, then by the 

same reasoning C must be inside of another cone itself. The only type of cone which can 

break this chain is a fully visible cone. Therefore, a transitioning visible cone must be 

within a fully visible cone.                  □ 
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Lemma 3: When two fully visible cones intersect, the intersection is not visible to either 

FOV source. 

Proof: If two fully visible cones intersect, none of their origins can be in the intersection, 

as then at least one cone would not be fully visible. Therefore, when two fully visible 

cones intersect, the intersection must be bounded by one ray cast from S1 and one ray cast 

from S2 (as seen in Figure 24). Rays define the boundaries of visible space from their 

respective FOV sources, and therefore the area between these intersecting rays is space 

that is visible to neither S1 nor S2.                                       □ 

Theorem 1: Inverting all fully visible cones will correctly update the FOV when the FOV 

source moves from S1 to S2. 

Proof: By Lemma 1 we ignore all non-visible cones, as inversions on them will not affect 

the visibility status of any cells. By Lemma 2 we ignore all transitioning visible cones, as 

the cells within them are also within fully visible cones. Thus, correctly updating the 

visibility status of all cells within fully visible cones will also correctly update the 

visibility status of all cells within transitioning visible cones. 

Let C1, C2, …, Cn be the set of all fully visible cones. Any cells outside of C1, C2, …, Cn 

do not change visibility status when the FOV source moves from S1 to S2, so only the 

visibility status of cells in C1, C2, …, Cn needs to be changed. 

By Lemma 3 we can update the visibility status of the cells in any given fully visible 

cone Ci independently from all other fully visible cones. A cell in Ci that is visible from 

S1 but not visible from S2 must change its visibility status to not visible, and vice-versa 

for a cell not visible from S1 but visible from S2. These visibility changes are exactly 

those caused by inverting Ci. Therefore, inverting all fully visible cones will correctly 

update the FOV.                              □ 

In the following sections we concentrate on the specific logic required to invert a fully 

visible cone. 
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3.3 Ordering Cones for Inversion 

From Theorem 1 we know that we need only to invert fully visible cones to update the 

FOV when the FOV source moves. Therefore we must check the visibility of a cone's 

source in order to determine whether it is fully visible or not. Before discussing how 

visibility can be checked, it is important to note that we can avoid performing this check 

for transitioning-visible cones if we order the cones in a particular way before inverting 

them. 

By Lemma 2 each transitioning visible cone must be inside a fully visible cone which is 

closer to the FOV sources. Therefore, if we process cones in increasing order of distance 

of their origins from the FOV sources, marking all cones found while inverting a fully 

visible cone, we can easily determine which cones are transitioning visible. 

Creating a list of cones sorted by distance from the FOV sources is not necessary 

however. It is sufficient to ensure the list of cones is partially sorted according to a poset 

P which satisfies this condition: A fully visible cone c must precede all transitioning 

visible cones which are inside of it. By processing the cones in an order consistent with P 

we ensure that any fully visible cone c will be inverted before any cone within c. The 

quadtree which stores the vision-blocking rectangles can be used to efficiently create a 

partially sorted list according to P. 

When we refer to the distance of a quadtree node to the FOV sources, we mean the 

distance between the midpoint of the two source points and the closest point to that 

midpoint within the region represented by the node. Using the quadtree to generate a 

partially sorted list according to P requires sorting quadtree nodes according to their 

distance to the FOV sources. Note that the midpoint of the two FOV sources will always 

be on a point shared by two cells of the FOV grid. This makes it possible for the FOV 

sources be equidistant to two nodes within the quadtree. 
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If two nodes are equidistant to the sources, we must temporarily ‘merge’ them for the 

purpose of generating this list. Merging two nodes means that the children of these nodes 

or the cones contained within the nodes are processed in increasing order of distance 

from the FOV sources. More specifically, we need to consider three cases. 

- If the two nodes are internal, we traverse all eight of their child nodes in 

ascending order of their distance from the FOV sources.  

- If one of the nodes is a leaf and the other is internal, the leaf node and the four 

child nodes of the internal node are traversed in ascending order of their distance 

from the FOV sources. 

- If both nodes are leaves, then the cones within both nodes are traversed in 

ascending order of their distance from the FOV sources. 

The algorithm for performing a traversal of the quadtree and generating a partially 

ordered list of cones according to the poset P is below: 

Subroutine: findAllConesSorted(N, G, S1, S2, C) 

Input: quadtree node N, FOV grid G, FOV sources S1 and S2, set C to store cones 

When first called: N is the root node and C is empty 

Result: C will contain all cones sorted to satisfy poset P. 

 If N is a leaf then { 

      for each cone c whose origin is in N, sorted by the distance from c’s origin to S1&S2 

            append c to C 

} else if N is not a leaf then { 

      for each child node N[i] of N, sorted by the distance from N[i] to S1 & S2 

            if N[i] and N[i+1] are equidistant to S1 and S2 then { 

                  temporarily merge N[i] and N[i+1], call the merged node N[i+1] 

                  increment i by 1   //this skips over N[i], as we have merged it 

            } 

            findAllConesSorted (N[i], G, S1, S2, C) 

} 



56 

 

 

 

Lemma 5: Traversing a quadtree in the manner described in findAllConesSorted 

generates an ordering for the cones satisfying the poset P.  

Proof: Consider a fully visible cone C and a transitioning visible cone T inside of C. We 

refer to the origins of these cones as OC and OT. Recall that cones are directed away from 

the FOV sources, so OT must be further from the FOV sources than OC. 

Consider the nodes of the quadtree which contain OC, and the nodes which contain OT. 

As OT is further from the FOV sources than OC, a node which contains OT must either 

also contain OC or it must be at an equal or greater distance from the sources than any 

node which contains OC. Therefore, visiting nodes of the quadtree in ascending order by 

their distance from the FOV sources ensures that a node which contains OC will not be 

traversed after a node which contains OT. If OC and OT are within the same leaf node or 

they are in leaf nodes that are equidistant to the FOV sources, then C and T will be sorted 

in ascending order by the distance of their origins from the FOV sources and thus C will 

not appear in the ordering after T.                                                                                       □ 
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3.4 Checking the Visibility of Cones 

If a cone has not been marked while inverting a fully visible cone, the visibility of its 

origin must be checked. This can be done by tracing a line of sight from the cone’s origin 

to either FOV source. If a line of sight intersects any rectangles within the quadtree, then 

that cone’s origin is not visible. The line of sight can be traced to either source, as by 

definition a fully visible cone must be visible from both sources. 

Checking for intersection between a line of sight L and a rectangle R is computationally 

expensive, however we can simplify this by using minimum bounding rectangles. The 

minimum bounding rectangle of an object is the smallest possible rectangle which fully 

encloses that object. To check whether L and R intersect, we first determine if R 

intersects the minimum bounding rectangle of L. Note that checking if two rectangles 

intersect can be done quite efficiently, using four integer comparisons at most. This 

works for both the rectangular region represented by quadtree nodes, and vision-blocking 

rectangles stored within leaf nodes. 

If an intersection between L and any vision-blocking rectangle within the quadtree is 

found then the cone is known to be not visible, and if no intersections are found the cone 

is fully visible. Not visible cones can be ignored just as transitioning visible cones, while 

fully visible cones need to be inverted. 

As FOV Update is expected to be run many times with the same environment, it is 

possible to store the visibility of cone origins to further improve performance. After 

determining the visibility of a cone origin Q, that information can be stored in a data 

structure that can retrieve it in constant access time on average, such as a hash table. Note 

that, as cones define areas gaining or losing visibility, we know that the visibility 

information stored in the hash table will be accurate so long as Q is not contained in a 

fully visible cone. If we find Q while processing a fully visible cone, we can simply 

invert the visibility status we have stored for it in the hash table. Because of this 

optimization we will only have to directly check the visibility status of Q once. 
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The algorithm for checking the visibility of the origin of a cone is given below. 

Subroutine: isLineOfSightInterrupted(N, L) 

Input: quadtree node N, line of sight L  

When first called: N is the root node 

Returns: true if L intersects a rectangle in N, false otherwise 

B = minimum bounding rectangle for L 

If N is a leaf then { 

      for each rectangle r in N 

            if r intersects B then 

                  if r intersects L then  

                        return true 

} else if N is not a leaf then { 

      for each child node N[i] of N 

            if N[i] intersects B then 

                  if N[i] intsercts L then 

                          if isLineOfSightInterrupted(N[i], L) then  

                              return true 

} 

return false 
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3.5 Rectangle Intersections with a Cone 

Let b be the line which bisects a given cone c. If the slope of b is between 
−𝜋

4
, and 

𝜋

4
, or 

between 
3𝜋

4
, and 

5𝜋

4
, then c is said to be primarily horizontal. Otherwise c is said to be 

primarily vertical. 

When inverting a cone c, it is necessary to determine if each cell within the cone is 

visible from S1 or S2. Cells within a fully visible cone will always be visible unless there 

is a rectangle intersecting the cone that blocks the visibility of some cells. Directly 

checking whether every rectangle intersects c is expensive, however the shape of c can be 

approximated with a binary tree B of rectangles to allow this checking to be performed 

efficiently. 

The root node of B represents the minimum bounding rectangle for c. The root of B will 

have two children which each represent the minimum bounding rectangle of one 

subregion of c(see Figure 25). Subregions of c are created by splitting c at an even 

interval along the y-axis if the cone is primarily horizontal, or the x-axis if it is primarily 

vertical. Every internal node of B will have two children, which represent subregions of 

the region represented by their parent. This continues until the tree reaches some 

predetermined height, at which point the nodes will be leaves. 

 

Figure 25: A height 2 binary tree of rectangles, approximating a primarily vertical 

cone. 
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The algorithm for building a binary tree to approximate a cone is given below. Note that 

the depth of a node is equal to the number of nodes between that node and the root, 

including the root itself. The root of the tree has a depth of 0. The height of a tree is equal 

to the highest depth value among all nodes in the tree.  

Subroutine: buildBinaryTreeForCone(B, C, H) 

Input: binary tree node B, cone C, predefined tree height H 

When first called: B is the root node representing the minimum bounding rectangle of C 

Output: B will be the root of a binary tree of height H that approximates the shape of C 

If the depth of node B is less than H then { 

      Add 2 child nodes to B, each representing the minimum bounding rectangle 

      of one subregion of the region of C which B represents. 

      for each child node N of B { 

            buildBinaryTreeForCone(N, C, H) 

      } 

} 
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When checking if a rectangle R intersects the cone represented by B, we first check if the 

rectangle intersects the regions represented by the root node of B. If it does, then we 

check if R intersects either child node of the root. We then consider the child node which 

R intersects, or the child closer to the cone’s source if R intersects both. We repeat this 

process until we find intersection with a leaf node, or no intersection can be found with 

either child node. If R intersects a leaf node, then we consider it to be intersecting the 

cone. Note that because B approximates the cone it is possible for rectangles to intersect 

leaves of the tree but not the cone itself. The cone inversion logic which we describe in 

Chapter 3.6 accounts for the possibility. 

The algorithm below finds rectangles which intersect a given binary tree representing a 

cone. 

Subroutine: findRectsIntersectingCone(Q, B, R) 

Input: quadtree node Q, binary tree B which represents a cone, set R of rectangles. 

When first called: Q is the root node of the quadtree of rectangles, R is empty. 

Result: R will contain all rectangles which intersect the leaves of B. 

If Q is a leaf then 

      for each Rectangle r in Q 

            if r intersects a leaf of B then 

                  Insert r into R 

else if Q is not a leaf then  

      for each child node n of Q 

            if n intersects at least one leaf of B then 

                  findRectsIntersectingCone (n, B, R) 
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When inverting a given cone c, we iterate though its cells either by rows or columns. If c 

is primarily horizontal, iteration will occur by columns, if c is primarily vertical iteration 

will occur by rows. We traverse cells in this way to ensure that if a given cell is part of a 

vision blocking rectangle, it will be processed before any of the cells it may occlude. This 

could also be achieved by traversing cells based on their distance from c’s origin but 

doing so would involve additional unnecessary calculations. 

After a row/column in c is inverted, we check the list of rectangles computed by 

algorithm findRectsIntersectingCone to determine if any rectangles intersect the cone at 

that row/column and would therefore occlude cells in future rows/columns. There are 

three cases of rectangle intersection that need to be handled, each shown in Figure 26: 

If a rectangle intersects both edges of c, then the rectangle entirely blocks further 

row/column inversions, so there are no more cells left to invert. 

If a rectangle intersects only one edge of c, then the traversal of further rows/columns 

should be shrunk in accordance with the space that is occluded behind that rectangle. 

If a rectangle does not intersect either edge of c, then the rectangle is completely within c, 

and effectively splits the visible space into two separate regions. These two sub-regions 

must be traversed, as they represent the visible space on either side of the rectangle. 

 

Figure 26: Example of a rectangle intersecting both edges of a cone (left), 

intersecting one edge of a cone (center), and intersecting no edges of a cone (right). 

By iterating through rows/columns as described above and adjusting the size of the 

traversal as rectangle intersections are encountered, a cone-inverting subroutine will be 

able to avoid inverting cells which are neither visible from S1 nor S2 without having to 

directly determine the visibility for each cell. 
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Because a cone c is traversed by either rows or columns, cells within c are visited in order 

with respect to their distance from c’s origin along either the x or y axis. This is important 

for rectangle processing, as rectangles should be sorted in a manner consistent with when 

they will be reached by the inversion algorithm. The algorithm moves along the x-axis to 

process columns for a primarily horizonal cone, and along the y-axis to process rows for 

a primarily vertical cone. We refer to the axis the algorithm will move along as a cone’s 

axis of traversal.  

Figure 27 shows that with a primarily horizontal cone, the cone will be traversed by 

columns, so the x-axis is the axis of traversal. The columns are numbered based on their 

distance from the cone’s origin along the axis of traversal. 

 

Figure 27: a primarily horizontal cone with numbered columns 

The list R of rectangles computed by findRectsIntersectingCone for a cone c should 

therefore be sorted by their distance from c's origin on c's axis of traversal. The number 

of intersecting rectangles is not likely to be large, so this sorting should not be a 

performance constraint. 
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3.6 The Cone Inversion Algorithm 

If the list of rectangles R computed for a cone c is sorted with respect to distance along 

c’s axis of traversal, it is possible to avoid checking for intersection of every rectangle 

with the cone at each row/column. Rather than checking every rectangle, it is possible to 

only check a subset of R for each row/column. This is accomplished by performing two 

additional tests before a rectangle r is checked for intersection: 

If the current row/column has a greater distance from c’s origin along c’s axis of traversal 

than any cell in r, then r can be removed from R. This is because the current row/column, 

as well as all future rows/columns cannot intersect with r, so r can simply be ignored. 

If the current row/column has a shorter distance from c’s origin along c’s axis of traversal 

than any cell in r, then r, as well as all remaining rectangle in R can be ignored for that 

row/column. This is because r cannot intersect the current row/column, and due to the 

sorted nature of the list all remaining rectangles in R also cannot intersect. 

Figure 28 shows an example of a primarily-horizontal cone which contains a total of 8 

columns numbered 0 to 7. There is a rectangle r being considered for intersection, but it 

does not quite intersect the cone. column 0 is entirely before the rectangle, columns 3 and 

up are entirely past it. Therefore, only the inversions of columns 1 and 2 will test this 

rectangle for intersection. 

 

Figure 28: An example of a rectangle r which may have intersected a binary tree, 

but not the cone itself 
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The algorithm for inverting a cone takes into account rectangle intersections and is shown 

below: 

Subroutine: invertCone(c, R, G, i) 

Input: Cone c, set R of potentially intersecting rectangles, FOV Grid G, integer i 

When first called: R is the output of findRectsIntersectingCone and i is 0 

Result: the visibility status of cells within G are inverted according to c 

Sort rectangles in R based on their distance from c’s origin along C’s axis of traversal 

//Note that the row/column at the origin of c is considered to be the 0th row/column 

if c is primarily horizontal then { 

      set T = all columns in G which c intersects, 

      starting from the i-th column from c’s origin 

} else 

      set T = all rows in G which c intersects, 

      starting from the i-th row from c’s origin 

} 

for each column/row t in T { 

      Invert all cells within t which are also within c 

      i = i + 1 

      For each rectangle r in R { 

             // Δc(X) = distance of X from c’s source position along c’s axis of traversal 

            if Δc(t) is greater than Δc(p) for all cells p in r     then    remove r from R 

            else if Δc(t) is less than Δc(p) for all cells p in r   then    break 

            //continued on next page 
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            else if c intersects r at t then { 

                  Remove r from R 

                  Mark the relevant points of r that are within c as handled 

                  if r intersects both edges of c then { 

                        return   //cone fully intersected, inversion is finished 

                  } else if r intersects one edge of c then { 

                        //see below for further detail 

                        Adjust the angle of the intersecting edge of c toward the opposite edge,  

                          such that c no longer intersects r 

                  } else {  //intersects neither edge 

                        // traversal will split in two 

                        c2 = clone of c 

                        Adjust the angle of one edge of c2 toward the opposite edge, 

                          such that c2 no longer intersects r 

                        invertCone (c2, clone of R, G, i) 

                        Adjust the angle of the other edge of c toward the opposite edge, 

                          such that c no longer intersects r 

            } 

      } 

} 

Edges of a cone c which intersect a rectangle r must have their angle adjusted, such that a 

new smaller cone is formed which no longer intersects r. This results in a smaller cone 

which is then used for further row/column inversions and rectangle intersection checks. If 

neither edge of c intersects r, because r is inside of c, then two sub-cones must be formed. 

These two sub cones are each formed by the adjusting of one of the original cone’s edges. 

In all cases the edge being adjusted has its angle pulled toward the edge which is not 

being adjusted, until the exact moment an intersection no longer occurs with the 

rectangle. This is shown in Figure 26. 
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Lastly, the main FOV-update algorithm combines all the previously discussed 

subroutines to completely update the FOV when the FOV source moves from S1 to S2: 

Algorithm: FOV-update (S1, S2, G, T, H) 

Input: Grid Cells S1 & S2, FOV Grid G (containing FOV from S1), quadtree T, integer H 

Result: the FOV Grid G will contain the FOV from S2 

C = new set of cones 

findAllConesSorted(root of T, G, S1, S2, C) 

for each cone c in C { 

      //skip inversion if the cone has been marked as transitioning visible 

      if c has not been marked as handled then { 

            Line segment L = segment connecting c’s origin and S1 

            //also skip if the cone is not visible 

            if isLineOfSightInterrupted(root of T, L) is not true then { 

                  R = new set of rectangles 

                  Create binary tree B of height H which approximates the shape of c 

                  findRectsIntersectingCone (root of T, B, R) 

                  invertCone (c, R, G, 0) 

            } 

      } 

} 
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Chapter 4  

4 Experimental Evaluation of Our FOV Algorithms 

In this chapter we present an experimental evaluation of our implementations of 

Recursive Shadowcasting, Rectangle-Based FOV, and FOV Update. 

4.1 Environments 1 to 4 

We first tested using four environments designed to highlight specific properties of the 

algorithms. Note that, unlike in our previous analysis, we included the time our FOV 

calculation algorithms take to clear the data structure used to store the visibility values of 

the grid cells. We included this ‘grid resetting’ procedure in our running times for this 

analysis because FOV Update does not reset the grid, and so including the time needed to 

reset the grid more accurately shows the performance difference between our algorithms. 

The four testing environments are: 

1. An empty FOV grid, matching Environment 1 from Chapter 1.4. This 

environment will cause Shadowcasting to assign many cell visibility statuses and 

will cause Rectangle FOV and FOV Update to assign few cell visibility statuses. 

2. A 5x5 enclosed space made from four rectangles, matching Environment 2 from 

Chapter 1.4. This environment will cause Rectangle FOV to assign many cell 

visibility statuses and will cause Shadowcasting and FOV Update to assign few 

cell visibility statuses. 

3. A square shaped border comprised of 400 rectangles which occludes ~50% of the 

cells in the FOV grid. This matches the test environment from Chapter 2.6. This 

environment tests how FOV Update and Rectangle FOV perform when many 

rectangles are visible. 

4. A square shaped border comprised of four rectangles which occludes ~50% of the 

cells in the FOV grid, plus 396 non-visible rectangles positioned outside the 

border. This environment has roughly the same number of visible cells as 

Environment 3, and tests how FOV Update and Rectangle FOV perform when 

many rectangles are non-visible. 
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For these environments we tested with the FOV source in the center of the grid, and 

ensured each algorithm produced the same output. For FOV Update, we first calculated 

the FOV for the center of the grid, and then measured the running time of updating the 

FOV for the source moving one cell upward. The running time of FOV Update is not 

significantly affected by the direction in which the source moves from the center in these 

environments. 

 

Figure 29: An example of Environments 1, 2, 3, and 4. The environments are shown 

at a size of 13*13 as individual rectangles cannot be seen at higher grid sizes. Note 

that environments 3 and 4 are made of 20 rectangles in this example, instead of 400. 
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Table 8: Mean running times for Environment 1 

Grid Size Shadowcasting Rectangle FOV FOV Update 

128*128 75 μs 3.0 μs 0.3 μs 

256*256 329 μs 11 μs 0.3 μs 

512*512 1,526 μs 44 μs 0.3 μs 

1024*1024 11,224 μs 173 μs 0.3 μs 

2048*2048 46,387 μs 692 μs 0.3 μs 

4096*4096 241,818 μs 2,762 μs 0.3 μs 

 

Table 9: Mean running times for Environment 2 

Grid Size Shadowcasting Rectangle FOV FOV Update 

128*128 3.9 μs 15 μs 2.4 μs 

256*256 13 μs 31 μs 2.4 μs 

512*512 45 μs 96 μs 2.4 μs 

1024*1024 176 μs 339 μs 2.4 μs 

2048*2048 695 μs 1,300 μs 2.4 μs 

4096*4096 2,808 μs 5,020 μs 2.4 μs 

Shadowcasting performs very poorly in Environment 1, as it assigns a visibility status to 

every cell, and Shadowcasting uses a rather inefficient algorithm to assign visibility 

statuses to the cells. Rectangle FOV performs very well in Environment 1, as it has no 

rectangles to process. The performance of Rectangle FOV in Environment 1 is almost 

entirely determined by the time taken to reset the FOV grid. FOV Update completes 

almost instantly in Environment 1, as it has no cones to process and does not need to reset 

the FOV grid. 

Shadowcasting performs well in Environment 2, as it assigns a very small number of cell 

visibility statuses after it resets the FOV grid. Rectangle FOV has a longer running time 

in Environment 2 than in Environment 1, as it assigns a visibility status to almost every 

cell in the FOV grid. The running time of Rectangle FOV in Environment 2 is almost 

exactly twice as long as in Environment 1, so therefore the algorithm assigns cell 

visibility statuses when processing rectangles at roughly the same speed at which it 

assigns visibility statuses when it clears the grid. FOV Update completes almost instantly 

in Environment 2, as all cones are occluded and thus no cell visibility statuses are 

changed. 
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Table 10: Mean running times for Environment 3 

Note that this environment cannot be represented at a grid size of 128*128 

Grid Size Shadowcasting Rectangle FOV FOV Update 

256*256 169 μs 1,293 μs 1,311 μs 

512*512 797 μs 1,709 μs 1,475 μs 

1024*1024 5,674 μs 2,511 μs 1,439 μs 

2048*2048 23,803 μs 4,800 μs  1,427 μs 

4096*4096 114,881 μs 12,435 μs 1,438 μs 

 

Table 11: Mean running times for Environment 4 

Grid Size Shadowcasting Rectangle FOV FOV Update 

128*128 42 μs 335 μs 258 μs 

256*256 169 μs 357 μs 258 μs 

512*512 797 μs 428 μs 258 μs 

1024*1024 5,674 μs 654 μs 258 μs 

2048*2048 23,803 μs 1,455 μs 258 μs 

4096*4096 114,881 μs 5,004 μs 258 μs 

Environments 3 and 4 test how efficiently Rectangle FOV and FOV Update handle many 

rectangles in the environment. In Environment 3 all 400 rectangles are visible, whereas in 

Environment 4 only four rectangles are visible. The number of cell visibility statuses 

which are assigned by the algorithms is identical in both environments, which is why 

Recursive Shadowcasting has the same running time in both cases. 

In Environment 3 all rectangles are visible, and so FOV Update and Rectangle FOV must 

process all of them. FOV Update exhibits superior performance at higher grid sizes as it 

does not change any grid cell visibility statuses as the FOV source moves. 

Both Rectangle FOV and FOV Update exhibit better performance in Environment 4 than 

in Environment 3. This is because many rectangles are not visible in this environment, 

and so the algorithms avoid processing most of them. Rectangle FOV must, for each 

rectangle, check the visibility status of every cell on the faces of the rectangle that are 

nearest to the FOV source before determining whether that rectangle is visible or not. 

FOV Update, by comparison, needs only check the visibility of the origin point of a cone. 

Because of this, the performance impact caused by the non-visible rectangles increases as 

grid size increases for Rectangle FOV, but it does not affect FOV Update. 
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From these four test cases we can make the following conclusions: 

The running time of FOV Update is nearly constant in all test cases as the number of 

visible cells does not change in these environments when the FOV source moves from the 

center. This allows FOV Update to exhibit constant running time because the only 

operation within FOV Update which depends on the size of the FOV grid is the inversion 

of cell visibility statuses. If few or no cells change their visibility status, the performance 

of FOV Update will not be affected by grid size. This is in contrast to the other two FOV 

algorithms, whose running times depend on grid size. 

FOV Update does not exhibit poor performance when many cells are visible or when 

many cells are not visible. This is in contrast to Recursive Shadowcasting, which 

performs poorly when many cells are visible, and Rectangle FOV, which performs poorly 

when few cells are visible. In fact, FOV Update should perform well in environments 

where most cells are visible, or where most cells are not visible, as in such environments 

the visibility status of few cells will change when the source moves. 

The number of vision-blocking rectangles significantly affects the performance of both 

Rectangle FOV and FOV Update. Both algorithms exhibit good performance when 

rectangles are hidden instead of visible, but the performance is significantly better for 

FOV Update. This is because the Rectangle FOV process of skipping non-visible vision-

blocking rectangles has performance which depends on the size of those rectangles, 

whereas FOV Update has a cone skipping procedure which is independent of rectangle 

size. The visibility of cone origin points can also be stored between updates to further 

improve performance. 

Recursive Shadowcasting has superior running time in environments with many vision-

blocking rectangles and few visible cells, but when the number of visible cells becomes 

large it performs poorly when compared to Rectangle FOV or FOV Update. FOV Update 

performs particularly well at high grid sizes, as it needs to assign relatively few visibility 

statuses and does not need to clear the FOV grid. 
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After performing running time benchmarks, we tested our algorithms using these same 

four environments and collected more detailed performance metrics to help understand 

why each algorithm ran for as long as it did. 

We measured three metrics during these tests: number of processor instructions, cache 

misses, and cache hits. A cache miss is when the processor attempts to read or write data 

and that data is not currently stored in the processor’s cache. A cache hit is when the 

processor attempts to read or write to data which is present in the cache. Cache misses 

have a relatively large performance impact, as data must be fetched from main memory. 

We measured these numbers by using the perf utility within the Linux operating system. 

Just as with the running time measurements, we ran each algorithm many times using 

separate FOV grids and report the mean results. 

 

Table 12: Mean performance metrics for Environment 1 

 Shadowcasting Rectangle FOV FOV Update 

Grid Size Instructions Instructions Instructions 

128*128 566,179 1,457 1,759 

256*256 2,188,712 1,835 1,687 

512*512 8,590,273 5,744 1,234 

1024*1024 34,167,155 20,344 1,549 

2048*2048 136,000,513 68,832 1,338 

4096*4096 541,816,169 118,772 1,643 

 Cache Operations 

Grid Size Misses Hits Misses Hits Misses Hits 

128*128 271 665 12 259 2 4 

256*256 1,167 3,578 23 1,024 2 6 

512*512 4,657 32,007 102 4,229 3 8 

1024*1024 20,198 1,049,073 456 16,945 2 8 

2048*2048 83,016 4,414,279 948 67,132 3 7 

4096*4096 618,686 17,587,416 1,280 262,316 4 8 
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Table 13: Mean performance metrics for Environment 2 

 Shadowcasting Rectangle FOV FOV Update 

Grid Size Instructions Instructions Instructions 

128*128 4,250 84,252 12,598 

256*256 6,150 124,393 12,573 

512*512 8,657 219,656 11,747 

1024*1024 34,301 462,138 12,364 

2048*2048 46,419 974,566 11,980 

4096*4096 230,012 2,179,053 12,673 

 Cache Operations 

Grid Size Misses Hits Misses Hits Misses Hits 

128*128 26 279 4 258 4 6 

256*256 72 1,032 18 2,109 3 7 

512*512 167 4,252 97 9,069 4 8 

1024*1024 677 17,024 474 59,634 5 7 

2048*2048 1,566 69,387 804 220,300 4 8 

4096*4096 2,233 259,013 12,424 740,182 5 8 

 

The metrics for Environments 1 and 2 match with the observed running times for each 

algorithm. Shadowcasting has the lowest number of operations in Environment 2 due to 

the low number of visible cells. Rectangle FOV has the fewest operations in Environment 

1 due to the high number of visible cells. FOV Update has the fewest operations in both 

environments at high grid sizes due to not being affected as strongly by grid size. 

Some observations can be made by comparing Rectangle FOV in Environment 2 with 

Shadowcasting in Environment 1. In each of these cases the algorithms assign a visibility 

status to roughly all the cells in the FOV grid, but the metrics are quite different. As grid 

resolution becomes high Shadowcasting performs ~250 times the number of instructions 

as Rectangle FOV, and ~24 times the number of cache hits, and ~50 times the number of 

cache misses. This clearly highlights the inefficiency of Shadowcasting’s method of 

computing FOV one cell at a time. Because Rectangle FOV computes FOV for the entire 

area occluded by a given rectangle, it is able to compute FOV by performing far fewer 

instructions. Rectangle FOV also has a much lower proportion of cache misses because 

of its better use of spatial locality.  
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Table 14: Mean performance metrics for Environment 3 

Note that this environment cannot be represented at a grid size of 128*128 

 Shadowcasting Rectangle FOV FOV Update 

Grid Size Instructions Instructions Instructions 

256*256 1,147,177 8,384,396 5,738,107 

512*512 4,415,166 11,699,557 6,498,240 

1024*1024 17,268,299 17,200,022 6,350,838 

2048*2048 68,385,109 28,257,405 6,289,103 

4096*4096 272,896,449 50,216,815 6,086,486 

 Cache Operations 

Grid Size Misses Hits Misses Hits Misses Hits 

256*256 813 2,702 376 3,832 27 3,634 

512*512 3,307 18,848 622 13,117 118 4,457 

1024*1024 12,807 505,705 1,004 45,543 109 4,709 

2048*2048 49,508 2,249,637 2,956 148,371 210 4,305 

4096*4096 318,454 9,025,138 6,812 563,293 554 3,789 

 

 

Table 15: Mean performance metrics for Environment 4 

 Shadowcasting Rectangle FOV FOV Update 

Grid Size Instructions Instructions Instructions 

128*128 295,556 1,991,961 1,331,668 

256*256 1,112,527 2,126,772 1,340,166 

512*512 4,360,386 2,415,775 1,347,151 

1024*1024 17,200,946 2,975,305 1,336,652 

2048*2048 68,814,365 4,206,014 1,333,260 

4096*4096 275,283,817 6,316,213 1,309,088 

 Cache Operations 

Grid Size Misses Hits Misses Hits Misses Hits 

128*128 217 539 28 712 1 82 

256*256 816 2,856 83 2,647 2 159 

512*512 4,809 19,735 200 10,754 3 325 

1024*1024 12,889 503,844 260 41,044 3 342 

2048*2048 58,245 2,255,750 1,268 123,543 2 364 

4096*4096 355,682 9,111,054 6,144 427,064 4 544 

  



76 

 

 

 

The performance metrics for Shadowcasting in Environments 3 and 4 are roughly one 

half of the performance metrics seen in Environment 1. This is as expected, as 

Environments 3 and 4 both have roughly half the number of visible cells as Environment 

1. 

Compared to the other two algorithms, Shadowcasting performs relatively few 

instructions at low grid sizes. Rectangle FOV and FOV Update have a larger number of 

instructions at low grid sizes, because they must process a quadtree of 400 rectangles 

regardless of grid size. This high instruction count is the main cause of the longer running 

time of these algorithms at low grid sizes, as their number of cache hits and misses are 

close to those of shadowcasting. The number of cache misses in particular is smaller than 

that of shadowcasting even at the lowest grid sizes, indicating that our algorithms manage 

memory more efficiently despite having a longer running time. 

Comparing the metrics for Environments 3 and 4 allows us to see how effectively 

Rectangle FOV and FOV Update are at skipping occluded rectangles. Both algorithms 

use significantly fewer CPU instructions when many rectangles are occluded, and this 

reduction is by roughly the same proportion for both algorithms. Both algorithms also 

exhibit fewer cache hits and misses, but this reduction is more significant for FOV 

Update. This is because Rectangle FOV must check many cells along a rectangle to 

determine if it is occluded, while FOV Update only needs to check the origin point of a 

cone. This means that Rectangle FOV’s process of skipping non-visible rectangles 

involves a number of memory references which increases with grid size, while FOV 

Update’s process does not. 
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4.2 Environments 5 to 8 

We now show test results for four additional environments which are meant to emulate 

terrain which may appear in a computer game. This time we did not place the FOV 

source in the center of the grid. Instead we tested with 25 randomly generated paths of 

100 cells each. Each path was generated by randomly selecting the center of a cell as the 

start of the path, among all cells which are not vision-blocking. An x and y value are then 

chosen to represent the direction of the path. These values are both uniformly distributed 

random numbers between -1 and 1. The starting cell and direction values (x, y) define a 

ray. Cells which intersect this ray are added to the path in ascending order of distance 

from the starting cell. If the next cell to add to the path belongs to a vision-blocking 

rectangle, a new random direction (x, y) is generated and cells are added to the path using 

that new direction. This continues until the path contains 100 cells. 

The FOV was calculated for each cell along the path in the order in which the cells 

appear in the path. We used paths in these test environments to mimic scenarios arising in 

computer games, where the FOV source will be moving through the grid as a game 

character moves. In the case of FOV Update, for each path we computed an initial FOV 

using the Rectangle-Based FOV algorithm, and then measured the running time of 

updating the FOV for every position of the FOV source along the path. We also verified 

that for each FOV source position each algorithm produced the same FOV. 
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Each test environment uses a fixed number of rectangles; as the grid size increases the 

sizes of the rectangles are increased by the same proportion. This is done to replicate how 

game implementors will likely choose to scale their environments to higher grid sizes. As 

performance is significantly affected by the number of vision-blocking rectangles, 

implementors will want to use as few rectangles as possible to model their terrain. The 

primary benefit of increasing the FOV grid size will be the increased precision of the 

visibility statuses stored within the grid cells (see Figure 30). 

Scaling the environment in this manner also mimics how the developers of League of 

Legends[2] attempted to increase the quality of their fog of war[4]. When the game’s 

developers considered increasing the size of their FOV grid, it was to increase the 

precision of the resulting FOV, not so they could more accurately represent their vision-

blocking terrain. 

 

Figure 30: A simple FOV grid with a single vision-blocking rectangle R. The grid is 

of size 5x5 on the left and of size 15x15 on the right. The area occluded by R is 

darkened. The FOV on the right grid is more precise due to the increased grid size. 
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The four additional testing environments are: 

5. A fixed indoors environment with 36 square rooms connected by 74 corridors. 

This environment is constructed such that there is never an alignment of corridors 

which would allow the FOV source to see across many rooms. This is an enclosed 

environment where many cells and rectangles/cones will be occluded. This 

environment is comprised of 160 rectangles. 

6. A randomized environment where 200 rectangles of random sizes are placed at 

random positions. This simulates a more disorganized outdoors environment, such 

as a forest. Each rectangle has a width and height which are uniformly distributed 

random values between one and six cells. The position of each rectangle is chosen 

uniformly at random from all locations that do not intersect another rectangle. 

7. A randomized environment where 200 rectangles of random sizes are more 

densely grouped around the center of the FOV grid and fewer rectangles appear 

further from the center. This simulates a more organized outdoors environment, 

such as a town. Each rectangle has a width and height which are uniformly 

distributed random values between one and six cells. For each rectangle, five x 

coordinate values and five y coordinate values are chosen uniformly at random. 

The average value from each set of five coordinates is used as the x and y 

coordinate of the center point of the rectangle. The position of the center point of 

the rectangle is then rounded so that it aligns to the grid. If this rectangle position 

would result in intersection with another rectangle, a new random center is 

generated as described above. This averaging process results in rectangle 

positions which are more likely to be near the center of the grid. 

8. A fixed environment meant to emulate the visibility grid used in League of 

Legends [2]. This tests the FOV algorithms using an environment taken from an 

existing game. The League of Legends map was chosen because of its shape: The 

League of Legends environment is an organized mix of enclosed spaces and large 

open pathways, which makes it ideal for thoroughly testing our algorithms. This 

environment is comprised of 300 rectangles. 
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Note that all algorithms were tested with the same randomly generated environments and 

randomly selected FOV source paths. All random calculations used a pseudorandom 

number generator. 

 

Figure 31: Environments 5, 6, 7, and 8 on a grid of size 128*128. 

Black cells are vision-blocking, white cells are not vision-blocking. 
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Table 16: Running times for Environment 5. 

 Shadowcasting Rectangle FOV FOV Update 

Grid Size Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

128*128 6.5 μs  1 μs 205 μs 20 μs 170 μs 24 μs 

256*256 21 μs 3 μs 259 μs 26 μs 174 μs 25 μs 

512*512 80 μs 14 μs 401 μs 39 μs 188 μs 27 μs 

1024*1024 290 μs 43 μs 774 μs 68 μs 204 μs 46 μs 

2048*2048 1,342 μs 278 μs 2,001 μs 163 μs 249 μs 77 μs 

4096*4096 6,665 μs 1473 μs 10,269 μs 765 μs 356 μs 140 μs 

Environment 5 has a low number of visible cells because it is very enclosed, which 

means both Shadowcasting and FOV Update will assign few cell visibility statuses. As 

the running time of Shadowcasting is primarily dependent on the number of visible cells, 

it performs relatively well here. 

FOV Update performs well at high grid sizes in this environment, as on average very few 

cells change visibility status each time the FOV is updated. Many cones are non-visible 

as well, which allows FOV Update to skip processing them. 

Rectangle FOV exhibits relatively poor performance in this environment. The high 

number of non-visible cells means that Rectangle FOV will assign a large number of cell 

visibility statuses. Additionally, many of the rectangles in this environment are large, 

which means Rectangle FOV will have to check many cells along the sides of these 

rectangles to determine if they are non-visible. 

All three algorithms exhibit a standard deviation which is only a small percentage of their 

mean running time in this environment. This is because Environment 5 has a very 

consistent layout. The difference in the number of visible cells and visible rectangles at 

any two given source positions will not be very large, and so the performance of the 

algorithms is not significantly impacted by the position of the FOV source. The one 

exception to this is FOV Update at high grid sizes, which has a proportionally large 

standard deviation. This is because most movements of the FOV source will result in few 

to no cells changing visibility status, but relatively many cells will change visibility status 

when the FOV source moves around a corner. 
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Table 17: Running times for Environment 6 

 Shadowcasting Rectangle FOV FOV Update 

Grid Size Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

128*128 17 μs 6.5 μs 300 μs 49 μs 468 μs 137 μs 

256*256 54 μs 16 μs 358 μs 52 μs 504 μs 135 μs 

512*512 201 μs 53 μs 494 μs 77 μs 595 μs 152 μs 

1024*1024 777 μs 289 μs 943 μs 172 μs 763 μs 243 μs 

2048*2048 3,898 μs 1,747 μs 2,176 μs 277 μs 1,073 μs 366 μs 

4096*4096 19,345 μs 8,426 μs 7,347 μs 1,059 μs 1,863 μs 821 μs 

The mean running time of Shadowcasting is significantly larger in Environment 6 than in 

Environment 5. This is due to the increase in the number of visible cells. Its standard 

deviation is also much larger, which is explained by the random nature of the 

environment. Some source cell positions will result in significantly more or significantly 

fewer visible cells than other source positions. 

Rectangle FOV performs slightly worse here than in Environment 5, as more rectangles 

are visible. However, because there is an increase in the number of visible cells, its 

relative performance versus Shadowcasting is significantly improved from Environment 

5. Similarly to its performance in Environment 5, Rectangle FOV exhibits a standard 

deviation which is a relatively small percentage of its mean running time. 

FOV Update performs very well at high grid sizes, but the larger number of visible cones 

that it must consider affects its performance regardless of grid size. This causes the 

algorithm to exhibit relatively poor performance at low grid sizes. Higher variance in the 

number of visible cones also results in FOV Update having a high standard deviation at 

low grid sizes. However, even in this environment where a large number of visible cones 

must be considered, FOV Update performs relatively few cell visibility assignments. This 

allows it to exhibit superior performance as grid size becomes large. 

 

 

 



83 

 

 

 

Table 18: Running times for Environment 7 

 Shadowcasting Rectangle FOV FOV Update 

Grid Size Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

128*128 25 μs 9.7 μs 272 μs 35 μs 471 μs 138 μs 

256*256 83 μs 35 μs 314 μs 43 μs 466 μs 142 μs 

512*512 343 μs 169 μs 431 μs 64 μs 489 μs 146 μs 

1024*1024 2,132 μs 809 μs 832 μs 117 μs 676 μs 173 μs 

2048*2048 11,529 μs 5,592 μs 2,072 μs 226 μs 969 μs 269 μs 

4096*4096 46,203 μs 25,962 μs 6,710 μs 1,007 μs 1,331 μs 539 μs 

Recursive Shadowcasting exhibits very poor performance in this environment at high 

grid sizes. Unless the FOV source is near the center of the grid there will be a high 

number of visible cells, which will result in a long running time. This can be seen in the 

large standard deviation. 

Rectangle FOV performs slightly better in this environment than in Environment 6. This 

is due to the higher degree of rectangle clustering, which decreases the average number 

of visible rectangles. Additionally, the number of non-visible cells will be lower than in 

Environment 6 on average when the FOV source is not near the center of the grid. 

FOV Update performs better in this environment than in Environment 6 as grid size 

becomes large. Because rectangles are clustered together in this environment, it is more 

likely that cones will be occluded. This means that on average FOV Update will need to 

consider fewer cones than in Environment 6. 
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Table 19: Running times for Environment 8 

 Shadowcasting Rectangle FOV FOV Update 

Grid Size Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

128*128 13 μs 6.5 μs 403 μs 57 μs 558 μs 220 μs 

256*256 46 μs 24 μs 482 μs 78 μs 566 μs 223 μs 

512*512 163 μs 75 μs 656 μs 100 μs 590 μs 219 μs 

1024*1024 844 μs 468 μs 1,173 μs 210 μs 687 μs 328 μs 

2048*2048 4,157 μs 2,780 μs 2,643 μs 472 μs 802 μs 432 μs 

4096*4096 22,007 μs 13,698 μs 8,692 μs 1,724 μs 1,247 μs 765 μs 

Shadowcasting has a high running time in this environment, as well as a high standard 

deviation. While this environment is more ‘structured’ than Environments 6 and 7, it is 

not an indoors environment like Environment 5, and so the running time of 

Shadowcasting becomes very large as grid size increases. Similarly to Environment 7, the 

number of visible cells will vary strongly based on where the FOV source is located, 

which results in a high standard deviation for this algorithm. 

Environment 8 has 300 vision blocking rectangles, compared to 200 for Environments 7 

and 6 and 160 for Environment 5. This increased number of vision-blocking rectangles 

negatively affects the performance of Rectangle FOV. This is especially true at low grid 

sizes, where the performance impact of the number of rectangles is most significant. As 

grid size increases, the efficiently of Rectangle FOV when processing cell assignments 

allows it to outperform Recursive Shadowcasting, despite the increased number of 

rectangles. 

FOV Update is also hindered by the larger number of vision-blocking rectangles in 

Envorinment 8, but only at lower grid sizes. On average there are few changed cell 

visibility statuses as the source moves, so FOV Update performs better here at high grid 

sizes than in Environments 6 and 7, despite the higher number of rectangles. In certain 

cases, such as when the source moves around a corner, a large number of cells may 

change visibility status, which gives FOV Update a larger standard deviation in this 

environment. 
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From these additional four test cases we can make the following conclusions: 

At low grid sizes Rectangle FOV and FOV Update are significantly slowed by having to 

deal with the quadtree of rectangles, while Shadowcasting only has to concern itself with 

the grid. This allows Shadowcasting to consistently exhibit the best performance at low 

grid sizes. However, as grid size increases the performance impact of the quadtree 

becomes less important, and the poor per-cell performance of Shadowcasting causes it to 

perform poorly in all but very enclosed environments. 

Rectangle FOV and FOV Update are not affected as strongly by the shape of an 

environment as Shadowcasting is. The number of cells that are visible from a given FOV 

source strongly influences the running time of Shadowcasting, whereas our algorithms 

are more strongly affected by grid size and number of rectangles. This leads to very high 

standard deviations for Shadowcasting in some environments. FOV Update also exhibits 

a proportionally high standard deviation in some environments, as its performance is 

affected by the number of visible cones and the number of cells which change visibility 

status. 

FOV Update performs very well at high grid sizes in all environments because it assigns 

few cell visibility statuses. Both Rectangle FOV and Shadowcasting must assign a larger 

number of cell visibility statuses, which causes their running times to increase more 

sharply as grid size increases. Rectangle FOV does assign cell visibility statuses more 

efficiently than Recursive Shadowcasting because of its use of spatial locality, but this is 

not enough to allow it to compete with FOV Update at high grid sizes. 
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In Environments 5 to 8, the longest running times were ~46ms for shadowcasting, ~10ms 

for rectangle FOV, and ~2ms for FOV update. The improvements achieved by our 

algorithms may not seem significant, as even 46ms is a very small amount of time. 

However it is important to consider that computer games do not only calculate FOV: 

many game processes are simultaneously running, competing for system resources, and 

so a computer can only dedicate a small portion of processor time to FOV calculation. 

Additionally, games are generally rendered in real-time at 60 frames per second, which 

allows ~17ms to render each frame. While FOV will not be calculated for every frame, 

spending dozens of milliseconds to calculate it will result in some frames being skipped, 

which significantly impacts the smoothness of a game’s display. Because there may be 

little processor time devoted to computing FOV, even spending a few milliseconds 

computing it may be enough to cause frames to be skipped. 

Because of the differing strengths of each of the three tested algorithms, the most 

effective way to calculate FOV is to use a hybrid approach. Based on our experimental 

evaluations, we recommend the following: 

If an environment has a low number of visible cells, Recursive Shadowcasting is the most 

effective algorithm for calculating an FOV. An environment may have a low number of 

visible cells either due to a low grid size or because the environment is indoors. In 

outdoors environments, which have a larger number of visible cells, Recursive 

Shadowcasting consistently offers the best performance at grid sizes up to 512*512. 

If an environment has a high number of visible cells, Rectangle FOV is the most efficient 

algorithm for calculating an FOV. An environment may have a high number of visible 

cells when it is outdoors and grid size is large. Rectangle FOV consistently offers the best 

performance at grid sizes of 1024*1024 and above. 

Once an FOV has been calculated, it may be updated instead of being calculated again 

from scratch. If an environment has a large grid size, FOV Update is more efficient than 

calculating an FOV from scratch, regardless of the structure of the environment. FOV 

Update offers better performance than either calculation algorithms at grid sizes of 

1024*1024 and above but must still depend on one of them to calculate an initial FOV. 
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Chapter 5  

5 Conclusions and Future Work 

In this chapter we summarize our work and propose avenues for future research. 

5.1 Conclusions 

In this paper we have examined the existing state of the art for field of vision calculation, 

described flaws in existing algorithms, and have proposed new algorithms which address 

these flaws. 

We evaluated existing FOV algorithms and concluded that Recursive Shadowcasting has 

the best performance among them. We also showed performance issues with the doryen 

implementation of Recursive Shadowcasting and demonstrated an error in the description 

of the Recursive Shadowcasting algorithm. 

We then described an FOV algorithm of our own design: Rectangle-Based FOV. By 

utilizing a quadtree of rectangles, Rectangle FOV is able to assign cell visibility statuses 

in an efficient manner.  

Finally, we described an algorithm which updates an existing FOV for a new source 

position, rather than calculating a new FOV from scratch. By updating an existing FOV, 

our algorithm is able to assign very few cell visibility statuses, even at high grid sizes.  

We conducted an experimental analysis which compared Recursive Shadowcasting, 

Rectangle FOV, and FOV Update. The analysis concluded that no algorithm is the best in 

all cases, and that an ideal approach is a hybrid of all three algorithms: Recursive 

Shadowcasting should be used in indoors environments, or at grid sizes up to 512*512, 

otherwise Rectangle FOV should be used. Once an initial FOV is calculated, FOV 

Update should be used to update that FOV at grid sizes of 1024*1024 and above. 

The implementations of FOV algorithms which were used in this thesis are open source 

and are provided with compilation instructions at:  

http://www.csd.uwo.ca/faculty/solis/software/fov/fov.html.   

http://www.csd.uwo.ca/faculty/solis/software/fov/fov.html
http://www.csd.uwo.ca/faculty/solis/software/fov/fov.html
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5.2 Potential Future Work 

The implementations of the algorithms we have described are available to implementors, 

but some implementors may have specific requirements or they might know that their 

games will feature specific types of environments. Such implementors may wish to 

modify our algorithms to adjust them to their needs. We detail some modifications which 

implementors could wish to make below. 

Both Rectangle FOV and FOV Update use the shadowcast visibility definition. We chose 

this definition as it is the most popular and is used by the best performing existing FOV 

algorithm. However, some game implementors may wish to use a different visibility 

definition such as strict FOV or Permissive FOV. 

Adjusting Rectangle FOV or FOV Update to output an FOV according to the strict 

visibility definition should be relatively simple. An implementor would need to modify 

how the algorithm determines which grid cells are considered to be within a rectangle's 

occluded region or within a cone, as strict FOV requires the center of a cell, and not just 

any point within a cell, to be visible. No changes would need to be made to how rays are 

cast. One complication is that our algorithms assume that a rectangle cannot occlude part 

of its own face, yet that is not the case for strict FOV (see Figure 32). This could be 

addressed by checking which cells on a rectangle’s face are occluded by that rectangle. 

Adjusting our algorithms to use strict FOV should be the simplest way to ensure they 

produce an FOV which is symmetrical. 

 

Figure 32: A simple environment with FOV calculated according to the shadowcast 

FOV definition(left), and the strict FOV definition(right). Visibility rays are drawn 

to highlight the differences in the FOV produced by each definition.  
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Modifying our algorithms to produce output according to the permissive visibility 

definition of FOV is more complicated. No changes need to be made to which cells are 

considered to be within a cone or occluded region, but changes would need to be made to 

the location rays are cast from. Permissive FOV does not cast rays from a constant point 

within the FOV source cell, but instead uses the point within the source cell which results 

in the most visible space. The points where rays must be cast from can be easily 

calculated if a single rectangle is considered in isolation, but the process becomes 

complicated when many rectangles are considered. A point q within the FOV source cell 

must be chosen such that the visible space is maximized, while also ensuring that the line 

between q and a rectangle’s relevant point does not intersect any other rectangles. This 

complication does not apply to the other two FOV definitions, which always cast rays 

from the center of the FOV source cell. The description of Permissive FOV in [15] may 

serve as a starting point for implementors who wish to pursue this. 

If an implementor is able to assume that their game will always take place in enclosed 

indoor environments, then they could significantly improve the running-time of 

Rectangle FOV or FOV update by using portal-based culling and potentially visible sets 

[9]. If an environment can be represented as a series of rooms connected via portals (such 

as doors or windows) then said environment can be represented as a graph where rooms 

are nodes and portals are edges. These rooms are then pre-processed to generate a 

‘potentially visible set’ for a given room R. This potentially visible set is a collection of 

all rooms which are visible from at least one point in R. The set would include at least all 

nodes adjacent to R in the graph. Portal-based culling is often used as a form of occlusion 

culling in computer games. When rendering graphics, a game is able to skip the rendering 

of all objects which are outside of rooms in the potentially visible set [8]. Rectangles 

outside of the potentially visible set could be ignored, which could result in a significant 

performance improvement. We chose not to pursue this optimization ourselves as it 

would add significant complexity to the algorithms and it is ineffective in many 

environments. We did not want to make specific assumptions about the environments our 

algorithms may be used in. 
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Our description of FOV Update does consider changes to vision-blocking terrain in an 

environment. We chose to focus our research on cases where only the FOV source 

changes, as this is by far the most common case where FOV must be calculated. In most 

cases when a game environment does change it changes dramatically, such as when the 

player moves to a different level within a game. In such cases the previously calculated 

FOV is not useful and an FOV calculation algorithm must be used. 

However, in cases where a game environment only changes slightly, it may be worth 

updating the previously calculated FOV to accommodate this environmental change. If 

rectangles are added to an environment, then Rectangle FOV could simply be run only on 

those rectangles with the previous FOV grid as input (instead of an all-visible grid).  

Processing the removal of a rectangle from an environment is more complicated. A 

process similar to inverting cones would need to be used, where the algorithm does not 

process regions which are occluded by other rectangles. This would set the region 

previously occluded by the removed rectangle to visible while ensuring that any regions 

occluded by other rectangles are not incorrectly set to visible. 

Scene changes that require adding and removing multiple rectangles, may result in poor 

performance versus simply calculating an FOV from scratch. An implementor who is 

considering modifying FOV Update to work with changing environments should think 

carefully about whether using FOV Update in these cases will result in improved 

performance. 
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