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Polymer assembly encapsulation of lanthanide 

nanoparticles as contrast agents for in vivo micro-CT 

Charmainne Cruje†,‡, Joy Dunmore-Buyze†,‡, Jarret P. MacDonald§, David W. Holdsworth†,‡, 

Maria Drangova†,‡, Elizabeth R. Gillies*,§,|| 

†Department of Medical Biophysics, ‡Robarts Research Institute, §Department of Chemistry, and 

||Department of Chemical and Biochemical Engineering, The University of Western Ontario, 

1151 Richmond Street, London, Ontario N6A 5B7, Canada 

ABSTRACT 

Despite recent technological advancements in microcomputed tomography (micro-CT) and 

contrast agent development, pre-clinical contrast agents are still predominantly iodine-based. 

Higher contrast can be achieved when using elements with higher atomic numbers, such as 

lanthanides; lanthanides also have x-ray attenuation properties that are ideal for spectral CT.  

However, the formulation of lanthanide-based contrast agents at the high concentrations required 

for vascular imaging presents a significant challenge. In this work, we developed an erbium-based 

contrast agent that meets micro-CT imaging requirements, which include colloidal stability upon 

redispersion at high concentrations, evasion of rapid renal clearance, and circulation times of tens 

of minutes in small animals. Through systematic studies with poly(ethylene glycol) (PEG)-

poly(propylene glycol), PEG-polycaprolactone, and PEG-poly(L-lactide) (PLA) block 
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copolymers, the amphiphilic block copolymer PEG114-PLA53 was identified to be ideal for 

encapsulating oleate-coated lanthanide-based nanoparticles for in vivo intravenous administration. 

We were able to synthesize a contrast agent containing 100 mg/mL of erbium that could be 

redispersed into colloidally stable nanoparticles in saline after lyophilization. Contrast 

enhancement of over 250 HU was achieved in the blood pool for up to an hour, thereby meeting 

the requirements of live animal micro-CT. 
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INTRODUCTION 

With the ultimate goal of developing methods to treat human disease, small animal models are 

used extensively in cardiovascular, orthopedic, and cancer research.1-3  The advantages of using 

small animals include short gestation times, low maintenance costs and ease of genetic 

manipulation.4 In order to study disease at scales suitable for small animals, high-resolution 

imaging techniques (i.e., micro-imaging) have been developed; these include micro magnetic 

resonance imaging,5, 6 micro positron emission tomography,7 micro-ultrasound,8, 9 and micro 

computed tomography (micro-CT).10 Among these, micro-CT has been the most utilized, based on 

scientific publications in the last five years. 

Micro-CT’s ubiquity is attributable to the fact that the modality is quantitative, three-

dimensional, non-destructive, fast and cost-effective. Contrast in micro-CT is derived from the 

differential attenuation of x-rays by various tissues. Unfortunately, soft tissues, which have similar 
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densities, have little differential CT contrast and exogenous agents are required to provide contrast.  

For example, to image the vasculature, x-ray attenuating contrast agents are injected intravenously 

to “opacify” the vessels during the acquisition of the micro-CT scan. With these contrast agents, 

vascular imaging by micro-CT can potentially be utilized to reliably track the development of 

blood vessels during the process of angiogenesis and in studying the effect of novel therapies for 

re-vascularization.11 For human imaging, CT contrast agents are typically small iodinated 

molecules, which are cleared within a few minutes through the renal system.  However, micro-CT 

scan times can be as long as tens of minutes and successful imaging of the vasculature requires the 

use of contrast agents that clear from the blood over extended time periods. These agents are 

referred to as “blood pool” contrast agents. 

Several CT blood pool contrast agents are available commercially for in vivo small animal 

research.12, 13 These have been made possible by advances in nanotechnology and consist of 

particles large enough to evade immediate renal clearance (i.e. > 10 nm).14 Initially, commercially 

available nanoparticle-based blood-pool contrast agents were iodine-based to take advantage of 

the strong attenuation of iodine at low energies (k-edge = 33.2 kEv) and included Fenestra VC 

(containing 50 mg/mL of iodine) and eXia 160 XL (containing 160 mg/mL of iodine).13, 15 More 

recently gold-based agents have been developed (e.g. AuroVist 15 nm, containing 200 mg/mL of 

gold), which take advantage of the high density of gold.16 These agents have been developed with 

the intent to deliver a high loading of metal (x-ray attenuator) in a small volume of contrast agent 

and thereby to provide higher contrast between the vessels and surrounding tissue. 

Another class of metals appropriate for CT contrast agents is the lanthanides.  These elements 

are of particular interest because they have k-edges near the average energies used in micro-CT 

(between 80 kVp and 120 kVp). This property makes the lanthanides ideally suited to use with 
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specialized micro-CT techniques that take advantage of the spectral properties of materials, such 

as dual-energy imaging and spectral CT. Of the lanthanides, gadolinium has been used most 

extensively as a contrast agent for magnetic resonance imaging (MRI). Polymer particles decorated 

with gadolinium, such as the chelated derivative of diethylenetriaminepentaacetic acid and Gd(III) 

on a cross linked polymer nanogel, have been synthesized and used for vessel imaging of mice, 

but have Gd loading that is too low for CT imaging (typically < 0.5 mg/mL).17-19  

Lanthanide-based nanoparticles have also been explored for imaging, largely due to their 

abilities to alter proton relaxation times in MRI in the case of gadolinium20, 21 or their photon 

upconversion capabilities in the case of NaLnF4 (where Ln is a lanthanide and the system is co-

doped).22-24 However, such particles are usually synthesized with hydrophobic ligands,25 making it 

challenging to disperse them with high stability in blood. Chatterjee et al. achieved this by coating 

lanthanide-based nanoparticles with polyethyleneimine, reaching concentrations of 4.4 mg/mL 

(used subcutaneously for upconversion luminescence imaging).22 Budijono et al. explored the 

encapsulation of lanthanide-based nanoparticles in block copolymer assemblies, and demonstrated 

the stability of these assemblies in serum media at low concentrations (< 1 mg/mL).24 Similary, 

Zhu et al. used pH-responsive block copolymers to encapsulate gadolinium-based nanoparticles, 

and demonstrated that they could stabilize the nanoparticles in aqueous solution at low 

concentrations (< 0.1 mg/mL).21  However, to date only Liu et al., have synthesized a lanthanide 

contrast agent with a concentration high enough for micro-CT imaging.26 They encapsulated 70 

mg/mL of ytterbium in 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-terminated 

poly(ethylene glycol) (PEG) and demonstrated circulation in the blood pool for approximately 20 

minutes.  However, even higher lanthanide concentrations and blood circulation times are required 

for high resolution imaging of the vasculature. 
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In this study, we present a simple and systematic method to prepare a lanthanide-based contrast 

agent for micro-CT applications, which require high contrast-element loading (> 100 mg/mL 

preferred) and long circulation times (ideally > 30 minutes). The high lanthanide concentration 

poses a significant challenge, particularly when paired with the need to add polymers, which are 

required to achieve long circulation times. Erbium, which we have demonstrated to be an excellent 

contrast agent for ex vivo imaging, was selected as the lanthanide.27 Oleate-coated NaErF4 

nanoparticles (ErNP) were synthesized and encapsulated into core-shell nanoassemblies via 

nanoprecipitation using a series of amphiphilic block copolymers (Figure 1). A sequence of 

optimization steps was then performed to identify an ideal polymer, which encapsulates a high 

lanthanide content while remaining colloidally stable after redispersion in saline and a mouse-

blood mimic. Once the ideal polymer was identified, the lanthanide-based contrast agent was 

evaluated in vivo over a period of one hour. To our knowledge, this is the first demonstration of 

the successful synthesis of an in vivo lanthanide-based blood pool agent that can be dispsersed into 

colloidally stable assemblies containing 100 mg/mL of erbium. 

 

 

Figure 1. Schematic representation of self-assembled erbium-based nanoparticles as a pre-clinical 

blood pool contrast agent. 
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EXPERIMENTAL SECTION 

Materials and General Methods 

Reagents were purchased from commercial suppliers as described in the Supporting Information 

(SI) and were used without further purification unless otherwise noted. Methods used in the 

synthesis and characterization of the materials are also presented in the SI document. 

 

Nanoprecipitation for self-assembly of polymeric nanoparticles containing erbium 

nanoparticles  

Erbium nanoparticles (ErNP) were synthesized by a previously reported method.28, 29 The ErNP 

were self-assembled with purchased poly(ethylene glycol) (PEG)-poly(propylene glycol) (PPG) 

triblock copolymers (PEG76-PPG22-PEG76 and PEG137-PPG34-PEG137 where the subscripts indicate 

the degree of polymerization of the blocks), or synthesized diblock copolymers of PEG-poly(e-

caprolactone)(PCL) (PEG45-PCL20, PEG45-PCL51, PEG114-PCL51, PEG114-PCL97) or PEG-poly(l-

lactide) (PEG45-PLA25, PEG45-PLA52, PEG114-PLA53, PEG114-PLA122).30, 31 ErNP (2 mg) were 

dissolved in 0.1 mL of tetrahydrofuran (THF).  Separately, 8 mg of copolymer was dissolved in 

0.1 mL of THF. These solutions were then combined and added dropwise to 1.8 mL of deionized 

water under magnetic stirring. After 1 hour, stirring was stopped and the solution was left uncapped 

for 12 hours to allow for organic solvent evaporation. The solutions were then dialyzed against 

100 mL of deionized water for 2 days with 5 solvent changes. A 450 nm syringe filter was used to 

remove large aggregates and the samples were characterized by dynamic light scattering (DLS), 

transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-

MS). 
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Colloidal stability of the polymeric nanoparticles 

The sterile polymeric nanoparticles containing ErNP were lyophilized prior to redispersion in 

saline. Saline is used as the solvent of the NPs prior to intravenous injection in vivo because it is 

isotonic with blood. Therefore the particles must remain colloidally stable in that environment. 

DLS size measurements were performed on the redispersed ErNP and the average sizes of the 

samples were observed for up to one hour. 

 

Varying the polymer content of the nanoparticles 

The polymeric nanoparticles containing ErNP that remained colloidally stable after freeze-

drying and redispersion in saline, and that encapsulated relatively higher erbium amounts were 

selected (PEG114-PLA53). Solutions with varying mass ratios were prepared. Synthesized ErNP 

(80 mg dissolved in 4 mL of THF) were added to 320, 160, 80 or 40 mg of PEG114-PLA53 in 4 mL 

of THF. These solutions were combined and added dropwise to 100 mL of deionized water under 

magnetic stirring. After 1 hour, stirring was stopped and the suspension was left uncapped for 12 

hours to allow for organic solvent evaporation. The suspensions were then dialyzed against 500 

mL of deionized water for 2 days with 5 solvent changes. A 450 nm syringe filter was used to 

remove large aggregates and the samples were characterized by DLS, TEM and ICP-MS. The 

samples were lyophilized, sterilized and re-dispersed in 400 µL of saline. 10 µL of the samples 

were added to 990 µL of saline or mouse serum mimic for an hour-long time-course DLS study. 

The mouse serum mimic was pH 7.4 phosphate buffered saline containing 0.5 µg/mL mouse 

immunoglobulins, 1 wt%  bovine serum albumin and 0.1 wt% sodium azide. Colloidal stability in 

a mouse serum mimic in vitro will serve as an indicator of its stability in vivo. An increase in the 
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average size signifies aggregation, which would lead to immune system detection followed by 

clearance from the blood pool in vivo. 

 

General micro-CT imaging and analysis methods 

Micro-CT images were acquired using the GE Locus Ultra (London, ON) with a protocol 

previously used to evaluate contrast agent distribution in vivo.15, 32 Briefly, 1000 views (16 ms per 

view) were acquired at 80 kVp, 55 mA over 360° and reconstructed using a cone-beam 

reconstruction algorithm. The resulting images have a voxel size of 150 × 150 × 150 µm. Images 

were analyzed using MicroView (Parallax Innovations, London, ON) and CT contrast was 

reported in Hounsfield Units (HU – a standard linear scale of x-ray attenuation coefficient, where 

air = -1000 HU and water = 0 HU). All HU values were measured over a volume of 450 × 450 × 

150 µm. 

 

Micro-CT imaging of erbium-containing polymeric nanoparticles 

The relationship between CT contrast and erbium concentration was first determined by micro-

CT. Erbium chloride was diluted in saline at erbium concentrations of 5, 10, 20 and 100 mg/mL, 

which acted as calibration standards. The linear regression between CT contrast (in HU) and 

erbium concentration was then used to measure the erbium concentrations resulting when 40 mg 

of each of the lyophilized 1:1 and 0.5:1 PEG114-PLA53:ErNP formulations were separately 

dispersed in 0.2 mL of saline.  

 

Toxicity of the contrast agent 
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The 1:1 and 0.5:1 PEG114-PLA53:ErNP mass ratio formulations were tested. Details of these 

experiments are described in the SI document. Briefly, an in vitro cell viability assay was done 

using C2C12 mouse myoblast cells from Millipore Sigma (Oakville, ON). The cells were 

incubated with the contrast agent for 24 hours, after which cell viability was measured using a 3-

(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.  

Following in vitro tests, the in vivo toxicity of the contrast agent was evaluated using the dorsal 

interscapular subcutaneous tissue of C57BL/6 male mice (25-30 g). All animal studies were 

carried out in accordance with the regulations set out by the University of Western Ontario’s 

Council on Animal Care, in agreement with the ARRIVE guidelines, and were carried out in 

accordance with the U.K. Animals Act, 1986 and associated guidelines.  

 

Intravenous administration of the contrast agent and characterization of distribution in vivo 

Five C57BL/6 male mice (25-30 g) were anesthetized initially with 4% isoflurane, and then 

1.5% for maintenance, in O2 via a nose cone placed on the snouts of the animals. The tail veins 

were catheterized using PE-20 polyethylene tubing.  For each mouse, images were first acquired 

prior to contrast administration. The contrast agent (0.2 mL) was injected over a period of 

3 minutes and three scans were acquired, starting 2 minutes following the end of injection and 

ending 60 minutes post injection. The 1:1 PEG114-PLA53:ErNP (mass ratio) was tested in 3 mice 

and the 0.5:1 mass ratio formulation  was evaluated in 2 mice. 

 

RESULTS AND DISCUSSION 

Synthesis and characterization of oleate-coated ErNP 
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NaErF4 nanoparticles were synthesized based on a previously reported method.28, 29 DLS 

measurements of ErNP in THF reported a Z-average diameter of 50 ± 1 nm and a polydispersity 

index (PDI) of 0.18 ± 0.02 (Figure 2a and Figure S2). These results were supported by TEM 

imaging (Figure 2b). 

 

 

Figure 2. a) Volume diameter distribution of ErNP in THF measured by DLS. b) A TEM image of 

the oleate-coated ErNP. 

 

Synthesis and characterization of diblock copolymers 

The ErNP are oleate-coated, which makes them incompatible with the aqueous blood pool.33 It 

was envisioned that by nanoprecipitation of the ErNP with amphiphilic block copolymers, 

assemblies containing hydrophobic ErNP in the hydrophobic polymer cores and hydrophilic 

stabilizing polymer coronas would be formed (Figure 1). Polymers are relatively easy to prepare, 

are colloidally stable even at low concentration, and can be synthesized at different lengths using 

various monomers, making them tunable and versatile materials.34 We used PEG as the hydrophilic 
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block for its well-known stealth properties against the immune system.35, 36 In lieu of displacing 

the oleate on the ErNP surface with polymers,29, 37 we chose to synthesize polymeric micelles by 

nanoprecipitation, which is a fast, reproducible, and cost-effective means of suspending 

hydrophobic cargo in polar solvents.38 Displacing the oleate on the ErNP surface would favor the 

suspension of individual nanoparticles in solution, which is not a requirement in micro-CT. 

To identify a carrier that would encapsulate high erbium content while surviving lyophilization 

and redispersion in saline, a series of amphiphilic block copolymers was studied (Figure 3, Table 

1). Two PEG-PPG-PEG triblock copolymers (commonly referred to as poloxamers), which are 

commercially available, cost-effective and are FDA-approved for intravenous administration in 

humans, were used to form the polymeric assemblies.39 In addition, several block lengths of PEG-

PCL and PEG-PLA were synthesized and studied. These diblock copolymers were selected 

because they are used clinically as therapeutic drug carriers and are also currently in further clinical 

trials.40 The characteristics of the polymeric micelles may change upon varying the copolymer’s 

properties (i.e. hydrophobicity of the non-polar block, total block length, and PEG ratio).41 

 

 

Figure 3. Chemical structures of the amphiphilic block copolymers that were used to form the 

polymeric assemblies. 
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Table 1. SEC and 1H NMR characterization results of diblock copolymers. aDetermined by 1H 

NMR spectroscopy; bDetermined by SEC. 

 

PEG-PCL and PEG-PLA were synthesized using PEG monomethyl ether (2000 or 5000 g/mol) 

as the initiator and the block ratios were tuned by varying the equivalents of e-caprolactone or L-

lactide to achieve PEG mass fractions (f) of approximately 0.5 and 0.3. Methanesulfonic acid was 

used as the polymerization catalyst for the synthesis of PEG-PCL, while 1,5,7-

triazabicyclo[4.4.0]dec-5-ene was used as the catalyst for PEG-PLA synthesis.30, 31 A 1:1 ratio of 

catalyst:initiator was used in each case. Characterization of the diblock copolymers was performed 

using 1H nuclear magnetic resonance (NMR) spectroscopy (Figures S3-S10) and size exclusion 

chromatography (SEC) relative to polystyrene standards (Figures S11-S14) and the results are 

summarized in Table 1. Typical signals of PEG, PCL and PLA components were utilized to 

calculate the molar ratios of polymerized monomers to PEG and thus the number average 

Copolymer PEG molar 
mass (g/mol) 

Monomer 
feed (equiv.) 

PCL or PLA 
molar massa Mn

a Mn
b Đb f valuea 

PEG76-PPG22-PEG76 6700 - - 8400 - - 0.80 

PEG137-PPG34-PEG137 12000 - - 14600 - - 0.82 

PEG45-PCL20 2000 18 2300 4300 5600 1.1 0.47 

PEG45-PCL51 2000 35 5800 7800 6300 1.4 0.26 

PEG114-PCL51 5000 44 5900 10900 9500 1.1 0.46 

PEG114-PCL97 5000 88 11100 16100 10300 1.3 0.31 

PEG45-PLA25 2000 22 2300 4300 5200 1.2 0.47 

PEG45-PLA52 2000 44 4700 6700 9600 1.1 0.30 

PEG114-PLA53 5000 56 4800 9800 10500 1.3 0.51 

PEG114-PLA122 5000 111 11000 16000 13500 1.4 0.31 
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molecular weight (Mn). The Mn and molar mass dispersities (Đ) were also measured by SEC. The 

f values were calculated from the NMR data, as this should provide the most accurate assessment 

of the block ratios. The values indicated for the poloxamers were taken from their respective 

specification sheets. Overall, the measured Mn values, particularly from NMR spectroscopy, and f 

values were in good agreement with the target structures.  

 

Polymer self-assembly and ErNP encapsulation 

First, the self-assembly of the block copolymers without ErNPs was investigated. The 

copolymers were dissolved in THF then this solution was added to water with stirring. After 

removal of THF by dialysis, the resulting nanoassemblies were characterized by DLS and TEM. 

The Z-average diameters measured by DLS ranged from 11 to 55 nm (Table 2, Figure S15), 

consistent with self-assembly into micelles and TEM images confirmed that solid spherical 

particles were formed (Figure S16). The PDIs ranged from 0.1 to 0.6, suggesting that some 

copolymers assembled into reasonably monodisperse nanoparticles (PDI < 0.3), whereas others 

exhibited a large distribution of sizes (PDI > 0.3). In general, the TEM results were in good 

agreement with the volume distributions obtained from DLS, except for both poloxamers (PEG76-

PPG22-PEG76 and PEG137-PPG34-PEG137). For these poloxamers, the volume distribution in DLS 

suggested the presence of small scatterers that could be unassembled copolymers in solution, 

whereas the corresponding TEM images showed larger nanoparticles that could result from 

aggregation during the drying process.  
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Table 2. Z-average diameters and PDIs obtained using DLS for the self-assembly of block 

copolymers without ErNP. Each assembly was prepared and measured in triplicate and the error 

measurements correspond to the standard deviations on these batches. 

Polymer Z-average diameter (nm) PDI 

PEG76-PPG22-PEG76 11 ± 2 0.6 ± 0.3 

PEG137-PPG34-PEG137 17 ± 3 1.0 ± 0.4 

PEG45-PCL20 20 ± 1 0.2 ± 0.1 

PEG45-PCL51 17 ± 2 0.1 ± 0.1 

PEG114-PCL51 18 ± 4 0.1 ± 0.1 

PEG114-PCL97 31 ± 4 0.2 ± 0.1 

PEG45-PLA25 26 ± 11 0.5 ± 0.2 

PEG45-PLA52 29 ± 8 0.4 ± 0.1 

PEG114-PLA122 31 ± 10 0.4 ± 0.2 

PEG114-PLA53 55 ± 8 0.2 ± 0.1 

 

 

Having confirmed the self-assembly behavior of the amphiphilic block copolymers alone, ErNPs 

were then added. Both the copolymer and ErNP were dissolved in THF and then nanoprecipitated 

into water to form suspensions of erbium-containing assemblies. The mass ratio of polymer:ErNP 

was 4:1. THF was removed by dialysis, then the suspensions were passed through a 0.45 µm filter. 

This filtration served to remove any ErNP that had not been encapsulated and consequently 

aggregated, as well as polymer-ErNP assemblies that were too large and would be preferentially 

cleared from the blood by the mononuclear phagocytic system (MPS).42, 43 The resulting assemblies 

were characterized by DLS and TEM (Figure 4, Table 3). The TEM images showed individual 
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ErNP or groups of ErNP across the grid, unlike the oleate-coated ones in Figure 2b, which 

displayed no specific organization or aggregation. This suggests the encapsulation of the ErNP 

within the amphiphilic block copolymers. It should be noted that the polymers were indiscernible 

in the TEM images because of the high contrast from the ErNP. The Z-average diameters that were 

measured by DLS ranged from 53 to 183 nm. This also supported the encapsulation of ErNP within 

the amphiphilic block copolymers, as these diameters were larger than those of the polymer-only 

micelles.  

When PEG114-PLA122 or any of the PEG-PCL diblock copolymers were used to form the 

assemblies, moderate PDIs (between 0.2 and 0.3) were observed. On the other hand, when using 

either poloxamers or the other PEG-PLA diblock copolymers good PDIs (< 0.2) were obtained. 

Because the contrast agent was simply required to remain in circulation (i.e. no tissue-targeting 

was required), obtaining low PDIs was not of utmost importance; meeting the size requirements 

that would allow evasion of immediate renal clearance and preferential uptake by the MPS was 

sufficient.  
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Figure 4. DLS volume (%) diameter distributions and the corresponding TEM images of polymer-

encapsulated ErNP using a) PEG76-PPG22-PEG76, b) PEG137-PPG34-PEG137, c) PEG45-PCL20, d) 

PEG45-PCL51, e) PEG114-PCL51, f) PEG114-PCL97, g) PEG45-PLA25, h) PEG45-PLA52, i) PEG114-

PLA53, and j) PEG114-PLA122. 
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Table 3. Characterization data for the polymer-encapsulated ErNP obtained from DLS and ICP-

MS both as initially prepared and after lyophilization followed by resuspension in saline. The 

polymer:ErNP mass ratios were 4:1 unless otherwise indicated. Each assembly was prepared and 

measured in triplicate and the error measurements correspond to the standard deviations on these 

batches. aDetermined by DLS; bDetermined by ICP-MS where 780 µg/L would correspond to 

encapsulation of 100% of the Er added during self-assembly. 

Polymer 

In water following initial 
preparationa 

Post-lyophilization and 
resuspension in salinea Erbium 

content (µg/L)b Z-average 
(nm) 

PDI Z-average 
(nm) 

PDI 

PEG76-PPG22-PEG76 174 ± 4 0.1 ± 0.1 294 ± 34 0.2 ± 0.1 62 ± 6 

PEG137-PPG34-PEG137 176 ± 6 0.1 ± 0.1 212 ± 2 0.2 ± 0.1 232 ± 1 

PEG45-PCL20 98 ± 10 0.3 ± 0.1 2145 ± 179 0.2 ± 0.1 377 ± 25 

PEG45-PCL51 82 ± 2 0.3 ± 0.1 3204 ± 416 0.2 ± 0.1 506 ± 3 

PEG114-PCL51 53 ± 5 0.3 ± 0.1 1057 ± 32 0.6 ± 0.1 596 ± 21 

PEG114-PCL97 84 ± 1 0.2 ± 0.1 2861 ± 9 0.4 ± 0.5 732 ± 22 

PEG45-PLA25 165 ± 2 0.1 ± 0.1 192 ± 4 0.5 ± 0.1 407 ± 2 

PEG45-PLA52 151 ± 2 0.2 ± 0.1 1597 ± 83 0.4 ± 0.1 149 ± 1 

PEG114-PLA122 130 ± 2 0.2 ± 0.1 301 ± 13 0.4 ± 0.1 339 ± 4 

PEG114-PLA53  154 ± 2 0.1 ± 0.1 134 ± 1 0.2 ± 0.1 599 ± 3 

PEG114-PLA53 (2:1) 180 ± 3 0.2 ± 0.1 180 ± 6 0.1 ± 0.1 583 ± 28 

PEG114-PLA53 (1:1) 179 ± 4 0.2 ± 0.1 171 ± 3 0.2 ± 0.1 607 ± 16 

PEG114-PLA53 (0.5:1) 183 ± 3 0.1 ± 0.1 185 ± 5 0.2 ± 0.1 533 ± 32 
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Redispersion and characterization of the lyophilized polymer-encapsulated ErNP  

Because the polymer-encapsulated ErNP were prepared by nanoprecipitation at low 

concentrations in water, the sample had to be lyophilized then redispersed at higher concentrations. 

The ability to lyophilize and resuspend the assemblies is also advantageous for their long-term 

storage. Dried samples were redispersed in 0.9% saline, which is isotonic with blood, and the Z-

average diameters of the assemblies were measured by DLS (Table 3). No filtration was performed 

after redispersion. In addition, because colloidal stability of the contrast agent in its administration 

medium is required, the Z-average diameters of the redispersed ErNP-loaded assemblies were also 

observed by DLS over 60 minutes.  

Relative to the pre-lyophilized diameters, minimal changes occurred for the PEG137-PPG34-

PEG137, PEG45-PLA25, and PEG114-PLA53 assemblies, while the remainder redispersed in saline at 

much larger hydrodynamic diameters, suggesting that they were aggregated. For example, the 

PEG76-PPG22-PEG76 assemblies, which initially had a Z-average hydrodynamic diameter of 174 ± 

4 nm had a diameter of 294 ± 34 nm after redispersion in saline, while the PEG137-PPG34-PEG137 

assemblies, which were initially 176 ± 6 nm, were redispersed in saline at 212 ± 2 nm (Figure 

S17). Given the very similar f values for these polymers, the larger PEG block is likely capable or 

better stabilizing the particles. All PEG-PCL assemblies redispersed in saline as micrometer-sized 

particles, which was undesirable, as these particles would be rapidly cleared by the MPS (Figure 

S18). The colloidal instabilities of PEG-PCL assemblies may result from PCL’s high 

hydrophobicity or crystallinity. The PEG45-PLA52 assemblies also redispersed as microparticles 

and PEG114-PLA122 assemblies redispersed at an increased Z-average diameter of 301 ± 13 nm 

compared to an initial diameter of 130 ± 2 nm (Figure S19). Both of these copolymers had low f 

values of ~0.3, which may contribute to their poor stability to redispersion. However, PEG45-PLA25 
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and PEG114-PLA53 assemblies retained Z-average diameters of 192 ± 4 and 134 ± 1 nm after 

redispersion in saline, similar to their initial diameters of 165 ± 2 and 154 ± 2 nm. Both remained 

colloidally stable for up to 60 minutes. This stability may result from their increased f values of 

~0.5. 

ICP-MS was used to quantify the concentration of erbium that was encapsulated by each system 

(Table 3). These measurements were performed on the initially prepared samples after their 

filtration. If all of the added erbium had remained dispersed in assemblies less than 0.45 µm in 

diameter, the expected erbium concentration of the suspensions would have been 780 µg/L. The 

highest erbium content was observed for PEG114-PCL97 at 732 ± 22 µg/L. The second highest 

concentration was obtained with PEG114-PLA53 at 599 ± 3 µg/L, then PEG114-PCL51 at 596 ± 21 

µg/L. However, out of the assemblies formed by these block copolymers, only PEG114-PLA53 

assemblies could be redispersed without a substantial increase in Z-average diameter in saline. The 

other block copolymers that allowed size consistency had lower erbium content, with PEG137-

PPG34-PEG137 at 232 ± 1 ug/L and PEG45-PLA25 at 407 ± 2 µg/L. Decreased erbium content 

resulted from the filtration of unencapsulated hydrophobic ErNP that aggregated in water or ErNP 

in assemblies larger than 0.45 µm in diameter. Based on this analysis, further studies were 

performed with PEG114-PLA53 as it was able to form stable assemblies with high erbium content.  

 

Characterization of the assemblies formed with PEG114-PLA53 

The polymer content of the contrast agent does not contribute to the attenuation of x-rays and 

hence will not contribute to higher contrast. It does however contribute to the total mass of the 

material in solution, and increases viscosity, thereby making administration of the suspension 

difficult. Thus, it would be desirable to decrease the polymer:ErNP ratio in the assemblies. 
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However, decreasing the polymer content of the assemblies has one drawback, which is the 

potential decrease of their stealthiness and immune system evasion.36 To investigate the possibility 

of lowering the polymer content of the contrast agent while retaining stability, assemblies were 

formed with lower PEG114-PLA53:ErNP mass ratios (from 4:1 to 2:1, 1:1 and 0.5:1).  Their colloidal 

stabilities at 37 °C in saline and in a mouse serum mimic were studied by DLS (Figure 5). The 

serum mimic contained bovine serum albumin and ions at concentrations that are similar to mouse 

blood. The proteins can potentially contribute to polymer shedding, and thereby to nanoparticle 

aggregation in vitro. In the blood pool of the animal in vivo, polymer shedding leads to the 

detection by the immune system and clearance of the nanoparticles from the blood via the liver.35, 

36 In the DLS analysis, the proteins generated insignificant scattering that did not interfere with the 

analysis of the assemblies (Figure S20-S21). The Z-average diameters for the initially prepared 

assemblies ranged from 121-185 nm and did not vary significantly over a period of 60 minutes in 

saline or in the mouse blood mimic, indicating that each formulation was sufficiently stable.  
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Figure 5. Time-course DLS results at 37 °C for PEG114-PLA53-encapsulated ErNP post-

lyophilization after redispersion in a) saline and b) mouse serum mimic.  

 

TEM imaging of the assemblies and analyses of their erbium content were also performed.  

Denser ErNP cores were observed when the polymer:ErNP ratio was reduced (Figure 6). Thus, 

decreasing the availability of polymers favored higher ErNP loading per assembly. ICP-MS results 

revealed similar erbium content in the suspensions for all of the mass ratios. Given this, and their 

colloidal stability in vitro, all the formulations should demonstrate similar contrast enhancement 

values over time once concentrated and administered to the blood pool. However, the concentrated 

solutions formed with polymer:ErNP mass ratios of 4:1 and 2:1 had high viscosities that made the 
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solutions too challenging to administer in vivo though the 30 G needles. Hence, for subsequent 

studies, the assemblies containing PEG114-PLA53:ErNP mass ratios of 1:1 and 0.5:1 were used. 

Using pyrene as a fluorescent probe,44 the critical aggregation concentrations (CACs) for these 1:1 

and 0.5:1  formulations were measured and compared to that of PEG114-PLA53 assemblies without 

ErNP. We found that the CAC of the block copolymer alone was 26 mg/L, whereas those of the 

1:1 and 0.5:1 PEG114-PLA53:ErNP formulations were 96 mg/L and 117 mg/L respectively (Figures 

S22-S24). Thus, it is evident that the loading of ErNP destabilizes the assemblies to some extent. 

Nevertheless, these CAC values are much lower than the concentrations at which they would be 

administered, even after dilution into the blood pool. 

 

 

 

Figure 6. TEM images of the PEG114-PLA53-encapsulated ErNP using polymer:ErNP mass ratios 

of a) 4:1, b) 2:1, c) 1:1, d) 0.5:1. 
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Erbium content in ErNP determined via Micro-CT 

While ICP-MS was used to detect erbium content before lyophilization, micro-CT was used to 

confirm the erbium content of the redispersed and high concentration versions of the contrast 

agents. A linear relationship between an element’s concentration and its attenuation of x-rays 

exists and does not depend on the specific chemical form of the element. This quantitative property 

of micro-CT contrast is one of its advantages as an imaging modality. Calibration standards 

containing erbium chloride dissolved in saline at concentrations of 0, 5, 10, 20 and 100 mg/mL of 

erbium were scanned. Using linear regression of the measured CT numbers of the standards 

(Figure S25), it was determined that 40 mg of the lyophilized 1:1 and 0.5:1 PEG114-PLA53:ErNP 

formulations dispersed in 0.2 mL of saline resulted in contrast element concentrations of 48 and 

74 mg/mL of erbium respectively. Therefore, 100 mg/mL is achieved when 42 mg of the 1:1 

formulation and 27 mg of the 0.5:1 formulation is suspended in 0.1 mL of saline. Micro-CT scans 

of the high concentration suspensions verified that 100 mg/mL of erbium was achieved when the 

calculated amount of the agent was used (Figure S26). While higher erbium loading can be 

achieved with more concentrated solutions, we restricted the experiments to 100 mg/mL in order 

to maintain low viscosities for intravenous injection in mice.  

 

Toxicity of the contrast agent  

The in vitro and in vivo toxicity of the contrast agent was evaluated prior to its intravenous 

administration. Based on MTT assays, greater than 80% viability relative to controls was observed 

for the 1:1 polymer to erbium mass ratio formulation up to concentrations of 0.5 mg/mL (Figure 

S27). The 0.5:1 polymer to erbium formulation was even less toxic, with greater than 80% viability 

up to 1 mg/mL, the highest concentration tested. We also performed subcutaneous injections to 
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study the materials in vivo. Subcutaneous tissue has slow absorption and clearance rates of 

exogenous materials, which provides an opportunity to study the reaction of tissues to the contrast 

agent over prolonged periods. Three-dimensional micro-CT images were obtained in mice before 

the subcutaneous injection of the 1:1 and 0.5:1 PEG114-PLA53:ErNP formulations and two weeks 

after the administration of the agent. Each scan took 16 seconds to acquire. Representative micro-

CT images for each of the contrast agent formulation injections are shown in Figure S28. The 

images show that the contrast agent localized near the injection site for up to two weeks. Gross 

examination of the subcutaneous tissue confirmed the presence of some contrast agent near the 

injection site. No abnormalities were observed in either the subcutaneous tissue or the dermis 

(Figure S29).  

 

Distribution of the contrast agent in vivo 

Three-dimensional micro-CT images were obtained in mice before the intravenous 

administration of both contrast agent formulations and at three time points following the 

administration of the agent. Each scan took 16 seconds to acquire.  Representative micro-CT 

images for each of the contrast agents are shown in Figure 7. After contrast agent administration, 

all the major vessels – particularly the external jugular and axillary veins in Figure 7 – became 

clearly visible. For both formulations, there appeared to be no change in contrast in the chambers 

of the heart for up to 60 minutes. The contrast in the liver was seen as early as the 2-minute time 

point – demonstrated by the ability to distinguish liver from surrounding soft tissue.  
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Figure 7. Representative coronal micro-CT images showing the heart, liver, aorta, jugular veins 

and bladder of mice that received contrast agent formulated at a) 1:1 and b) 0.5:1 PEG114-

PLA53:ErNP mass ratios. All times are reported from the completion of the contrast agent injection. 

In the 2 minute image in a), the external jugular veins (double arrowheads) and the axillary veins 

(arrows) are clearly visible. 

 

Quantitative analysis indicated an increase in blood pool CT number of over 250 HU compared 

to pre-contrast values. The bladder was indistinguishable from pre-contrast values, indicating that 

the agent was not cleared through the renal system, as expected of materials that exceed the size 

of renal fenestrations.14 By the one-hour mark, the liver and the spleen had increased up to 180 ± 

15 HU and 278 ± 18 HU, respectively, for the 1:1 formulation, confirming the hypothesis that 
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large nanoparticles are cleared through the MPS.35, 36 In the myocardium, the CT number was just 

under 100 HU at all time points, which was expected of soft tissue in the absence of contrast 

material. As expected, the 0.5:1 polymer:ErNP assemblies demonstrated lower stealth activity, due 

to the lower amount of polymer used in the synthesis of the assembly, and were cleared from the 

blood more rapidly as indicated by the decreased intensity of the blood pool in the micro-CT 

images. Overall, this initial imaging study demonstrates that these new contrast agents can be 

dispersed and injected into mice at a concentration sufficient to achieve vascular contrast by micro-

CT in vivo. Furthermore, the particles exhibited sufficient stealth properties to circulate in the 

vasculature for at least 1 hour. This suggests the promise of these new lanthanide-based agents for 

applications such as dual-energy imaging and spectral CT. 

 

CONCLUSIONS 

In this study, by systematically comparing a series of amphiphilic block copolymers composed 

of different hydrophobic blocks and different PEG mass fractions, we identified PEG114-PLA53 as 

an amphiphilic copolymer that can encapsulate oleate-coated NaErF4 nanoparticles. The PEG114-

PLA53:ErNP assemblies redispersed into colloidally stable particles in saline after lyophilization 

and remained in the blood pool in vivo for at least an hour – a time period that well exceeds live 

animal micro-CT requirements. Importantly, we were able to formulate the assemblies at a high 

concentration of 100 mg/mL of erbium using PEG114-PLA53. At a delivered dose of 0.2 mL per 

mouse, this new contrast agent formulation resulted in the enhancement of blood pool in micro-

CT images (at 80 kVp) by approximately 250 HU (above a soft tissue baseline of 100 HU) for at 

least an hour following contrast agent administration. This system should be readily adaptable for 

a variety of lanthanides, as the metal can be easily substituted in the oleate-coated NaErF4 while 
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retaining very similar properties, suggesting its promise as a new class of contrast agents for micro-

CT as well as other imaging modalities such as MRI and optical imaging, in which lanthanides are 

utilized. Future studies will explore further the biodistribution and toxicity profiles of these agents. 

 

SUPPORTING INFORMATION 

Additional methods, DLS data, NMR spectra, SEC traces, and time-course size measurements. 
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