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Abstract 

By surrounding small droplets with a coating, one can obtain micrometer-size capsules 

(microcapsules), and combine multiple properties into a single system. This technology has 

allowed the design of advanced and functional materials. Amino resins are composed principally 

of urea and/or melamine and formaldehyde, and exhibit advantages as wall-forming materials, 

such as high mechanical strength and chemical resistance. In this review, a general description of 

the encapsulation process by in situ polymerization of amino resins is given. Characterization 

methods, and the influence of the physical and design parameters are discussed. A mechanistic 

description, and some of the promising avenues of research are also presented. 
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1.Introduction 

The surrounding of a core* component by a wallf material offers the possibility to combine 

the properties of multiple constituents into a single system. At the microscale level, the spherical 

construction thus formed is known as a microcapsule (MC). The process of encapsulation has been 

extensively employed in nature in numerous forms (e.g., cells, seeds, eggs), but 

microencapsulation came to prominence for material scientists after the seminal work by Green in 

the mid-1950s.1–3 The encapsulation process has since been described in the patent literature, in 

reviews,4–17 and in books.18–21 This versatile technology enables the segregation of a core material 

from its environment for preservation, safety, controlled release, or the enhanced processing, 

mixing and handling of a material.21  This process has been exploited in a variety of industries 

ranging from pharmaceuticals, cosmetics, food additives, pesticides, to industrial chemicals and 

adhesives.14 In recent years, microencapsulation has gained new interest thanks in part to the 

numerous applications that can be envisioned. For instance, the controlled release of a core 

material enables the formulation of versatile adhesives or drugs with enhanced or even unique 

properties. Currently, the design of smart or multi-functional materials from MCs represents a 

promising field for both academic research and industries.5  

Since the first application of microencapsulation technology to the production of 

carbonless copy paper,1 many synthetic protocols (well over 20022,23) and applications have been 

reported. A broad range of core materials has been encapsulated using various wall materials such 

as organic polymers, fats, waxes,22,24 and more recently inorganic compounds.25 

MCs composed of urea and/or melamine and formaldehyde (Figure 1) as wall-forming 

materials, often termed amino resins or aminoplasts, are of particular interest due to their excellent 

properties including high mechanical strength,26 high loading, good thermal stability,27 water28 and 

chemical resistance,29,30 long term storage stability,30 low toxicity of the cured resin,31 low 
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permeability,32 low cost, and the propensity for industrial scale-up.31 However, a precise control 

over the microencapsulation process is critical to the rational design and performance of MCs in 

targeted applications. Although many reports exist for the encapsulation of various core materials, 

few recent articles have reviewed the preparation and application of amino resins.23,33–35 The 

complexities of the process render material design challenging, and it has often remained an 

empirical endeavor. However, renewed interest in the field has shed light on some of the 

mechanistic details of microencapsulation by in situ polymerization. 

After introducing the major types of encapsulation processes (coacervation, interfacial 

polymerization, and in situ polymerization), the chemistry of amino resins is described. The 

utilization of amino resin as wall-forming materials for microencapsulation is then covered in 

detail. Particular attention is placed on the influence of the processing parameters. A more general 

mechanistic description of the encapsulation technology then follows, before concluding the 

review with a discussion of some of the promising opportunities for research. 

 

1.1 Microencapsulation techniques 

 Synthetic strategies for microencapsulation can be broadly divided among two categories, 

namely chemical (or type A) and physical/mechanical (or type B) methodsj (Table 1).10,12,36 

Processes in the first category rely solely on wet chemistry protocols for capsule formation, and 

proceed from the reaction of monomers, oligomers, or preformed polymeric species as starting 

materials. As illustrated in Figure 2, chemical microencapsulation methods generally involve the 

initial dispersion or emulsion of the core material, followed by capsule-wall deposition, and 

ultimately recovery of the MCs.37 Among such methods, important processes include complex 

coacervation, interfacial polymerization, and in situ polymerization. Physical/mechanical 
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processes on the other hand typically involve a gas phase medium during deposition or spraying 

of a coating material.12 The latter techniques, including spray-drying,38,39 have been historically 

important in foraying current microencapsulation technology and have been presented in detail 

elsewhere.36 

 

1.2 Chemical processes 

1.2.1 Complex coacervation 

Chemical processes have proven to be versatile methods in the design of multi-functional 

materials, and in the study of the mechanism of encapsulation.10  In the process of coacervation 

(from the Latin acervus, heap), partial desolvation of a polymer solution yields two liquid phases, 

one rich and one poor in polymer (Figure 3a).40 Desolvation can be induced by addition of a salt,3 

precipitant, non-solvent, or polymer, as well as by a change in pH3 or temperature.9 Alternatively, 

coacervation can occur by precipitation of oppositely charged polymers in a process known as 

complex coacervation.3 In the presence of a water-insoluble core material, the coacervate phase 

deposits as a thin film around the dispersed phase, and capsule formation occurs upon hardening 

of the polymeric film.41 Coacervation processes have been widely applied to the formation of MCs; 

however, they exhibit some limitations. The process is dependent on the concentrations of the 

polymer and the electrolyte. The pH must be carefully adjusted during complex coacervation, 

particularly when employing polymers with isoelectric points.42 Natural products are often 

employed for the capsule formation, but wall permeability, degradation and relatively high costs 

can mare the process.43 
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1.2.2 Interfacial polymerization 

 Interfacial polymerization is another well-studied encapsulation technique. In this process, 

reactive monomers or prepolymers are dissolved in two immiscible phases (Figure 3b). Upon 

droplet formation by dispersion, polymerization takes place at/on the interface and results in MC 

formation.44 This technique has been used to obtain relatively small capsules (3-6 µm), and has 

been employed in a variety of applications (energy storage, pharmaceutics, cosmetics, agriculture, 

etc.). One disadvantage of the technique is that the formation of a thin interfacial polymeric layer 

between the reagents can hinder further reaction. Capsules with low mechanical integrity may then 

be produced.43 The presence of a reactive monomer in the core phase can also be detrimental to 

the encapsulated species.41 Additionally, diffusion of monomers into the core phase can promote 

the formation of solid microspheres rather than MCs.6  

 

1.2.3 In situ polymerization 

 Several encapsulation processes rely on the in situ polymerization technique, and have been 

discussed briefly in several reviews.6,11,23,33–35,41,45 In such processes, a solution of the monomeric 

or oligomeric wall material is added to the core phase, the latter being dispersed to the desired size 

(Figure 3c). Controlled deposition and precipitation of the polymer takes place at the interface by 

using precipitants, or a change in pH, temperature, or solvent quality. 

Arshady and George distinguished three cases of in situ polymerization based on the 

solubility of the monomer and the polymer.6 Suspension polymerization takes place when the 

monomer is insoluble in the dispersion medium and forms suspended monomer droplets that 

polymerize in solution to yield polymer microparticles. The polymerization reactor and stirring 

rate are thus important parameters in maintaining a uniform size distribution. In another case, 
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precipitation polycondensation takes place when the monomer but not the polymer is soluble in 

the dispersion medium. As the reaction proceeds, flocculation and aggregation of a (low molar 

mass) polymer yield particles with a characteristically broad size distribution and irregular shape. 

Lastly, dispersion polycondensation takes place when the dispersion medium is a good solvent for 

the monomer, but a poor solvent for the polymer. Under such conditions, swelling of the polymer 

rather takes place and microcapsule growth occurs by the sustained addition of monomer and 

oligomer to the particle. Microparticles with a narrow size distribution are formed under these 

conditions. 

 

1.3 Amino resin microcapsules 

 The use of amino resins prepared from urea and/or melamine and formaldehyde constitutes 

the majority of the applications regarded as in situ polymerization. An early patent by Veatch and 

Burhans, in 1957, demonstrated the utilization of resins of phenol, formaldehyde, and urea or 

melamine for the preparation of hollow MCs using a spray-drying technique.46 Subsequent patents 

by Macaulay39 and Soloway47 described a solution-based approach for encapsulating carbon black 

and natural liquid products, respectively, using urea-formaldehyde (UF) resins and surfactants. 

Impregnated particulates with biologically active compounds were also encapsulated with amino 

resins by Geary.48  

The first commercially important procedure was patented by Matson for 3M Corporation. 

The inventor disclosed the large-scale preparation of UF MCs with superior properties, such as 

toughness and impermeability.49 The procedure involved the formation of a precondensate (or 

prepolymer) composed of UF oligomers without the need for surfactants.  The encapsulation of a 

variety of core materials was reported, including solids (sulfur), gases (air, vaporized organic 
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solvents), and liquids. In the latter category in particular, a wide variety of suitable oily liquid cores 

was presented including fatty acids, solvents, dyes, polyacids, polysulfides, perfumes, agricultural 

chemicals, biological products, pharmaceuticals, adhesives, light-sensitive materials, photographic 

materials, cleaners, monomers and polymerization initiators. Interestingly, the properties of the 

polymeric wall could be modified by including co-reactants (modifiers) to the prepolymer solution 

such as guanidine hydrochloride, thiourea, phenol, hydrazine, and melamine. The capsule 

toughness and permeability were also controlled by adding a salt or by adjusting the pH during the 

synthesis. The formulation of the capsules onto sheets for cleaning, copying, printing or paper 

coating was proposed.50 For instance, electrically rupturable capsules were obtained by deposition 

of a conductive layer onto the MCs, and used in copy and light sensitive sheets or to trigger the 

release and reaction of various chemicals.51 

  Since the reports by Matson et al., amino resin MCs have attracted great commercial 

interest, particularly for the design of pressure-sensitive recording and adhesive materials,52 

agrochemicals, perfumes, and vegetables oils. Dietrich et al. tabulated at least 205 patents filed 

among 20 companies by 1989.35  More recently, as compiled by Duan, applications of interest 

include consumer products, flame retardants, phase change materials, electronic inks, thermal-

sensitive paper, self-healing agents,53 drag-reducing agents, smart coatings,54 and polymer 

additives.33 The renewed academic and industrial interest in recent years can be illustrated by the 

growing number of publications and patents in the area of amino resin microencapsulation, as 

shown in Figure 4. 

Figure 5 illustrates the general process used for the preparation of MCs by in situ 

polymerization, and is based on the encapsulation of epoxy resins as a representative example.30,55–

58 Typically, the process starts from an aqueous precondensate (prepolymer) solution of urea and 
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formaldehyde, with triethanolamine used to adjust the pH to 8-9. Modifiers are also added. For 

instance, ammonium chloride is used as a hardener, and resorcinol promotes branching formation 

and increases water resistance.58 The pH is then adjusted prior to the addition of the core material 

(e.g., epoxy resin, fragrance, pharmaceutical). Emulsification of the oil and water phases is 

achieved using mechanical stirring. It should be noted that the encapsulation process can also start 

from the dissolution of the amine monomer alone (e.g., urea), formaldehyde being added only after 

the emulsification stage.58–60 In situ polymerization is initiated by increasing the temperature, 

and/or adjusting the pH of the solution. At the end of the reaction, the solution is then neutralized. 

Scavengers can also be added to remove the unreacted formaldehyde. Recovery of the capsules is 

easily achieved by filtration, followed by several washes, and drying of the MCs. 

 

2 Amino resins 

2.1 Polycondensation reactions 

Amino resin-based MCs have been predominantly prepared from the reaction of urea 

and/or melamine with formaldehyde.23,35 As described above, the capsule synthesis is often a two-

step process that first proceeds by the preparation of an amino prepolymer solution. Further 

condensation of the amino resin leads to the formation of a polymeric network that forms at the 

surface of the dispersed phase. The polycondensation reactions taking place are complex, owing 

to the multi-functionality of the reactants. Even though numerous reports have investigated the 

synthesis and properties of amino resins,61–86 a complete understanding of the molecular 

mechanisms involved remains elusive.87  
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2.2 Formaldehyde solution 

In aqueous solution, formaldehyde is readily hydrated to methylene glycol, and only a trace 

amount of non-hydrated formaldehyde is present (typically less than 0.1 mol %). From 

measurements of the absorption rate of formaldehyde in water, Winkelman et al. determined the 

chemical equilibrium constant of hydration to be in the form Kh = e3769/T-5.494, where T is the 

temperature in Kelvin (Scheme 1).88 Further reaction of methylene glycol in water yields 

poly(methylene glycol)s. Commercial solutions frequently contain 30-55 mass percent (wt %) 

formaldehyde in water (formalin), and are acidic with a pH ranging from 2.5 to 4.5.89,90 A 

progressive increase in the acidity occurs via formation of traces amount of formic acid according 

to the Cannizarro reaction (2 CH2O + H2O ⇄ HCOOH + CH3OH),91,92 and/or the presence of 

methyl formate.93  

The addition of an alcohol, such as methanol, inhibits the polymerization of formaldehyde 

by shifting the equilibrium towards monomeric or low-molar-mass oligomeric species, and 

promotes the formation of alkoxylated compounds, primarily hemiacetals (Scheme 1 and 2).90 In 

fact, methanol is typically added as a stabilizer to formaldehyde solutions to prevent the formation 

of polymeric species whose solubility decreases when the degree of polymerization becomes 

greater than three.89 In a detailed study of the equilibrium speciation by nuclear magnetic 

resonance (NMR) spectroscopy in aqueous methanol-formaldehyde solutions, Gaca et al. 

formulated a quantitative equilibrium model for the formation of methylene glycol dimers and 

trimers and the corresponding methoxylated products (Scheme 2).90 They confirmed the shift of 

the equilibrium upon dilution towards the formation of monomeric species, and the non-

dependence of the equilibrium of formation of di(methylene glycol) on the temperature. Ott et al. 

calculated the rate constants of degradation of poly(methylene glycol)s in water or methanol and 
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revealed a correlation between dilution, higher temperatures and acidic or basic conditions and the 

formation of methylene glycol.94 

 

2.3 Reaction of urea and formaldehyde 

In the preparation of a polymeric network from formaldehyde and urea/melamine, four 

stages have been identified (Scheme 3).62,87 In the first stage, condensation reactions between 

formaldehyde and the amino-containing compound yield hydroxymethylated products 

(methylolation). The multi-functionality of urea allows for the substitution reactions to take place 

at up to three of the amide protons (complete methylolation having not been reported). The reaction 

follows a general acid-base catalysis scheme, and is typically performed at a pH ranging from 7 to 

9.62,95,96 In a second stage, further reaction between the methylol ureas and methylene 

glycol/formaldehyde form oligomeric hemiformals. This reaction is analogous to the formation of 

poly(methylene glycol) in aqueous formaldehyde solution, and is similarly hindered by the 

presence of alcohols. In the third stage, lowering of the pH promotes condensation reactions 

between the intermediate species and yields methylene-bridged and ether-bridged compounds. 

(One can note that UF resins are frequently synthesized under acidic conditions, while melamine 

containing resins are rather prepared under a mildly alkaline pH.97) Given the multi-functionality 

of the oligomers present, a thermoset network is then assembled in the last stage of the process. 

  The rates of the reactions taking place depend on the concentration of acid or base, and one 

can control the advancement of each stage by adjusting the pH during the process. The addition 

reaction of urea with formaldehyde is catalyzed both by acids and bases, while the condensation 

of methylol ureas with urea is predominantly acid-catalyzed (Figure 6).  
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While many studies have investigated the species formed during the reaction of urea and 

formaldehyde, few have studied the mechanism of formation of the polymeric network. Glutz and 

Zollinger demonstrated that the kinetics of the reaction between urea and formaldehyde follows 

an acid/base catalyzed mechanism.98 The rate constants were found to exhibit minima at pH values 

ranging from 5 to 8. Participation of the dehydrated form of formaldehyde rather than methylene 

glycol was proposed,68 while the formation of an intermediate carbonium ion during the reaction 

was suggested by several authors.65,69,74,96 

From computational studies, Li et al. investigated the mechanism of the acid-catalyzed 

reaction of urea and formaldehyde.99 The overall reaction pathway is shown in Scheme 4. The 

authors accounted for the slow reaction between formaldehyde and urea under neutral conditions, 

and argued that a strong p-π conjugation between the amino and the carbonyl groups in urea 

reduced the nucleophilic character of the molecule. Under acidic conditions, however, protonation 

of formaldehyde or methylene glycol catalyzed the reaction with urea according to an SN2 

mechanism and resulted in the formation of N-protonated methylol urea. Proton transfer to the 

oxygen then proceeded via an intramolecular or a water-catalyzed mechanism. Dehydration of the 

protonated compound occurred at a relatively low energy cost (particularly via an intramolecular 

proton-transfer pathway) and yielded a stable methylol carbonium. This compound readily reacted 

with urea and formed a methylene-bridged diurea cation. Similarly, the reaction of O-protonated 

methyl urea with urea was determined to be exothermic and yielded diurea species. The eventual 

deprotonation of the methylene-bridge diurea cation in water occurred via a barrierless process 

when more than three water molecules were included in the calculation. Reaction of the O-

protonated methyl urea or methylol carbonium with methylol urea rather formed ether-bridged 

diurea species. These compounds were found to be less stable under acidic conditions however. It 
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is noteworthy that in the acid-catalyzed reaction of urea and formaldehyde, protonated urea was 

deemed non-reactive towards formaldehyde, and thought rather to hinder the reaction.  

The effect of the pH on the reaction rate was confirmed experimentally by Nair and Francis 

who reported the predominant formation of methylene-bridged compounds under acidic 

conditions, while methylol ureas formed at a neutral or high pH.96 A similar observation was made 

on insoluble resins using solid state NMR spectroscopy.100 The addition of formaldehyde to urea 

was found to be increasingly difficult as the degree of substitution of the latter increased. The rate 

of methylolation was lowered by about a factor of three after each substitution reaction.65,73 

Similarly, further condensation reactions between urea and methylol ureas took place at a slower 

rate when the degree of methylolation increased.96 The electron-withdrawing property of the 

methylol groups was suggested to be detrimental to substitutions, and to result in mutual 

deactivation in dimethylol urea. The growth of the polymeric chains continued predominantly by 

further addition of urea and formaldehyde molecules rather than condensation between oligomeric 

chains, which was attributed to the low reactivity of amide nitrogens.96 Lastly, one should note 

that all the reactions are reversible, so that dissociation to urea and formaldehyde can potentially 

take place. 

 

2.4 Colloidal properties 

As described above, the complex series of reactions taking place during the preparation of 

amino resins yields a mixture of products with evolving properties. The formation of UF, 

melamine-formaldehyde (MF), and melamine-urea-formaldehyde (MUF) resins proceeds from 

soluble reagents that organize into an intermediate colloidal sol prior to gelation and precipitation 

(Figure 7a).101,102 In the first stage of the polymerization reaction between urea and formaldehyde, 
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a reduction in the number of hydrogen-bonding units on the oligomeric chains may induce 

aggregate formation.103 From size exclusion chromatography analysis, the solubility limit for the 

linear oligomers occurred when urea-terminated species with 4-8 urea units were formed.104 

Interestingly, the molecular aggregation appears to be driven mainly by changes in terms of 

chemical composition (–OH group content), rather than molecular size.101 The heterogeneous 

solution, therefore, contains a mixture of soluble oligomers and reagents, and swollen molecular 

aggregates. Imaging by electron microscopy indicated that the shape of sub-micron aggregates is 

dependent on the resin composition.102 Lamellar morphologies were observed with UF resins. 

Indeed, in analogy to polypeptides, the formation of helical (π-helix) and planar (α-sheet) 

structures during curing has been postulated.103 Globular aggregates were rather formed in MF 

resins, and an intermediate morphology was observed for MUF resins displaying short rod-like 

structures.  

Several mechanisms have been proposed to account for the colloidal stability of the 

aggregates. The formation of a solvation layer by unreacted urea, hindering hydrogen bonding 

between aggregates, may contribute to the stabilization.101 Electrostatic stabilization has also been 

postulated to occur through the formation of an ionic double layer composed of hydronium ions 

and formaldehyde molecules.105 Ferra et al. discussed the participation of polymeric species with 

amphiphilic character distributed at the surface of the dispersed phase.101 Hydrophilic end-groups 

(e.g., hydroxymethylene, monofunctionalized urea) on the polymer chains can interact with ionic 

species (e.g., Na+ and H+) and generate electrostatic repulsions. 

As the proposed stabilization mechanisms depend on the concentration of the charged 

species, flocculation of the aggregates can be induced upon dilution (Figure 7b). In fact, the size 

and extent of aggregate formation was found to depend on the level of condensation and ageing of 
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the resin. Coalescence of particles in the aggregates yielded larger species, and resulted in a 

globular morphology prior to gelation.105 The viscosity during the polymerization reaction was 

found to increase over time, and Mehdiabadi et al. proposed the relationship given by Equation 1, 

to account for the change in the kinematic viscosity ν (in cSt) as a function of the pH of the solution 

and time (t).106 

 

 ln
𝜈

9.43 = (0.001586 + 1337.938×	10456)×𝑡 (1) 

 

3 Control of the encapsulation process 

3.1 Properties of microcapsules	

Control over the properties of MCs is essential for the rational design of materials for 

targeted applications. The physical and chemical properties of MCs are a result of the synthesis 

and processing parameters employed in their preparation. Properties of MCs such as the 

morphology, size and size distribution, wall thickness, encapsulation efficiency, loading level, 

release profile, and mechanical properties will determine their end-application. The nature of the 

molecular species in the amino resins and the presence of surfactants are other parameters of 

importance. By adjusting the pH and the temperature, one can also influence the type of reactive 

species involved. The nature of the core material, as well as the ratio of the core/shell materials 

are other essential variables. Furthermore, additives such as salts and formaldehyde scavengers 

have been found to influence the capsule formation. Process parameters such as the design of the 

reactor, and stirring rate have also been found to be critical in the preparation of MCs and will be 

discussed below. 
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3.2 Characterization of microcapsules	

A range of characterization techniques is available to probe the influence of the process 

parameters, and to monitor MC quality during formulation, storage, application, and 

disposal/recycling. Y. Zhang and Rochefort,44 and Z. Zhang and coworkers107 reviewed important 

methods used for the characterization of the physicochemical, structural, and mechanical 

properties of MCs. The techniques for the characterization of physicochemical and structural 

properties are summarized in Table 2, while those used for measuring the mechanical properties 

are summarized in Table 3. In practice, the choice of the characterization technique will be dictated 

by the end-use of the MCs, although interdependency between properties is to be expected. For 

example, the wall thickness will affect the mechanical strength of the MCs, but it will also 

influence the release rate of a core material in load-delivery applications. 

The size and size distribution of MCs are readily obtained from laser diffraction 

measurements.55 For nanosized materials, dynamic light scattering (DLS) is preferred.108 In-

process measurements find important applications in industrial settings, and often rely on laser-

beam analyzers measuring the microcapsule’s chord length (geometric line on the surface of a 

particle).109 Examples of such techniques include focused beam reflectance measurement, and 

spatial filtering velocity. More recently, photometric stereo imaging was used to obtain a 3D image 

and particle size distribution by using light pulses.110 

Optical microscopy allows the rapid visualization of MCs, but the resolution is limited to 

about half of the minimum wavelength of visible light (0.2 µm). Electron microscopy such as 

scanning electron microscopy (SEM),111 environmental SEM (ESEM),112 and transmission 

electron microscopy (TEM),113 offer better resolution for the characterization of the surface 

roughness, and wall thickness. In combination with a focused ion beam (FIB) technique, an 



 16 

accurate cross section of the microcapsules can be obtained and provide further information on the 

microcapsule structure.114 Confocal laser scanning microscopy is another imaging technique with 

a resolution in the range of 0.2-0.5 µm.115,116 Atomic force microscopy (AFM) is a powerful 

technique that provides sub-atomic resolution of the surface morphology.117 This technique has 

also been used in combination with reflection interference contrast microscopy (RICM) which 

relies on interference patterns of reflected monochromatic light from a surface at different 

positions.118 Surface roughness has also been characterized by white-light interferometry with a 

resolution of 0.1 nm.119,120 Scanning near-field optical microscopy (SNOM) is another surface 

characterization technique with a resolution in the nanometer size-range that could prove useful 

for micro- and nanoparticle characterization.121 

Information about the formation, structure, and shape of MCs can be obtained in situ with 

high resolution by using small-angle X-ray scattering (SAXS),122 X-ray computed tomography 

(CT),123 or positron emission annihilation lifetime spectroscopy (PALS) for porous 

structures.124,125 For instance, Zetterlund et al. used SAXS to monitor in situ the multi-wall 

formation of methacrylate nanocapsules. Wide-angle X-ray diffraction (XRD) is a method of 

choice for the characterization of crystalline domains. 

The composition of MCs can be measured by Fourier-transform infrared spectroscopy 

(FTIR), Raman spectroscopy,59,126 and thermogravimetric analysis (TGA).60 The mass of the 

encapsulated core is often measured after crushing the capsules in a mortar and extracting it in a 

solvent (e.g., soxhlet extraction).30,127 The mass ratio of the encapsulated core to the initially added 

core material corresponds to the encapsulation efficiency of the synthetic procedure.128 Elemental 

composition can also be extracted from X-ray photoelectron spectroscopy (XPS)129 and energy-

dispersive X-ray spectroscopy (EDS).130 Time-of-flight secondary-ion mass spectrometry (TOF-
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SIMS) has been employed to characterize MC wall material by sputtering the surface with an ion 

beam.131  

The surface charge of MCs governs the stability of their suspensions, and can be obtained 

by measuring the zeta-potential (e.g., streaming potential, electrophoresis).132 Shi et al. measured 

the zeta potential of poly(urea-formaldehyde) (PUF) at pH values ranging from 1 to 12.133 The 

zeta potential decreased with increasing pH to about -16 mV, becoming negative past the 

isoelectric point at pH 2.5. Adsorption of polyelectrolytes at the surface of the MCs converted the 

zeta potential from negative to positive values. 

The thermal properties of MCs play an important role in many applications, e.g., in phase-

change or self-healing materials, and are typically measured by TGA and differential scanning 

calorimetry (DSC).134,135 From TGA measurements, Zhang et al. reported thermal stability for 

poly(melamine-formaldehyde) (PMF) MCs filled with n-octadecane up to ca. 160 °C. The thermal 

stability was improved up to 230 °C by promoting expansion space inside the MCs using a volatile 

component during the synthesis.136 The decomposition of PUF wall materials takes place around 

240 °C,30,57,137 with a characteristic mass loss occuring at 100 °C corresponding to the elimination 

of residual water and formaldehyde.  This temperature limit is also noted for PUF microcapsules; 

however, a step-wise decomposition profile is generally reported. Above the decompsition 

temperature of cross-linked PUF, crack formation in the MC shell occurs. In addition, during the 

decomposition of the wall material, reaction with the core can take place and decrease the rate of 

decomposition of the ensemble. The encapsulation process provides protection to the core 

materials and therefore improves thermal stability.137 

The mechanical properties of MCs are an essential parameter for many applications, and 

both bulk and individual capsule measurements have been performed, as summarized in Table 
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3.138 Micromanipulation compression measurements were used to monitor the stress-strain 

relationship during the deformation of PMF microcapsules.139 The behavior of the material was 

proposed to correlate with an elastic-perfectly plastic model with strain hardening. The reported 

average failure strain was ca. 0.48, and the failure stress ca. 350 MPa. 

A major application of MCs is for the controlled and targeted release of active agents. 

Characterization of the barrier properties but also of the release profile is therefore of importance. 

The delivery of the core material can take place according to a burst-release mechanism by 

breakage of the capsule or dissolution of the shell, or according to a controlled-release mechanism 

by diffusion through the wall.21 Controlled release can furthermore take place continuously 

(extended-release) or intermittently (pulsatile release) over a period of time. The barrier properties 

of the wall are highly dependent on the wall thickness, and porosity. The total specific surface area 

can be measured with the Brunauer-Emmett-Teller (BET) analysis. This technique relies on the 

adsorption of nitrogen at varying pressures, and correlates the volume of adsorbed gas to the 

surface area of the microparticles. Pore volume and pore area distribution are obtained with the 

Barrett-Joyner-Halenda (BJH) analysis relying on nitrogen adsorption and desorption.140 

The release profile of MCs is generally determined by dispersing of the particles in a solution 

and by measuring the evolution of the solute concentration over time. The release kinetics can be 

determined by a range of techniques adapted to the core content, such as spectroscopic techniques 

(UV-vis,141 NMR, FTIR spectroscopic methods), microscopy (fluorescence),142,143 

chromatography (GC,114,144 HPLC145), sensors (e-nose146) and TGA. Indirect measurements can 

also be performed by measuring the effect of the released core materials (e.g., cytotoxicity)147.  

Mercadé-Prieto et al. derived a theoretical method to calculate the permeability of MF 

microcapsules containing a hydrophobic liquid core. The release profile of single MCs was shown 
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to be linear; however, the size polydispersity of the sample yielded an exponential-like decay at 

higher relative release ratios. The permeability in aqueous solutions with low molar mass alcohols 

ranged from 0.5 to 1 × 10-12 m2 s-1.  

 

3.3 Amino resin composition 

The ratio of formaldehyde to urea and/or melamine has important effects on the resin 

properties, and the kinetics of polymerization. PUF microcapsules are generally prepared using a 

1:1.9 molar ratio of urea:formaldehyde.58,112 Using a composition slightly lower than the 

stoichiometric ratio between the –NH2 groups and formaldehyde favors the complete 

functionalization of the formaldehyde. This composition was found to provide maximum 

encapsulation efficiency for UF microcapsules filled with pesticides.126 A molar ratio lower than 

1:1.8 was noted to promote polymer precipitation upon acid addition.58 

PMF microcapsules typically display greater mechanical strength and chemical resistance 

than PUF capsules.43 The multi-functionality of melamine favors network formation, and 

introduces hydrophobic and rigid aromatic rings into the structure. For the preparation of MF 

microcapsules, Kage et al. determined an optimal molar ratio of 1:3 for melamine:formaldehyde, 

which corresponds to the stoichiometric ratio between the –NH2 groups and formaldehyde.148 

Improved properties can also be obtained by the addition of melamine to UF (typically 6-8 wt 

%).55 In some instances, MUF capsules are prepared by mixing separate batches of precondensate 

composed of UF and MF respectively.43 The order of addition in this case is of importance as the 

MF precondensate was found to destabilize the dispersion. 
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3.4 Core material 

The encapsulation process relies on a low degree of interactions and efficient phase 

separation between the core and shell materials. Hydrophobic compounds are most suitable for 

encapsulation by amino resins, and have been used in a wide range of applications. Reactive 

compounds (e.g., pharmaceuticals, adhesives, cosmetics) can also be encapsulated by prior 

dissolution, dispersion or suspension in a hydrophobic medium.  

A wide range of compounds has been encapsulated for applications including pressure-

sensitive recording materials,149 adhesives,52 agrochemicals,147 perfumes,150 vegetables oils,151 

consumer products, flame retardants,152 phase change materials,153 electronic inks,154 thermo-

sensitive paper,155 self-healing agents,53 drag-reducing agents,135 smart coatings,54 and polymer 

additives.33 Core materials such as epoxy resins, for instance, are high performance adhesives and 

promising candidates for self-healing applications.56,59,60,156 These reactive compounds were found 

suitable for the in situ encapsulation process, and did not react with the amino resin even at a low 

pH.30,59 Other compounds such as fragrance oils,150 corrosion inhibitors,157 electrophoretic 

fluids,158 chlorophyll,159 and glass beads160 have also been successfully encapsulated with amino 

resins. 

In practice, the suitability of materials towards encapsulation is often determined 

empirically. However, some theoretical models have been suggested to guide the selection process. 

Sliwka proposed to consider Hildebrand’s solubility parameters (δ),161 which provide a semi-

quantitative assessment of the component interactions.12 Solubility parameters as different as 

possible are desirable for the preparation of impermeable MCs. Hansen extended Hildebrand’s 

expression by introducing separate parameters for dispersive (δd), dipolar (δp) and hydrogen-

bonding (δh) interactions, such that  δ = δd + δp + δh.162 Based on Hansen solubility parameters 
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(HSP), Stöver et al. recommended a value for the core material 3-8 MPa½ below that of the polymer 

for the encapsulation of alcohols in polyurea MCs by interfacial polymerization.163 Hofmeister et 

al. demonstrated a linear relationship between δh and the encapsulation efficiency in nanocapsules 

prepared with an acid-functionalized acrylate copolymer. This work allowed the prediction of the 

encapsulation efficiency for various volatile compounds and their mixtures. The encapsulation of 

otherwise poorly encapsulated materials was improved by adding a mediator compound with a 

low δh value.164 Latnikova et al. demonstrated that HSP can be used to predict the morphology of 

MCs prepared by interfacial polymerization. The affinity between the polymer and the core 

material directed the formation of a core-shell, a multi-compartment, or a compact morphology.165 

Table 4 compares the solubility parameters of UF resin (δ = 25.7 MPa½) to selected 

compounds. From the HSP of a pair of compounds 1 and 2, one can determine the solubility 

parameter distance Ra, as given by Equation 2: 

 𝑅:; = 4	 𝛿=> − 𝛿=; ; + 𝛿5> − 𝛿5;
; + 𝛿@> − 𝛿@; ; (2) 

The ratio of Ra to the radius of the solubility sphere R0 (obtained experimentally) yields the relative 

energy difference term RED, which provides information on the affinity between two compounds. 

A RED number lower than 1 denotes high affinity, while values progressively greater than unity 

signify lower affinities. The R0 values for selected materials, and the corresponding Ra and RED 

values with respect to UF resins are indicated in Table 4.  

 

3.5 Wall formation 

3.5.1 Mechanism of wall formation 

 The mechanism of capsule wall formation was investigated by Brown et al. in the 

encapsulation of dicyclopentadiene with PUF.112 By monitoring the MC formation by optical 
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microscopy and the evolution of the pH and temperature during the reaction, the authors uncovered 

four distinct phases (Figure 8a). The process started with the dispersion of the core materials in 

the aqueous solution in presence of the polymer precursor. The polymerization reaction was 

initiated by increasing the temperature and lowering the pH of the solution. During the second 

phase, soluble oligomeric species formed and deposited at the core/water interface as a smooth 

layer, while the emulsion solution turned cloudy. The interfacial tension between the hydrophobic 

core and aqueous continuous phase acted as the driving force for the deposition of polymer as a 

smooth layer until reaching a limit.160,166  The third stage was marked by further polymer 

deposition, and the nanoprecipitation of the amino compounds both at the surface of the MCs and 

in solution. Growth of the capsule wall then continued by formation of a porous and rough surface. 

Scattering from the large aggregates turned the solution milky-white. This process was driven by 

the decreased solubility of the polymeric and colloidal species present in solution (Section 2.4). In 

the last phase of the reaction, the completion of the curing reaction was indicated by the 

clarification of the solution. The MCs were then easily separable from the reaction medium. This 

phenomenological description accounts for the wall formation, however, details about the 

underlying mechanism of microcapsules formation remains subject to discussion. In Section 4, 

proposed mechanisms are further discussed invoking a strictly in situ mechanism or elements of 

complex coacervation and interfacial polymerization. 

 

3.5.2 Wall thickness 

The wall formation during the different regimes typically yields a binary surface composed 

of a smooth inner membrane, and a porous outer surface.111,112 The wall thickness of the inner 

membrane was found to be independent of the processing parameters, and ranged from 150 to 300 
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nm (Figure 8b).60,111,112,160 The outer layer thickness however depended on the nanoparticle (NP) 

formation process, and was affected by the rate of UF condensation reaction (i.e., pH, temperature, 

concentration), the ratio of core to wall material, and the mixing dynamics.160 The porous outer 

layer increased the mechanical strength and the adhesion of the capsules but could display adverse 

effects on the optical properties in some applications.167–169 

A comparable mechanism was noted during the preparation of MF microcapsules.148,170 

Sgraja et al. determined the capsule shell thickness from density measurements, and monitored its 

evolution as a function of wall material concentration per volume of dispersed phase (mw/Vd).171 

For a core (tetradecene) volume fraction of 0.29, a plateau was observed above 100 g·L-1, which 

indicated the maximum wall concentration required for the encapsulation. Smooth capsules were 

obtained at concentrations below this limit. When using an excess of wall materials, NPs formed 

and deposited at the surface of the capsules. By taking into account the specific surface area of the 

emulsion, the shell thickness was plotted against the wall concentration over the total surface area 

of the droplets (Figure 9). The shell thickness was found to increase linearly with the wall 

concentration up to a critical size of 100 nm, which corresponded to the limit of smooth surface 

formation. In contrast to UF and MF microcapsules, MUF capsules were more resilient to the 

formation of NPs, and displayed a smooth and relatively thicker wall up to 700-900 nm.32 

 

3.5.3 Nanoporous surface 

As indicated above, the formation of NPs in solution is dependent on the rate of 

polycondensation. An increase in the rate of polymer formation shortens the second stage of the 

encapsulation process (deposition on the core surface), and results in a greater formation of 

nanoprecipitate. Control over the kinetics of the reaction can be obtained by varying the 
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temperature or the pH of the solution. For instance, an increase in the reaction temperature from 

50 °C to 70 °C during the encapsulation of palm oil by UF was reported to increase the NP 

formation, and to reduce the encapsulation efficiency by over 80%.172 Chuanjie et al. studied the 

effect of the heating rate during the one-step encapsulation of tetrachloroethylene by UF, and noted 

the formation of a rough capsule surface when the heating rate was above 0.5 °C/min (conditions: 

pH(initial) 3.5, [UF resin] = 36 g·L-1, [NaCl] = 50 g·L-1).111  A marked decrease in the yield of the 

encapsulation was also observed with a heating rate above 1 °C/min. On the other hand, in the 

preparation of epoxy-encapsulated UF (epoxy@UF) MCs at 60 °C and 40 °C, Cosco et al. revealed 

that the low reaction temperature adversely affected the efficiency.59 It was presumed that a poorer 

dispersion of the core material resulted in polymer precipitation in solution rather than at the core 

surface. 

The pH also affects the kinetics of polymer formation. In a one-step process, two 

competing reactions take place at the beginning of the reaction: 1) The formation of water-soluble 

and surface active methylol ureas, and 2) the polycondensation reaction yielding an insoluble 

polymer. Fan et al. encapsulated glass beads with a UF wall in the presence of NH4Cl, and varied 

the initial pH from 2.5 to 4.5.160 Smooth MCs were obtained when the initial pH value was 4.5. 

Upon lowering of the pH, NPs formed but remained in suspension and did not deposit on the 

surface of the capsules. MCs with a rough surface were obtained when the initial pH value was 3.5 

or lower. A relatively high final pH (above pH 3) was also conducive to smooth capsule wall 

formation. In another study, Brown et al. showed that by maintaining a constant pH value (pH 

3.5), smooth capsules were obtained, and the UF NPs remained in suspension.112 
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3.6 Core/wall ratio and viscosity 

The amount of core material affects the dispersion process and determines the surface area 

available to the wall material under specified conditions. The initial core/wall ratio is therefore of 

importance during the encapsulation process. In the preparation of epoxy@UF MCs, the size was 

reported to increase from 203 µm to 238 µm when the core/wall ratio increased from 1.2 to 1.4, 

and a broader size distribution was noted.56 A higher core content promoted the formation of larger 

droplets in solution.  

An increase in core material was found also to result in a thinner and smoother capsule 

wall, which exhibited weaker mechanical strength and resulted in MC fracture during material 

handling.56 It is expected that the dispersion of a larger amount of core material would be more 

difficult, as droplet coalescence takes place more readily. As reported by Liang et al, the yield 

decreased from 80% to 70% during the encapsulation of epoxy by UF when the core/wall ratio 

increased from 0.5 to 2.0.30 The optimal ratio found in the study was 1.25 (other conditions: U/F: 

0.5 w/w, 380 rpm, surfactant, pH 3-4, 60-65 °C, reaction time 3 h).30  

 A correlation between the viscosity of the core material and its dispersion can also be 

expected. In the preparation of UF and MF microcapsules for instance, the size was found to 

increase when the viscosities of the core materials (fragrance oils) increased.150,173 It was argued 

that a higher surface tension resulted in larger droplet size during the emulsion. When the viscosity 

was greater than 30 cP however, droplet coalescence was instead hindered, resulting in smaller 

capsule sizes. In a water-in-oil emulsion, Sanghvi and Nairn investigated the influence of the 

viscosity ratio between the dispersed phase and the continuous oil phase.174 The increase in MC 

size was also found to occur, but only above a critical viscosity ratio. At high viscosity ratio, the 
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break-up of the droplet was deemed more difficult and yielded larger MCs. Unstable dispersions 

also resulted when the viscosity of the dispersed phase was too high.   

 

3.7 Orthogonal experiments 

The microencapsulation process relies on synergistic contributions of multiple factors, and 

depends on the composition of the formulation.33 The many variables involved in the encapsulation 

process make it difficult to assign a particular outcome to the individual parameters. In order to 

address this issue, several groups used orthographic factorial design to determine the optimal 

experimental conditions for the preparation of capsules.56,111,175  

For the encapsulation of two-phase core materials, Zhao et al. selected four variables and 

used the viscosity of the solution as a determining parameter.175 The order of influence of the 

variables, and the optimum conditions established are shown in Table 5. The choice of the 

determining parameter was important, and affected the ranking of the variables. By studying the 

formation of epoxy@UF microcapsules, Wang et al. selected four different determining 

parameters: yield, core content, capsule diameter, and shell thickness.56 The resulting ranking of 

the variables and their optimum values are indicated in Table 5. Chuanjie et al. determined the 

encapsulation yield for tetrachloroethylene@UF by separating the MCs from the undeposited 

polymeric materials.111 The separation of the products was based on the difference in settling 

velocity owing to the density difference between the MCs and the precipitated polymer (1.60 g·mL-

1 and 1.05 g·mL-1, respectively). Using this parameter, optimum conditions were also established 

(Table 5). The diversity of optimum conditions reported highlights the need to adjust each variable 

according to a particular encapsulation process. The selection of the parameters also depends on 

the choice of the specific determining parameter of interest. 
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3.8 Control of surface properties 

3.8.1 Two-step and one-step protocols 

The formation of PUF microcapsules relies on the efficient phase separation between the 

core and wall materials during encapsulation. As discussed above, the difference between the 

solubility parameters of the materials dictates the partition process. The synthetic scheme generally 

follows a two-step protocol starting with the preparation of a UF precondensate under alkaline 

conditions. The prepolymer may display surface active properties promoting the dispersion of a 

core material and its encapsulation under acidic conditions. The addition of surfactants has been 

found to provide additional control over the interfacial interactions, and to limit Ostwald ripening 

and droplet coalescence.176 The surfactant can serve various roles, including as 1) accelerator for 

the dispersion of the core phase, 2) stabilizer for the emulsion, 3) accelerator for the wall-

formation, and 4) stabilizer for the MCs.35 More stable dispersions allow the preparation of MCs 

in a one-step encapsulation protocol. In this case, the preparation of a precondensate solution prior 

to the encapsulation process is not required.112,132,167  

 

3.8.2 Surface tension 

The interfacial tension is related to the work required to form new surfaces, and will 

influence the surface area and stability of the emulsion droplets. The equilibrium of a dispersion 

of two immiscible liquids (phase-1 and phase-3) in a third immiscible liquid (phase-2) can be 

expressed as a function of the interfacial tensions γij and spreading coefficients (Si = γij – [γij + γij]). 

Torza and Mason reported three sets of relations to account for the configuration of the system 

when γ12 > γ23 (S1 < 0), as shown in Figure 10.177 Complete phase encapsulation of phase-1 in 
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phase-3 is established when S3 < 0, while phase separation occurs when S2 > 0. Only partial 

encapsulation is observed when all the spreading coefficients are negative. 

In a model proposed by Van Oss,178 the solubility (S) of a polymer (2) in a solvent (1) is 

related to the free energy of interfacial interaction (ΔG212), and is given by Equation 3.179 The latter 

parameter is a function of the interfacial interaction parameters for each component, and takes into 

account Lifshitz-van der Waals and Lewis acid-base forces. Similar expressions are derived for a 

ternary system involving two distinct materials (2 and 3) dispersed in a solvent (1). 

 𝑅𝑇	ln	(𝑆) = 𝑓	(∆𝐺;>;) (3) 

 

3.8.3 Amino resin surface activity  

The surface activity of UF resins appears somewhat limited. Dietrich et al. reported no 

significant interfacial tension between UF resins in water against xylene.166 On the other hand, 

Guo et al. determined modest surfactant properties for UF prepolymers by measuring a decrease 

in interfacial tension (from 43 mN·m-1 to 35 mN·m-1) between water and tetrachloroethylene.180 

The authors argued that the surface activity of the oligomeric species promoted the encapsulation 

process. Additives such as ammonium chloride can also help to increase the surfactant properties 

of the UF polymers by promoting the formation of amine groups (Section 3.9.2).132 MF resins have 

been demonstrated to exhibit more pronounced surfactant properties.166,171 For instance, Sgraja et 

al. measured the surface tension of MF resins which decreased below 45 mN·m-1 at a concentration 

above 50 g·L-1, and an interfacial tension between the resin and tetradecene below 12.2 mN·m-1 at 

a concentration above 10 g·L-1 (Figure 11).   

Resins etherified by reaction with methanol displayed an enhanced surface activity.166 

Even better surfactant properties were obtained in the presence of an amino alcohol modifier such 
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as triethanolamine (Figure 12). Salaün et al. monitored the surface tension during the encapsulation 

of n-hexadecane with etherified MF, and noted three different stages (Figure 13).181 Upon acid 

addition at the beginning of the reaction, protonation of the prepolymer increased the degree of 

etherification of the polymer. The ensuing drop in solubility lowered the surface tension of the 

solution. In the second stage, deposition of the polymer at the interface of the dispersed phase 

resulted in the recovery of the surface tension of the solution. The last stage was marked by a 

further decrease in the surface tension upon continuous polycondensation reactions taking place 

primarily at the surface of the MCs. 

 

3.8.4 Hydrophilic-lipophilic balance 

The ability of a surfactant to promote the emulsion of a core phase can be established on 

the basis of the balance of its hydrophilic and hydrophobic character. Griffin introduced a 

classification method for surfactants based on these parameters, coined the hydrophile-lipophile 

balance (HLB) method.182,183 The HLB value is related to the weight percentage of the hydrophilic 

segment of a surfactant and can be calculated or determined experimentally.184–186 For instance, as 

shown in Equation 4, Griffin proposed to calculate the HLB value of non-ionic surfactants by 

taking into account the molar masses of their hydrophilic (MH) and lipophilic (ML) segments.183 

This equation can equally be expressed as a function of the molar volume VH (VL) and density ρH 

(ρL) of the hydrophile (lipophile) moieties, respectively. A low HLB value (< 9) is indicative of an 

affinity for non-polar solvents, while high values (> 11) characterize hydrophilic species. Stable 

emulsions can be obtained by matching the HLB value of the surfactant to that of the dispersed 

phase (required HLB). As illustrated in Table 6, the characteristics required for different 

applications correspond to a range of HLB values. 
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 𝐻𝐿𝐵 = 	20×
𝑀6

𝑀6 +𝑀K
= 20×

𝑉6𝜌6
𝑉6𝜌6 + 𝑉K𝜌K

 (4) 

 

For the encapsulation of epoxy with UF polymers, Wang et al. recommended a HLB value 

for the surfactant ranging from 8-18, which is characteristic of oil-in-water (O/W) emulsion 

systems.56 The encapsulation of water-soluble core materials, on the other hand, can be performed 

from water-in-oil (W/O) emulsions. Using UF polymers, Golden recommended a HLB value for 

the surfactant in the range of 2-8.187 The encapsulation of chlorophyll with UF polymer was 

obtained from multiple emulsions (W/O/W) and involved sorbitan oleate (Span 80) and 

polyoxyethylene sorbitan monooleate (Tween 80) with HLB values of 4.3 and 15.0, 

respectively.159 The emulsification of n-hexadecanol using surfactants with HLB values near 15 

was deemed ineffective, however, and larger molar mass stabilizers were preferred.188 

It is noteworthy that a correlation has been drawn between the solubility parameters 

(Section 3.4), and the HLB value. This was applied to predict the formation of microparticles.189 

For instance, Little proposed the empirical relationship shown in Equation 5 for a series of 

surfactants between the HLB values and Hildebrand parameter δ (in MPa1/2).190 

 𝐻𝐿𝐵 = 54×	
𝛿 − 16.8
𝛿 − 12.3  (5) 

Beerbower et al. rather determined the HLB values from Hansen’s solubility parameters 

for dispersive (δd), dipolar (δp) and hydrogen-bonding (δh) interactions.191 Using Griffin’s 

definition (Equation 4), the authors expressed the cohesive energy ratio Rc, as proposed by Winsor 

(Equation 6),192 as a function of the HLB value (Equation 7). 

 
𝑅N = 	

𝑉K 𝛿=; + 0.25𝛿5; + 0.25𝛿@; K

𝑉6 𝛿=; + 0.25𝛿5; + 0.25𝛿@; 6

 (6) 
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𝑅N =

𝜌6
𝜌K
×

20
𝐻𝐿𝐵 − 1 ×

𝛿=; + 0.25𝛿5; + 0.25𝛿@; K

𝛿=; + 0.25𝛿5; + 0.25𝛿@; 6

 
(7) 

The surfactant is selected with the aim to promote chemical compatibility between the hydrophilic 

moiety and the water phase, and between the lipophilic moiety and the oil phase. The required 

HLB0 for the oil phase can be estimated from Equation 8: 

 𝐻𝐿𝐵O = 	
20

1 + 𝑅N
𝜌K
𝜌6

𝛿=; + 0.25𝛿5; + 0.25𝛿@; 6
𝛿=; + 0.25𝛿5; + 0.25𝛿@; K

 
(8) 

 

3.8.5 Surfactant and microcapsule synthesis 

A variety of surfactants have been used for the preparation of amino resin MCs, including 

sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS), and octylphenol 

ethoxylates (OP). Natural polymers have similarly been used, and encompass gum arabic,193 

alginic acid, cellulose,168 gelatin, starch, lignin, and their derivatives (e.g., carboxymethylated, 

sulfated, phthalated, sulfonated). Synthetic polymers have found widespread use and include 

copolymers of maleic anhydride,194–196 polyacids such as polymers containing (meth)acrylic acid, 

and vinylbenzenesulfonic acid,193,197 polyesters and polyacrylamides,43 (carboxyl-functionalized) 

polyvinyl alcohols,  and polyiso(thio)cyanates.35,198 Poly(ethylene glycol) acts as a stabilizer 

according to a depletion-stabilization mechanism.171 Cross-linkable surfactants can also be 

obtained from the amino resin itself by etherification with alcohols.199  

Under certain circumstances, the addition of surfactants can alternately promote or hinder 

the encapsulation process. In the preparation of epoxy-filled PUF microcapsules, Yuan et al. 

investigated the influence of surfactants including SDBS, OP, SDS, and styrene-maleic anhydride 

copolymer (SMA). Only SDBS was found to improve the encapsulation process, and promote the 
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formation of capsules with smooth surfaces. The authors argued that an increase in the solution 

viscosity after addition of OP or SMA hindered the polymer deposition. Smaller capsules with a 

narrower size distribution were obtained with increasing SDBS concentration, although an 

enhanced surface roughness was noted. An increase in viscosity stemming from a rise in 

electrostatic repulsions between the surfactant-stabilized species was invoked to account for the 

particle roughness.  

Low molar-mass surfactants, such as SDS and SDBS, have a relatively low surface 

coverage, and show inconsistent effects.150,168 However, such compounds find applications as co-

stabilizers when used in combination with other surfactants. For instance, complexes of SDBS 

with gum arabic,167 or SDS with sodium carboxymethyl cellulose (CMC)168 showed improved 

performance as stabilizers when compared to their individual components. 

The ratio between the surfactant and co-surfactants was found critical to promote phase 

separation and wall formation. Salaün et al. reported better performance when using a mixture of 

Tween-20 (polyoxyethylene sorbitan monolaurate), and Brij-35 (polyoxyethylene lauryl ether) 

surfactants rather than either individual surfactant.181 Attractive interactions between the polar 

heads of the surfactants were thought to yield synergistic interactions at the interface. As shown 

in Figure 14, the interaction of the surfactant with the acid affected the surface tension of the 

solution, and displayed a minimum for a pH value dependent on the pKa values of the acid ([pKa1 

+ pKa2]/2).  

Yoshizawa et al. reported that surfactants such as poly(ethylene-alt-maleic anhydride) 

(poly(E-MA)) in addition to stabilizing the oil phase dispersion, introduced reactive sites that 

promoted the condensation reaction of urea and formaldehyde.200 Inert surfactants such as SDS 

and poly(vinyl alcohol) were found ineffective for the MC formation, while oil-soluble compounds 
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(Solsperse 17,000) hindered the deposition of other surfactants and prevented MC formation 

(Figure 15).201 Reactive functional groups such as maleic anhydride were deemed preferable over 

carboxylic acid groups in comparable copolymers. Notably, the minimum concentration of poly(E-

MA) required for encapsulation corresponded to the critical micelle concentration of the 

surfactant.200 The deposition of the surfactant at the core/water interface was promoted for systems 

displaying large interfacial activity and high molar masses. 

Hoshi and Matsukawa also reported that the introduction of reactive sites in the oil phase, 

by using polyvalent iso(thio)cyanates, could improve the colloidal stability and capsule 

formation.198 During the preparation of MF microcapsules, Powell employed a styrene-maleic acid 

copolymer and suggested that an interfacial reaction mechanism took place between the amino 

resin and the copolymer, favoring MC formation.   

Amphiphilic compounds such as poly(E-MA) were found to deposit at the surface of the 

core materials and catalyze polymer precipitation around the polymer. A hedgehog morphology 

resulted during the encapsulation of glass beads (Figure 16).160,167 By increasing the concentration 

of the amphiphile, the colloidal stabilization of UF NPs occurred instead and promoted the 

formation of smooth MCs. 

 

3.9 Modified amino resins 

3.9.1 Nanoadditives 

In addition to surfactants, other additives may be employed to promote the formation of 

capsules and to improve their properties. Modifiers such as nanomaterials, salts, and cross-linkers 

have been reported. As a general rule, the amount of modifier ranges from 0.75 wt % to 10 wt %. 
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Nanomaterials can be incorporated in the capsule wall during synthesis, and yield hybrid capsules 

with unique properties. For example, aluminum oxide NPs,202 silver NPs,203 titanium oxide NPs,204 

or single-walled carbon nanotubes202 have been used to increase the mechanical strength,205 and 

the thermal and water resistance of PUF microcapsules. The presence of the nanomaterials was 

found to decrease the surface roughness by controlling the rate of the polymerization reaction, and 

to produce smaller capsules.205 Sun et al. proposed a model for PUF microcapsules formation, and 

highlighted the role of hydrophobic NPs in the stabilization of the dispersion by deposition at the 

core/wall interface (Figure 17). The incorporation of iron NPs yielded MCs with magnetic 

properties that could be collected using a magnet (Figure 18a, b).206 The in situ polymerization of 

urea and formaldehyde was also favorable for the exfoliation of nanoclays, that once incorporated, 

increased the barrier properties of the capsules by increasing the diffusion path (p and p’) of a core 

material (Figure 18c).169 

 

3.9.2 Salts 

 Stronger capsule walls and improved barrier properties were obtained by addition (2-20 wt 

%) of the water soluble salt of a strong acid and a strong base (typically NaCl).49 When added to 

tetrachloroethylene@UF MCs, NaCl improved the core retention by 30% at a concentration of 25 

g·L-1, but only limited increased benefit was noted above this concentration.111 Similarly, lower 

viscosity and improved core retention were noted upon addition of 1-10 wt % of salts composed 

of cations from the group 1 elements, and chloride, sulfate, phosphate, and nitrate anions 

(particularly KH2PO4).207 The addition of salt increased the ionic strength of the solution, and was 

thought to promote aggregation and surface deposition by destabilizing the double electric layer 

of the colloidal UF species (Section 2.4). Additionally, in the presence of a negatively charged 
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surfactant such as gum arabic, electrolytes (e.g., NaCl) were hypothesized to interact with the 

charged compounds and to promote greater surface activity.111 

Reactive compounds such as NH4Cl have been found to yield PUF microcapsules with low 

permeability and improved mechanical strength, heat resistance, and shelf life.160,197 In addition to 

disrupting the electric double layer, ammonium chloride may act as an acid catalyst during the 

reaction and lower the pH of the solution (Figure 19, Equations 9-10). The pH change provides 

control over the rate of polymerization (Scheme 5). Further investigation by Fan et al. suggested 

that the reaction between NH4Cl and the UF resin may also form surface active species that 

promote UF nanoparticle deposition at the surface of the dispersed phase (Equation 11).132,208 

 
               (9) 

                  (10) 

    

 

(11) 

 

 

3.9.3 Other additives: cross-linkers, hydrophobes, and scavengers 

The addition of a cross-linker during the capsule wall formation can improve the 

mechanical strength, and reduce the emission of free formaldehyde. Polyhydroxy compounds can 

react with urea and formaldehyde, and incorporate into the wall structure. Resorcinol is commonly 

used during the preparation of UF capsules. For instance, fast reaction of resorcinol with UF 

promoted network formation, and imparted epoxy@UF microcapsules with improved water 

resistance.59,209 Carboxymethyl cellulose displays a crystalline structure, and was used in the 
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preparation of paraffin@UF MCs.210 Good mechanical resistance, and thermal stability were 

obtained. 

Another method to increase the capsule water resistance is through the addition of 

hydrophobic additives such as waxes.28 Ultrahydrophobes (e.g., hexadecane, octane) have been 

added to the core material and used as co-stabilizers during the encapsulation process.211 The 

increased hydrophobicity reduced the Ostwald ripening process and yielded nanosized MCs upon 

sonication and stirring. Capsules as small as 220 nm, with a shell thickness of 20 nm were thus 

obtained. 

The emission of formaldehyde upon hydrolysis of the amino resin has long been regarded 

as a drawback in commercialization. Formaldehyde has been classified as carcinogenic to 

humans,212 and its use is strictly regulated. In order to limit the emission of formaldehyde from 

aminoplast capsules, scavengers have been added to the formulation. The most common 

scavengers such as urea, ammonia, melamine, and 2-cyanoguanidine are primary or secondary 

amines or their derivatives.35,213,214 More recently, sulfur-based compounds have proved to be 

effective scavengers.215 For instance K2SO3 reacts with formaldehyde to form a bisulfite adduct 

(Equation 12), and was able to prevent the discoloration of formulations containing MCs.216   

  (12) 

 

3.10 Stirring rate and stirrer geometry 

 Dispersion of the core material during the in situ polymerization relies on the adequate 

mixing of two immiscible phases and is typically achieved by mechanical stirring. A minimum 

shear rate is required for the formation of an emulsion. Above this minimum, the size of the 

droplets is inversely related to the stirring rate. A higher shear rate increases the turbulent kinetic 
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energy provided to the system, and increases the rate of droplet dissociation.181 Several expressions 

have been suggested to account for the change in particle size with the stirring rate. 

The size and size distribution of droplets can be predicted on the basis of the Weber number 

theory that determines the average equilibrium droplet size in a turbulent continuous phase.217 The 

droplet size is governed by the balance between disruptive forces (associated with the turbulent 

flow), and cohesive forces (associated with the interfacial tension and viscosity). From the 

proposition of local isotropy by Kolmogorov,218 a relationship can be established between droplet 

diameter (related to the Sauter diameter, d3,2)219 and the droplet Weber number (We). This is shown 

in Equations 13 and 14, where C1 is a constant, L is the stirrer diameter, ρj the density of the 

continuous phase, ω the stirring rate, and γ the interfacial tension. 

 

 𝑑Q,;
𝐿 = 𝐶>𝑊U

4Q/W	 (13) 

 
𝑊U =

𝜌X𝜔;𝐿;

γ  (14) 

By taking into account the decay of the turbulence, Equation 15 can be used to describe the 

change in droplet diameter with the stirring rate, where ϕi is the volume fraction of the core 

material, and C2 a proportionality constant. The density ρ can further be expressed as the average 

density of the system if premixed phases are employed (Equation 16).  

 𝑑Q,; = 𝐶>(𝛾4>𝜔;𝐿\/Q𝜌)4Q/W(1 + 𝐶;𝜙^) (15) 

 𝜌 = 𝜌X 1 − 𝜙^ + 𝜌^𝜙^ (16) 

This model was applied by Sgraja et al.171 to describe the in situ polymerization of PMF 

microcapsules. The authors demonstrated the dependence of the capsule size to the stirring speed, 

by slightly adjusting the value of the exponent to account for deviation from a perfectly local 
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isotropic turbulence. From surface tension measurements (Section 3.8.3), it was found that above 

a resin concentration of 30 g·L-1, the surface activity was constant and thus yielded a constant 

droplet size distribution. 

Dobetti and Pantaleo proposed to consider the hydrodynamic model of Armenante and 

Kirwan220 in the case of small particles (< 30 µm), to describe the formation of MCs from 

microeddies formed in the vicinity of the propeller during agitation.221 The size of the microeddies 

increases in regions far from the propeller, and also results in a droplet size and size-distribution 

inversely proportional to the stirring rate (ω). The minimum diameter of the microeddies (de) is 

dependent on the solution viscosity η and density ρ, as well as L. It can be estimated from Equation 

17: 

 
𝑑U =

1
𝜌

𝜂Q𝑚
𝑁5𝜔Q𝐿W

>/\

 (17) 

Where m is the total mass of the solution in the reactor, and Np is the power number. The latter 

term is indicative of the power consumed by the impeller. It is characteristic of the experimental 

setup and accounts for the type and position of the impeller, the design of the reactor, and the 

design features of the baffles if present.222 In the preparation of UF MCs, an exponential 

relationship between the average MC diameter and the shear rate was reported by Brown et al. 

(Figure 20).30,112  

By studying the encapsulation of n-octadecane with a MF shell, Zhang et al. proposed 

Equation 18 to account for the increase in the capsule weight-average diameter or number-average 

diameter (d) with the stirring rate (ω):223 

 𝑑 = 𝑑O + 𝐴>e
4 d
de (18) 
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The parameters d0, A1, and ω1 are fitting constants characteristic of the system. In the reported 

study, Equation 19 was found for the number-average diameter (dn): 

 𝑑f = 0.94 + 334.49	e4
d

>O>g.h; (19) 

In order to gain greater control over the size of UF microcapsules, Nesterova et al. 

compared four different stirrer geometries.224 The four-bladed metal propeller (Figure 21a) yielded 

linseed oil@UF capsules 154 µm in diameter at a stirring rate of 1200 rpm. Greater stirring rates 

resulted in the shearing of the capsules, and the formation of a larger number of nano-sized 

materials. A gentler stirring was obtained with the three-bar glass stirrer (Figure 21b) resulting in 

larger capsule sizes. The intense stirring produced with the glass disc (Figure 21c) damaged the 

capsule walls. Somewhat larger capsule sizes were formed with the commonly used three-blade 

metal propeller (Figure 21d). 

 

4 Proposed mechanisms for capsule formation 

Details regarding the mechanism of MC formation from amino resins are still lacking, and 

even the classification of the microencapsulation process remains unclear.36  Various authors have 

postulated a process occurring strictly by in situ polymerization, by formation of a coacervation 

phase, or by their combination. The addition of a surfactant or additives may furthermore promote 

interfacial interactions, and thus implicate an interfacial polymerization process (Section 3.8.5). 

As illustrated in Figure 2, Sliwka proposed a general description of the microencapsulation 

process in the case of complex coacervation for a mixture of gelatin and gum arabic according to 

four steps.12 The core material was dispersed in the continuous phase, followed by precipitation of 

the coacervate in the continuous phase. The micro-coacervate phase gradually precipitated at the 
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surface of the core material, and eventually coalesced as a macro-coacervate phase to form the MC 

wall. 

Dietrich et al. proposed a comparable and more detailed mechanism for the in situ 

polymerization of MF polymers over a hydrophobic core (methylparathion).166,225 The process was 

divided into three stages.200,226 In the first stage, a precondensate solution composed of oligomeric 

species was obtained by reacting melamine and formaldehyde under basic conditions at 80 °C. 

After addition of the core material to the aqueous prepolymer solution, dispersion of the oil phase 

was promoted by the surface activity of the amino species, and the interfacial tension between the 

continuous and dispersed phases. In the second stage, the polycondensation of the oligomeric 

species was induced by lowering the pH of the solution. The increased concentration of the 

encapsulant at the interface, favored by hydrophobic/hydrophilic and electrostatic interactions with 

the core material, increased the rate of polycondensation at the boundary relative to the rate in the 

continuous phase. This effect favored the formation of a well-defined core-shell structure. During 

the last stage of the process, strengthening of the capsule wall occurred by further polymer 

deposition and cross-linking, and was accompanied by a reduction in the capsule size. The 

recovered capsules often displayed a granular surface. The surface activity of the MF condensate 

was found to be enhanced when reacted with methanol or triethanolamine, and promoted MC 

formation. UF prepolymers displayed less pronounced surfactant properties rendering the 

encapsulation process more difficult. 

Salaün et al. reported a similar mechanism for the encapsulation of n-hexadecane with a 

methanol-functionalized melamine-formaldehyde (MMF) resin in presence of an added 

surfactant.23,181 By monitoring the surface tension during the microencapsulation process, the 

authors proposed a mechanism involving the inception of a polymer-rich liquid phase in the first 



 41 

stage, reminiscent of a coacervate phase (also proposed by other authors).195,226 At the end of the 

reaction, the MCs displayed a rough surface which originated from the deposition and cross-

linking of MF NPs. Fei et al. studied the encapsulation of a fragrance oil with a MMF resin in 

presence of poly(styrene-co-maleic anhydride) as a surfactant. The authors proposed a comparable 

mechanism, but they highlighted the change in particle size during the encapsulation process 

(Figure 22).31 The surfactant was found to stabilize the dispersion of the oil phase while promoting 

the adsorption of the polymer resin at the surface by electrostatic interactions. After deposition of 

the prepolymer, however, a redispersion of the droplet was observed as evidenced by the rapid 

decrease in particle size. Several intermediate morphologies were noted during the strengthening 

phase at 60 °C including non-adsorbed prepolymer, and vesicles. By further increasing the 

temperature to 75 °C, MC formation occurred with a concomitant decrease in particle size. 

 

5 Current interest in urea-formaldehyde microencapsulation 

5.1 Trends in urea-formaldehyde microencapsulation 

The ability to contain materials in a micron-sized environment has proven to be a versatile 

and powerful technique applicable to numerous systems. This process allows the protection of a 

core material from its surroundings, or alternatively protection of the environment from an active 

core component. MCs also offer the ability to control the distribution and release of a core material 

at targeted sites. Numerous applications have benefited from the use of MCs including pressure-

sensitive recording devices,39,227 adhesive materials,52 agrochemicals,49 pharmaceuticals,18 phase-

change materials,228 and electronic inks.154,158,229 Current interest in the use of amino resin MCs 

lies in the design of functional materials, with tunable and stimuli-responsive properties. Although 

amino resins are not well-suited for stimuli-responsive behavior on their own, stimuli-responsive 
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materials can be incorporated in the core and wall of the microcapsule to provide stimuli-

responsive properties. The concept was demonstrated for instance by Chu and co-workers by 

incorporating PNIPAM-co-PAAm sub-microspheres in the shell wall of chitosan 

microcapsules.230 Other examples include decoration of the capsule-wall with micelles,231 

magnetic nanoparticles,206 or using an electrophoretic fluid as core for displays.158 Materials with 

self-healing properties,53 tunable pore-size,230 and controlled-release properties232 are all examples 

of current research interests with promising applications in smart technologies. 

 

5.2 Self-healing materials 

 Materials that can self-repair have attracted enormous interest in recent years, and are 

expected to play important roles in many engineering applications.233 Self-healing materials can 

help reduce replacement cost, increase material performance, and improve safety. A seminal report 

by White et al. demonstrated the use of UF MCs containing dicyclopentadiene dispersed in an 

epoxy matrix containing Grubbs’ catalyst (Figure 23).53 The core material exuded when the 

capsules were under stress, due to induced crack formation, and polymerized when in contact with 

the catalyst. Relative to the damaged material, a significant improvement in the mechanical 

integrity of the material was obtained after healing. 

 

5.3 Multi-walled microcapsules 

MCs with varying wall composition have been prepared by relying on two different 

encapsulation processes, namely interfacial and in situ polymerization. Multi-walled MCs were 

obtained by using either a two-step or a one-step procedure. In the two-step approach, polyurethane 

capsules were first prepared by interfacial polymerization between a diisocyanate and a polyamine 
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compound.234 The recovered MCs were subsequently used as a core for the deposition of a PUF 

wall by in situ polymerization. A one-step procedure was also reported by Caruso et al. involving 

the incorporation of a polyurethane prepolymer with isocyanate groups into the core material (ethyl 

phenylacetate).117 Dispersion of the binary core material in an aqueous solution of urea with further 

addition of formaldehyde yielded PU/UF MCs with a wall thickness ranging from 200 nm to 675 

nm (Figure 24). MCs with a high thermal stability were thus obtained. 

 

5.4 Binary microcapsules 

 MCs have been used as Pickering stabilizers in the preparation of larger MCs. For instance, 

UF MCs encapsulating dibutylphthalate and having diameters approximating 1.4 μm acted as 

stabilizers for the dispersion of dicyclopentadiene. The latter compound was used as a core 

material and was subsequently encapsulated by interfacial polymerization of an isocyanate and a 

polyol (Figure 25).235 This strategy allowed the preparation of MCs containing two different cores. 

Such capsules could prove useful in self-healing material applications for instance. 

 

5.5 Porous microcapsules 

 Nonionic surfactants can self-assemble into micelles above their cloud points. For example, 

upon an increase in temperature, dehydration of polyoxyethylene nonyl phenyl ether (NP-10) 

resulted in aggregation and micelle formation. When used during the encapsulation process, it was 

shown that these micelles could deposit at the surface of a core material, and migrate to the MC 

surface during the UF wall formation. Dissociation of the micelles upon lowering of the 

temperature resulted in pore formation on the MCs surface (Figure 26).231 The pore size could be 

controlled by adjusting the temperature, and ranged from 5 to 200 nm in diameter. Porous MCs 
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displaying a large specific surface area, and adjustable permeability could prove useful for the 

controlled release of a core material in applications such as drug or catalyst delivery. 

 

5.6 Cell encapsulation 

Major efforts have been made by researchers to develop encapsulation systems capable of 

a controlled and sustained delivery of a core material. Such systems may be of central importance 

in applications such as drug or pesticide delivery. Conventional single-walled MCs often do not 

provide sufficient control over the release of a core material, and are limited by a high initial burst 

release. Cells from microorganisms represent an attractive encapsulation system, and have been 

used in the encapsulation of various compounds (pharmaceuticals, anti-oxidants, essential oil, 

etc.). Zhang et al. demonstrated that algae cells are effective for the encapsulation of the pesticide 

tebuconazole (Figure 27).236 Further modification of the negatively-charged cell membrane with 

UF prepolymers resulted in MCs displaying controlled core-release and a reduced burst release 

effect. The efficacy of these materials was demonstrated in the sustained protection of wheat. 

 

6 Conclusions 

Microencapsulation is a versatile process that has allowed for the rational design of a wide 

range of advanced and functional materials. The protection of an active core material for targeted 

release, or the isolation of reactive compounds from the environment into micrometer-sized 

domains has spawned numerous applications. Examples of encapsulated materials include 

pharmaceuticals, agrochemicals, inks, oils, fragrances, perfumes and adhesives. Amino resin 

polymers display unique properties, such as high mechanical strength, good thermal stability, 

water and chemical resistance, low permeability, and low cost, making them attractive as wall-
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forming materials. The encapsulation process using urea and/or melamine and formaldehyde relies 

on the complex chemistry of amino resins to form a polymer network. Both the composition and 

operating conditions employed during the preparation of MCs are important considerations. 

Chemical, physical, and physiochemical properties of the system all affect the MC formation and 

the resulting material properties. Although amino resin MCs have been extensively employed for 

more than 50 years, the complexity of the process renders the selection of the experimental 

parameters challenging, and thus it has often remained an empirical process. Recently, a renewed 

interest in the field has led to a number of investigations probing the influence of various 

parameters, and has allowed for a more detailed description of the encapsulation process. 

Mechanistic models have emerged describing microencapsulation by in situ polymerization of 

amino resins. A complete understanding, however, is still lacking, and further research is needed 

to predict accurately the outcome of the encapsulation process. New characterization methods, as 

well as advances in polymer chemistry, colloidal science, nanotechnology, and engineering are 

expected to help bring greater understanding to this exciting field. Furthermore, promising avenues 

of research are expected to yield increasingly functional and smart materials combining a range of 

properties. Applications such as phase change-materials, self-healing structures, electronic inks, 

thermo-sensitive paper, smart coatings, and drug-delivery vehicles are just a few examples that 

illustrate the versatility and scope of the microencapsulation technology. 

 

7 References and footnotes 

 
* Also referred to as fill, payload, encapsulate, nucleus, internal phase, active ingredient, or 

active agent. 

f Also known as shell, shell wall, coating, external phase or membrane. 
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j Microencapsulation techniques are sometimes divided among three categories, viz. chemical, 

physico-chemical, and physico-mechanical methods.239,240 

sIn situ polymerization in some instances is regarded as a type of interfacial polymerization.  
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Captions 

 

Figure 1. Chemical structures of formaldehyde, urea, and melamine. 

 

Figure 2. Illustration of the microencapsulation process via in situ polymerization. 

 

Figure 3. Illustration of some important chemical encapsulation processes (not to scale). 

Coacervation process: (a) Dispersion of a core material in a homogeneous polymer solution; (b) 

Formation of a coacervate phase upon a change in solution conditions; (c) coating of the core with 

the coacervate phase, and onset of coalescence; (d) formation of the shell. Interfacial 

polymerization: (a’) Dissolution of monomer A in the continuous phase, and monomer B in the 

dispersed phase; (b’) diffusion of the monomers to the interface; (c’) polymerization reaction 

between the monomers. In situ polymerization: (a”) Dissolution of the monomers A and B in the 

continuous phase; (b”) polymer formation; (c”) precipitation of the polymer and deposition at the 

interface. Adapted with permission from Ref. 12. Copyright 1975 Wiley-VCH. 

 

Figure 4. Number of academic articles and patents published per year. (From Orbit™ and Web of 

Science™, using combinations of the keywords: *capsul*, formaldehyde, urea, melamine, amino 

resin and aminoplast.) 

 

Figure 5. General process for the synthesis of microcapsules by in situ polymerization. 

 

Figure 6. Reaction rate constants as a function of pH for the addition and condensation reactions 

in urea-formaldehyde aqueous solutions at 35 °C. U = urea; F = formaldehyde; UF = urea-
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formaldehyde; MMU = monomethylol urea; DMU = dimethylol urea. The addition reaction rate 

constant k = 0.56 × 10-4 + 0.14 [H+] + 1.7 [HO-], and condensation reaction rate constant are 

obtained from de Jong and de Jonge.71,74 

 

Figure 7. Schematic of the composition of urea-formaldehyde solutions during resin synthesis. 

Solution (a) before and (b) after flocculation by dilution. Adapted with permission from Ref. 101. 

Copyright 2010 Wiley. 

 

Figure 8. (a) Evolution of the pH, temperature, and capsule morphology during the 

microencapsulation of dicyclopentadiene with poly(urea-formaldehyde). (b) Formation of a binary 

surface composed of a smooth inner layer, and a rough outer surface. Reproduced with permission 

from Ref. 112. Copyright 2003 Taylor and Francis. 

 

Figure 9. Evolution of the MF surface thickness with the wall material concentration (cw) over the 

total droplet surface area (A) during encapsulation of tetradecene. A critical capsule wall ca. 100 

nm can be noted. Adapted with permission from Ref. 171. Copyright 2008 Wiley. 

 

Figure 10. Equilibrium configurations taking place between two liquid phases (phase-1, and 

phase-3) dispersed in a third liquid medium (phase-2) for different sets of Si values. Adapted with 

permission from Ref. 177. Copyright 1970 Elsevier. 

 

Figure 11. Surface and interfacial tension of melamine-formaldehyde resin. Reproduced with 

permission from Ref. 171. Copyright 2008 Wiley. 
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Figure 12. Interfacial tension of amino resins composed of formaldehyde (FA), urea (U), 

melamine (M), and/or etherified methylol melamine (MeM). Ethanolamine (EA), diethanolamine 

(DEA), and triethanolamine were used as modifiers. Adapted with permission from Ref. 166. 

Copyright 1990 Akademie. 

 

Figure 13. Evolution of the surface tension, melting enthalpy, and pH during the encapsulation 

reaction of n-hexadecane with etherified melamine-formaldehyde resin. Reproduced with 

permission from Ref. 181. Copyright 2009 Elsevier. 

 

Figure 14. Effect of the pH on the surface tension during the encapsulation of n-hexadecane with 

melamine-formaldehyde in presence of various amounts of surfactants (Tween-20 and Brij-35) in 

water. Reproduced with permission from Ref. 181. Copyright 2009 Elsevier. 

 

Figure 15. Schematic illustration of the adsorption of surfactants at the core/wall interphase during 

microencapsulation. a) Poly(ethylene-alt-maleic anhydride) introduced reactive sites favorable to 

membrane formation, while b) SDS and c) Solsperse 17,000 hindered further deposition of poly(E-

MA). Adapted with permission from Ref. 200. Copyright 2004 Taylor and Francis. 

 

Figure 16. Optical micrographs of microcapsules prepared using poly(ethylene-alt-maleic 

anhydride) in varying concentration: (a) 0.2 wt %, (b) 0.4 wt %, and (c) 0.67 wt %. Reproduced 

with permission from Ref. 160. Copyright 2010 Elsevier.  
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Figure 17. Proposed model for the poly(urea-formaldehyde) microcapsule formation in presence 

of titania nanoparticles. Reproduced with permission from Ref. 204. Copyright 2001 Wiley. 

 

Figure 18. (a) Poly(urea-formaldehyde)-iron oxide nanoparticle microcapsules dispersed in water, 

and collected with a magnet on the side of a beaker. Reproduced with permission from Ref. 206. 

Copyright Springer 2009 (c) Schematic of the effect of layered nanosilicates on the diffusion of a 

core material. Reproduced with permission from Ref. 169. Copyright Wiley 2008. 

 

Figure 19. Effect of NH4Cl salt on the pH during the encapsulation of tetrachloroethylene with 

urea-formaldehyde. Reproduced with permission from Ref. 132. Copyright 2013 Wiley. 

 

Figure 20. Variation of the average diameter of poly(urea-formaldehyde) microcapsules with the 

agitation rate. Reproduced with permission from Ref. 112. Copyright 2003 Taylor and Francis. 

 

Figure 21. Different propellers used for the formation of poly(urea-formaldehyde) microcapsules: 

(a) pitched-blade metal turbine; (b) v-shaped glass propeller; (c) glass disc; (d) marine propeller. 

Reproduced with permission from Ref. 224. Copyright 2012 Elsevier. 

 

Figure 22. Schematic illustration of the microencapsulation process by in situ polymerization. 

Reproduced with permission from Ref. 31. Copyright 2015 Elsevier B.V. 

 

Figure 23. Self-healing material prepared by dispersing urea-formaldehyde microcapsules 

containing a healing agent: (a) The propagation of cracks in the matrix; (b) Rupture of the 
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microcapsules; (c) Release of the healing agent that polymerizes upon interaction with a catalyst. 

Reproduced with permission from Ref. 53. Copyright 2001 Nature Publishing Group. 

 

Figure 24. AFM phase image displaying the multi-wall composition of a microtomed 

poly(urethane)/poly(urea-formaldehyde) microcapsule prepared by a one-step process. 

Reproduced with permission from Ref. 117. Copyright 2010 American Chemical Society. 

 

Figure 25. Binary microcapsule obtained by Pickering emulsion with UF microcapsules. 

Reprinted with permission from Ref. 235. Copyright 2008 The Royal Society of Chemistry. 

 

Figure 26. Schematic illustration of the preparation of porous microcapsules by in situ 

polymerization of melamine-formaldehyde in presence of self-assembled surfactants (micelles), 

A-G. H. SEM images of the porous microcapsules obtained from this method. Reproduced with 

permission from Ref. 231. Copyright 2011 Elsevier B.V. 

 

Figure 27. Illustration of the preparation of microorganism-based microcapsules by encapsulation 

of algae cells within poly(urea-formaldehyde) for the controlled release of a load material. Adapted 

with permission from Ref. 236. Copyright 2015 The Royal Society of Chemistry. 

 

 

Table 1. Common methods used in microencapsulation processes. 

 

Table 2. Important methods used in the characterization of microcapsules. Adapted from Ref. 107. 
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Table 3. Techniques used for the characterization of the mechanical properties of microcapsules. 

Adapted from Ref. 107. 

 

Table 4. Hansen solubility parameters, solubility sphere radius (R0), solubility parameter distance 

(Ra), and relative energy difference (RED) of representative compounds at 25 °C.237 

 

Table 5. Order of importance (and optimal values) of the experimental conditions used in the 

encapsulation of epoxy resin in urea-formaldehyde microcapsules with respect to different 

determining parameters. Results obtained from orthogonal studies from Refs. 56,175 and 111. 

 

Table 6. Suggested HLB values for surfactants used in various types of applications.183,185 

 

Scheme 1. Condensation and alkoxylation reactions of formaldehyde in water-methanol mixtures. 

Formaldehyde is readily hydrated to methylene glycol in water (Kh = 1271 at 25 °C),88 and further 

reactions form poly(methylene glycol)s. In presence of an alcohol, alkoxylated species are also 

formed. 

 

Scheme 2. Equilibrium speciation for formaldehyde solutions in water-ethanol mixtures. 

Equilibrium constants were recalculated from the data reported by Gaca et al.90 

 

Scheme 3. Overview of the reactions taking place during the polymerization of urea and 

formaldehyde, ni ≥ 0. Analogous reactions occur for melamine. 



 79 

 

Scheme 4. Proposed reaction mechanism and calculated relative energies for reaction 

intermediates involved in the acid-catalyzed reaction of urea and formaldehyde, computed by 

density functional theory by Li et al. Adapted from Ref. 238. 

 

Scheme 5. Reactions of ammonium chloride with formaldehyde in water. 
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Table 1. Common methods used in microencapsulation processes. 

Chemical methods (type A) Physical/mechanical methods (type B) 

Interfacial polymerization 

In situ polymerization 

Polycondensation 

Coacervation 

Phase separation 

Layer-by-layer assembly 

Spray drying 

Multiple nozzle spraying 

Fluidized bed coating 

Centrifugal extrusion 

Extrusion 

Microfluidic channels 
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Table 2. Important methods used in the characterization of microcapsules. Adapted from Ref. 

107. 

Property Method Resolution 

Size,  size 

distribution 

Dynamic light scattering (DLS) 1 nm – 1 µm 

 Laser diffraction (LD) 10 nm – 3 mm 

 Scanning electron microscopy (SEM) > 10 nm 

 Optical microscopy (OM) > 400 nm 

 Chord length measurement: 

Focused beam reflectance measurement (FBRM) 

Spatial filtering velocimetry (SFV) 

 

3 µm – 3 mm 

50 µm – 6 mm 

 Photometric stereo imaging > 20 µm 

 Sieve analysis > 38 µm 

Surface roughness SEM qualitative 

 Atomic force microscopy (AFM) < 1 nm 

 Interferometry < 1 nm 

Chemical 

composition 

Fourier-transform infrared (FTIR) and Raman 

spectroscopies 

µm 

 X-ray photoelectron spectroscopy (XPS) < 100 nm 

 Time-of-flight secondary-ion mass spectrometry 

(TOF-SIMS) 

1-2 nm 

 Energy-dispersive X-ray spectroscopy (EDS) < 2 µm 

Zeta potential Streaming potential - 
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 Electrophoresis < 30 µm 

Wall thickness SEM, ESEM > 10 nm 

 Focused ion beam (FIB) (coupled with SEM) > 10 nm 

 Transmission electron microscopy (TEM) 0.2 nm 

 Confocal laser scanning microscopy (CLSM) 0.2 – 0.5 µm 

 Small-angle X-ray scattering (SAXS) < 200 nm 

Pore size X-ray computed tomography (CT) 1-10 µm 

 AFM < 1 nm 

 Positron emission annihilation lifetime spectroscopy 

(PALS) 

< 30 nm 

Thermal properties Differential scanning calorimetry (DSC)  

 Thermo-gravimetric analysis (TGA)  

Crystallinity Wide-angle X-ray diffraction (XRD)  
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Table 3. Techniques used for the characterization of the mechanical properties of microcapsules. 

Adapted from Ref. 107. 

Bulk characterization Individual microcapsule 

Mechanical shaking Optical tweezers 

Bubble column Shear flow 

Turbine reactor Micropipette aspiration 

Compression AFM 

 Micromanipulation 
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Table 4. Hansen solubility parameters, solubility sphere radius (R0), solubility parameter 

distance (Ra), and relative energy difference (RED) of representative compounds at 25 °C.237 

 [(MPa)½]  

Compound δ δd δp δh R0 Ra
a REDa 

Urea-formaldehyde resin  

(Plastopal H, BASF)162 
26.9 20.8 8.3 15.0 12.7 - - 

Epoxy resin (Epikote 1001, Shell)162 26.3 20.4 12.0 11.5 12.7 5.2 0.4 

Epoxy resin (Epon 1001)162 23.2 18.1 11.4 9.0 9.1 8.6 0.7 

Acetone 20.1 15.5 10.4 7.0 - 13.4 1.1 

Benzene 18.6 18.4 0.0 2.0 - 16.2 1.3 

Chloroform 19.0 17.8 3.1 5.7 - 12.2 1.0 

Diethyl ether 15.8 14.5 2.9 5.1 - 16.9 1.3 

Dioxane-1,4 20.5 19.0 1.8 7.4 - 10.6 0.8 

Ethanol 26.0 15.8 8.8 19.4 - 10.9 0.9 

Styrene 19.0 18.6 1.0 4.1 - 13.8 1.1 

Tetrahydrofuran 19.4 16.8 5.7 8.0 - 10.9 0.9 

Toluene 18.2 18.0 1.4 2.0 - 15.7 1.2 

Water 47.9 15.5 16.0 42.4 - 30.4 2.4 

Xylene (o) 18.0 17.8 1.0 3.1 - 15.2 1.2 

a. Values relative to urea-formaldehyde resin. 
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Table 5. Order of importance (and optimal values) of the experimental conditions used in the 

encapsulation of epoxy resin in urea-formaldehyde microcapsules with respect to different 

determining parameters. Results obtained from orthogonal studies from Refs. 56,175 and 111. 

Determining parameter Variable 1 Variable 2 Variable 3 Variable 4 

Viscosity Time 

(1 h) 

Urea/FA mole ratio 

(1:1.75) 

Temp. 

(75 °C) 

Initial pH 

(9) 

Yield 

 

Emulsifier 

SDBS (1.5 wt %) 

Time 

(3 h) 

Core/shell 

(1.4:1) 

Stirring rate 

(250 rpm) 

Core content Core/shell Time Stirring rate  

Diameter Stirring rate Time Core/shell  

Shell thickness Stirring rate Core/shell Time Emulsifier 

Yield Initial pH 

(pH 3.5) 

Heating rate 

(0.5 °C·min-1) 

Wall conc. 

(36 g·L-1) 

NaCl 

(50 g·L-1) 
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Table 6. Suggested HLB values for surfactants used in various types of applications.183,185 

Type of application HLB Values 

Water-in-oil emulsifier 

Wetting agent 

Oil-in-water emulsifier 

Detergent 

Solubilizer 

4-6 

7-9 

8-18 

13-15 

10-18 
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