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   Au nanostructured surfaces for electrochemical and 
LSPR-based monitoring of α-synuclein- small molecule 

interactions 

Xin R. Cheng,† Gregory Q. Wallace,‡ François Lagugné-Labarthet,‡ Kagan Kerman,†,* 

†Department of Physical and Environmental Sciences, University of Toronto Scarborough, 
Toronto, ON, M1C 1A4, Canada.  

‡Department of Chemistry, University of Western Ontario, London, ON, Canada, N6A 5B7, 
Canada. 

ABSTRACT   

In this proof-of-concept study, the fabrication of novel Au nanostructured indium tin oxide (Au-
ITO) surfaces is described for the development of a dual-detection platform with electrochemical 
and localized surface plasmon resonance (LSPR)-based biosensing capabilities. Nanosphere 
lithography (NSL) was applied to fabricate Au-ITO surfaces. Oligomers of α-synuclein (αS) 
were covalently immobilized to determine the electrochemical and LSPR characteristics of the 
protein. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed 
using the redox probe [Fe(CN)6]3-/4- to detect the binding of Cu(II) ions and (-)-epigallocatechin-
3-gallate (EGCG) to αS on Au-ITO surface. Electrochemical and LSPR data were complemented 
by Thioflavin T (ThT) fluorescence, surface plasmon resonance imaging (SPRi) and 
transmission electron microscopy (TEM) studies. EGCG was shown to induce the formation of 
amorphous aggregates that decreased the electrochemical signals. However, the binding of 
EGCG with αS increased the LSPR absorption band with a bathochromic shift of 10-15 nm. The 
binding of Cu(II) to αS enhanced the DPV peak current intensity. NSL fabricated Au-ITO 
surfaces provide a promising dual-detection platform to monitor the interaction of small 
molecules with proteins using electrochemistry and LSPR. 

KEYWORDS: -synuclein, Parkinson's disease, electrochemistry, biosensor, nanosphere 
lithography.   

INTRODUCTION 
Nanosphere lithography (NSL) is a low-cost nanofabrication technique capable of producing  
well-ordered 2D arrays of periodic nanostructures over large surfaces.1 NSL has also been 
applied for the synthesis of size-tunable noble metal nanoparticles organized onto surfaces.2-5 
This characteristic of NSL has been especially valuable for investigating the size-dependent 
optical properties towards the development of chemical and biological nanosensors.  
In general, NSL makes use of transferring a monolayer of nano- or microspheres onto a surface 
forming a tightly packed pattern, which is ultimately used as a mask for pattern transfer. By 
removing the spheres after metal thin film deposition, the remaining 2-D nanostructures on the 
substrate displays nanoscale triangular or pyramidal features arranged in a hexagonal pattern. Au 
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and Ag nanopyramid and nanotriangle arrays that were prepared using NSL, have been 
extensively characterized using extinction measurements to identify the dipolar and quadrupolar  
resonances of the localized surface plasmon (LSPR)2 while surface-enhanced Raman 
spectroscopy (SERS) was demonstrated onto platforms functionalized with organic molecules.4, 

6-9 LSPR occurs when the free electrons of noble metal nanoparticles resonate in response to an 
optical excitation. Similar to SPR detection, LSPR sensors respond to refractive index changes 
on nanostructures. However, unlike SPR sensors, these nanostructured sensors usually utilize 
straight light coupling and do require complex optical path coupling like Kretschmann 
configuration. Thus, such simplicity and miniaturization of the light path make LSPR sensors 
promising platforms for measuring local refractive index changes caused by the adsorption of 
target molecules. The figure of merit (FOM) values, which are refractive index sensitivities 
divided by plasmon resonance linewidths, of LSPR sensors are usually used to determine the 
performance of these sensors. Due to radiative damping which broadens the resonance peaks, the 
FOM of LSPR sensors are usually a couple of magnitude smaller compared to conventional 
SPRs.10,11 One way to optimize FOM of LSPR sensors is to decrease the plasmonic full width at 
half maximum (FWHM) of the LSPR. This could be done by patterning metal nanoparticles into 
two-dimensional arrays.12-15 The resonance wavelength of such NSL platforms can be finely 
tuned by modifying the chemical nature of the material as well as the geometric parameters of 
the individual structure. Once the excitation wavelength matches the LSPR of the metallic 
nanostructure, large enhancement of the confined electromagnetic field can be used to detect 
molecules located in its vicinity. It is known that the uniformity of Au nanostructures on surfaces 
as well as the opto-geometric parameters of the metallic structures are critical and ultimately 
affect the width and the position of the LSPR bands as well as the sensitivity of the optical 
measurements.16,17 It has also been recently reported that materials having sharp corners and 
edges provide larger LSPR excitation and redshift in comparison to their spherical 
counterparts.18 A single layer NSL mask could create such a periodic sharp-edged particle array 
in a highly cost-effective and simple manner when compared with other lithography methods 
such as nanoimprint lithography, deep UV lithography, X-Ray lithography, electron beam 
lithography, scanning probe lithography, etc.19 There had been previous reports that utilized 
electrochemistry and LSPR on the same platform for the detection of biomolecular 
interaction20,21 but the nanostructure fabrication techniques are often limited by their complexity, 
costs and/or the need of a pre-patterned structure. To the best of our knowledge, this is the first 
report about the application of NSL-based Au nanostructures on ITO surfaces (Au-ITO) for the 
electrochemical and LSPR-based detection of small molecule-protein interactions. 
Parkinson's disease (PD) is the second most common neurodegenerative disorder in the world 
after Alzheimer’s disease (AD).22 PD is more common in the elderly, and it imposes a significant 
social and economic burden on society.23 It is pathologically characterized by a loss of 
dopaminergic neurons in the substantia nigra and aggregated α-synuclein (αS) protein deposits in 
the peripheral of intraneuronal inclusions called Lewy bodies.24-26 Several studies have shown 
that αS misfolding and its dysfunctional regulation in Lewy bodies are key factors in the 
pathogenesis of PD.27-31 Oligomers of αS are viewed as the neurotoxic species that are 
responsible for neuronal death in the early stages of PD.32 There is compelling evidence that the 
loss of transition metal homeostasis results in oxidative stress and toxicity in PD.30 Such toxicity 
has been shown to be caused by αS oligomers that have undergone morphological changes in the 
presence of metal ions.32 In particular, αS was reported to bind strongly to the Cu(II) ions.33-35 
Cu(II) was found highly effective in inducing αS aggregation.36 Circular dichroism analysis of 
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the interaction between Cu(II) and αS suggested an increase in helical content.37 Structural 
studies based on nano-electron-spray ionization mass spectrometry also showed that Cu(II) 
induced the formation of highly compact fibrils of αS at pH 7.4.38 
On the other hand, EGCG, a green tea polyphenol, has been found to possess anti-amyloidogenic 
properties.39-43 It has been shown to inhibit the misfolding of both αS and amyloid-β (Aβ) 
(protein associated with the progression of AD) by directly binding and preventing their 
conversion into toxic aggregates. Instead of β-sheet-rich amyloid fibrils, non-toxic and 
unstructured forms of αS and Aβ were promoted in the presence of EGCG. Mechanistic studies 
revealed that EGCG mediated the amyloid conformational change without their disassembly into 
monomers or small diffusible oligomers.44  
Due to the hypothesis that there may be independent, competing aggregation pathways in 
amyloidogenic proteins that can be specifically targeted with chemical compounds, the effects of 
these small molecules on amyloid aggregation have been of great interest to researchers.45-48 
These anti-amyloidogenic compounds have been extensively studied using fluorescence 
spectroscopy,49 electron microscopy50 or SPR.45 Many of these techniques require labeling and 
expensive instrumentation. Our group has previously reported the label-free detection of 
aggregation in Aβ and αS by monitoring the electrochemical oxidation signal of electro-active 
Tyrosine residues found in these proteins.51-53 An indirect method to monitor the amyloid 
aggregation has also been developed in our laboratory using benzothiazole dyes, which had 
specific affinity to β-sheet structures.54 In this report, a novel approach to the electrochemical 
and LSPR-based detection of αS aggregation is demonstrated using Au-ITO with the well-
described interaction of αS with EGCG and Cu(II) ions. The effects of Cu(II) and EGCG on 
immobilized αS oligomers were detected using the redox probe [Fe(CN)6]3-/4- in connection with 
cyclic voltammetry (CV) and differential pulse voltammetry (DPV).  
Our electrochemical and LSPR measurements were confirmed using conventional Thioflavin-T 
fluorescence, SPR imaging and TEM studies. Electrochemical and LSPR-based analyses of 
proteins on surfaces can be critical techniques to understand and provide insight into the effects 
of metals and small molecules on proteins. The label-free approach, nanofabrication and mass 
production capabilities, together with the quick response time may aid in the high-throughput 
screening of therapeutic candidates for PD. 
 
 MATERIALS AND METHODS 

Chemicals and reagents. Recombinant human -synuclein (αS) was purchased from Anaspec 
Inc. (Fremont, CA). Thioflavin T (ThT, 4-(3,6-dimethyl-1,3-benzothiazol-3-ium-2-yl)-N,N-
dimethylaniline chloride; ~75%), 11-unmercaptodecanol (MU), sodium phosphate monobasic 
(NaH2PO4; 99.0%), sodium phosphate dibasic (Na2HPO4; 99.0%), sodium bicarbonate 
(NaHCO3), copper(II) chloride, 3,3'-dithiobios (sulfosuccinimidil- propionate) (DTSSP), sodium 
dodecyl sulfate (SDS) and  epigallocatechin gallate (EGCG) were purchased from Sigma-
Aldrich (Oakville, ON). Hydrogen peroxide (30% v/v) was obtained from EMD Inc., 
(Mississauga, ON). Polystyrene microspheres (10% w/w, 1.00 μm i.d.) were purchased from 
ThermoScientific Co (Mississauga, ON). All samples were of analytical grade and prepared in 
phosphate buffer saline (50 mM, PBS), with 100 mM NaCl at pH 7.4 using 18.2 MΩ ultra-pure 
water obtained from a Cascada LS water purification system (Pall Co., Mississauga, ON), unless 
stated otherwise. 
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Fabrication of Au-ITO surfaces. Au-ITO surfaces were fabricated following a previously 
described protocol.55-56 Briefly, ITO glass substrates were sonicated in acetone for 5 min 
followed by cleaning with copious water several times. ITO substrates were then sonicated in a 
5:1:1 mixture of ammonium hydroxide/hydrogen peroxide/ultrapure water for 1 h before the 
glass substrates were further sonicated for 15 min in water. Polystyrene beads of 1 µm were 
equilibrated to room temperature before an aliquot (30 µL) was mixed with 100% (v/v) ethanol 
in a 1:1 ratio. An aliquot (20 µL) was then deposited on the dried ITO surface before 
immediately introducing it to the air-water interface of a Petri-dish filled with ultrapure water. 
ITO glass floated on the air-water interface as the solution spread out. After the microsphere 
solution was dispersed, a drop of 2% (w/v) SDS solution in water was added to the substrate to 
promote the formation of an ordered monolayer. ITO substrate was then left to dry. After 
samples were dried, 3 nm of Ti and 30 nm or 400 nm of Au were deposited using an electron 
beam evaporator (Hoser, Ottawa, ON). The beads were then removed by sonicating the samples 
in ethanol for about a minute before drying with nitrogen (Scheme S1). 

 
Electrochemistry. Electrochemical analysis was performed using a PGSTAT302N Metrohm 
Autolab potentiostat (Metrohm, Switzerland) and operated with the General Purpose 
Electrochemistry Software (GPES). Au-ITO surface was activated using 2 mM DTSSP in 100 
mM Na2CO3 (pH 8.5) by leaving it overnight at 4ºC.57 Unbound DTSSP was later removed by 
stringent rinsing with water. After the immobilization of 10 µM αS oligomers in a droplet of 35 
µL overnight, the unreacted DTSSP groups on the surface were blocked by incubating with 100 
mM Tris-HCl (pH 7.5) at room temperature for 1 h. Backfilling of the non-coated Au surfaces 
was achieved by the immobilization of 1 mM MU (in 40% (v/v) ethanol) for 10 min, followed by 
ethanol rinsing (Scheme 1). Aliquots (20 µL) of 50 µM EGCG and Cu(II) were applied at to the 
predetermined spots on the chip surface and allowed to incubate over 48 h, while 
electrochemical measurements were intermittently performed. Control experiments were also 
performed by incubating EGCG and Cu(II) on solely MU-modified surfaces to determine the 
non-specific adsorption of those molecules. 
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Scheme 1. Illustrative representation of αS immobilization onto Au-nanopyramids on ITO 
surfaces. a) DTSSP was immobilized as a linker for the covalent attachment of b) αS. The 
unmodified DTSSP was quenched using c) Tris-HCl and the pinholes on the Au-nanopyramids 
were backfilled using d) MU. Other conditions were as described in the Experimental setion. 

 
  CV and DPV measurements were performed using a three-electrode system that consisted of 
the Au-ITO surfaces as the working electrode, a leak-free miniature Ag/AgCl reference electrode 
(2 mm i.d., eDAQ Inc., Colorado Springs, CO) and a Pt wire as the counter electrode. An aliquot 
(35 µL) of 10 mM [Fe(CN)6]3-/4-  solution was dispensed onto the predetermined spots on the 
surface. CV measurements were taken at various scan rates from -0.25 V to 0.65 V (vs. 
Ag/AgCl). DPV was performed under the step potential of 5 mV with an amplitude 50 mV. The 
nanostructured surfaces were stored in a fridge at 4°C for 14 days, while CV measurements were 
intermittently performed at the various scan rates (10, 25, 50, 100, 250 and 500 mV/s) to monitor 
the changes in the electrochemical characteristics of the surfaces over time. Raw voltammograms 
were treated with Savitzky-Golay smoothing and baseline correction with a moving average peak 
width of 4 mV. All measurements were repeated (n≥3) to ensure statistical relevance. 

Localized Surface Plasmon Resonance (LSPR). The optical system was comprised of a 
spectrophotometer (USB-4000-UV-Vis), a tungsten halogen light source (LS-1-LL, wavelength 
range 200-1100 nm), a microfiber probe bundle (fiber core diameter 400 μm, wavelength range 
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300-1100 nm) and WS-1 diffuse reflectance standard, that were obtained from Ocean Optics. 
(Dunedin, USA) The diffuse reflectance standard was used as a Lambertian reference surface. 
The microfiber probe was placed close to the working electrode surface so that incident light was 
reflected upon hitting the surface and then backed in the detector situated in the light probe. The 
absorbance mode of the Spectra Suite software was used to measure the spectral characteristics 
of the samples using 400 nm Au-pyramids coated ITO surfaces. The intensity and wavelengths 
of spectral peaks were recorded as modifications were made to the surfaces. The probe height 
was held constant (~1 mm above sample surface) throughout study. All experiments were 
performed at room temperature. (23 ± 20C). 
 
ThT fluorescence. The stock solution of 10 mM ThT was prepared in 18.2 MΩ water and 
protected from light. Fluorescence measurements were conducted in 96-well plates (BD 
Biosciences, Mississauga, ON) using a Synergy HT Multimode Microplate reader (BioTek, 
Winooski, VT). Each sample well contained: 50 µM ThT, 10 µM αS in the presence or absence 
of Cu(II) and EGCG (50 μM each). All experimental conditions were repeated in triplicates 
(n=3). Control experiments were also performed for each condition Results were normalized 
with their respective control fluorescence values to prevent any complications from the 
quenching of fluorescence by the small molecules. Spontaneous aggregation of αS samples was 
induced by incubation at 37±1oC with shaking at 300 rpm. Fluorescence (λex 440 nm, λem 485 
nm) was recorded at various time intervals for over ~10 days.  
 
Surface plasmon resonance imaging (SPRi). αS samples were incubated at 370C for 6 days to 
form oligomers (as confirmed by ThT and TEM studies). Au spots of an SPRi array (GWC 
SpotReady-16 chip) were activated using 2 mM DTSSP that was deposited onto Au spots, and 
left overnight at 4C. Non-specifically adsorbed DTSSP was later removed by rinsing with 
water. After the immobilization of 10 µM αS  overnight, the unreacted functional groups were 
blocked using 100 mM Tris-HCl (pH 7.5) incubated at room temperature for 1 h. Additional 
blocking of exposed Au surfaces was achieved by incubating with MU as described for the Au-
ITO surfaces before. Control experiments were performed on five Au spots (processed with all 
previous steps except the protein immobilization). Finally, the SPRi array was mounted in the 
SPR imager-II system (GWC Technologies, Madison, WI). The SPRi-based detection principals 
were described in detail in our previous work.35 In brief, p-polarized light, passing through a 
prism, was used to illuminate the Au surfaces at a fixed incident angle slightly smaller than the 
SPR angle. The reflected light then passed through a narrow band-pass filter centered at 830 nm, 
and was collected using a CCD camera in connection with V++ 4.0 (Digital Optics, NZ). All the 
experiments were measured at 37C. The Au array was located inside the sealed flow cell, 
through which EGCG solution was circulated at varying concentrations at a flow rate of 100 
µL/min. PBS wash was performed after EGCG exposure to remove non-specific binding. The 
increase in pixel intensity was then observed as a difference image. After converting to % 
reflectivity, the signals were plotted on a graph against time. The changes in reflectivity of all 
spots were normalized with the Au control spots on the array to account for the non-specific 
binding events. SPR data was analyzed using the Langmuir model in customized software (GWC 
Technologies, Madison, WI).  
 
Transmission electron microscopy (TEM). An aliquot (6 µL) of 10 µM αS oligomers was spotted 
onto nickel Formvar mesh grids (Electron Microscopy Sciences, Hatfield, PA) for 1 min and 
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blotted dry. TEM grids were subsequently stained using 6 µL of 1% uranyl acetate for 1 min 
followed by blot drying. Samples were imaged using a Hitachi H-7500 TEM, which was 
operated at a range between 2 and 200 kV depending on the magnification required. Similar 
imaging experiments were performed using the αS oligomers that were exposed to 50 µM Cu(II) 
and EGCG after 48 h of incubation. 
 

Scanning Electron Microscopy (SEM). A thin layer of Os was deposited and the samples were 
imaged using an SEM system (LEO Zeiss 1530, Oberkochen, Germany). The electron gun 
voltage was set at 5.0 kV and the software used to view the SEM images was Quartz PCI (Quartz 
Imaging Corp., Vancouver, BC). SEM of microspheres on ITO surfaces was performed using a 
Hitachi S530 scanning electron microscope (Hitachi, Japan). All ITO surfaces were sputtered 
with Au using the SEM coating unit PS3 (Agar Scientific, Essex, UK) at 19 mA plasma current 
for 100 s. The Au-ITO surfaces were then electrically connected to the sample stub by smearing 
silver paste dissolved in acetone from the sample to the metallic stub. The surface was observed 
at an acceleration voltage of 20 kV with a working distance of 5.0 mm.  

RESULTS AND DISCUSSION  

Initially, the interaction of αS oligomers with EGCG and Cu(II) was monitored using 
electrochemistry on Au-ITO surfaces. We hypothesized that the covalent immobilization of αS 
on the Au nanopyramids provided a large surface and flexibility for the dynamic aggregation of 
fibrils, while suppressing the steric hindrance. Using NSL on ITO surfaces, nanostructures 
resembling triangles were fabricated by depositing a 30-nm thick layer of Au (Figure 1A). When 
a 400-nm thick layer of Au was deposited on the surface, due to the large curvature of the 
polystyrene beads (inset of Figure 1B), the resulting shapes of the deposited Au resembled 
pyramid-like nanostructures (Figure 1B). When the Au-nanostructured ITO surfaces were used 
as a working electrode in CV measurements, the anodic and cathodic peaks appeared at 
approximately +0.27 and -0.15 V (vs. Ag/AgCl), respectively. The contribution of Au 
nanostructures to increase the electro-active surface area was studied using CV (Figure 2) and 
DPV (Figure S1). A significant increase in current signal was observed using the Au-
nanopyramid modified ITO electrodes. From the DPV analysis, the relative increase in current 
signal for nanopyramid- and nanotriangle-modified ITO surfaces were determined as 26.6±5.5% 
and 3.9±1.3%, respectively. These results were attributed to the significantly larger electro-active 
surface area available on the nanopyramids as compared to the nanotriangles. Besides providing 
a larger electro-active surface area, the Au-nanopyramid modified ITO (Au-ITO) also allowed 
more space for the immobilization of thiolated molecules. Thus, Au-ITO surfaces were utilized 
for subsequent measurements.  



 

8 
 

 

Figure 1. SEM images of (A) Au-nanotriangles and (B) Au-nanopyramids fabricated using NSL 
at 20,000 X and 30,000 X magnification, respectively. Inset depicts the SEM of nanospheres 
taken at 450 angle before removal by sonication. Other conditions were as described in the 
Experimental section. 
 

 
Figure 2. Cyclic voltammograms of 10 mM [Fe(CN)6]3-/4 at (A) nanotriangle-modified ITO 
(grey line)  and (B) nanopyramid-modified ITO (grey line) electrodes at a scan rate of 50 mV/s. 
Black line displays the CV response recorded for the blank ITO electrodes before Au 
nanostructure modification. Other conditions were as described in the Experimental section. 
 
  Incubation of αS at 370C with shaking for 6 days promoted the formation of oligomeric species 
as described by Danzer et al.26 After activating the Au-ITO surfaces with DTSSP, the oligomers 
were spotted on the chip surface for covalent immobilization, followed by the quenching of the 
remaining functional groups using Tris HCl as described in the Experimental section. Uncoated 
Au surfaces were also blocked by incubating with MU. After these modifications, a 55.8±12.3% 
decrease in current signal was observed (Figure 3A and B). This implied that the protein and 
blocking layer contributed a significant resistance to the diffusion of [Fe(CN)6]3-/4- to the 
electrode surface. CV at varying scan rates were performed as shown in Figure S2. The inset of 
Figure S2 shows the plot of peak current (i) vs. (scan rate)1/2. The linear correlation demonstrated 
the reversible and diffusion-controlled characteristics of the redox processes on Au-ITO surfaces. 
A stability experiment was also performed over 2 weeks to ensure that the current signal did not 
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fluctuate over time. Figure S3 shows that the CV characteristics were similar within ~5% error 
over time.   

Cu(II) and EGCG were also individually incubated with the protein immobilized Au-ITO 
surfaces for 48 h to determine their effects on αS aggregation kinetics. As shown in Fig. 3C, in 
the presence of EGCG, the current signal decreased over time, while in the presence of Cu(II), 
the current signal increased. Control experiments that were performed in the absence of αS, 
displayed negligible current signal changes over time (not shown), indicating that the changes in 
current were not contributed by non-specifically adsorbed Cu(II) or EGCG on surfaces. The 
electrochemical results were in agreement with the TEM images (Figure S4). TEM images were 
taken to observe αS aggregation in 20% (v/v) ethanol (Figure S4A and B). We observed that 
after two days of incubation, short nuclei of about ~50-100 nm were formed, and in 6 days, 
oligomeric forms of αS were formed. The αS oligomers were up to several μm in length, 
collectively forming a mesh-network. Since previous reports indicated that αS aggregation was a 
seed/ nucleation-dependent process,58,59 the strand-like structures might have elongated from the 
ends of the short aggregates (formed in 2 days). After incubating the αS oligomers with Cu(II) 
for 48 h, a more compact network was formed (Figure S4C). On the other hand, when EGCG 
was incubated with αS oligomers for 48 h, we observed the formation of optically dense 
amorphous aggregates (Figure S4D), that were similar to those formed in our previous report 
about amyloid-β peptides.45 Natalello and co-workers38 reported that Cu(II) binding to αS 
induced extensive structural rearrangement of the protein, where αS was found in a highly 
compact state. We hypothesized that the dynamic rearrangement of αS oligomers into compact 
fibrils could have induced an increase in current signal by exposing more electro-active surface 
enabling the diffusion of [Fe(CN)6]3-/4- to the surface. There may also be important effects of 
metal binding on the enhanced electro-activity on Au-ITOs. Since Cu(II) binds tightly to αS, the 
presence of metals embedded in the αS fibrils could have facilitated the charge transport to the 
Au-ITO surface. 
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Figure 3 Representative differential pulse voltammograms of αS-immobilized Au-ITO surfaces, 
displaying the effect of (A) Cu(II) and (B) EGCG incubation on the anodic peak current signals 
at t= 48 h. (C) Electrochemical analysis of EGCG and metal interactions with αS oligomers 
showing time dependence study of DPV anodic peak current of 10 mM [Fe(CN)6]3-/4- after 
incubating 50 µM EGCG (light grey) and Cu(II) (dark grey) on corresponding immobilized αS 
oligomers on Au-ITO surfaces. Other conditions were as described in the experimental section.  
 

The Au nanostructured surface had a uniformly periodic pattern, thus generating an LSPR effect 
upon excitation by light. The surface showed an LSPR absorbance peak at about 606 ± 0.6 nm 
with 0.446 ± 0.008 a.u. in intensity (Figure 4A). Au-ITO surfaces modified with αS, MU and 
EGCG were utilized for LSPR measurements (Figure 4B). The LSPR peak intensities and 
associated λlspr increased with the addition of αS and MU layers. Formation of these layers 
altered the electron density of the Au nanostructures, which then directly affect the surface 
plasmon absorption band and caused a bathochromic shift. Upon the interaction of EGCG with 
αS on the surface, the absorption of the plasmon mode increased and displayed a further 
bathochromic shift of 10-15 nm. This was in agreement with previous LSPR-based studies60-61 
and electrochemical data that supported the potential of using Au-nanopyramid coated ITO 
surfaces for future LSPR applications. The shift in LSPR peak before and after the interaction of 
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EGCG with the immobilized αS corresponds to the different morphological structure of the 
protein as shown in Figure S4B and S4D respectively. This non-destructive and simple 
qualitative LSPR measurement could serve as a quick confirmation for the binding of 
biomolecules to the substrate surface. It would require further NSL optimization in terms of the 
Au-nanopyramid height, size and density to obtain a high FOM for our LSPR sensor. Further 
concentration dependence studies are also required to determine quantitative information on the 
binding biomolecules. 

 
Figure 4. (A) Plot for the variations in LSPR absorption band peak wavelengths and intensities 
(B) LSPR spectra observed on 400 nm pyramid Au-ITO surfaces as different target biomolecules 
interacted with αS. Other conditions were as described in the Experimental section.  
 
  In order to support our electrochemical and LSPR data, the aggregation of αS in the presence of 
Cu(II) and EGCG was analyzed using the well-described ThT fluorescence assay (Figure 5).62 
The several orders of magnitude increase in ThT fluorescence intensity upon fibril-binding 
makes it an especially sensitive indicator to detect the formation of β-sheets.63 Following the 
protocol by Danzer et al.26, the polypeptide was incubated in the presence and absence of 20% 
ethanol with perturbation by shaking at 300 rpm in order to produce αS oligomers. The 
oligomeric forms of αS were used in this report, as they were reported to be the toxic species 
leading to neuronal death.30 It was found that αS, in the presence of ethanol, significantly 
promoted aggregation and increased ThT fluorescence over ~10 days; the signal increase was 
more than 10-fold smaller in the absence of ethanol (Inset of Figure 5). The increase in ThT 
fluorescence induced by the formation of β-sheets reached a plateau in ~7 days, in agreement 
with a previous report.26 Cu(II) and EGCG were also separately incubated with oligomeric αS in 
the presence of ethanol. It was observed that αS incubated in the presence of Cu(II) displayed 
higher ThT fluorescence as compared to the αS alone (Figure 5), indicating that Cu(II) promoted 
the formation of β-sheets. This was consistent with the comparable ThT studies performed in the 
absence of ethanol (Figure S5), as well as, in the previous literature that reported the acceleration 
effect of Cu(II) on αS aggregation.31, 64-66 In the presence of EGCG, the formation of αS fibrils 
were suppressed as observed from negligible ThT fluorescence (under 60 a.u.) recorded in over 
10 days, indicating that the amorphous aggregates observed in TEM did not contain β-sheets. 
The low ThT fluorescence indicated that unstructured aggregates were formed.44, 47 We have also 
shown in our previous report45 that there was negligible influence of EGCG on ThT fluorescence 
in the presence of amyloid-β peptides related to AD. 
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Figure 5. Average relative fluorescence intensity of ThT incubated with 10 µM αS and 20% 
ethanol monitored over 10 days in the presence and absence of 50 µM Cu(II) and EGCG. 
Triplicate measurements were performed for each sample (n=3), and error bars were less than 50 
a.u. (not shown). Other conditions were as described in the experimental section. 

  To verify the formation of αS-EGCG complexes on surfaces, SPRi studies were also performed. 
The binding affinity of EGCG was determined using αS oligomers that were formed in 6 days of 
incubation. αS oligomers were first immobilized on the Au surfaces of the array using the 
DTSSP-based method as described in the Experimental section. EGCG samples at varying 
concentrations were then exposed to the array at a flow rate of 100 µL/min. As the EGCG 
interacted with the immobilized αS, the reflectivity ratio increased as shown in Figure S6). After 
~150 s, PBS buffer was flown across the chip surface to remove non-specifically bound EGCG, 
causing a drop in the reflectivity ratio. Using the Langmuir model to fit the different 
concentration curves (inset of Figure S6), the equilibrium dissociation constant, KD between 
EGCG and αS oligomers was calculated to be 2.71 ± 0.54 µM. A similarly strong affinity 
between EGCG and αS was also observed by Bieschke et al. 44 in their recently published report. 

  CONCLUSIONS 

  We demonstrated the preliminary data from a promising dual detection platform for monitoring 
the morphological changes of αS oligomers upon small molecule interactions using 
electrochemistry and LSPR. The changes in the structure of αS oligomers were manifested as 
fluctuations in DPV peak current and LSPR absorption band signals. To the best of our 
knowledge, this was a novel attempt to monitor structural changes of immobilized αS oligomers 
by following the changes in the well-described electrochemical properties of [Fe(CN)6]3-/4-. Our 
preliminary electrochemical and LSPR results were complemented by established techniques for 
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the detection of protein misfolding. ThT fluorescence and TEM imaging studies suggested that 
dense and unstructured amorphous αS aggregates were induced by EGCG, while β-sheet-rich 
and compact αS mesh-networks were promoted by Cu(II) ions. SPRi studies also confirmed the 
strong binding affinity of EGCG to αS aggregates on Au surfaces. The reported electrochemical 
system is a promising platform for the low-cost and high-throughput screening of small drug 
candidates that target αS, and would accelerate the drug discovery efforts towards the therapy of 
PD.  
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