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Effect of counter ions on the self-assembly of polystyrene-polyphosphonium block 

copolymers 
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University of Western Ontario, 1151 Richmond Street, London, Canada N6A 5B7 
‡ Department of Chemical and Biochemical Engineering, The University of Western Ontario, 
1151 Richmond Street, London, Canada N6A 5B9 
 

Abstract 

 The ability to manipulate block copolymers on the nanoscale has led to many scientific 

and technological advances. These include nano-scale ordered bulk and thin films and also 

solution phase components, these are promising materials for making smaller ordered 

electronics, selective membranes, and also biomedical applications. The ability to manipulate 

block copolymer material architectures on such small scales has risen from thorough 

investigations into the properties that affect the architectures. Polyelectrolytes are an important 

class of polymers that are used to make amphiphilic block copolymers. In this context the 

authors synthesized polystyrene-b-polyphosphonium block copolymers with different anions 

coordinated to the polyphosphonium block in order to study the effect of the anion on the 

aqueous self-assembly of the polymers. The anions play an important role in the solubility of the 

monomeric materials which results in differences in the self-assembly observed through dynamic 

light scattering and transmission electron microscopy. 



Introduction 

 The self-assembly of amphiphilic block copolymers (BCPs) in solution is a phenomenon 

that is poised to address a wide range of important technical challenges such as new methods for 

drug delivery,1–4 detection and imaging of cancer cells,5,6 and compartmentalization of 

reactions.7–9 Groundbreaking discoveries on the factors that influence the solution phase SA 

phenomenon have provided the foundations to impact these diverse and highly technical areas. 

The assembled ordering of amphiphilic BCPs is a balance between the thermodynamic 

interactions between a copolymer and solvent,10 the block components in the copolymer 

(hydrophilic/hydrophobic) and the interactions between individual polymer chains. The 

importance of the relative lengths of the blocks was well demonstrated in the study by Eisenberg 

and coworkers, where it was found that even small changes in the relative volume fractions of 

the blocks of poly(acrylic acid)-b-polystyrene (1; Figure 1) had significant impacts on the 

morphological properties of the self-assembled materials.11 The effects of these interactions have 

also been observed when self-assembled systems underwent changes in equilibrium structures in 

response to stimuli such as temperature, pH or the relative amounts of selective and non-

selective solvents.12 

Polyelectrolytes are polymers that contain repeating units with cation/anion pairs. 

Polyelectrolytes have found a variety of uses as functional components in antimicrobial and 

antibacterial polymers,13,14 self-healing polymers,15 and many other areas.16 Polyelectrolytes 

have been used in amphiphilic BCPs as the solvophilic block, thereby promoting solution phase 

self-assembly. Many groups have studied the self-assembly behavior of amphiphilic 

polyelectrolyte-b-polyneutral copolymers and it has been established that polyelectrolyte blocks 

in the solution phase self-assembly of copolymers are sensitive to the ionic strength of the 



selective solvent because of the imposed solvation states of the corona, as determined by the 

theoretical work of Borisov and Zhulina.17 Work by Solomatin and coworkers showed that the 

stability of nanoparticles formed by complexes of poly(ethylene oxide)-b-poly(sodium 

methacrylate) (2; Figure 1) and hexadecyltrimethylammonium bromide was dependent on the 

identity and concentration of different added salts.18,19 The effect of added salts on the 

morphology of nanoparticles formed from polyelectrolyte BCPs was also studied by Förster and 

coworkers on systems composed of polyethylethylene-b-poly(styrenesulfonic acid) (3; Figure 

1).20 The authors discovered that by increasing the salt concentration the charged micelles could 

be induced to fuse into toroidal networks.  

More recently, poly(1-(4-vinylbenzyl)-3-methyl imidazolium chloride) (4 in Figure 1) 

was subjected to partial ion exchange with hexafluorophosphate to produce a random copolymer 

of the same backbone repeat unit with randomly associated counterions.21 These random 

copolymers then underwent self-assembly due to the differences in the solubilities of the repeat 

units, depending on the identity of the counter anion. The size of the particles was found to 

depend on the ratio of the two anions (Cl- and PF6
-) associated with the polymer chains. 

Vijayakrishna and coworkers synthesized a series of BCPs comprising a methacrylate or 

methacrylamide block and an imidazolium block (5; Figure 1). The hydrophilicity of the 

methacrylate or methacrylamide block could be tuned through the degree of methylation and the 

hydrophobicity of the imidazolium was altered through anion exchange from a bromide 

counterion to a bis(trifluoromethane)sulfonimide anion.22 The in situ exchange of the anion led 

to switching of the location of the block domains in the self-assembled nanostructures as well as 

alterations in morphological properties. 



 

Figure 1. Chemical structures of polyelectrolyte-b-polyneutral copolymers  (1 – 5) that were 
investigated in previous and those of the current work (PS-b-P(PX)). 
 
 Most amphiphilic BCP systems rely on changing the degree of polymerization of the 

polymer blocks to affect the morphology of the nano-assemblies. With a hydrophilic block 

composed of permanently charged phosphonium repeat units, the morphological characteristics 

of the nano-assemblies can be altered through the presence of different anions. The identity of 

the counter ion alters the relative hydrophilic volume fraction through the size of the anion itself, 

as well as the separation of the anion and the cation. Unlike polyneutral solvophilic blocks, in 

polyelectrolytes the interaction between the same blocks becomes energetically unfavorable 

because of coulombic repulsion. The repulsion experienced between coronal chains will depend 

in part on the screening of the coronal charges not only by solvation but by the counter-ions 

present. While the above work with polymers such as 1 - 5 showed that the identity of the added 

salt influenced the morphological properties they were unable to ensure that there was only a 

single counterion present. Furthermore, the addition of salt resulted also in the addition of ions of 

the same charge as the polymer being studied, which may have also influenced the self-

assembled material. 



The effect of varying the anion type on the copolymer itself prior to the self-assembly of 

polyneutral-block-polycation into nano scale materials has not been reported to the best of our 

knowledge. In this context, we have prepared a library of polystyrene-b-polyphosphonium (PS-

b-P(PX), Figure 1) copolymers using reversible addition-fragmentation chain transfer (RAFT) 

polymerization. Each PS-b-P(PX) system had the same degree of polymerization, but a different 

counter anion. The effect of the differing cation-anion pairs on the self-assembly was explored. 

The self-assembly of the polymers was investigated by nano-precipitation of the core forming 

polystyrene block in the presence of increasing water content from a non-selective solvent. 

Several morphological characteristics were examined. It was found that the identity of the 

counter-ion of the PS-b-P(PX) copolymer did influence the morphological properties of the self-

assembled materials. The influence was a result of the differences in anion interaction with the 

phosphonium block, and differences in the solubility.  



Experimental Section 

General materials and procedures 

Solvents were dried using an MBraun Solvent Purification System. Dried acetonitrile was 

collected under vacuum in a flame dried Straus flask and stored over 3 Å molecular sieves. 

Ultrapure water was obtained using a Barnstead EASYPure II ultra pure water system 

(ThermoFisher Scientific). Tributyl-(4-vinylbenzyl)phosphonium chloride was prepared 

according to a literature procedure.23 Nuclear Magnetic Resonance (NMR) spectroscopy was 

conducted on a Varian INOVA 400 MHz spectrometer (1H 400.09 MHz, 31P{1H} 161.82 MHz, 

13C{1H} 100.52 MHz) unless otherwise noted. All 1H NMR spectra were referenced relative to 

SiMe4 (residual solvent in CDCl3; 1H δ = 7.27). The chemical shifts for 31P{1H} NMR 

spectroscopy were referenced using an external standard (85% H3PO4; δP = 0). All 13C{1H} 

NMR spectra were referenced relative to SiMe4 (residual solvent in CDCl3; δC = 77.0). Infrared 

spectra were recorded using a Bruker Tensor 27 spectrometer using attenuated total internal 

reflectance mode (ATR) on a ZnSe crystal. Electrospray Ionisation (ESI) Mass spectrometry was 

obtained on a Finnigan MAT 8400 mass spectrometer using electron impact ionization. Dynamic 

Light Scattering (DLS) and ζ-potential measurements were performed on a Zetasizer Nano ZS 

(Malvern Instruments) using a 633 nm laser. Solutions of approximately 0.1 mg/mL of polymer 

were used in DLS measurements. Ultraviolet-visible (UV-Vis) spectroscopy was performed 

using a Varian Cary 300 Bio UV-Visible spectrophotometer. Size exclusion chromatography 

(SEC) of the MacroRAFT agent was performed on a Viscotek GPC Max VE2001 solvent 

module (Malvern Instruments Ltd., Malvern, U.K.). Samples were analyzed using the Viscotek 

VE3580 RI detector operating at 30 °C. The separation technique employed two Agilent 

Polypore (300 X 7.5 mm) columns connected in series with a Polypore guard column (50 X 7.5 



mm; Agilent Technologies). Samples were dissolved in tetrahydrofuran (glass distilled) at a 

concentration of approximately 5 mg/mL, filtered through 0.22 µm syringe filters, and then 

injected using a 100 µL loop. The THF eluent was filtered and eluted at 1 mL/min for a total of 

30 min. The instrument was calibrated with PS standards. Dispersities (Ð) are listed to two 

decimal places, and the degree of polymerization (DP) for the styrene polymer was determined 

by SEC. The SEC of the BCPs was performed on a Malvern VISCOTEK GPCmax instrument 

equipped with a VISCOTEK VE 3580 RI detector and two Inert series columns (P101609 and 

Q10183) at a constant temperature of 50 °C. The eluent was 0.4 M tetrabutylammonium triflate 

in DMF with a flow rate of 1 mL/min. Calibration was performed using narrow PMMA 

standards. TEM images were obtained using a Philips CM 10 Transmission Electron 

Microscope. Self-assembled samples were loaded onto Formvar coated copper grids by holding 

the grid with self-closing tweezers, placing a 5.0 µL drop of a 0.5 – 1.0 mg/mL solution onto the 

grid, and wicking away the excess after 1 min. Dialysis was performed using Spectra/Por® 6 

pre-wetted dialysis tubing (Spectrum Laboratories Inc.). 

 

Synthesis of 4-vinylbenzyl bromide, 6 

To a stirring suspension of anhydrous lithium bromide (6.00 g, 69.1 mmol) in 15 mL of 

anhydrous THF, 4-vinylbenzyl chloride (6.00 mL, 38.3 mmol) was added in a N2 filled 

glovebox. The suspension was stirred overnight at room temperature. The following day the 

solvent was removed under vacuum and the mixture was suspended in 30 mL dry CH2Cl2 and 

filtered. The filtrate was washed three times with water (20 mL). The organic layer was dried 

with MgSO4 and the volatiles were removed under vacuum to yield a light-yellow oil. The 

product was used without further purification (5.80 g, 78% yield); 1H NMR (400 MHz, CDCl3): 



δ = 7.37 (m, ArH, 4H); 6.70 (dd, 3J(H,H) = 11.2 Hz, 3J(H,H) = 17.6 Hz, =CH, 1H); 5.77 (d, 

3J(H,H) = 17.6 Hz, trans, 1H); 5.28 (d, 3J(H,H) = 11.2 Hz, cis-, 1H); 4.57 (s, CH2 on 4-

vinylbenzyl chloride); 4.48 (s, CH2, 2H). 

 

Synthesis of tributyl-(4-vinylbenzyl)phosphonium bromide, 7-Br 

To a stirring solution of 4-vinylbenzyl bromide (2.00 g, 10.1 mmol) in 10 mL of anhydrous 

CH3CN in a pressure flask in a N2 filled glovebox, tributyl phosphine (1.70 g, 8.4 mmol) was 

added dropwise. The reaction mixture warmed with the addition of the phosphine. The flask was 

capped and stirred at room temperature. After one hour, the 31P-NMR showed the conversion of 

the phosphine to a single product. The volatiles were removed under vacuum. The resulting oil 

was dissolved in minimum CH2Cl2 and the product was precipitated out of solution in excess, 

cold stirring hexanes. The light orange powder was collected by vacuum filtration. (2.83g, 84% 

yield) 1H NMR (400 MHz, CDCl3): δ = 7.39 (s, ArH, 4H); 6.67 (dd, 3J(H,H) = 17.6 Hz, 3J(H,H) 

= 11.2 Hz, CH2=CH, 1H); 5.76 (d, 3J(H,H) = 17.6 Hz, cis- alkene, 1H); 5.29 (d, 3J(H,H) = 10.8 

Hz, trans- alkene, 1H); 4.26 (d, 3J(H,P) = 15.2 Hz, PCH2Cq, 2H); 2.40 (m, PCH2, 6H); 1.47 (m, 

CH2, 12H); 0.92 (t, 3J(H,H) = 6.6 Hz, CH3, 9H). 13C{1H} (100.52 MHz, CDCl3): δ = 137 (s, 3° 

alkene, 1C); 135 (d, 5J(C,P) = 2 Hz, 4° aromatic, 1C); 130 (d, 3J(C,P) = 5 Hz, 3° aromatic, 2C); 

127 (d, 2J(C,P) = 8.8 Hz, 4° aromatic, 1C); 127 (s, 3° aromatic, 2C); 114 (s, H2C=, 1C); 27 (d, 

1J(C,P) = 45 Hz, CH2P, 1C); 24 (d, 1J(C,P) = 15 Hz, CH2P, 3C); 23 (d, 2J(C,P) = 4 Hz, CH2, 3C); 

18 (d, 3J(C,P) = 46 Hz, CH2, 3C); 13 (s, CH3, 3C). 31P{1H} NMR (161.82 MHz, CDCl3): δ = 

31.8. ATR-IR: 1630 cm-1 (w, C=C-H); 2870 cm-1 (s, alkane C-H); 2920 cm-1 (m, aryl C-H); 2960 

cm-1 (s, alkenyl C-H). 

 



Synthesis of tributyl-(4-vinylbenzyl)phosphonium nitrate, 7-NO3 

To a rapidly stirring aqueous solution of tributyl-(4-vinylbenzyl)phosphonium chloride in 4 mL 

of water (2.00 g, 5.6 mmol) an aqueous solution of silver nitrate in 4 mL of water (1.00 g, 5.8 

mmol) was slowly added. A white precipitate formed upon mixing and the solution was stirred 

for 1 hour. The suspension was filtered and a drop of aqueous silver nitrate solution was added. 

If a white precipitate formed, the process was repeated until no further precipitate formed.24 

Upon complete reaction of the chloride monomer, the aqueous phase was extracted ten times 

with 15 mL of CH2Cl2. The organic phases were combined, dried with MgSO4, filtered, and the 

volatiles were removed in vacuo to yield a clear colourless oil which cooled to a waxy solid. 

(1.87 g, 88% yield). 1H NMR (400 MHz, CDCl3): δ = 7.39 (d, 3J(H,H) = 8.0 Hz, 2H); 7.27 (dd, 

3J(H,H) = 8.6 Hz, 4J(H,P) = 3.0 Hz, 2H); 6.68 (dd, 3J(H,H) = 17.6 Hz, 3J(H,H) = 11.2 Hz, 

CH2=CH, 1H); 5.76 (d, 3J(H,H) = 17.6 Hz, cis- alkene, 1H); 5.30 (d, 3J(H,H) = 10.8 Hz, trans- 

alkene, 1H); 3.93 (d, 3J(H,P) = 14.8 Hz, PCH2Cq, 2H); 2.23 (m, PCH2, 6H); 1.45 (m, CH2, 12H); 

0.92 (t, 3J(H,H) = 6.8 Hz, CH3, 9H). 13C{1H} (100.52 MHz, CDCl3): δ = 138 (d, 6J(C,P) = 3.9 

Hz, 2° alkene, 1C); 135 (d, 5J(C,P) = 1.9 Hz, 4° aromatic, 1C); 129 (d, 3J(C,P) = 5.0 Hz, 3° 

aromatic, 2C); 127 (d, 2J(C,P) = 8.8 Hz, 4° aromatic, 1C); 126 (d, 4J(C,P) = 3.3 Hz, 3° aromatic, 

2C); 113 (d, 7J(C,P) = 1.5 Hz, 1° alkene, 1C); 25 (d, 1J(C,P) = 45.1 Hz, PCH2, 1C); 23 (d, 1J(C,P) 

= 15.7 Hz, PCH2, 3C); 22 (d, 2J(C,P) = 4.7 Hz, CH2, 3C); 17 (d, 3J(C,P) = 47.3 Hz, CH2, 3C); 12 

(s, CH3, 3C). 31P{1H} NMR (161.82 MHz, CDCl3): δ = 31.8. ATR-IR: 1330 cm-1 (s, N-O); 1600 

cm-1 (w, C=C-H); 2870 cm-1 (s, alkane C-H); 2935 cm-1 (m, aryl C-H); 2955 cm-1 (s, alkenyl C-

H). 

 

Synthesis of tributyl-(4-vinylbenzyl)phosphonium triflate, 7-OTf 



To a rapidly stirring solution of tributyl-(4-vinylbenzyl)phosphonium chloride (2.50 g, 7.0 

mmol) in CH2Cl2, a solution of lithium triflate in CH2Cl2 (2.18 g, in 5 mL) was added. A white 

precipitate formed upon mixing and the solution was stirred overnight. The suspension was 

filtered and a drop of lithium triflate solution in CH2Cl2 was added. If a white precipitate formed 

the process was repeated until no further precipitate formed. Upon complete reaction of the 

chloride monomer, the organic phase was washed three times with water (20 mL), dried over 

MgSO4, filtered, and the volatiles were removed in vacuo. The product was a white powder. 

(3.03 g, 92% yield). 1H NMR (400 MHz, CDCl3): δ = 7.36 (d, 3J(H,H) = 8.0 Hz, 2H); 7.25 (dd, 

3J(H,H) = 8.2 Hz, 4J(H,P) = 2.2 Hz, 2H); 6.66 (dd, 3J(H,H) = 17.8 Hz, 3J(H,H) = 11.0 Hz, 

CH2=CH, 1H); 5.74 (d, 3J(H,H) = 17.6 Hz, cis- alkene, 1H); 5.29 (d, 3J(H,H) = 11.2 Hz, trans- 

alkene, 1H); 3.78 (d, 3J(H,P) = 15.2 Hz, PCH2Cq, 2H); 2.15 (m, PCH2, 6H); 1.14 (m, CH2, 12H); 

0.90 (m, CH3, 9H). 13C{1H} (100.52 MHz, CDCl3): δ = 137 (d, 6J(C,P) = 4 Hz, 2° alkene, 1C); 

135 (d, 5J(C,P) = 2 Hz, 4° aromatic, 1C); 130 (d, 3J(C,P) = 5 Hz, 3° aromatic, 2C); 127 (d, 

2J(C,P) = 9 Hz, 4° aromatic, 1C); 127 (d, 4J(C,P) = 3 Hz, 3° aromatic, 2C); 120 (q, 1J(C,F) = 320 

Hz, F3CSO3, 1C); 115 (s, H2C=, 1C); 26 (d, 1J(C,P) = 45 Hz, CH2P, 1C); 23 (d, 1J(C,P) = 15 Hz, 

CH2P, 3C); 23 (d, 2J(C,P) = 5 Hz, CH2, 3C); 18 (d, 3J(C,P) = 47 Hz, CH2, 3C); 13 (s, CH3, 3C). 

31P{1H} NMR (161.82 MHz, CDCl3): δ = 32.3. ATR-IR: 635 cm-1 (s, S-O); 1030 cm-1 (s, S-O); 

1160 cm-1 (m, CF3); 1225 cm-1 (m, CF3); 1270 cm-1 (s, SO3); 1625 cm-1 (w, C=C-H); 2875 cm-1 

(s, alkane C-H); 2935 cm-1 (m, aryl C-H); 2955 cm-1 (s, alkenyl C-H). 

 

Synthesis of the polystyrene macro-RAFT agent 

The synthesis of the dodecyl-(4-trifluoromethylbenzyl)trithiocarbonyl RAFT agent followed a 

previously reported procedure with the following differences.23 After quenching the reaction, the 



reaction mixture was poured into rapidly stirring excess methanol and a light-yellow precipitate 

formed. The precipitate was collected as a light yellow powder, but contained large amounts of 

styrene monomer. The polymer was redissolved in CH2Cl2 and precipitated in excess stirring 

methanol. This process was repeated until the complete removal of styrene monomer was 

achieved as determined by the absence of the monomer signals in the 1H-NMR spectrum of the 

macro-RAFT agent. The product was a light yellow powder. (9.4 g, 96% yield). 1H NMR (400 

MHz, CDCl3): δ = 7.09 (m, 3H, para- and meta- aryl); 6.50 (m, 2H, ortho- aryl); 2.30 – 1.30 (m, 

3H, alkyl). DP = 390, Ð = 1.14, Mw = 40,500 g/mol 

 

General synthetic procedure of macro-RAFT polymerization of phosphonium copolymers 

The macro-RAFT agent (1.00 g, 25 µmol) and 7-Cl as an example (110 mg, 308 µmol) were 

dissolved in (10 mL) of degassed THF (3 x freeze-pump-thaw). Sonication was used to ensure 

the macro-RAFT agent and monomer were fully dissolved. AIBN (1.4 mg, 8 µmol) was added to 

the reaction mixture and the solution was purged with N2 at room temperature for five minutes 

with stirring. After purging, the flask was placed in an 80 °C oil bath for 20 hours. The flask was 

removed from the oil bath and placed in liquid nitrogen for one minute. The product was 

obtained by precipitating the copolymer in isopropanol and unreacted monomer was removed by 

washing with isopropanol. The product was an off-white powder. 

PS390-b-P(7-Cl)7 (958 mg, 90.4 % yield). 1H NMR (400 MHz, CDCl3): δ = 7.2 – 7.0 (m, aryl -

ortho- and para- to backbone); 6.9 – 6.3 (m, 794H, aryl meta- to backbone); 2.43 (m, benzylic, α 

to P); 2.21 (m, methylene α to P); 2.18 – 1.30 (m, 1275H, alkyl not otherwise assigned); 0.91 (m, 

61H, CH3). 31P{1H} NMR (161.82 MHz, CDCl3): δ = 31.8. Ð = 1.36, Mn (by SEC) = 31,500 

g/mol, Mn (by 1H-NMR) = 37,060 g/mol  



PS390-b-P(7-Br)7 (968 mg, 91.2 % yield). 1H NMR (400 MHz, CDCl3): δ = 7.1 – 6.9 (m, aryl -

ortho- and para- to backbone); 6.8 – 6.2 (m, 794H, aryl meta- to backbone); 2.44 (m, methylene 

α to P); 2.2 – 1.3 (m, 1275H, alkyl not otherwise assigned); 0.94 (m, 61H, CH3). 31P{1H} NMR 

(161.82 MHz, CDCl3): δ = 31.5. Mn (by 1H-NMR) = 37,700 g/mol 

PS390-b-P(7-NO3)7 (852 mg, 86.7 % yield). 1H NMR (400 MHz, CDCl3): δ = 7.2 – 6.9 (m, aryl -

ortho- and para- to backbone); 6.8 – 6.2 (m, 794H, aryl meta- to backbone); 2.27 (m, methylene 

α to P); 2.2 – 1.3 (m, 1275H, alkyl not otherwise assigned); 0.92 (m, 61H, CH3). 31P{1H} NMR 

(161.82 MHz, CDCl3): δ = 31.9. Ð = 1.4, Mn (by SEC) = 35,300 g/mol, Mn (by 1H-NMR) = 

37,600 g/mol 

 PS390-b-P(7-OTf)7 (862 mg, 88.6 % yield). 1H NMR (400 MHz, CDCl3): δ = 7.1 – 6.9 (m, aryl -

ortho- and para- to backbone); 6.8 – 6.2 (m, 794H, aryl meta- to backbone); 2.15 (m, methylene 

α to P); 2.1 – 1.3 (m, 1275H, alkyl not otherwise assigned); 0.89 (m, 61H, CH3). 31P{1H} NMR 

(161.82 MHz, CDCl3): δ = 31.4. 19F NMR (376.50 MHz, CDCl3): δ = -62.5 (s, 3F, RAFT 

endgroup); -78.4 (s, 21F, triflate). Ð = 1.4, Mn (by SEC) = 36,500 g/mol, Mn (by 1H-NMR) = 

38,200 g/mol 

Kinetically trapped self-assembly of phosphonium BCPs 

PS-b-P(PX) (2.5 mg) was dissolved in 0.5 mg of DMF or THF as non-selective solvents. For the 

organic-into-water addition, the BCP solution was quickly added to rapidly stirring ultra-pure 

water (2.0 mL). For the water-into-organic addition, the ultra-pure water (2.0 mL) was added 

stirred BCP solution slowly over ten minutes. In the case of THF as the non-selective solvent, the 

suspension was placed in a 35°C sand bath overnight to evaporate the THF. In the case of DMF 

as the non-selective solvent, the suspension was transferred to a 10 kg/mol molecular weight cut-

off dialysis membrane (Spectra/Por® 6 Standard RC Pre-wetted dialysis tubing, 28 mm flat 



width) and dialyzed against 100 mL of ultra-pure water with one replacement of the dialysate 

over a 14 hour period. 

 

Solvent annealed self-assembly of phosphonium BCPs 

PS-b-P(PX) (2.5 mg) was dissolved in 0.5 mg of DMF or THF as non-selective solvents. For the 

organic-into-water addition, the BCP solution was quickly added to rapidly stirring ultra-pure 

water (2.0 mL). For the water-into-organic addition, the ultra-pure water (2.0 mL) was added to a 

stirring BCP solution slowly over ten minutes. The resulting suspensions were allowed to anneal 

at room temperature for 96 hours. 100 µL of the annealed suspension was added into 1900 µL of 

ultra-pure water to quench the annealing and give a final concentration of 0.5 mg/mL of BCP 

and a 1% solution of the non-selective solvent.  

 

Determination of critical aggregation concentration 

Note that only the fast water addition to THF systems were used. The assemblies were prepared 

as stated above except approximately 5 mg of copolymer was used. The resulting suspension was 

diluted by two-fold steps, 10 times. The dilutions were added into vials containing nile red dye, 

introduced by the evaporation of 100 µL of a 6.03 µM CH2Cl2 solution. The nile red solution was 

prepared by dissolution of 1.92 mg in 10.0 mL of CH2Cl2. The vials were agitated overnight on a 

wrist action shaker and the following day the fluorescence of the diluted suspensions was 

measured. The fluorescence intensity was plotted against the log of the concentration of the 

samples and the CAC was taken as the concentration at the point of intersection of the two lines 

generated from the two regions of slope on the plot. 

 



 

Determination of Kow 

The partition of the 7-X salts between 1-octanol and ultrapure water was determined 

spectroscopically with 31P NMR and in triplicate. The 1-octanol was washed three times with a 

1M NaOH solution and dried over MgSO4 before use. A 31P NMR standard of Ph3P was made by 

dissolving 179 mg of Ph3P into 5.00 mL of 1-octanol. The 7-Cl and 7-Br salts were dissolved in 

ultra pure water to give a concentration of 10.0 mg/mL. Due to the low water solubility of 7-NO3 

and 7-OTf, they were dissolved in 1-octanol at a concentration of 10.0 mg/mL. In a centrifuge 

tube, 1 mL of the stock 7-X solution was added to 1 mL of the opposing solvent. These were 

gently stirred on a wrist action shaker at room temperature for 16 hours. The samples were then 

centrifuged the following morning and 500 µL of the 1-octanol phase was added to 300 µL of the 

Ph3P standard solution and 200 µL of 1-octanol. The relative integration of the 7-X 31P NMR 

signal to the Ph3P 31P NMR signal was used to determine the concentration of 7-X in the octanol 

phase. The octanol-water partition coefficient (Kow) is determined with the following equation: 

𝐾"# =
[𝑠𝑜𝑙𝑢𝑡𝑒]-./-0
[𝑠𝑜𝑙𝑢𝑡𝑒]01-

 



Results and Discussion 

Synthesis of Phosphonium Monomers 

The morphological properties of the self-assembled materials are dependent on the relative 

degrees of polymerization (DP) of the two blocks. In a study of the effect of anion identity on 

self-assembly, it was clear that there were two approaches to accessing polymers with the same 

DP of the blocks and different anions. The first was to make the polymers with monomers with 

different anions and the other was to make the polymer and to exchange the anion. The second 

method presents a challenge in confirming that complete conversion is achieved from one anion 

to the next, and requires more difficult experimental conditions for achieving the exchange due 

to the amphiphilicity of the BCP. Therefore, in this work the first method was used, as this 

allowed the full characterization of the identity of the anion on the monomer as well as the 

investigation of the anion effect on some of the monomer properties.  

Understanding the effect of solution phase cation-anion interactions on polymer SA 

required some variation in the electronics and lipophilicity of the anionic species, so a series of 

anions was selected.  The halide anions (Cl-, Br-) have spherical charge distributions, the 

difference being that the bromide is much larger, more polarizable, and more lipophilic. 

Therefore 7-Br exhibits a lower aqueous solubility than 7-Cl. While the nitrate salt 7-NO3 Kow 

close to 1.00, the ionic radius is similar to that of bromide.25 The triflate anion was much more 

lipophilic and thus 7-OTf has limited aqueous solubility. Taken together, these anions represent 

different charge densities, sizes and aqueous solubilities, properties that impact the self-assembly 

of the resultant BCPs. 

 The chloride and bromide analogues (7-Cl/Br) were synthesized via quaternization of 

tri(n-butyl)phosphine with  4-vinylbenzyl chloride or its bromide analogue 6, synthesized from 



the former via a Finkelstein reaction (Scheme 1). The reaction proceeded to at least 98% 

conversion in each case, as determined by the relative integrations of the 1H NMR spectra for the 

methylene protons at 4.57 ppm for 4-vinylbenzyl chloride and 4.48 ppm for 4-vinylbenzyl 

bromide (Figure S2). The onwards quaternization reaction was carried out without separation of 

the chloride analogue because of the extremely similar nature of the vinylbenzyl halides.  

Nevertheless, the formation of 7-Br was the preferred product because of the enhanced reactivity 

of 6 (i.e. heavy halide displacement).  

 

Scheme 1. Synthesis of phosphonium monomers 

 Compounds 7-NO3 and 7-OTf were produced through salt metathesis of the chloride 

monomer using AgNO3 and LiOTf, respectively. In those cases, the removal of the chloride 

anion was confirmed through a precipitation test using lithium triflate or silver nitrate 

accordingly, where the absence of precipitate (AgCl or LiCl) was taken as complete Cl- removal. 

The identity of the new salts was confirmed using ESI mass spectrometry in both positive and 

negative ion detection modes. 



 The relative degree of anion-cation interaction for the monomers in CDCl3 was 

determined from the relative chemical shifts of the peaks corresponding to the benzylic 

methylene protons in the 1H NMR spectra. As the extent of cation-anion interaction decreased 

going from the chloride to triflate counterion, the chemical shifts of those peaks decreased 

(Figure 2, Table 1). When salt 7-Cl was exposed to solvents mixtures ranging from a low 

dielectric constant solvent (100% CDCl3) to a higher one (100% CD3OD), the chemical shift of 

the alpha methylene protons decreased with increasing solvent polarity (Figure 3). The decrease 

in chemical shifts may have been due to a greater interaction between the phosphonium and 

solvent dipoles as the anion moved away from the cation. These data show that there was little 

difference in the coordination between the chloride and bromide salts, whereas the nitrate 

association was much weaker than that of the halides and the triflate anion even less so in 

chloroform. While this trend does not follow what one would expect from electronegativity 

arguments, it is possible that the paramagnetic contributions from the phosphorus atom are 

dominant and impose on the chemical shifts observed for the cation-anion pairs. The trend may 

also arise from stronger cation-π interactions26,27 between the phosphonium and the phenyl rings 

in the case of the more weakly coordinating anions. 

 Benzylic Methylene δ Kow 

7-Cl 4.28 0.41 ± 0.02 

7-Br 4.26 0.64 ± 0.04 

7-NO3 3.93 1.34 ± 0.005 

7-OTf 3.78 2.18 ± 0.27 

Table 1. Chemical shift values of the benzylic methylene protons and the octanol-water partition 

coefficients of the monomer salts. 



 

 

Figure 2. 1H NMR spectra (CDCl3, 400 MHz) of the phosphonium monomers indicating the 
change in chemical shift of the benzylic methylene protons with the change of the anion. 
 



 
Figure 3. 1H NMR solvent tritration of 7-Cl in 100% CD3OD to 0% CD3OD (100% CDCl3), 
referenced relative to Me4Si. Branch symbol indicates the benzyl methylene proton signal. 
 
 

Octanol/Water Partition Coefficient 

The solubility behavior of the different 7-X repeat units played a key role in the self-assembly of 

the BCPs by altering the energy of interaction between the hydrophilic phosphonium block and 

the water. We selected the octanol/water partition coefficient (KOW) as an indicator of the 

monomer solubility and thus overall hydrophobicity. The presence of the phosphorus atom in the 

monomers provided a convenient handle for the spectroscopic determination of the amount of 7-

X in solution relative to an internal standard. This allowed the concentration of 7-X to be 

measured in octanol after its partitioning between octanol and water. The Kow values are listed in 



Table 1. When the value Kow is greater than 1, as in the case of 7-OTf or 7-NO3, the compound 

is considered hydrophobic. Higher hydrophobicity should translate into an increased energy of 

interaction between the P(PX) block and water. This increased energy of interaction should lead 

to a smaller corona as the interaction between P(PX) chains should became more favorable than 

their interaction with the solvent. On the other hand, 7-Cl and 7-Br could be considered 

hydrophilic and should have had favorable interactions with water. 

 

Synthesis of a Polystyrene MacroRAFT Agent 

The morphological properties of nano-materials formed by the aqueous self-assembly of 

amphiphilic BCPs are sensitive to the volume fractions of the blocks. The volume fraction of 

each block depends on both the identity of the polymer and its DP. As the goal was to explore 

the effects of the different anions, the differences in the DP of the different PS-b-P(PX) 

polymers needed to be negligible. Self-assembly is also dependent on the Ð of the BCPs so it 

was important to achieve a similar, and ideally low Ð, for each copolymer. This was achieved by 

RAFT polymerization using a previously reported fluorinated RAFT agent (Scheme 2).23 The 

fluorine groups provided a handle to assist in characterization of the block polymers as described 

in the supplementary information. The PS macroRAFT agent was synthesized first, which 

allowed for the absolute determination of Mn and MW using SEC calibrated with polystyrene 

standards. A relatively high DP for the PS was desired, as the smallest monomer, 7-Cl, has a 3.4-

fold greater mass than that of styrene. The resulting polymer had a Mn of 39400 g/mol and a Ð of 

1.17, which demonstrated good control over the polymerization. This corresponds to a DPn of 

390.  
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Scheme 2. Synthesis of polystyrene macro-RAFT agent. 

 

Synthesis and Characterization of PS390-b-P(PX)7 

The Eisenberg group has reported that relatively low volume fractions of the annealed 

polyelectrolyte polyacrylate (PAA) provided interesting and higher ordered morphologies of PS-

b-PAA BCPs.10 For this reason the P(7X) block was targeted at a short length of 7 repeat units. 

A length of 7 repeat units gives a hydrophilic mass fraction of approximately 6 - 9%, greater than 

those reported for the PS-b-PAA copolymers reported by Eisenberg. The PS390-b-P(7-X)7 BCPs 

were prepared from the polystyrene macroRAFT agent, and an excess of the 7-X monomer was 

used to avoid undesirable side reactions typically seen at high monomer conversions (Scheme 

3).28

 

Scheme 3. Synthesis of PS390-b-P(7-X)7 

The ability of the polystyrene macro-RAFT agent to control the polymerization of the 7-

OTf was monitored by 1H NMR spectroscopy using a previously reported procedure.29 Briefly, 

the disappearance of the vinylic protons indicated the consumption of monomer relative to the 

methyl protons on the phosphonium. A linear relationship between the natural logarithm of the 



monomer conversion and time was observed indicating that the RAFT agent provided good 

control over the polymerization (Figure 4). 

  

Figure 4. Pseudo- 1st order kinetics of the polymerization 7-OTf by PS MacroRAFT where ∫t is 

the integration of an alkene signal in the 1H NMR spectrum of an aliquot of the reaction mixture 

and ∫0 is the initial integration of that same peak, relative to the integration of the phosphonium 

methyl groups, the chemical shift of which is unaltered between monomer and polymer. 

Having demonstrated control over the polymerization, chain extension from the PS 

MacroRAFT agent with monomer 7-OTf to afford the desired block copolymer was performed 

first because this monomer has two separate NMR spectroscopic handles available to determine 

the DP of the phosphonium block. The trifluoromethyl group on the RAFT agent combined with 

the trifluoromethyl group on the anion allow for end-group analysis of the PS390-b-P(7-OTf)7 

copolymer by 19F NMR spectroscopy. In addition, the known DP of the PS block can be used to 

determine the DP of the P(7-OTf) block by comparing the relative integrations of the methyl 

protons from the phosphonium block with the total integration of all other alkyl protons (Figure 

S11). Both methods provided consistent DPn values, demonstrating the reliability of the 1H NMR 
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spectroscopic method for the other copolymers, where the 19F method could not be applied. It 

was confirmed that each of the product BCPs had a DPn of 7 for the phosphonium block. The 

SEC traces of the BCPs also confirmed that low Ð values were maintained (Table 2), however 

due to the nature of the standard used for the salt SEC system the Mn reported is from 1H NMR 

spectroscopic data, which was more reliable. Thermal characterization of the polymers showed 

that the presence of the phosphonium generally resulted in an increased decomposition 

temperature, in all cases except for PS390-b-P(7-NO3)7. No Tg for the phosphonium blocks was 

observed in the thermograms (Figures S15-S19) likely due to the relatively low mass fraction of 

the phosphonium blocks in the polymers. 

Polymer Mn (kg/mol) 

Decomposition 

Onset Point (℃) 

Tg 

(°C) 

Ð CAC 

(µg/mL) 

MacroRAFT 39.4a 300 103 1.1 N/A 

PS390-b-P(7-Cl)7 41.9 332 101 1.4 39 

PS390-b-P(7-Br)7 42.2 333 104 N/A 21 

PS390-b-P(7-OTf)7 42.7 338 105 1.4 28 

PS390-b-P(7-NO3)7 42.1 304 98 1.4 24 

Table 2. Polymer characterization. aMn determined by SEC; all others determined by 1H NMR 
spectroscopy. 
 
Preparation and Characterization of Self-Assembled Particles 

Aqueous nanoprecipitation of the BCPs was performed to investigate the effect the anions had on 

the aqueous self-assembly of the BCPs. DMF and THF were used not only for their ability to 

fully dissolve the polymer chains, but they provided differences in polarity while retaining water 

miscibility at any solvent ratio. DMF has a smaller polarity difference with water than THF does, 

and so the PS block was expected to precipitate at lower solvent:water ratios in the DMF:water 



system than in the THF:water systems. Additionally, two different rates of water addition were 

investigated to assess for differences in kinetic and thermodynamic control of assembly 

formation. The rapid switch from organic to aqueous environment involved the addition of 

organic solvent into water, ensuring that there was always an excess of water. That induced the 

BCPs to adopt kinetically trapped morphologies as the polystyrene core forming block remained 

insoluble throughout particle formation. The slow addition system involved slow water addition 

over ten minutes to allow the polymers to adopt a thermodynamically favorable morphology as 

the water content slowly increased and the PS remained solvated by the organic solvent before 

becoming trapped into a final morphology. Further solvent annealing for some samples also 

enabled the glassy PS core to remain partially solvated allowing for thermodynamic equilibrium 

to be reached for the morphologies. The dodecyl chain at the end of the phosphonium block was 

not removed prior to self-assembly as the chain is flexible enough to fold into the hydrophobic 

pocket created by the polyphosphonium backbone. TEM analysis of particles formed from BCP 

with the terminal RAFT group removed did not show a difference in morphological properties 

(see Figure S23). 

The effect of the anion on the aqueous self-assembly was explored by measuring the size 

distributions of the particles that formed during nanoprecipitation. The diameter distributions 

were measured by DLS. Table 3 lists the mean z-average diameters and polydispersity indices 

(PDIs) of the different systems determined by the cumulants analysis of the raw DLS data. The 

nanoprecipitation performed with slow addition of water resulted in the largest particles, as the 

particles had more time to reach thermodynamic equilibrium. As the water content was slowly 

increased, the polymers remained dissolved and the core-forming PS block remained partially 

solvated, allowing the assemblies to grow larger. Comparing the z-average diameters produced 



from the different organic solvents also revealed that the particles produced by the DMF system 

were systematically smaller than the particles produced by the same polymers from the THF 

systems (Table 3). This was likely due to the smaller difference in polarity between water and 

DMF, which induced kinetic trapping to occur earlier in the process. The low variability (the 

highest is PS390-b-P(P-OTf)7 with a standard deviation of 28%) for most of the samples showed 

that the nanoprecipitation method was highly reproducible for the kinetically trapped particles in 

terms of the resulting particle size distributions. The low mean PDI values for the samples also 

indicated that the particles had narrow size distributions, as measured by DLS. 

 
DMF THF 

 
Kinetic Trapping Solvent Annealed Kinetic Trapping Solvent Annealed 

Counter 
anion 

Slow 
H2O 

addition 

Fast 
addition 
to H2O 

Slow 
H2O 

addition 

Fast 
addition 
to H2O 

Slow 
H2O 

addition 

Fast 
addition 
to H2O 

Slow 
H2O 

addition 

Fast 
addition 
to H2O 

Chloride 

 
77 ± 1 
(0.16 ± 
0.01) 

 

58 ± 3 
(0.25 ± 
0.03) 

169 ± 31 
(0.10 ± 
0.04) 

60 ± 1 
(0.18 ± 
0.01) 

176 ± 2 
(0.27 ± 
0.16) 

55 ± 1 
(0.17 ± 
0.02) 

503 ± 74 
(0.23 ± 
0.05) 

56 ± 7 
(0.17 ± 
0.06) 

Bromide 

 
67 ± 2 
(0.19 ± 
0.01) 

 

24 ± 1 * 
(0.13 ± 
0.02) 

177 ± 21 
(0.20 ± 
0.04) 

27 ± 2 
(0.19 ± 
0.01) 

163 ± 8 
(0.06 ± 
0.02) 

39 ± 4 
(0.27 ± 
0.05) 

406 ± 29 
(0.11 ± 
0.03) 

37 ± 1 
(0.25 ± 
0.02) 

Nitrate 

 
78 ± 3 
(0.21 ± 
0.03) 

 

24 ± 1 * 
(0.13 ± 
0.01) 

154 ± 44 
(0.14 ± 
0.02) 

26 ± 1 
(0.18 ± 
0.03) 

217 ± 3 
(0.29 ± 
0.21) 

38 ± 2 
(0.31 ± 
0.02) 

275 ± 32 
(0.11 
0.06) 

33 ± 2 
(0.22 ± 
0.03) 

Triflate 
84 ± 4 
(0.19 ± 
0.02) 

23 ± 1 
(0.35 ± 
0.06) 

184 ± 12 
(0.22 ± 
0.08) 

42 ± 1 
(0.16 ± 
0.02) 

137 ± 2 
(0.13 ± 
0.03) 

49 ± 5 
(0.28 ± 
0.04) 

225 ± 3 
(0.06 ± 
0.02) 

30 ± 1 
(0.26 ± 
0.03) 

Table 3. Mean z-average values and PDI values (indicated in brackets) measured by DLS for the 
different solvent systems and addition rates. *Samples filtered through 0.22 µm filters. 
 



 

The method of assembly influenced the size distributions of the particles formed (Table 

3). In all different methods of assembly with the exception of the solvent annealed particles 

prepared by slow addition of water into the DMF BCP solution, the particle sizes obtained with 

the different anions were statistically different from one another (Table S1). Particles formed 

from PS390-b-P(7-Cl)7 were consistently larger than those formed from PS390-b-P(7-Br)7 (p < 

0.05, Table S2). Given the relatively similar Kow of the chloride and bromide monomers (Kow,[7]Cl 

= 0.41, Kow, [7]Br = 0.64) and the relatively similar anion-cation interaction evidenced by the 

similar chemical shifts (Figure 2), the most relevant difference between the systems was the size 

of the anion. As Br- is larger than Cl-, the relative hydrophilic volume was expected to increase, 

requiring a greater curvature to pack into the self-assembled particles, thereby favoring smaller 

particle diameters. The same trend was also observed between PS390-b-P(7-Cl)7 and the 

remaining BCPs except for the kinetically trapped particles formed by the fast addition water 

into a THF solution of the BCPs where the particles formed by PS390-b-P(7-NO3)7 were larger 

than those formed by PS390-b-P(7-Cl)7. This result suggests that overall the size of the anion 

played an important role in the formation of the particles. 

Comparing the particle diameters of PS390-b-P(7-Br)7 assemblies with those formed by 

PS390-b-P(7-NO3)7, the only instances when the distributions were statistically different were 

when the particles were formed by slow addition of water into the BCP solution (Table S2). 

Given the similar sizes of these two anions25 the difference in particle size likely arose from their 

different Kow values. In the particles formed by kinetic trapping, those formed by the PS390-b-

P(7-Br)7 BCP were smaller than those formed by PS390-b-P(7-NO3)7. This can be explained by 



the higher hydrophilicity of the Br- anion, which would increase the relative hydrophilic volume 

fraction of the BCP and result in a higher curvature to favour smaller particles.  

In the case of particles formed from DMF BCP solutions, PS390-b-P(7-Br)7 formed 

significantly smaller particles than PS390-b-P(7-OTf)7 (Table S2). The opposite was true for the 

THF systems of these block copolymers, except for the kinetically trapped particles formed by 

fast addition of water. The lack of consistent trends may result from differences in both the sizes 

and the hydrophilicities of these two anions. The data do not lend themselves to readily 

discernable patterns. 

Particles formed from PS390-b-P(7-NO3)7 were significantly smaller than those formed 

from PS390-b-P(7-OTf)7 when they were prepared kinetically. This is consistent with the higher 

hydrophilicity of NO3
-, which would increase the relative hydrophilic block fraction for PS390-b-

P(7-NO3)7 relative to PS390-b-P(7-OTf)7, leading to higher curvature and consequently smaller 

assemblies. On the other hand, NO3
- is smaller than TfO-, which would be expected to result in 

larger assemblies due to a decrease in hydrophilic volume fraction, and this was indeed observed 

when the assemblies were prepared by kinetic trapping following slow addition of water into a 

THF solution of the BCPs.  	

Particles formed by the fast addition of both THF and DMF BCP solutions into H2O, 

followed by kinetic trapping, had very similar diameters for PS390-b-P(7-Br)7, PS390-b-P(7-

NO3)7 and PS390-b-P(7-OTf)7. The fast addition of organic solvent to water with kinetic trapping 

was expected to result in the most rapid formation of the particles from the fully dissolved 

polymer chains, as at all points in the mixing of the solvent there was a large excess of water in 

the system. This shows that the effect of the anion was less important when the particles were 

formed by kinetic trapping. However, the solvent annealed particles had greater variabilities in 



diameter. This is likely due to the greater role the anion played when the particles were allowed 

to reach a more thermodynamically stable state.   

The particle sizes and morphologies were also investigated in the dried state using TEM 

imaging. Previous work on the self-assembly of low polycation content BCPs revealed the 

formation of higher-order morphologies such as vesicles or lamellae.12  However, the present 

work shows that despite a very low hydrophilic content, the dominant morphologies are micelles 

and larger solid nanoparticles (NP) (Table 4), Figure 5). Micellar morphologies as seen in Figure 

5b, were present in most of the self-assembled suspensions (Table 4). When particles were 

allowed more time to reach equilibrium during formation, the presence of larger solid 

nanoparticles developed (Figure 5c-e). In some cases, very large particles were present, such as 

for the slow addition of water into a THF solution of PS390-b-P(7-NO3)7 as shown in Figure 5C. 

In those cases there was a clear distinction between the outer region and the inner region of the 

particles based on their differences in electron density. These particles have been assigned as 

solid nanoparticles, since they are too large to be true micelles. Interestingly they exhibit a 

distinct difference in electron density between the inner and outer regions of the particles. 

Attempts to determine the composition of the outer region of the particles were unsuccessful. 



 
Figure 5. TEM images of A) PS390-b-P(7-Cl)7 particles formed by slow addition of water into 
DMF; B) PS390-b-P(7-Br)7 particles formed by fast addition of water into DMF; C) PS390-b-P(7-
NO3)7 particles formed by slow addition of water into THF; D) PS390-b-P(7-OTf)7 particles 
formed by fast addition of water into THF E) Zoom of 5A to show contrast difference on 
particles along with expanded view of one of the particle. Scale bars are 100 nm. 

 
DMF THF 

 
Kinetic Trapping Solvent Annealed Kinetic Trapping Solvent Annealed 

Counter 
anion 

Slow 
H2O 

addition 

Fast 
addition 
to H2O 

Slow 
H2O 

addition 

Fast 
addition 
to H2O 

Slow 
H2O 

addition 

Fast 
addition 
to H2O 

Slow 
H2O 

addition 

Fast 
addition 
to H2O 

Chloride M M M, NP M M, NP M, NP M, NP M 

Bromide M M M, NP M M, NP M M, NP M 

Triflate M M M, NP M M, NP M, NP M, NP M 

Nitrate M, NP M M, NP M M, NP M M, NP M 

Table 4. Morphology of particles formed by nanoprecipiation as determined by TEM; M = 
micelles, NP = solid nanoparticles. 
 



 
 The TEM image analysis showed that the diameter distribution of the particles for the fast 

addition of non-selective solvent into the water agreed best with those determined from DLS 

(Figure S24). In general, the diameters measured by TEM were smaller than those measured by 

DLS. This may arise from two key factors: (i) In the solution phase the hydrophilic blocks were 

hydrated and in extended conformations, whereas in the dry state they collapsed; (ii) in DLS 

measurements the larger particles scatter light more effectively (scattered light intensity µ r6), 

which tends to emphasize a small population of larger particles, thereby increasing the z-average 

diameter. On the other hand, analysis of TEM images provides a number-based distribution. This 

is illustrated well in Figure 5C where there are two distinct distributions of particles from the 

slow addition of water into a THF solution of PS390-b-P(7-NO3)7. As such, the diameters 

obtained from the TEM image analyses are smaller than those obtained from DLS, and in some 

cases the relative orders of mean sizes are also different for the different systems. Most 

importantly however is that there was no apparent effect of the anion identity on the morphology 

of the particles. As stated earlier, the expectation was that by varying the anion identity, the 

changes in hydrophilicity and anion size would result in changes in the particle morphology This 

was not observed (Table 4). Instead, changes in particle size rather than morphology was the 

dominant effect.  

 

Summary and Conclusions 

This study explored the physical properties of several phosphonium monomers and their 

relationship to the morphological properties of nano-materials assembled from their copolymers. 

The monomer salts displayed an interesting relationship in that the degree of interaction between 

the charges in lipophilic solution provided a good prediction of the Kow values for the salts. The 



ability to make low Ð BCPs from the phosphonium monomer salts and their aqueous self-

assembly from dilute solutions in THF and DMF was explored and their self-assembly led to 

nanoparticles with diameters ranging from 30 nm to > 200 nm, based on DLS and TEM analysis. 

The anions had reproducible effects on the sizes but not the morphologies of the nanoparticles. 

The differences between the particle diameters of the PS390-b-P(7-Cl)7 and the other anion 

systems showed that anions of small size resulted in larger particles. In contrast, the relationships 

between the diameters of assemblies formed from PS390-b-P(7-Br)7, PS390-b-P(7-NO3)7, and 

PS390-b-P(7-OTf)7 were more complex, arising from different and sometimes competing effects 

of anion size and hydrophilicity. This work is important in providing new insights into the effects 

of counterions on self-assembly of polyelectrolytes. Future work exploring the relationship may 

consider varying only the anion-cation interaction, or the hydrophilicity of similar sized anions in 

order to obtain a clearer picture of the relationship between anion identity and assembly size and 

morphology. 

 

Associated Content 

Multinuclear NMR, ATR-IR spectra, TEM images, DSC and TGA plots and GPC data as well as 

a guide to interpretation of box and whisker plots are provided in the supporting information 

section available free of charge on the ACS Publications website at DOI: 
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