
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

September 2019

A Programming Model for Internetworked Things A Programming Model for Internetworked Things

Hao Jiang
The University of Western Ontario

Supervisor

Kontogiannis, Konstantinos

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Hao Jiang 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Jiang, Hao, "A Programming Model for Internetworked Things" (2019). Electronic Thesis and Dissertation
Repository. 6514.
https://ir.lib.uwo.ca/etd/6514

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F6514&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6514?utm_source=ir.lib.uwo.ca%2Fetd%2F6514&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

The Internet of Things (IoT) emerges as a system paradigm that encompasses a

wide spectrum of technologies and protocols related to Internetworking, services

computing, and device connectivity. The main objective is to achieve an environ-

ment whereby physical devices and everyday objects can communicate and inter-

act with each other over the Internet. The Internet of Things is heralded as the

next generation Internet, and introduces significant opportunities for novel appli-

cations in many different domains. What is missing right now is a programming

model whereby developers as well as end-users can specify any addressable re-

source at a higher level of abstraction, and consequently utilize these abstractions

to define compositions, or scripts, among resources that allow for the customiz-

able exchange of data among the resources, the evaluation of conditions based on

exchanged data, and the enactment of actions provided that specific events occur

and specific conditions are met.

In this thesis, we investigate the problem of designing a programming model

for composing resources or "things", with applications in the IoT domain, and im-

plement a proof of concept prototype in order to evaluate the feasibility of such a

programming model. More specifically, this thesis attacks the problem of devising

an IoT programming model from three directions. The first direction is the design

of a Meta-Object Facility meta-model, that allows for URI addressable entities to

be specified at a higher level of abstraction. Such a meta-model can be consid-

ered as domain specific language that allows for the denotation of types of entities

(resources) in different application domains. The second direction is the design

of an actionable composition model for IoT devices and other URI addressable

resources. In this respect, this thesis investigates the use of the Event-Condition-

Action paradigm as a basis of a runtime environment whereby action models can

be enacted once events occur and condition models are fulfilled. A resource com-

position model also allows for resources to exchange data through input and output

plugs implemented on top of the OPC UA publish subscribe middleware. The third

direction deals with the design of a layered architecture that allows for scalability,

robustness, security, and fault tolerance to be considered. Such an architecture

takes advantage of a publish subscribe framework and utilizes proxies and facades

to efficiently connect with third party components.

Keywords: Internet of Things, Internet of Everything, Internetworked things,

programming model, middleware, Event-Condition-Action, goal modeling

ii

Acknowledgements

First of all, I would like to thank Dr. Konstantinos Kontogiannis, my supervisor, who

has provided tremendous advice and guidance during the study of my M.Sc. His

insight helped my work go in the right direction, and he taught me the principles of

research work. I am extremely grateful for this. And I am so honored to continue

my PhD study with him.

I have had the pleasure of being a member of the Software Engineering Group

at Western University. In particular, I would like to thank my fellow lab mates, Mar-

ios Stavros Grigoriou, Konstantinos Tsiounis and Sanjay Ghanathey for the useful

discussions during our group meetings and tea-breaks. I am also grateful to my

friends, Zhongwen Zhang, Jingyi Ren, Yifang Liu for emotional support and valu-

able opinions.

My research was partly done at IBM Toronto Lab during the summer, 2018. It

was indeed an opportunity for me to participate in the internship at IBM.

Finally, I would like to thank my parents for their support and encouragement

throughout the master study and life, which made it all possible.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

List of Appendices x

1 Introduction 1

1.1 Internet of Things and Resources . 1

1.2 Problem Statement . 3

1.3 Thesis Contributions . 4

1.4 Thesis Outline . 5

2 Background and Related Work 7

2.1 Programming Model . 7

2.1.1 Trigger-Action Programming . 8

2.1.2 Event-Condition-Action Pattern 9

2.1.3 Node-RED . 10

2.2 Middleware Architecture . 11

2.2.1 Event Based Middleware . 12

2.2.2 Service Oriented Middleware . 13

2.2.3 Semantic Oriented Middleware 14

2.3 Modeling Framework . 14

2.4 Ontology Development . 17

2.4.1 Edge Computing . 18

2.5 Resource Oriented Computing . 19

2.6 Gap Analysis . 20

iv

3 System Architecture 23

3.1 System Overview . 23

3.2 Component View . 25

3.3 Component Descriptions . 25

3.3.1 Modeling Subsystem . 27

3.3.2 Instantiation Subsystem . 28

3.3.3 Runtime Subsystem . 29

3.4 System Workflow . 31

3.5 Workflow Example . 32

4 Resource Abstraction Metamodel and Instantiation 34

4.1 Resource Abstraction Metamodel . 34

4.1.1 RAMM Classes and Attributes 37

4.1.2 Abstract and Concrete Resource Example 44

4.2 Resource Instantiation Framework . 46

4.3 Semantic Interoperation . 48

4.3.1 Domain Ontology Development 48

4.3.2 Semantic Mapping . 51

4.3.3 RDF and SPARQL . 52

4.4 Resource Selection Algorithm . 54

4.4.1 Problem Formulation . 54

4.4.2 Resource Selection . 56

Exhaustive Search Algorithm . 57

Dynamic Programming Algorithm 58

Performance Evaluation Results 58

5 Condition and Action Modeling 63

5.1 Condition, Action and Mapper Metamodel 63

5.2 Goal Modeling and Reasoning . 65

5.2.1 Goal Modeling . 66

5.2.2 Condition Goal Model Reasoning 69

5.2.3 Task Model Reasoning . 72

6 Implementation and Case Study 76

6.1 Modeling and Code Generation Framework 76

6.2 Data Collection . 79

6.3 Prototype Development . 80

v

6.4 Case Study: Winter Notification Example 83

6.4.1 Overview of The Winter Notification Example 84

6.4.2 AbstractDomainResource and DomainResource 84

6.4.3 Mapper . 89

6.4.4 Condition and Action . 90

6.4.5 Condition Goal Model and Task Goal Model 91

6.4.6 Result Applying an Action Model 95

6.4.7 Evaluation . 96

7 Conclusion and Future Work 98

7.1 Conclusion . 98

7.2 Future Work . 99

Bibliography 101

A Task Model Example 109

B Experiment Result Example 114

Curriculum Vitae 116

vi

List of Figures

2.1 Publish Subscribe Model . 8

2.2 Event-Condition-Action based Platform 9

2.3 Node-RED Editor . 10

2.4 A Distribute Implementation of Publish Subscribe System 13

2.5 MOF Hierarchy . 15

2.6 The ontology development process . 16

2.7 Edge Computing Paradigm . 18

3.1 High Level Conceptual View of the System’s Architecture 24

3.2 Component Diagram of System . 26

3.3 Activity Diagram of Runtime System . 31

3.4 DomainResource Example for Weather Domain 32

4.1 Resource Abstraction Metamodel . 36

4.2 AbstractDomainResource Example for Smart Home 44

4.3 DomainResource Example for Smart Home 45

4.4 Resource Instantiation Process . 46

4.5 A Resource Instantiation Example . 47

4.6 The WeatherDemo ontology . 50

4.7 An instance of Temperature of -5.0 (without using a unit ontology) . . 50

4.8 An instance of Temperature of -5.0 (using QUDT ontologies) 51

4.9 0-1 Multiple Choice Knapsack Problem 55

4.10 Performance of Dynamic Programming algorithm 59

5.1 Condition and Action Metamodel . 64

5.2 Mapper Metamodel . 65

5.3 Conceptual Goal Tree . 66

5.4 Conceptual Task Tree . 67

5.5 Goal Metamodel . 68

5.6 Condition Goal Model Visualization . 71

vii

5.7 Task Model Visualization . 75

6.1 Ecore Metamodel . 77

6.2 Goal Model Instance . 78

6.3 OPC UA Object Model . 81

6.4 Runtime Sequence Diagram . 83

6.5 Mapper Diagram . 90

6.6 Condition Goal Model Diagram . 92

6.7 Action Model Diagram . 94

viii

List of Tables

3.1 AbstractResourceConditionAction Modeling (ARCAM) Module 27

3.2 Composition Modeling (CM) Module 27

3.3 Resource Instantiation (RI) Module . 28

3.4 Process Module . 29

3.5 Facade Daemon . 30

3.6 Pub/Sub Proxy Module . 30

4.1 AbstractDomainResource Class . 37

4.2 DomainResource Class . 37

4.3 ResourceMetaModel Class . 38

4.4 ActionInterface Class . 38

4.5 Create Class . 38

4.6 Read Class . 39

4.7 Update Class . 39

4.8 Delete Class . 39

4.9 Output Class . 39

4.10 OutputMetaModel Class . 39

4.11 OutputPlug Class . 40

4.12 InputPlug Class . 40

4.13 PathSyntax Class . 41

4.14 DataElement Class . 41

4.15 SerializationMechanism Class . 41

4.16 StringTemplateSerialization Class . 42

4.17 SchemaBasedSerialization Class . 42

4.18 EventTopic Class . 42

4.19 Pub/SubClient Class . 43

4.20 OPCUAClient Class . 43

4.21 Mapping between global and local ontology 52

4.22 Running Time Comparison (n=10) . 62

ix

List of Appendices

Appendix A .109

Appendix B .114

x

Chapter 1

Introduction

In this chapter, we first introduce the concept of Internet of Things (IoT) and three

key questions it brings about. We then discuss the problem statement, thesis con-

tributions and thesis outline.

1.1 Internet of Things and Resources

During the past few decades we have witnessed the extraordinary success and

usefulness of the Internet. The World Wide Web enables people to access global

information and services, which include searching for information, shopping on-

line, engaging in social networking and so on. However, the Internet is not only

about the Web. It is also a suite of protocols that allow for a wide range of devices

to use the Internet‘s global connectivity in order to engage in a variety of inter-

actions. These interactions can range from simple exchange of data, to services

computing. More recently, the emergence of resource oriented computing and the

connectivity offered to a wide spectrum of inter-networked devices has given rise

to what is referred to as the Internet of Things, or IoT. The Internet of Things is

considered as the next generation of Internet use, which extends the Internet con-

nectivity from software agents to physical devices and everyday connected objects.

The term Internet of Things was first coined by Kevin Ashton in 1999 in the con-

text of supply chain management [26]. With the rapid development of technology,

the definition of IoT has been more inclusive covering a variety of applications.

According to [54], the Internet of Things is a system of physical objects that can be

discovered or interacted with, by electronic devices that communicate over various

networking interfaces and eventually can be connected to the wider Internet. The

1

2 Chapter 1. Introduction

Internet of Things concept has been since extended to include what is referred to

as the Internet of Everything (IoE). According to [63], the IoE encompasses people,

data, process and things. Its major objective is to provide a platform that allows for

a) the massive extraction of information from various sources (e.g., sensors) and

b) utilization of intelligent layers to automate machine to machine and machine to

people processes [9].

According to Cisco, 500 billion devices are expected to be connected to the In-

ternet by 2030 [10]. Cisco also predicts that the global Internet of Things market

will be $14.4 trillion by 2022. IoT has great potential in a wide range of application

domains. IoT devices can be applied in home automation, which includes lighting

and temperature control, intrusion detection, energy optimization, etc. IoT can

also be applied to other areas such as healthcare by enabling remote health moni-

toring and emergency notification, transportation, manufacturing and agriculture.

However, the Internet of Things, and consequently the Internet of Everything,

have introduced a wealth of new problems and challenges to address, ranging

from modeling and programming issues, all the way to infrastructure, scalability,

and security issues.

In this thesis, we investigate techniques which focus on modeling and compos-

ing resources as well as associating actions that these resources can perform as

they exchange data and interact in an inter-networked IoT/IoE environment. More

specifically, this thesis aims to address three key questions related to programming

and composing resources. The first question deals with how we can model inter-

networked resources (i.e., IoT resources) at a higher level of abstraction, and how

we can utilize semantic web technologies for instantiating such abstract models

of resources to concrete URI addressable resources that are accessible over the

Internet communication protocols. The second question deals with the problem

of providing a model of composing resources so that these can not only exchange

data, but also enact actions as the result of such interactions and provided that cer-

tain conditions are met. In this respect, we aim for devising an initial programming

model which can be used by application developers as well as IoT end-users to de-

fine plug and play applications that are based on the interaction of inter-networked

resources.

The third question deals with the problem of what is an appropriate and scal-

able architecture that can be used to deploy such a system in a massive scale. In

this respect, we investigate a layered architecture that utilizes publish-subscribe

infrastructure middleware components. Such an architecture can be easily ported

1.2. Problem Statement 3

to a distributed publish-subscribe system that utilizes distributed brokers.

In this respect, this thesis proposes a model whereby intelligence can be intro-

duced on the interaction among "things" in a resource-oriented environment. This

can provide a step towards achieving the Internet of Everything goal.

1.2 Problem Statement

The available Web services are constantly increasing in number and variety as the

Internet expands. The last few years we have also witnessed the rapid increase of

inter-networked IoT devices and resources consuming and producing data which

come from various sources such as repositories, Web services or IoT devices. In

such an IoT environment, data may come from either Web services or IoT devices.

In such an environment, this thesis aims to address three major questions related

to IoT system compositionality and programmability.

The first question to be addressed in this thesis is how to achieve a level of

ease of programmability in an environment where resources or "things" exchange

data, enact actions, and generate events. This question encompasses the prob-

lem of devising a meta-modeling framework to denote and compose resources at

a higher level of abstraction and to provide a unified interface to access resources

and their associated data representations, given that these may come from various

information sources. Such a modeling and resource composition abstraction is the

essential first step for facilitating a programming model for IoT application devel-

opment. This thesis considers models of resources at two levels of abstraction:

a) abstract resources and b) concrete resources. The abstract resources, which

we refer to as Abstract Domain Resources (ADRs), denote conceptual high level

representations or categories of actural resources that are addressable entities by

Internet protocols such as HTTP and URI. The concrete resources which we refer

to as Domain Resources (DRs), are instantiations of models of abstract resources.

This instantiation is achieved through the use of semantic web technologies such as

RDF/S and model transformers which generate concrete resource instances from

abstract ones. The instantiation process takes into account a number of factors

for choosing a candidate resource to instantiate an abstract one. Such factors may

include cost, latency and, reliability of a resource so that the instantiation pro-

cess can select the optimal combination of candidate resources to be used when

instantiating an abstract resource.

The second question deals with devising a programming abstraction for a run-

4 Chapter 1. Introduction

time model for IoT devices and inter-networked resources composition and inter-

operation. More specifically, the problem here is that given a collection of data

shared among resources, how to apply a feasible actionable composition model.

In this respect, we consider an Event-Condition-Action type of system. Here, we

have first to identify how to evaluate local conditions when a new event happens.

One can employ a rule-based system which utilizes of a fact base and a rule base.

Whenever an event occurs, the system checks all relevant rules to determine any

consequent actions. The problem here is that developing a suitable rule frame-

work is of substantial work and suffers from what is known plan-fullness (i.e. we

are never sure we have a fully complete set of rules). The second problem is devel-

oping an action model whereby upon the availability of events and the satisfaction

of conditions, resources can invoke or enact actions. For this thesis we utilize an

existing action model that has been developed as an earlier thesis [27] which al-

lows for actions to be specified as collections of tasks that aim to achieve an agent’s

goal.

The third question deals with the architectural choices that need be consid-

ered for designing such a system, given that scalability, robustness, security, and

fault tolerance are important non-functional requirements to consider. For this

thesis, we consider the use of layered, and event-driven architectures that utilize

a publish-subscribe paradigm for data exchange and implicit invocation of ser-

vices (i.e. evaluation of conditions, invocation of actions). In this respect, the

middleware serves as a data exchange and invocation abstraction bridge between

“things” and applications.

1.3 Thesis Contributions

In order to tackle the problems mentioned above, we first propose a meta-model to

abstract IoT resources. Here the use of the metamodel serves as means to create

a specification of Abstract Domain Resources in various domains (e.g. banking, in-

surance, healthcare) and for which serve as templates. These templates are used

for describing a user’s view and usage of a resource in the IoT domain. By means

of semantic technologies and resource selection algorithms, templates are instanti-

ated later and point to specific information sources. Ontologies are employed in an

instantiation step to provide semantics to the model elements and create mappings

between terms in different sources. We formulate the resource selection problem

as a knapsack problem and implement a Dynamic Programming type of algorithms

1.4. Thesis Outline 5

to solve this problem in an efficient manner.

The second contribution of the thesis is modeling conditions and actions utiliz-

ing goal model frameworks [80]. More specifically, we employ goal modeling for

specifying and evaluating condition models as well as action models for compiling

action plans when the aforementioned condition models are satisfied. For the con-

ditions, goals in a goal model represent conditions or states which are attached

to the individual evaluators. The action model represents tasks or atomic actions

the system has to perform in order to achieve the top level task (i.e. the root of

the action model). Reasoners developed as part of previous theses are used first

to evaluate conditions (i.e. goal models) using a fuzzy reasoner, and second to

generate sequences of tasks that satisfy the agent’s goals.

The third contribution of the thesis is to propose a scalable architecture that

is based on the implicit invocation architectural style, and the use of publish-

subscribe middleware technologies. To evaluate the feasibility of our architecture,

this thesis proposes a prototype system that is based on semantic web technolo-

gies and the OPC UA middleware environment [60]. The OPC UA framework sup-

ports event-based communication between different software components. We em-

ploy OPC UA to integrate the server and client components of the running system.

Server components register in event channels, while client components subscribe

to channels and get notified when a new event is posted. When the condition is

satisfied, the runtime of the prototype system executes corresponding actions as

specified by the analysis of the action models. As part of a related project, the pro-

posed system was also linked with the PADRES middleware [56] and the Node-RED

framework [15].

1.4 Thesis Outline

The remainder of this thesis is organized as follows.

In Chapter 2, we provide background and related work information about the

programming model, middleware architecture, modeling framework, ontology de-

velopment, edge computing, resource oriented computing and gap analysis.

Chapter 3 discusses the proposed system architecture, which includes a general

overview of the system and descriptions for each component.

In Chapter 4, we present programming abstractions and the instantiation pro-

cess, which consists of semantic technologies and resource selection algorithms.

In Chapter 5, we describe the modeling and reasoning for the condition and

6 Chapter 1. Introduction

action by utilizing goal models. We also introduce a mapper model which associate

output ports and input ports across different resource models, condition models

and action models, facilitating thus the creation of "scripts" or "IoT programs".

In Chapter 6, we present a prototype that is based on the programming model

and utilize OPC UA middleware framework.

Finally, in Chapter 7 we conclude the thesis and provide pointers for the future

research.

Chapter 2

Background and Related Work

This chapter describes the background of the proposed work. The foundation of

our proposed approach relies on programming model, middleware architecture,

modeling framework, ontology development, edge computing and resource ori-

ented computing. The last section presents the gap analysis.

2.1 Programming Model

IoT applications can control and interact a wide variety of devices. For example,

using IoT applications, people can not only control their home appliances remotely

from their smartphones, but also automate some everyday tasks. One way this

automation can be achieved is by predefined rules, where users specify events

of interest as well as corresponding actions to be taken whenever these events

occur. Under certain circumstances, the execution of an action also requires the

fulfillment of specific conditions. Such an event-driven architecture consists of

event producers that generate the events, and event consumers that listen for the

events and act upon receiving these events.

Such an event-driven architecture can be implemented using a publish sub-

scribe style as depicted in Figure 2.1 [19]. In a publish/subscribe model, any event

published to a channel is immediately received by all of the subscribers of this

channel. In such an architecture, event producers and consumer are decoupled.

Hence, the event-driven architecture is highly scalable and distributed. Based on

the complexity of event processing required, event-driven architectures can be fur-

ther divided into two programming paradigms: the Trigger-Action paradigm and

the Event-Condition-Action paradigm. One concrete example of event-driven pro-

7

8 Chapter 2. Background and Related Work

gramming model is Node-RED [15].

Figure 2.1: Publish Subscribe Model

2.1.1 Trigger-Action Programming

A concrete example of the trigger-action paradigm is the IFTTT service [8], which

stands for “if this, then that”. For example, if a user’s Facebook profile picture

changes, then such a service can update the user’s Twitter profile picture to match.

Such if-then rules are easy to denote and cover many real-life scenarios. In [50],

Ghiani et al. present a trigger-action rule editor that provides the possibility to

create more flexible rules than IFTTT. Joëlle Coutaz and James L. Crowley pro-

pose AppsGate [45], an end-user development environment designed to empower

people with tools to monitor and control their home. Corcella et al. [44] present

a visual trigger-action tool for personalizing user’s IoT context-dependent appli-

cations, the users’ feedback is encouraging and promising. Besides simple “one

trigger, one action” rules, Ur et al. [78] conduct three studies which prove that

trigger-action programming with multiple triggers and multiple actions can be a

practical approach to smart home programming.

Trigger-action programming also introduce many drawbacks. Many trigger-

action programming interfaces lack feedback during rule creation [50]. Chan-

drakana Nandi and Michael D. Ernst [65] caution that even if the action block of a

rule is implemented correctly, inadequate triggers can lead to too few firings of the

rule. Brackenbury et al. [33] identify ten different categories of bugs that might

arise in trigger-action programming, such as Priority Conflict, Missing Reversal,

Infinite Loop, etc. Ur et al. [78] note that they are unable to evaluate the rela-

2.1. Programming Model 9

tive strengths and weaknesses of trigger-action programming due to insufficient

control experiments.

2.1.2 Event-Condition-Action Pattern

Another programming paradigm of event-driven architecture is the Event-Condition-

Action (ECA) pattern, which originates in database systems for efficiently respond-

ing to sources of incoming events or data [46]. ECA rules basically conform to the

following form:

“When some events occur, and

If some conditions are true,

Then perform some actions.”

It is obvious that such rule-based systems are easier to model and program, than

systems built on general purpose programming languages, and are powerful enough

for many IoT applications. Actually, there are already a few commercial plat-

forms which try to strike a balance between expressiveness and simplicity. In

[21], users can write event-condition-actions rules for IoT devices via a smart-

phone app. Home Assistant [7] is an open source platform written in Python, in

which automation programs are made up of event-condition-action rules. It can

also attach delays to event handlers and to actions. A critical part of ECA rules is

semantics, which influence both programmability and expressivity. Newcomb et al.

[66] present the Internet of Things Automation (IOTA) calculus, which models an

ECA language formalism with abstractions constructs related to time, state, and

device aggregation, as well as ECA syntax and precise semantics.

Figure 2.2: Event-Condition-Action based Platform

Cano et al. [35] focus on the safety and security issues of ECA rules in IoT

environments. They propose an extension of ECA semantics by control theory and

validate it with a case study. From a broader view, Bhandari et al. [31] propose

an ECA framework, which includes four layers, namely device layer, service layer,

ECA platform and event based application. The ECA platform is illustrated in Fig-

ure 2.2. As is shown, the event part is divided into event detection, subscription

10 Chapter 2. Background and Related Work

Figure 2.3: Node-RED Editor

and processing. The condition part handles the condition evaluation and it adopts

a rule based system, which consists of a fact base and a rule base. The action

part includes an action engine that is used to execute actions after condition is

evaluated to true.

2.1.3 Node-RED

Node-RED is a programming tool for wiring together hardware devices, APIs and

online services in new and interesting ways [15]. It was originally developed by

IBM Emerging Technology Services and now is a JS Foundation project. Node-RED

is implemented in JavaScript using the Node.js framework, which provides a visual

browser-based flow editor. The developers can either drag, drop and wire up the

nodes in the editor, or import JavaScript code in order to create applications.

The editor window of Node-RED has three main components as depicted in

Figure 2.3:

1) Palette. The palette contains all the nodes that are available to use. The

nodes are classified as several categories, such as input, output, function,

etc. Typically, a JavaScript file describes the node’s functionality, and an

HTML file defines its properties, edit dialog and help text.

2) Workspace. The main workspace is where flows are developed by dragging

2.2. Middleware Architecture 11

nodes from the palette and wiring them together. The wiring is achieved by

connecting the output port of one node with the input port of the other node.

3) Sidebar. The sidebar provides a number of useful tools within the editor. For

example, Information panel shows the properties about the current selected

node. Debug panel displays log messages from the runtime. Other tools

include Configuration Nodes and Context Data.

The Node-RED runtime is built on the Node.js event API, taking full advantage

of its event-driven, non-blocking model. This enables the lightweight runtime to be

easily deployed in the edge network as well as the cloud. Additionally, Node-RED

offers powerful build-in nodes (e.g. HTTP and MQTT), which hide the complexity

of interacting with the real word. In this way, the developers can focus on the

application development, instead of on the programming details. These character-

istics make Node-RED an ideal tool to create applications, especially applications

that have an event-driven feature such as IoT applications.

The differences between Node-RED and the proposed framework are summa-

rized in two main points. The first point is that the approach proposed in this

thesis allows for the definition of arbitrary types of resources that can be instan-

tiated at run-time by actual resources depending the system’s operational context

and user profile, while the Node-RED nodes have to be determined at specification

time. The second point is that Node-RED is based on JavaScript technologies while

the proposed approach allows for integration with any third party language and

system. However, as part of a related project we have created a transformer that

takes Node-Red specifications and generates a Mapper model (see Section 5.1).

2.2 Middleware Architecture

Due to the device and network heterogeneity, IoT application development is a very

challenging task. Middleware addresses this problem by decoupling the applica-

tions from the underlying physical devices. It serves as the middle layer between

the hardware and application layer. In this way, application developers can fo-

cus more on the development, instead of on how to interact with diverse physical

devices.

Middleware development has been an active area of research in the IoT domain

over the past few decades. Middleware is designed based on different architectural

12 Chapter 2. Background and Related Work

styles. According to their unique features (design techniques, level of program-

ming abstractions, infrastructure scale, etc.), each architecture can be classified

differently. Based on design approaches taken in these middleware frameworks, in

this section we discuss three categories of middleware architectures, namely the

event based, service oriented and sematic oriented.

2.2.1 Event Based Middleware

Generally, an event-based architecture can also be viewed as an architecture fol-

lowing the publish subscribe, asynchronous, many-to-many communication model

for distributed systems [48]. In this kind of middleware, all components interact

with each other via events, where publishers also produce events and subscribers

consume these events. Subscribers describe certain kinds of events that they are

interested in and get notified when publishers post such events.

Publish subscribe systems can be divided into two forms: topic-based and content-

based. The major distinction lies in how event subscribers express their interest

in events. In topic-based systems, subscribers specify their interests in a topic

(channel or subject) and receive all events published on this topic. These systems

are easier to implement since they can adopt a group communication mechanism

like IP multicast. However, they are inflexible as subscribers may need to filter

events which come from general topics. In content-based systems, subscribers

express their interests using event attributes. A subscription is often expressed

in a subscription language that specifies a filter expression over events [72]. This

form of publish subscribe achieves stronger expressiveness at the cost of increased

overhead.

Figure 2.4 illustrates a distributed implementation of a publish/subscribe sys-

tem [73]. Such implementation consists of two components, namely event clients

and event brokers. Event clients can be publishers or subscribers and use the

services provided by the middleware. The event brokers comprise the actual mid-

dleware which accept subscriptions and then distribute events from publishers to

all registered subscribers.

There are several advantages of the event-based architectures. Firstly, it de-

couples space and time. Publishers and subscribers do not need to know about

each other or run at the same time. Secondly, the event-based pattern can achieve

greater scalability than a traditional client-server approach, because the loose cou-

pling removes dependencies between clients. Lastly, it is capable of filtering events

2.2. Middleware Architecture 13

Figure 2.4: A Distribute Implementation of Publish Subscribe System

based on their attributes.

HERMES [72] is an event-based middleware architecture created for large-

scale distributed systems. HERMES has type-based and attribute-based events,

and encompasses two routing algorithms: type-based and type- and attribute-

based routing. The former only supports subscriptions depending on the event

type of event publications, while the latter extends the type-based routing with

content-based filtering on event attributes in publications [72]. Another event-

based architectures is Data Distribution Service (DDS) developed by Object Man-

agement Group (OMG) [69].

2.2.2 Service Oriented Middleware

Just like other software, IoT middleware solutions often follow the Service Oriented

Architecture (SOA) approach. SOA aims to decompose complex and monolithic sys-

tem into simpler independent components, which provide services through acces-

sible interfaces. The SOA approach also allows for software and hardware reuse,

because it does not impose a specific technology for the implementation of services

[70].

In this context, OpenIoT is a popular open source cloud solution for the IoT

domain, which also comprises a service-oriented middleware for collecting data

from any sensor [76]. OpenIoT supports flexible configuration and deployment of

algorithms for collection, and filtering data streams stemming from the internet-

connected physical objects, while at the same time generating and processing

events. The implementation of OpenIoT extends the Global Sensor Networks (GSN)

sensor middleware and is called X-GSN [23].

14 Chapter 2. Background and Related Work

2.2.3 Semantic Oriented Middleware

Semantic oriented middleware focuses on solving the interoperability problem in

IoT, that is, different types of devices interact using different communication pro-

tocols and data models. Ontologies and semantic web technologies address this

problem by providing a unified interface for data access.

Semantic web was originally designed to make information understandable by

machines. In this way, interoperation among machines and integration of infor-

mation is enhanced. Additionally, semantic web can provide context-awareness to

applications, in which the search space for automatic service discovery and com-

position is reduced [52]. Last but not least, semantic web technologies facilitate

reasoning of actionable knowledge from various heterogeneous data sources.

SemIoT is a middleware platform which employs semantic web technologies,

existing ontologies and architectural style REST [58]. SemIoT applies the OSGi ar-

chitecture [24] to allocate an independent service to a different type of devices. It

also applies semantic web technologies such as RDF, OWL and SPARQL to achieve

semantic interoperability. As for ontologies, SemIoT extends SSN ontology [42] to

model and annotate devices’ data.

2.3 Modeling Framework

The Meta Object Facility (MOF) [14] has emerged as the defacto standard for

model-driven engineering of the Object Management Group (OMG). Its purpose is

to provide the formal definition of modeling languages (including UML). Now MOF

is one of the foundations of model-driven architecture (MDA). The MOF specifica-

tion defines a hierarchy of four-layer models, and is designed to support extensions

for more sophisticated metamodeling. The four layers are as follows:

• Layer 1: The M3 layer, or meta-meta model layer, is the highest abstraction

layer. It is the top layer of the hierarchy and used by MOF to build M2 layer

models, i.e. metamodels (such as UML). The meta-meta models at this layer

are essentially the definitions of the languages used in the metamodel specifi-

cation. This layer is self-referential, which means that the meta-meta models

constructs in this layer can also be used to describe themselves.

• Layer 2: M2 layer or metamodel layer. A metamodel is an instance of a meta-

meta model. The primary responsibility of this layer is to define a language

for specifying metamodels. A typical example of this layer is UML.

2.4. Ontology Development 15

• Layer 3: M1 layer or domain model layer. This layer describes a domain

model that is used as a "schema" for defining entities in a specific application

domain, such as banking, insurance and healthcare, to name a few. Such

domain models are instantiated to form concrete information models at M0

layer.

• Layer 4: The M0 layer or information layer. This layer contains the runtime

instances of data elements conforming to corresponding to a domain model,

they are instances of. That is an M0 model stems from its corresponding

domain model at M1 layer.

Domain Model

Model

MetaModel

MetametaModel

Figure 2.5: MOF Hierarchy

Figure 2.5 illustrates the MOF hierarchy [68]. The value of MOF lies in that

it provides a straightforward framework for mapping MOF models to implemen-

tations like Java Metadata Interface (JMI). In addition, the MOF allows models to

be stored with standards such as XML Metadata Interchange (XMI), which can be

transferred to another application and extended easily later on.

16 Chapter 2. Background and Related Work

Start

Determine the domain and
scope of the ontology

Consider reusing existing ontologies

Enumerate important terms in the ontology

Define classes and their
hierarchies

Define properties of the
classes

Define ranges of the properties

Create instances of the classes

Ontology
completed?

End

Yes

No

Figure 2.6: The ontology development process

2.4. Ontology Development 17

2.4 Ontology Development

A widely quoted definition of an ontology is “a formal, explicit specification of a

shared conceptualization” [53]. Here conceptualization refers to an abstract model

of the way people think about things in the world. An explicit specification means

that the concepts and relationships in the abstract model are given explicit names

and definitions [79]. Formal means that there should not be any ambiguity about

the specification, which is usually done by employing a logic-based language. In

this respect, a common vocabulary for a certain domain can be established and

ontologies can be shared and reused for other purposes.

Ontology generally characterizes different kinds of concepts and their relation-

ships in a domain of interest. These concepts are called classes in the ontology, and

they are usually the focus of an ontology. Just as in an object-oriented language, a

class can have multiple subclasses which represent concepts that are more specific

than the superclass. Various features and attributes of each concept are modeled

as properties. An ontology together with a set of concrete instances (also called in-

dividuals) of the class constitutes a knowledge base. RDFS (Resource Description

Framework Schema) [34] is a lightweight ontology language which allow us to de-

fine classes, properties as well as their hierarchies. OWL (Web Ontology Language)

[62] is an extension to RDFS which provides much more powerful expressiveness

and reasoning capability.

Ontology design is not an easy task. Noy and McGuiness [67] propose three

fundamental rules in ontology design. Despite what approach is used for the design

of ontology, their advice is helpful for making design decisions:

1) There is no single correct way to model a domain – there are always viable

alternatives. The best solution almost always depends on the application that

a modeler has in mind and the extensions that a modeler anticipates.

2) Ontology development is an iterative process.

3) Concepts in the ontology should be close to objects (physical or logical) and

should stem from the domain of interest. These are most likely to be nouns

(objects) or verbs (relationships) in sentences that describe the domain. [67]

As there is no a single unified and formal definition of the ontology, there are

plenty of methodologies for building an ontology. Figure 2.6 provides a flowchart of

the whole ontology development process as this is proposed by Noy and McGuiness

[67].

18 Chapter 2. Background and Related Work

2.4.1 Edge Computing

While IoT has great potential in various industry-specific and cross-industry use

cases, it also brings about several issues, such as data storage, data processing,

data analytics, etc. In the last few years, the integration of the IoT with cloud com-

puting has overcome the computation and storage limitations [47]. Nevertheless,

this also leads to an increase of latency in communications, especially for IoT ap-

plications in which devices usually span a large geographical area. To fulfill this

gap, edge computing is introduced to provide computing and storage services at

the edge of the network, instead of sending all the data to the cloud. Edge can

perform computing offloading, data storage, caching and processing, as well as

distribute request and delivery service from cloud to user [75]. Figure 2.7 [75]

illustrates the edge computing paradigm. As is shown, “things” are not only data

producers, but also data consumers. At the edge, “things” can not only collect

data but also perform computing tasks. Therefore, the two-way computing stream

between the edge and the cloud is achieved.

Figure 2.7: Edge Computing Paradigm

2.5. Resource Oriented Computing 19

Generally, it is beneficial to support IoT applications by combining the high

computation capacity and large storage of cloud computing with the advantages of

edge computing. Specifically, edge computing-based IoT has following advantages

[84]:

• transmission: By offloading the data processing and storage to end users,

the latency, bandwidth and energy consumption are significantly reduced.

• storage: Edge computing-based storage is distributed to different edge nodes,

which leverages load balancing and failure recovery technique to realize

availability.

• computation: The computation task is also assigned to several edge nodes

by utilizing the task scheduling scheme.

2.5 Resource Oriented Computing

REST (Representational State Transfer) was first introduced and defined in 2000

by Roy Fielding in his doctoral dissertation [49]. REST is a software architectural

style for creating Web services by taking advantage of existing protocols. The

REST architectural style is founded on a set of constraints. These include being

stateless, having a client/server architecture, complying to a uniform interface,

achieving cacheability, being a layered system and providing capabilities for offer-

ing code on demand. REST is not exclusively bound to a specific application layer

protocol such as HTTP, but it is most commonly associated with it when we are

talking about RESTful Web services. The central idea of REST revolves around the

notion of a resource which is any component of an application that is worth being

uniquely identified by a URI and linked to, utilizing an application layer protocol

(e.g. HTTP) [55]. In this respect, resources can include physical devices (e.g., a

temperature sensor), abstract concepts such as Web resources, but also dynamic

concepts such as server-side states. When designing a RESTful API, there are five

issues we need to address:

• Resource Identification. It is a common practice to utilize Uniform Re-

source Identifiers (URIs) to identify resources on the Web. Representations

of resources also contain links to other resources. Clients of RESTful APIs

can follow the links to find resources to interact with, just like browsing Web

pages.

20 Chapter 2. Background and Related Work

• Resource Representation. In order to represent data objects and attributes

in a resource, we also need to agree on resource representation formats. For

machine-oriented services, JavaScript Object Notation (JSON) and Extensible

Markup Language (XML) have gained widespread support across server and

client platforms. Besides, HTML representation increases the readability of

resources for humans.

• Uniform Interface. In REST, interacting with resources and retrieving their

representations are achieved through a uniform interface, which decouples

clients from servers. On the Web, uniform interface is defined by HTTP, which

provides four main methods to interact with resources: GET, PUT, POST and

DELETE. GET is used to retrieve the representation of a resource. PUT up-

dates the state of an existing resource or creates a resource if it does not

exist. POST creates a new resource while DELETE removes a resource. Fi-

nally, the status of the response is represented by standard status codes in

the header of the HTTP message.

• Stateless Interactions. Stateless means that interactions store no client

context on the server between requests. This requires that when the client

makes a request, it includes all the information for the server to fulfill that

request. HTTP is a stateless protocol in that it has no knowledge beyond

the request/response interaction. This helps increase the RESTful API’s reli-

ability by having all the data necessary to make the request. In addition, a

stateless application is easier to distribute across load-balanced servers and

cache.

The flexibility of REST allows for building the applications that meet both devel-

opers’ and users’ needs. Moreover, because of the decentralization and massive

scalability inherent in the RESTful architecture, it is extremely useful in the IoT

domain. There are millions of available resources and clients, with millions of

concurrent interactions with one service provider. In such scenarios, RESTful ar-

chitecture scales better than RPC-based client server type of architectures.

2.6 Gap Analysis

Over the last decade, a number of researchers and practitioners have investigated

programming frameworks for IoT which support application development. As dis-

2.6. Gap Analysis 21

cussed in Section 2.1, those frameworks mostly employ an event-driven architec-

ture which can be divided into two programming paradigms: the Trigger-Action

paradigm and the Event-Condition-Action paradigm. The Trigger-Action paradigm

is proved to be easy to use for the end-users in real-life scenarios like smart home.

In such simple scenarios, one or two triggers are enough. However, in other com-

plex scenarios which require multiple triggers, the semantics of composing them

are complicated and confusing for the end-users. In addition, the Trigger-Action

paradigm does not contain temporal information in triggers. Generally, the trigger

could be an event, a condition, or some combination. If there are both event and

condition involved in a rule, they do not compose well. For example, the exact

moment someone shuts down the computer is unlikely to be the exact moment the

computer is completely off.

Although the programming models based on the Event-Condition-Action paradigm

do not have aforementioned drawbacks, they pose other limitations. First of all,

most proposed frameworks use direct sensors (e.g., "temperature is 25 degrees"

or "motion is detected") for event detection. They are simple to implement but con-

strained in terms of data acquisition. Ideally, data can come from either IoT devices

and appliances (e.g., sensors) or inter-networked resources (e.g., Web resources).

Secondly, to the best of our knowledge, all proposed ECA based programming

frameworks utilize a rule-based approach, which consists of a rule engine, a fact

base and a rule base for condition evaluation. The development and verification of

a rule-based system are time consuming. Also, any changes to the rule base or fact

base may introduce potential errors. Lastly, the proposed programming framework

cannot express inherently vague concepts in conditions. For example, a condition

may be "the weather is too hot", where "hot" is ambiguous and person-dependent.

Therefore, there is a need for studying how to interpret concrete readings from

sensors for condition evaluation.

To tackle the problems mentioned above, we develop a system which is built on

the Event-Condition-Action paradigm. As depicted in Figure 3.1, the lowest layer

is modeling. In our approach, the modeled resources not only include physical IoT

devices (e.g., sensors), but also inter-networked resources (e.g., Web resources or

Web services). In this case, any resource which is uniquely identified by a URI can

server as a data source. Furthermore, instead of modeling one atomic resource

at a time, we consider resources at a higher level of abstraction. Such abstract

resources serve as "templates", which extract reusable parts of a resource for a

specific domain. The instantiation process is performed at runtime and generates

22 Chapter 2. Background and Related Work

concrete resources for the composition. Secondly, we employ goal modeling rather

than rule-based system for the condition evaluation. Specifically, goals in a goal

model represent conditions or states which are attached to the individual evalua-

tors. After reasoning, we can obtain a truth value for the root node of the model

and determine any consequent actions that need to be initiated. Goal modeling is

also employed for specifying action models and compiling action plans. Another

advantage of goal modeling is that it support more complicated relationships be-

tween two goals. Lastly, we utilize fuzzy logic for evaluating condition models.

Fuzzy logic allows for reasoning on vague concepts (e.g., "hotness") and is robust

to tolerate imprecise readings. The runtime system is developed using a pub-

lish/subscribe middleware in consideration of scalability and other non-functional

requirements.

Chapter 3

System Architecture

In this chapter, we present the architecture of the proposed system, which is graph-

ically depicted in Figure 3.1. Generally, the whole system has three subsystems:

the Modeling subsystem, the Instantiation subsystem and the Runtime system. We

then present the component view of the system followed by the detail descriptions

of each component. To illustrate the workflow of the activities and actions, we also

provide the activity diagram of the runtime system and a corresponding workflow

example.

3.1 System Overview

The architecture of the proposed system is structured across seven layers, as de-

picted in Figure 3.1. Each layer builds upon the functionality provided by the layer

below, and exposes interfaces to the layer above. In addition, layers are indepen-

dent of each other. Each layer has its own implementation and it can be replaced

by a different implementation if necessary. For example, if a more scalable Pub/-

Sub middleware becomes available, the system can employ it without major mod-

ification. Next, we will discuss the responsibilities of each layer of the proposed

architecture, starting with the lowest one.

• Modeling Subsystem.

– Modeling Layer. The lowest layer is the modeling layer which hosts all

the components for a user to draft and edit models related to abstract do-

main resources (ADRs), models related to conditions, models related to

actions and models related to the composition of the above entities. This

23

24 Chapter 3. System Architecture

Pub/Sub Proxy

Pub/Sub Middleware

Facade Daemon

Invocation Publish Gateway

Process Server

Runtime

Instantiation

Modeling

Figure 3.1: High Level Conceptual View of the System’s Architecture

layer contains two components, namely the AbstractResourceCondition-

Action Modeling component and the Composition Modeling component.

In this layer, we model abstract domain resource, abstract condition,

abstract action and composition.

• Instantiation Subsystem.

– Instantiation Layer. This layer hosts components that instantiate ab-

stract domain resource models to concrete ones (see Section 4.2). The

instantiation process begins with the resource localization and then, with

the help of domain ontology and a resource selection algorithm, a con-

crete resource is selected for instantiating an abstract domain resource.

• Runtime Subsystem.

– Facade Daemon Layer. This layer is responsible for collecting data and

handling responses. It provides an interface for the Process Server to

transmit and receive data from an external medium (e.g. the Internet

through RESTful Web services).

3.2. Component View 25

– Process Server Layer. The Process Server implements the functionality

required by the runtime system. This functionality includes the sequenc-

ing and facilitation of data provision, condition evaluation and action

evaluation.

– Publish/Subscribe Middleware. This layer represents a specific mid-

dleware employed in the runtime system. Specifically, we utilize the

OPC UA system as a middleware framework for providing publish and

subscribe services for the runtime system. The proposed system is also

integrated with the PADRES middleware as part of a related project.

– Publish/Subscribe Proxy Layer. This layer acts as an intermediary

between the Runtime and the Publish/Subscribe Middleware. It exposes

Pub/SubProxyService as an interface to control the access to a specific

Publish/Subscribe middleware (e.g. OPC UA, PADRES, etc.).

– Runtime Layer. This layer integrates services provided by the underly-

ing layers and implements the prototype runtime system.

3.2 Component View

The component diagram of the proposed system is depicted in Figure 3.2 As is

shown, there are three major subsystems in the whole system. The first subsystem

is the Modeling subsystem, which provides services to model abstract resources,

conditions, actions as well as compositions. The second subsystem is the Instanti-

ation subsystem, which provides services to instantiate abstract models obtained

from the Modeling subsystem and provides concrete models to the runtime en-

vironment. The third major subsystem is the Runtime subsystem. The Runtime

subsystem employs an event driven architectural style. Specifically, it uses the

Publish/Subscribe model to process events in the middleware.The detailed descrip-

tions of the individual components in each module making the proposed architec-

ture, are discussed in the next Section.

3.3 Component Descriptions

Here, we describe the functionality of each component in the proposed architec-

ture along with the relationships between each component.

26 Chapter 3. System Architecture

«s

ub
sy

st
em

»
R

un
tim

e

«s

ub
sy

st
em

»
M

od
el

in
g

A
bs

tr
ac

t R
es

ou
rc

e
C

on
di

tio
n

A
ct

io
n

M
od

el
in

g
M

od
ul

e

Ab
st

ra
ct

C
on

di
tio

n
M

od
el

er

Ab
st

ra
ct

Ac
tio

n
M

od
el

er

Ab
st

ra
ct

R
es

ou
rc

e
M

od
el

er

C
om

po
si

tio
n

M
od

el
in

g
M

od
ul

e

C
om

po
se

r
Ed

ito
r

C
om

po
si

tio
n

M
od

el
Se

rv
er

C
om

po
si

tio
n

Se
rv

ic
e

Fa
ca

de
 D

ae
m

on
 M

od
ul

e

In
vo

ca
tio

n
Se

rv
er

R
es

po
ns

e
Se

rv
er

Au
th

en
tic

at
io

n
Se

rv
er

D
ae

m
on

G

at
ew

ay
Se

rv
er

Au
th

Se
rv

ic
e

D
ae

m
on

G

at
ew

ay

Se
rv

ic
e

R
es

po
ns

e
Se

rv
ic

e
In

vo
ca

tio
n

Se
rv

ic
e

D
ae

m
on

G
at

ew
ay

Se

rv
ic

e

R
es

ou
rc

e
In

st
an

tia
tio

n
M

od
ul

e

R
es

ou
rc

e
Lo

ca
liz

at
io

n
Se

rv
er

R
es

ou
rc

e
Se

le
ct

io
n

Se
rv

er

Sc
rip

tin
g

Se
rv

er

R
es

ou
rc

e
Lo

ca
liz

at
io

n

In
st

an
tia

te
d

R
es

ou
rc

e

Ab
st

ra
ct

C
om

po
si

tio
n

M
od

el

Pu
b/

Su
b

Pr
ox

y
M

od
ul

e

Pu
b/

Su
b

M
id

dl
ew

ar
e

M
od

ul
e

Pu
b/

Su
b

Pr
ox

y
Se

rv
er

Bi
nd

in
g

Se
rv

er

Pu
b/

Su
b

Se
rv

ic
e

Pu
b/

Su
b

Pr
ox

y
Se

rv
ic

e

R
un

tim
e

En
gi

ne

Ab
st

ra
ct

R
es

ou
rc

e

M
od

el

Ab
st

ra
ct

C
on

di
tio

n
M

od
el

Ab
st

ra
ct

Ac

tio
n

M
od

el

Sc
rip

tin
gS

er
vi

ce

«s

ub
sy

st
em

»
In

st
an

tia
tio

n

Ab
st

ra
ct

C
om

po
si

tio
n

M
od

el

Ac
tio

nE
va

lu
at

io
n

Se
rv

ic
e

C
on

di
tio

nE
va

lu
at

io
n

Se
rv

ic
e

 P
ro

ce
ss

 M
od

ul
e

Fa
ca

de
C

on
ne

ct
or

D
at

a
Pr

ov
is

io
n

Se
rv

er

C
on

di
tio

n
Ev

al
ua

tio
n

Se
rv

er

Ac
tio

n
Ev

al
ua

tio
n

Se
rv

er

C
on

di
tio

nE
va

lu
at

io
n

Se
rv

ic
e

Ac
tio

nE
va

lu
at

io
n

Se
rv

ic
e

C
on

ne
ct

io
n

Se
rv

ic
e

D
at

aP
ro

vi
si

on

Se
rv

ic
e

D
at

aP
ro

vi
si

on

Se
rv

ic
e

Bi
nd

in
g

Se
rv

ic
e

Pu
b/

Su
b

Pr
ox

y
Se

rv
ic

e

Figure 3.2: Component Diagram of System

3.3. Component Descriptions 27

3.3.1 Modeling Subsystem

Component Descriptions

AbstractResourceModeler This component provides services to read abstract do-
main resource specifications as well as initialize and
load AbstractResourceModel(s) into the memory. It
exposes the interface which is used by Composition-
ModelServer component.

AbstractConditionModeler This component provides services to edit, read as well
as initialize and load into the memory AbstractCondi-
tionModel(s). It exposes the interface which is used
by CompositionModelServer component.

AbstractActionModeler This component provides services to read abstract ac-
tion specifications as well as to initialize and load into
the memory AbstractActionModel(s). It exposes the
interface which is used by CompositionModelServer
component.

Table 3.1: AbstractResourceConditionAction Modeling (ARCAM) Module

Component Descriptions

ComposerEditor This component provides a textual editor service for
modeling compositions. It exposes CompositionSer-
vice as an interface.

CompositionModelServer This component consumes CompositionService from
ComposerEditor and abstract models generated from
ARCA Modeling Module. CompositionModelServer
initializes and loads AbstractCompositionModel into
the memory. It exposes the interface which is used by
ScriptingServer component.

Table 3.2: Composition Modeling (CM) Module

28 Chapter 3. System Architecture

3.3.2 Instantiation Subsystem

Component Descriptions

ResourceLocalizationServer This component provides services to access the re-
source repository and retrieve all available resources
for a particular domain based on user’s preferences
and context. It exposes ResourceLocalization service
as its interface.

ResourceSelectionServer This component consumes ResourceLocalization ser-
vice and provides services to select the resource with
the highest utility value with the help of Dynamic
Programming algorithm. It generates Instantiate-
dResource as a result.

ScriptingServer This component provides services to model elements
in the AbstractCompositionModel so that a composi-
tion model can be created (see Section 5.1). It ex-
poses ScriptingProvisionService as an interface.

Table 3.3: Resource Instantiation (RI) Module

3.3. Component Descriptions 29

3.3.3 Runtime Subsystem

Component Descriptions

FacadeConnector This component provides services to connect the
required interface of DataProvisionServer, Con-
ditionEvaluationServer and ActionEvaluationServer
with the provided interfaces of Façade Daemon mod-
ule (i.e. the DaemonGatewayServer).

DataProvisionServer This component provides services to provision data
for the runtime system. It consumes ConnectionSer-
vice provided by FacadeConnector component and ex-
poses DataProvisionService as an interface. Its aim
is to decouple the process of provisioning data from
an external sources from the evaluations of condition
and action models.

ConditionEvaluationServer This component provides services to evaluate condi-
tion models. It exposes ConditionEvaluationService
as an interface.

ActionEvaluationServer This component provides services to evaluate actions
in an action model. It consumes ConnectionSer-
vice provided by FacadeConnector component and ex-
poses ActionEvaluationService as an interface.

Table 3.4: Process Module

30 Chapter 3. System Architecture

Component Descriptions

InvocationServer This component performs HTTP requests to collect
data from external sources. It consumes Authentica-
tionService (when it is provided) and exposes Invoca-
tionService as an interface.

ResponseHandler This component handles the response of the HTTP re-
quest. It consumes DaemonGatewayService and ex-
poses ResponseService as an interface.

AuthenticationServer This component provides an access token which could
be used in a HTTP request of InvocationService (op-
tional), in order to authenticate a user or a session.

DaemonGatewayServer This component provides an access point to the Pub/-
Sub Proxy Module. It consumes Pub/SubProxyService
and exposes DaemonGatewayService as an interface.

Table 3.5: Facade Daemon

Component Descriptions

Pub/SubProxyServer This component provides services to decouple the
backend system (through its facade daemon) from the
underlying middleware technology used.

BindingServer This component provides services for binding of a spe-
cific underlying pub/sub framework (e.g. OPC UA,
PADRES) used by the runtime system. It consumes
AuthenticationService when it is provided and ex-
poses the Pub/SubProxyService as an interface.

Table 3.6: Pub/Sub Proxy Module

3.4. System Workflow 31

3.4 System Workflow

After applying the modeling and the instantiation processes, we obtain concrete

DomainResource models as well as concrete Condition and Action models. In or-

der to build the sever and the client of the runtime system, we use the OPC UA

publish/subscribe middleware framework. Specifically, the server creates fold-

ers in the middleware for DomainResoruce, Condition and Action. We also have

four clients, namely Domain Resource Client, Daemon, Condition Client and Ac-

tion Client, which subscribe to the corresponding folders and publish events to the

middleware. The activity diagram of the runtime system is depicted in Figure 3.3.

DRC Composes
Request Event

DRC Gets Notified
about Event

DAE Gets Notified
about Request Event

DAE Issues HTTP
Request and Gets

Response

DAE Publishes to
Middleware

CC Gets Notified
about Response

Event

Is Addtional Data
Required?

Yes

CC Publishes
Evaluation Result to

Middleware

AC Gets Notified
about Condition

Result Been Posted

Is Action
Triggered?

No

Yes

Is Additional Data
Required?

Yes

Agent Publishes
Event

AC Performs Actions

CC Evaluates Goal
Model

AC Evaluates Task
Model

No

Request Object

DRC Publishes to
Middleware

Goal Model

CC Builds Goal
Model

No

Task Model

AC Builds Task Model

Domain Resource Client
(DRC) Daemon (DAE) Condition Client (CC) Action Client (AC)

OPC UA Middleware Folder:

DR/<Domain>/Input/
<InputPlug>

e.g. DR/Weather/
 Input/city

OPC UA
Middleware Folder:

Request/
RequestVariable

e.g. Request/rv1

where: rv1 is
[
urlReference = ...,
resType = ...,
resPlug = ...,
timeStamp = ...,
sessionID = ...,
interval =
]

OPC UA
Middleware Folder:

Condition/Input/
<InputConditionPlugKey>

e.g. Condition/Input/
 temp

OPC UA
Middleware Folder:

Condition/Output/
ConditionResult

e.g. Condition/Output/
 0.5

Response Object

Figure 3.3: Activity Diagram of Runtime System

32 Chapter 3. System Architecture

3.5 Workflow Example

In this section, a workflow example is given about the weather domain. Let us first

assume that a concrete resource has the structure as depicted in Figure 3.4.

Reference to the resource repository containing

metadata for each concrete resource

considered in the system.

Reference to the ontology about the weather data.

Reference to the domain name.

Reference to the CRUD action interface.

Reference to the resource’s output plugs.

Reference to the resource’s input plug.

Figure 3.4: DomainResource Example for Weather Domain

Then, the steps that depict the system operation and correspond to the activity

diagram in the Figure 3.3 are as follows:

1) An agent (e.g. an external actor, Condition Client or Action Client) publishes

the event to the middleware folder (i.e. DR/Weather/Input/city).

2) The Domain Resource Client gets notified about the event, composes a re-

quest object and publishes to the middleware folder, (i.e. Request/Request-

Variable).

3) Daemon gets notified about the request event, issues HTTP request and gets

the response.

3.5. Workflow Example 33

4) Daemon publishes the response data to the corresponding middleware fold-

ers, (i.e. Condition/Input/temp, Condition/Input/humidity and Condition/In-

put/pressure).

5) Condition Client gets notified about the response event. If additional data

is required, go back to step 1-3 (not shown for clarity in the corresponding

Figure 3.3). If not, continue.

6) Condition Client obtains the reference to the goal model and builds it.

7) Condition Client evaluates the goal model and gets evaluation result.

8) Condition Client publishes the evaluation result to the middleware folder, i.e.

Condition/Output/ConditionResult.

9) Action Client gets notified about the evaluation result been posted. If the

condition is evaluated to false, terminate. If not, continue.

10) If additional data is required, go back to step 1-3 (not shown for clarity in the

corresponding Figure 3.3). If not, continue.

11) Action Client obtains the reference to the task model and builds it.

12) Action Client evaluates the task model and compiles action plans.

13) Action Client performs actions.

14) System terminates.

Chapter 4

Resource Abstraction Metamodel

and Instantiation

Service computing has emerged as a major paradigm for clients to access remote

services. Such services can be invoked either through well defined message-

oriented interfaces (as it is the case for classic message-oriented Web services),

or through uniform resource identifiers as addressable resources (as it is the case

for RESTful Web services). In either case, services are accessed through well de-

fined end points. In this context, a major problem is for application developers and

end users to choose the right end point (i.e. services) from many external ones.

For instance, there are already over 1000 APIs under the Mapping category on

ProgrammableWeb [18]. Of course there are thousands of APIs in other domains

including the IoT domain. And this does not count even more resources which are

available in IoT domain, such as sensors, actuators, processors, etc. On the other

hand, developers may not be familiar with the details of service interfaces that the

resources provide, which may include how to create an HTTP client to access ser-

vice, parse the response data, etc. These issues guide us to consider an abstract

model of resources (template), which provide abstractions for resource categories

and service interfaces. Such abstractions are later instantiated with the help of

the domain ontology and resource selection algorithm.

4.1 Resource Abstraction Metamodel

The Resource Abstraction Metamodel (RAMM) denotes the nature, capabilities and

interfaces of RAMM resources. A RAMM resource serves as a "template", which

34

4.1. Resource Abstraction Metamodel 35

abstracts the reusable part of a resource. With the help of domain ontologies and

a resource selection algorithm, the template can be instantiated in an automatic

and flexible way. The RAMM is depicted in Figure 4.1.

Generally, the RAMM resources are parameterized with respect to some at-

tributes, so that the templated resources can be configured and customized given

the specific application scenario based on users’ preferences and context. Such a

template is more suitable in a dynamic environment where the users’ preferences

and context are constantly changing. In addition, this facilitates the sharing and

reuse of templates, as well as the creation of template instances. The main element

in RAMM is the AbstractDomainResource, which represents RAMM’s resources for

a particular domain. An AbstractDomainResource has references to the resource

repository and the domain ontology which are useful in the instantiation process

by discovering the proper resources. After instantiation, the “host” and “urlRefer-

ence” attributes of DomainResource are given specific values. The former specifies

the provider of the resource, and the latter provides the URL or the URL template

of the resource, when the RAMM resource is associated with a single underlying

instance resource. The descriptions for each class and its attributes are given in

Section 4.1.1.

36 Chapter 4. Resource Abstraction Metamodel and Instantiation

Figure 4.1: Resource Abstraction Metamodel

4.1. Resource Abstraction Metamodel 37

4.1.1 RAMM Classes and Attributes

AbstractDomainResource This abstract class models general RAMM resources
in a particular domain. It abstracts the reusable parts
of IoT resources at design time. Generally, it is con-
figured based on the user’s preferences and context.
At runtime, it is instantiated to a DomainResource el-
ement.

repositoryReference This attribute specifies the URI of the resource repos-
itory associated with the AbstractDomainResource.

semanticReference This attribute specifies the URI of the ontology asso-
ciated with the AbstractDomainResource element.

label This attribute describes the RAMM resources mod-
eled by the AbstractDomainResource abstract class.

domain This attribute specifies the domain which AbstractDo-
mainResource abstract class models.

resourceMetamodel This attribute associates an AbstractDomainResource
with a structure description denoted by the Re-
souceMetaModel class.

actionInterface This attribute associates an AbstractDomainResource
with an interface denoted by the subclass of ActionIn-
terface class.

Table 4.1: AbstractDomainResource Class

DomainResource This class extends AbstractDomainResource class. It models a
particular RAMM resource. More specifically, a DomainResource
element specifies a semantically distinct, concrete resource which
is subject to state manipulation or activity triggering. Typically,
a DomainResource element is associated with a single underlying
IoT resource.

host This attribute specifies the identifier of the provider of the IoT
resource associated with the DomainResource.

urlReference This attribute specifies the URL or URL template of the IoT re-
source associated with the DomainResource.

Table 4.2: DomainResource Class

38 Chapter 4. Resource Abstraction Metamodel and Instantiation

ResourceMetaModel This class defines the structure of an associated DomainRe-
source element by referring to an appropriate serialization
mechanism.

serialization This attribute associates the ResourceMetaModel class with
the SerializationMechanism abstract class.

Table 4.3: ResourceMetaModel Class

ActionInterface This abstract class provides a common abstraction for inter-
action points of an RAMM resource. The ActionInterface is
extended by four concrete interface definition classes that
denote the CRUD semantics, i.e. Create, Read, Update and
Delete.

label This attribute provides a description for the interface.

resourceReference This attribute specifies the URL or URL template of an IoT
resource associated with the action implemented by the in-
terface (optional). When provided, the value of this attribute
overrides the value of the urlReference DomainResoruce at-
tribute.

inputPlug The inputPlug attribute associates the ActionInterface class
with the InputPlug class. Specifically, an interface can be as-
sociated with a set of data elements which are included in the
request message.

output The output attribute associates the ActionInterface class with
the Output class.

Table 4.4: ActionInterface Class

Create The Create class is a subclass of ActionInterface abstract class. It
defines a specific action with resource creation semantics. Create is
mapped to HTTP POST.

Table 4.5: Create Class

4.1. Resource Abstraction Metamodel 39

Read The Read class is a subclass of ActionInterface abstract class. It
defines a specific action with resource retrieval semantics. Read is
mapped to HTTP GET.

Table 4.6: Read Class

Update The Update class is a subclass of ActionInterface abstract class. It
defines a specific action with resource modification semantics. Update
is mapped to HTTP PUT.

Table 4.7: Update Class

Delete The Delete class is a subclass of ActionInterface abstract class. It
defines a specific action with resource deletion semantics. Create is
mapped to HTTP DELETE.

Table 4.8: Delete Class

Output The output class specifies the outcome of the interaction with
the interface.

responseCode This attribute denotes the status of the interaction.

outputMetaModel This attribute associates the Output class with the Output-
MetaModel class which describes the expected payload of the
output of the interaction.

Table 4.9: Output Class

OutputMetaModel This class models the response payload of an interface inter-
action. It also allows for the specification of the corresponding
schema type.

serialization This attribute associates the OutputMetaModel class with the
SerializationMechanism class.

Table 4.10: OutputMetaModel Class

40 Chapter 4. Resource Abstraction Metamodel and Instantiation

OutputPlug This class specifies elements of the response payload that
need to be distinctly identified so that they can be used in
compositions and conditions.

plugPath This attribute is used to locate the element that comprise the
OutputPlug data element in the response payload structure.

plugPathSyntax This attribute specifies the syntax that the value of the plug-
Path attribute conforms to. The possible values of plugPath-
Syntax are specified by the PathSyntax enumeration.

Table 4.11: OutputPlug Class

InputPlug The InputPlug class models data elements included in
request message payloads.

optional This attribute specifies whether the input element is
optional (true) or required (false) (optional).

schemaDefinition This attribute specifies a schema document that in-
cludes the definition of the InputPlug element’s type
(optional).

type This attribute specifies the element of the schemaDef-
inition document that constitutes the type of the In-
putPlug element (optional).

inputElementPath This attribute is used to locate the InputPlug element
in the exchanged message, when SchemaBasedSerial-
ization is utilized to specify the structure of the mes-
sage payload.

inputElementPathSyntax This attribute is used when a value is specifies for the
inputElementPath attribute. It denotes which syntax
is used for the path expression. The possible values
that this attribute can take are specifies by the Path-
Syntax enumeration.

Table 4.12: InputPlug Class

4.1. Resource Abstraction Metamodel 41

PathSyntax This enumeration is used to specify the list of languages that can
be used for the expressions contained in values of the inputEle-
mentPath and plugPath attributes. In this thesis, two language
are considered, namely XPath and JSONPath.

Table 4.13: PathSyntax Class

DataElement This abstract class denotes entities that are used as com-
mon abstractions for the classes InputPlug, OutputPlug
and EventAttribute.

key This attribute is used to uniquely identify the data element
within the scope of a single use case scenario.

label This attribute is used to describe the data element (op-
tional).

value This attribute is used to provide a fixed or default value
for the data element (optional).

semanticReference This attribute is used to assign semantics to the data ele-
ment by pointing to a URI that identifies a corresponding
ontology element (optional).

Table 4.14: DataElement Class

SerializationMechanism This abstract class specifies the structure for the ex-
changed message. The SerializationMechanism class
is extended by the StringTemplateSerialization and
SchemaBasedSerialization classes.

Table 4.15: SerializationMechanism Class

42 Chapter 4. Resource Abstraction Metamodel and Instantiation

StringTemplateSerialization This class extends the SerializationMechanism class
and specifies a string-based template to serialize and
deserialize messages.

template This attribute specifies the string-based template of
the message.

language This attribute specifies the identifier for the template
language used (optional).

Table 4.16: StringTemplateSerialization Class

SchemaBasedSerialization This class extends the SerializationMechanism class
and specifies a schema-based template to serialize
and deserialize messages.

type This attribute provides the name of the schema type
that specifies the structure of the message.

schemaDefinition This attribute specifies a URI of a schema location
which defines the structure of the message.

Table 4.17: SchemaBasedSerialization Class

EventTopic This class specifies a type of event that the RAMM resource may
publish or subscribe, when it utilizes a Publish/Subscribe client.

eventAttributes This attribute associates the EventTopic class with the EventAt-
tribute class. It allows for the specification of the particular events
in the messages that are desired to be received by subscribers.
There should be at least one EventAttribute specified for an Event-
Topic.

serialization This attribute associates the EventTopic class with the Serializa-
tionMechanism class.

Table 4.18: EventTopic Class

4.1. Resource Abstraction Metamodel 43

Pub/SubClient This abstract class provides a common abstraction for the middle-
ware client which refers to DomainResource element. The Pub/-
SubClient is extended by the concrete middleware specifications
which provide publish and subscribe services.

publish This method is used by Pub/Sub Client to publish response data
which is acquired through the interaction with the interface.

subscribe This method is used by Pub/Sub Client to subscribe events in the
middleware and get notified when specific events occur.

Table 4.19: Pub/SubClient Class

OPCUAClient The OPCUAClient class is a subclass of Pub/SubClient abstract
class. It is a middleware implementation which provides publish
and subscribe services for the runtime system.

Table 4.20: OPCUAClient Class

44 Chapter 4. Resource Abstraction Metamodel and Instantiation

4.1.2 Abstract and Concrete Resource Example

In a smart home environment, light sensors can detect light levels for the purposes

of saving energy and improving the security in the house. There are usually several

light sensors in a house. Depending on the user’s needs, different sensor may be

used to detect light levels. Also, users may want the light sensor to function during

a specific time period of the day. The obtained light data is useful for controlling

lights in a smart home.

Figure 4.2 demonstrates an AbstractDomainResource used in the smart home

for light detection. As it shows, the root element is AbstractDomainResource. It

specifies the domain as “SmartHome” and shows that this resource models light

level information. AbstractDomainResource has references to the resource repos-

itory and the domain ontology. The resourceMetaModel attribute specifies the

serialization mechanism for this resource is SchemaBasedSerialization (XML).

<?xml version="1.0" encoding="UTF-8"?>

<iot:AbstractDomainResource xmi:version=“2.0” xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:iot="http://org.eclipse.example/iot"

repositoryReference=“resourceRepository.ttl” semanticReference="smarthome.ttl"

label="light level information" domain="SmartHome">

<resourceMetaModel>

<serialization xsi:type ="iot:SchemaBasedSerialization"/>

</resourceMetaModel>

<ActionInterface xsi:type="iot:Read" label="Find out light level">

<output>

<outputMetaModel>

<outputPlug key="LightLevel"/>

</outputMetaModel>

</output>

<inputPlug key="timeSpan" label="Time span in a day" type="string"/>

</ActionInterface>

</iot:AbstractDomainResource>

"SchemaBasedSerialization" specifies

the response data format as XML.

"Read" interface is equivalent to HTTP GET method.

"LightLevel" is the field to capture in the

response message.

"timeSpan" is given as the query parameter of the "Read" interface.

Figure 4.2: AbstractDomainResource Example for Smart Home

4.1. Resource Abstraction Metamodel 45

Subsequently, a Read interface is specified to capture the HTTP GET interaction

point provided by the API. The response of the GET request returns a representa-

tion of the light level information in a particular time span of the day. In this smart

home scenario, we are interested in one particular field included in the response

message: LightLevel. This field is used later for condition evaluation and composi-

tion. Lastly, an inputPlug element specifies the timeSpan when we want to query

light level information.

<?xml version="1.0" encoding="UTF-8"?>

<iot:DomainResource xmi:version=“2.0”

……

host=“api.lightsensor.com”

urlReference="http://api.smarthome.com/data/LightSensor/">

<resourceMetaModel>

<serialization xsi:type="iot:SchemaBasedSerialization"/>

</resourceMetaModel>

<ActionInterface xsi:type="iot:Read" label="Find out light level">

<output>

<outputMetaModel>

<outputPlug key=“luminousIntensity” label=“Luminous intensity in candela"

plugPath="/main/lightdata/luminousintensity"

semanticsReference="http://www.smarthome.com#Light"/>

</outputMetaModel>

</output>

<inputPlug key="timeSpan" label="Time span in a day" type="string"/>

</ActionInterface>

</iot:DomainResource>

"host" specifies the identifier of the selected resource in the repository.

"urlReference" specifies the URL template

for the resource access.

"luminousIntensity“ corresponds to the "lightLevel" in the AbstractDomainResource.

"label" describes the element "luminousIntensity“.

"plugPath" specifies the XPath of

"luminousIntensity" in the response.

"semanticReference" is used to associate

"luminousIntensity" with the element in the ontology.

Figure 4.3: DomainResource Example for Smart Home

Figure 4.3 demonstrates a DomainResource used in the smart home example.

After the instantiation process is applied (see Section 4.2), A DomainResource (i.e.

a concrete resource) is generated as an instance of the AbstractDomainResource

class. There are two new attributes added in DomainResource. The host attribute

denotes that LightSensor resource is selected in the repository. The urlReference

gives the URL template for the resource access. Subsequently, the fields in the

outputPlug are instantiated in terms of LightSensor resource. Specifically, the

46 Chapter 4. Resource Abstraction Metamodel and Instantiation

label describes the element (luminousIntensity) and plugPath specifies the XPath

of luminousIntensity in the response message. The sematicReference is used to

assign semantics and map to elements in other models.

4.2 Resource Instantiation Framework

In our approach, a RAMM resource template is first defined based on users’ re-

quirements. In other words, end users specify what kind of information they want

the resource to denote as well as related inputs, outputs and preferred response

format. The template instantiation process comprises two key components: se-

mantic web modeling and a resource selection algorithm. Figure 4.4 demonstrates

the whole resource instantiation process.

Before we delve into the details of the instantiation process, let us consider a

simple example.

Resource
Instantiation Resource

Repository

Domain
Ontology

Abstract

(Templated)
Resources


~~~~ 
~~~~  


~~~~ 
~~~~ 



~~~~ 
~~~~ 


Instance

(Concrete)
Resources

Figure 4.4: Resource Instantiation Process

Suppose we consider a system that involves three types of domain resources.

The problem is for instantiation process to find one concrete resource in each

resource type. Let us further assume that we have three possible Abstract Domain

4.2. Resource Instantiation Framework 47

Resource models (ADRi, i = 1, 2, 3). Each of the ADRs describes its input, output

and CRUD interface of the abstract resource in each domain. The instantiation

process starts with finding all available resources in the repository. Here, let us

assume for each AbstractDomainResource, there are three candidate resources

available.

Figure 4.5. illustrates this scenario. ADR and DR are the abbreviations for Ab-

stract Domain Resource and DomainResource, respectively. We consider that each

candidate resource DRi j (i = 1, 2, 3, j = 1, 2, 3) that can be used to instantiate the

corresponding abstract domain resource ADRi is associated with a five-dimensional

vector which describes its QoS metrics, e.g. response time, cost, accuracy, avail-

ability and reliability. Based on the QoS metrics, we can also calculate a utility

value for each resource. In addition, there is a total response time limit for the

system. Hence, the goal of our resource selection step is to select exactly one

resource from each domain such that the sum of the utility values is maximized

without exceeding the total response time limit. In section 4.4, we propose two

algorithms for the resource selection problem, namely Exhaustive Search and Dy-

namic Programming.

ADR1 ADR2 ADR3

DR11 DR12 DR13 DR21 DR22 DR23 DR31 DR32 DR33

Figure 4.5: A Resource Instantiation Example

Suppose we select DR12, DR21 and DR33 for the resource composition, the next

step is to provide values for elements in each selected resource using domain

knowledge. For this purpose, we have a global ontology which provides a shared

vocabulary for each domain. For each resource in a domain, we also have a lo-

cal ontology which corresponds to the global ontology. After resource selection,

we can instantiate the AbstractDomainResource using mappings between the lo-

cal and global ontology. The domain ontology development and semantic mapping

steps are elaborated in the next section. In summary, after the resource instantia-

48 Chapter 4. Resource Abstraction Metamodel and Instantiation

tion process commences, the Abstract Domain Resources (ADR1, ADR2, ADR3) now

have become concrete DomainResource (DR12, DR21, DR33) after resource instanti-

ation process.

4.3 Semantic Interoperation

With the rapid development of Linked Open Data and Knowledge Graph [32, 11],

different datasets can be linked together to achieve better knowledge representa-

tion and sharing. As one of the most popular Linked Open Data sources, the DBpe-

dia dataset [59] describes 6.0M entities which as of April 2016, includes 1.5M per-

sons and 810k places [22]. While data can be collected from a variety of sources,

it is a big challenge for us to integrate data across distributed heterogenous data

sources. This is also known as interoperability problem. For example, the concept

“Human” may be referenced as “Person” in one source and as “Individual” in an-

other. The use of ontology and its description language is a promising approach to

resolve the problem of semantic heterogeneity.

4.3.1 Domain Ontology Development

It is worth mentioning that Figure 2.6 only provides an outline for an iterative

process for the ontology development. There is no need to strictly follow those

steps one after another. Hereafter we use this methodology to develop an ontology

for the weather domain. The WeatherDemo ontology is implemented in OWL using

an open source ontology editor and the Java based knowledge management system

Protégé 5.2.0 [6], which is developed by researchers at Stanford University.

First, we need to create an IRI (Internationalized Resource Identifier) for the

ontology. Here the IRI for the WeatherDemo ontology is: http://www.weatherdemo

.com. Since weather is not an open domain, we use a top-down process for the

class hierarchy development. In OWL, every class is a subclass of owl:Thing. There

are three main classes in our ontology, namely City, WeatherData and Weather-

Source. WeatherData is further categorized into six subclasses, namely Tempera-

ture, Humidity, AtomosphericPressure, Wind, Rain and CloudCover. Then accord-

ing to the source of weather data, WeatherSource class is specialized into Device-

Source and ServiceSource, meaning that weather data can be acquired through

either a device (i.e. sensors) or a Web Service.

There are two main kinds of properties in OWL: Object properties and Datatype

4.3. Semantic Interoperation 49

properties. The former, link individuals to individuals, and the latter, link individ-

uals to data values [29]. In this case, the domain and range are both classes for

object properties. On the other hand, the domain and range for datatype properties

are classes and literals respectively. OWL also supports constructs to express ad-

ditional characteristics of properties. For instance, Listing 4.1 uses owl:inverseOf

to suggest the relation of hasSource and hasProvided properties.

<owl:ObjectProperty rdf:about="http://www.weatherdemo.com#hasProvided">

<owl:inverseOf rdf:resource="http://www.weatherdemo.com#hasSource"/>

<rdfs:domain rdf:resource="http://www.weatherdemo.com#WeatherSource"/>

<rdfs:range rdf:resource="http://www.weatherdemo.com#WeatherData"/>

</owl:ObjectProperty>

Listing 4.1: Definition of hasProvided property

Finally, we can define instances in the ontology. For the sake of simplicity of

our example, we only define three instances for the City class, namely Toronto,

Beijing and Athens. The built ontology (not include imported ontologies) is visual-

ized by OntoGraf plugin of Protégé in Figure 4.6, which depicts the concepts, their

relationships and the instance of WeatherDemo ontology.

As is shown in Figure 2.6, we often need to consider reusing existing ontolo-

gies when we develop our own. In our WeatherDemo ontology, in order to repre-

sent weather data accurately, ontologies related to units of measurement can be

adopted. Specifically, QUDT (Quantity, Unit, Dimension and Type) ontologies are

imported to specify units of weather data [20]. Figure 4.7 shows how an instance

of Temperature would be implemented without units of measurements. After the

introduction of QUDT ontologies, “hasTemperatureValue” is transformed from a

datatype property to an object property. It now links to a blank node which is an

instance of QuantityValue class. The blank node has two properties: numericValue

and unit. The datatype property numericValue refers to a literal. Another object

property unit points to DegreeCelsius which is an instance of QUDT’s concept Unit.

The resulting model is depicted in Figure 4.8, in which the upper part corresponds

to the ontology layer and lower part corresponds to the data layer.

50 Chapter 4. Resource Abstraction Metamodel and Instantiation

Figure 4.6: The WeatherDemo ontology

:Temperature

hasTemperatureValue

"­5.0"

rdf:type

Figure 4.7: An instance of Temperature of -5.0 (without using a unit ontology)

4.3. Semantic Interoperation 51

:Temperature qudt:QuantityValue

rdf:type

hasTemperatureValue

"­5.0" unit:DegreeCelsius

qudt:numericValue

qudt:Unit

rdf:type

rdf:type

qudt:unit

hasTemperatureValue qudt:unit

Figure 4.8: An instance of Temperature of -5.0 (using QUDT ontologies)

4.3.2 Semantic Mapping

The existence of a large number of heterogenous data sources on the Internet re-

quires the use of a unified interface to access data. Data may come from numerous

Web Services or ubiquitous IoT devices, e.g. sensors. Therefore, it is crucial for

data integration and interoperability, to define a way of how to apply ontology to

address issues like semantic heterogeneity from various data sources

In [82], the authors put forward three directions for semantic interoperability:

1) Single ontology approach. This approach uses one global ontology which

provides a shared vocabulary for the specification of the semantics.

2) Multiple ontologies approach. In this approach each data source is de-

scribed by its own ontology. This approach is more flexible than the single

ontology approach.

3) Hybrid approach. In this approach a global ontology provides a shared

vocabulary of a domain among local ontologies. The semantics of each source

is represented by its own ontology.

In the third approach, new data sources can easily be integrated, and users can

interact such sources through a unified interface. Due to these advantages, in this

thesis we have opted to utilize the hybrid approach.

The hybrid approach provides a solution to a problem known as ontology map-

ping, that is how to create and denote associations between entities in the global

ontology and entities in local ontologies. To resolve this issue, first local ontolo-

gies of each source are developed independently while capturing local specific

52 Chapter 4. Resource Abstraction Metamodel and Instantiation

Global Ontology Local Ontology 1 Local Ontology 2 Local Ontology 3

WeatherData WeatherReport WeatherInfo WeatherRecord

Rain Rainfall Precipitation PRCP

hasWeatherData hasWeatherReport hasWeatherInfo hasWeatherRecord

Toronto CityofToronto TorontoCA TRT

Table 4.21: Mapping between global and local ontology

information. Next, a global ontology is constructed by extracting common terms

used in the local ontologies. The last step is to map semantically equivalent en-

tities between them. OWL offers three built-in properties to link two entities:

owl:equivalentClass for mapping same classes, owl:equivalentProperty for map-

ping same properties and owl:sameAs for mapping same individuals. In our ex-

ample, weather domain, Table 4.21 demonstrates a sample mapping between local

and global ontologies.

4.3.3 RDF and SPARQL

The Resource Description Framework (RDF) is a modeling language that has been

developed in order to provide a flexible mechanism for describing web resources

and relationships between them [43]. The underlying data structure of RDF is a

collection of triplets, each consisting of three components: a subject, a predicate

(or property) and an object. A set of triplets is called an RDF graph, as is indicated

in the data layer of Figure 4.8. In order to facilitate sharing and exchange of RDF

data on the Web, several serialization formats have been developed. Until now,

those mainly include Turtle, N-Triples, JSON-LD, RDFa, RDF/XML, etc. In light of

readability and compactness, in this thesis we adopt the Turtle format [30]. For

instance, triples in Figure 4.8 could be written as in Listing 4.2.

@prefix : <http://www.weatherdemo.com#> .

4.3. Semantic Interoperation 53

@prefix source: <http://www.weatherdemo.com/source/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

source:10086 :hasTemperatureValue source:10000.

source:10000 qudt:numericValue "-5.0"^^xsd:double;

qudt:unit unit:DegreeCelsius.

Listing 4.2: RDF example encoded in Turtle syntax

Two major disadvantages of RDF are that first it falls short of its capability to

denote abstractions and second its limited capability of denoting semantic annota-

tions. That is to say, RDF is not able to describe things which belong to a common

set. Additionally, RDF can barely understand the meaning, or semantics, of the

terms used in triples. This is where the ontology comes into play. By means of the

ontology language, such as RDFS and OWL, the expressivity of RDF is significantly

enhanced. One thing to notice is that RDFS and OWL can be serialized in RDF,

hence they also have serialization formats like RDF/XML and Turtle.

Now that we have our own ontologies and RDF data, the next step is how to re-

trieve useful information from them. Like SQL is used to query relational database,

RDF data is queried using a language called SPARQL [74]. SPARQL stands for

SPARQL Protocol and RDF Query Language, which consists of two parts: query

language and protocol. Besides its common query ability like SQL and XQuery,

SPARQL differs in that it is capable of transmitting queries and results between a

client and a SPARQL endpoint via HTTP protocol. SPARQL queries are based on

the concept of graph pattern matching. A basic SPARQL query is simply a graph

pattern with some variables [13]. Therefore, if RDF data matches a graph pattern,

the specific value in RDF is returned as the result.

In this thesis, we utilize Apache Jena’s SPARQL client library ARQ, which is a

query engine that supports the SPARQL RDF Query Language [2]. In ARQ, the RDF

dataset is first read into a data structure called Model using Jena’s RDF API. The

query is then executed along with the Model. Finally, the query result is handled as

a stream of solutions and system memory is released. Listing 4.3 shows an example

of querying all weather sources which are located in Canada using SPARQL.

54 Chapter 4. Resource Abstraction Metamodel and Instantiation

PREFIX : <http://www.weatherdemo.com#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?s WHERE {

?s rdf:type :WeatherSource.

?s :locatedIn ?o.

FILTER(?o = "Canada")

}

Listing 4.3: SPARQL code to query all weather sources which are located in Canada

4.4 Resource Selection Algorithm

Recently, there has been a growing number of Web Services and IoT devices. While

it may seem tempting to have a diversity of ecosystem for prototyping, it is usually

difficult and time consuming to find suitable IoT resources. Based on Quality of

Service (QoS) metrics, this chapter discusses that the resource selection problem

can be transformed to the 0-1 Multiple Choice Knapsack Problem (0-1 MCKP). We

also propose two possible approaches to find a global optimal solution, namely

Exhaustive Search and Dynamic Programming. Finally, the performance of these

algorithms is compared by considering a simple scenario.

4.4.1 Problem Formulation

In the previous chapter, we discussed how to discover IoT resources of a certain

domain using SPARQL queries in the resource repository 4.3. The next step is to

select and combine those resources together to accomplish a complex task. The

difficulty of this step lies in both the scale and complexity of IoT. In addition to an

increasing number of Web Services active on the Internet, an even larger number

of IoT devices are deployed in all kinds of application scenarios. Various aspects of

IoT resources need to be considered before composing IoT applications.

The runtime performance of services is important for applications. For exam-

ple, IoT applications such as disaster warning, smart transportation and emer-

gency treatment may require a real-time response. QoS for Web Services refers to

4.4. Resource Selection Algorithm 55

various nonfunctional characteristics such as response time, throughput, availabil-

ity, and reliability. Besides these characteristics, IoT resources may also need to

take other measurement metrics, such as cost, accuracy and fidelity, into account.

In this thesis, we consider five QoS metrics of IoT resources: response time, cost,

accuracy, availability and reliability.

In the context of this thesis, we use the following terminology:

• Atomic resource: An atomic resource (or candidate resource) is associated

with a QoS vector, which specifies parameters [61].

• Resource class: A resource class is a set of atomic resources that provide a

common functionality like weather forecast.

• Utility value: Each atomic resource has an associated utility value, which is

calculated by the utility function.

The 0-1 Multiple Choice Knapsack Problem (MCKP) is a generalization of the

basic 0-1 Knapsack Problem. In 0-1 MCKP, we are given g groups N1, ..,Ng of items

to pack in a knapsack of capacity c. Each item j ∈ Ni has a profit pi j and a weight

wi j. The goal is to select exactly one item from each group such that the total profit

P is maximized without the total weight W exceeding c. 0-1 MCKP is NP-hard as

it contains the 0-1 KP as a special case [28]. Figure 4.9 illustrates the MCKP. We

have to choose exactly one item from each group. At the same time, we must

satisfy
3∑

i=1
wi≤ 50 and maximize the total profit of the chosen items. It is important

to note that there may be no solution, which means that no set of items satisfying

the total weight constraint.

p = 26
w = 14

p = 18
w = 10

p = 34
w = 20

p = 50
w = 28

p = 32
w = 19

p = 28
w = 15

p = 8
w = 5

p = 24
w = 14

Group 1 KnapsackGroup 2 Group 3

Sum (w) <= 50

Figure 4.9: 0-1 Multiple Choice Knapsack Problem

56 Chapter 4. Resource Abstraction Metamodel and Instantiation

Based on the definition of MCKP, we can formulate the resource selection prob-

lem as a MCKP as follows.

1) Each resource class is mapped to a group in MCKP.

2) Each atomic resource in a resource class is mapped to an item in a group in

MCKP.

3) The response time of the atomic resource is mapped to the weight of the item

in MCKP.

4) The utility value of the atomic resource is mapped to the profit of the item in

MCKP.

5) The goal is to maximize the sum of the utility values without exceeding the

total response time limit.

Suppose there are k resources class (S 1, .., S k) and total response time constraint

is R. The mathematical form of the resource selection problem is as follows:

max
k∑

i=1

∑
j∈S i

ui jxi j

s.t.
k∑

i=1

∑
j∈S i

ri jxi j ≤ R,∑
j∈S i

xi j = 1, i = 1, . . . , k,

xi j ∈ {0, 1}, i = 1, . . . , k, j ∈ Ni

(4.1)

where xi j denotes whether the atomic resource j is selected for class S i or not.

ui j and ri j are the utility value and response time of the atomic resource j, respec-

tively. The sum of response time of all selected atomic resources must be less than

or equal to the total response time constraint R.

4.4.2 Resource Selection

Before diving into algorithms for solving the resource selection problem, we first

need to calculate the utility value for each atomic resource. Since different QoS

metrics have different scales and natures, combining the values of them directly

may distort the ranges of values or lose information. Hence, the normalization

4.4. Resource Selection Algorithm 57

technique (specifically min-max normalization) is applied to the values of QoS met-

rics. There are two different kinds of metrics. For instance, a higher value for

reliability indicates better quality, while a higher value for response time means

the opposite effect. Equation 3.2 and 3.3 are used for the former and latter ones,

respectively.

m.value =


m.value−m.min
m.max−m.min , m.max − m.min , 0

1, m.max − m.min = 0
(4.2)

m.value =


m.max−m.value
m.max−m.min , m.max − m.min , 0

1, m.max − m.min = 0
(4.3)

After normalization, the utility value of each atomic resource could be calcu-

lated by summing up the product of each normalized value and its corresponding

weight as shown below.

u =
∑

(m′i .value ∗ wi) (4.4)

Obviously, the candidate resource with the largest utility value has a higher

quality of service than others in that resource class. If there is no constraint on

any QoS metrics like response time, we can select the atomic resource with the

largest utility value from each resource class efficiently. However, in reality, this is

not the case for resource selection on the basis of the QoS parameters. From now

on, we propose two approaches for finding the global optimal solution to resource

selection problem.

Exhaustive Search Algorithm

This algorithm is straightforward, that is considering all possible resource combi-

nations and select the best one from them. Without doubt it can find the global

optimal solution, yet it is time consuming. As a result, exhaustive search algorithm

only suits to occasions when both the number of resource classes and the number

of atomics resources in each class are small. Assuming that there are k resource

classes and each class has ni(i = 1, 2, .., k) candidates, the time complexity of this

algorithm is O(
∏k

i=1 ni). Algorithm 1 gives the pseudo-code for this approach.

58 Chapter 4. Resource Abstraction Metamodel and Instantiation

Dynamic Programming Algorithm

The resource selection problem can also be solved with dynamic programming

technique by following the following steps:

1. Characterize the optimal solution

Suppose there are G resource classes and total response time constraint is R.

We first construct an array M[i, r] to represent the maximum utility value with

r response time limit for the first i resource classes. In this case, if we can

compute all the entries of this array, then the array entry M[G,R] will contain

the maximum utility value that satisfies the response time constraint.

2. Recursively define the value of the optimal solution

It is clear that M[0, r] = 0. For class i = 1, we should choose the atomic

resource with the maximum utility value without violating the response time

constraint. The same for class i >= 2, except that we must make sure one

atomic resource from each previous class k(k = 1, 2, .., i− 1) have been chosen.

3. Compute value of the optimal solution

Based on step 1 and 2, now we can solve the problem using bottom-up method.

Algorithm 2 gives the pseudo-code for this method. Assuming there are n can-

didate resources in total, it is not hard to derive that the complexity of this

algorithm is O(nR).

4. Construct the optimal solution by backtracking

In step 3, we only get the maximum sum of the utility values. In order to

construct the actual optimal solution, we add an auxiliary array A[i, j] which

is computed in line 14 and 24 in Algorithm 2. Suppose A[i, j] = k, it means

that we decide to choose the k−th atomic resource in M[i, j]. Given this array,

we can construct the optimal solution as is shown in Algorithm 3.

Performance Evaluation Results

To evaluate the performance of Exhaustive Search Algorithm and Dynamic Pro-

gramming Algorithm, we conducted experiments on a 3.40 GHz Intel Core i7-4770

CPU with 32.0 GB RAM and JDK 1.8.0. In Figure 4.10 , we can conclude that the

running time of Dynamic Programming Algorithm has linear correlation with both

the number of resources classes and the number of candidate resources in each

class.

4.4. Resource Selection Algorithm 59

0 10 20 30 40 50 60 70 80 90 100
service classes

0

200

400

600

800

1000

1200

1400

1600

ru
nn

in
g

tim
e

(m
s)

(a) Each service class has 1000 candidate services

0 1 2 3 4 5 6 7 8 9 10 11
candidate services (k)

0

500

1000

1500

2000

2500

3000

3500

ru
nn

in
g

tim
e

(m
s)

(b) Each test case has 50 service classes

Figure 4.10: Performance of Dynamic Programming algorithm

From Table 4.22 we know that Exhaustive Search Algorithm is time consuming,

especially when problem size expands. Hence it is only suitable when the number

of resource classes k and candidate resources of each class n are both small. On

the other hand, Dynamic Programming Algorithm still performs well when k and

n become larger. In conclusion, Dynamic Programming Algorithm is a feasible

approach to get a global optimal solution to resource selection problem.

60 Chapter 4. Resource Abstraction Metamodel and Instantiation

Algorithm 1: Exhaustive Search Algorithm
Input: R: total response time constraint

1 G: total number of resource classes
2 ni: number of atomic resource in class i
3 rij: response time of j-th item in class i
4 uij: utility value of j-th item in class i

Output: si: select si-th item from class i
5 U ← 0
6 si ← 0, i = 1, . . . ,G
7 ci ← 0, i = 1, . . . ,G
8 Recursive-SOLVE(G)
9 if s1 = 0 then

10 return null
11 else
12 return s
13 end

14 Recursive-SOLVE(g)
// Base case: all groups have been considered.

15 if g = 0 then
16 r ← 0
17 u← 0
18 for i = 1 to G do
19 r ← r + rici

20 u← u + uici

21 end
// Update the solution if needed.

22 if r ≤ R and u > U then
23 U ← u
24 for i = 1 to G do
25 si ← ci

26 end
27 end
28 return
29 end

// Recursive cases: there are ng items in class g.
30 for i = 1 to ng do
31 cg ← i
32 Recursive-SOLVE(g − 1)
33 end

4.4. Resource Selection Algorithm 61

Algorithm 2: Dynamic Programming Algorithm
Input: R: total response time constraint

1 G: total number of resource classes
2 ni: number of atomic resource in class i
3 rij: response time of j-th item in class i
4 uij: utility value of j-th item in class i

Output: MGR: maximum sum of the utility values
5 Mi j ← 0, i = 1, . . . ,G, j = 1, . . . ,R
6 Ai j ← 0, i = 1, . . . ,G, j = 1, . . . ,R
7 for i = 0 to R do
8 M0i ← 0
9 end

10 for i = 0 to R do
11 for j = 1 to n1 do
12 if i ≥ r1 j and u1 j > M1i then
13 M1i ← u1 j

14 A1i ← j
15 end
16 end
17 end
18 for k = 2 to G do
19 for i = 0 to R do
20 for j = 1 to nk do
21 t ← i − rk j

22 if rk j ≤ i and Mk−1,t and uk j + Mk−1,t > Mki then
23 Mki ← uk j + Mk − 1, t
24 Aki ← j
25 end
26 end
27 end
28 end
29 return MGR

62 Chapter 4. Resource Abstraction Metamodel and Instantiation

Algorithm 3: Find Solution Algorithm
Input: R: total response time constraint

1 G: total number of resource classes
2 Aij: for response time j, select Ai j-th item from class i
3 rij: response time of j-th item in class i

Output: si: select si-th item from class i
4 for i = G to i ≥ 1 do
5 t ← AiR

6 si ← t
7 R = R − rit

8 end
9 if sG = 0 then

10 return null
11 else
12 return s
13 end

Resource Classes
Running Time (ms)

Exhaustive Search Dynamic Programming

5 4 8

6 18 9

7 150 9

8 1545 9

9 21436 9

10 183189 13

11 2138399 15

12 – 16

Table 4.22: Running Time Comparison (n=10)

Chapter 5

Condition and Action Modeling

This chapter discusses condition and action modeling. Apart from RAMM meta-

model, we also consider a metamodel for Conditions, Actions as well as Mappers

which are used to create compositions or "scripts". In this thesis, both Conditions

and Actions reference goal models. Goal modeling is a requirements engineering

technique which is used for capturing system or software requirements. In a goal

model, goals usually represent stakeholders’ objectives or expectations which a

system should achieve or satisfy. Goal models are normally built in the early phase

of a project to help understand whether and why a software should be developed.

After building goal models for the conditions and actions, we utilize reasoning

technique to evaluate condition goal model and compile action plan for action goal

model.

5.1 Condition, Action and Mapper Metamodel

In the proposed approach, the Condition references a goal model, the evaluation of

which will determine whether an Action will be triggered or not. Similarly, in our

approach, Actions reference also goal models (we refer to these models as actions

or task models), the evaluation of which yields a sequence of actions that achieve

the top task (i.e., goal). Goal models used for denoting Conditions are evaluated us-

ing a reasoner originally developed in [38]. Goal models for actions are evaluated

using an analyzer originally developed in [27]. Figure 5.1 shows the Condition and

Action metamodel, and Figure 5.2 illustrates the Mapper metamodel. In the Condi-

tion metamodel, the root element is the Condition class, which prescribes a specific

evaluation case. The Condition class has two attributes named “resultType” and

63

64 Chapter 5. Condition and Action Modeling

“resultValue”. The “resultType” attribute describes three possible data types of the

evaluation result: Boolean, Probabilistic or Fuzzy. The “resultValue” represents the

value of the evaluation result, which is used later for action triggering judgement.

For instance, if the “resultType” is set to Boolean, then “resultValue” can be either

0 or 1 based on the evaluation process. The Condition class also contains elements

for the evaluation that need to distinctly identified so that they can be mapped

to OutputPlug in the RAMM meta-model. The Action metamodel is similar to the

Condition metamodel, its “triggerInput” attribute is corresponding to the “result-

Value”. Action also contains elements for the action plan compilation. Both the

Condition and Action metamodel originate form goal modeling theory [80]. Goal

models for condition and action models are utilized to support decision making and

compile possible action plans, respectively. Goal models are further elaborated in

the next section.

Figure 5.1: Condition and Action Metamodel

The Mapper meta-model is used to map between elements which may come

from RAMM model, condition and action model. A Mapper class contains multi-

ple Connection, which specifies a mapping between two model instances. Each

Connection has two attributes named “source” and “destination” which acts as the

URI of the target instance. Each Connection element, contains several Mapping

elements. Each Mapping element has “from” and “to” attributes which specifies

a particular element in the “source” and “destination”, respectively. Mapping also

includes semantic information by pointing to a URI that refers to a corresponding

ontology element.

5.2. Goal Modeling and Reasoning 65

Figure 5.2: Mapper Metamodel

5.2 Goal Modeling and Reasoning

There is plenty of research work in goal modeling, including many approaches that

analyze the satisfaction or denial of goals. Example goal modeling methodologies

include KAOS [81], i* [83] ,Goal-oriented Requirements Language(GRL) [25] and

Non-Functional Requirements(NFR) [41], to name a few. In NFR, goals are fur-

ther divided to into hard goals and soft goals. The former describes a goal whose

satisfaction is binary, while the latter refers to goals for which satisfaction do not

follow clear-cut criteria (they are satisficed as opposed to satisfied). Although dif-

ferent goal modeling frameworks may present different concepts or notations, the

essential part remains the same.

In this thesis, we focus on applying goal modeling to represent both Condition

and Action models, in our quest to implement an IoT programming model which

follows the Event-Condition-Action (ECA) paradigm. In the Condition model, the

corresponding goal models represent conditions or states that a stakeholder would

like to achieve. Similarly, tasks and actions are denoted also as goal models. Such

a goal model associated with an action model is referred as task model. Besides

modeling capability, goal models also allow for reasoning. In this thesis, we use a

reasoner [38] to evaluate conditions for supporting decision making and we use a

task model analyzer [27] to compile possible action plans.

66 Chapter 5. Condition and Action Modeling

5.2.1 Goal Modeling

The basic goal model defines the AND/OR decomposition of goals into sub-goals.

An AND goal model node is satisfied if all of its sub-goals are satisfied, while an

OR goal model node is satisfied if at least one of its sub-goals is satisfied. In the

condition goal model, both AND goal model nodes and OR goal model nodes are

called composite goal nodes, which means that they are necessarily completed by

the composition of sub-goals. In addition, there are goals which cannot be further

decomposed, in which case goals are named atomic goal nodes. Figure 5.3 depicts

a simple goal tree. Pretty similar to goal models associated with Conditions, the

task model follows the same tree structure except for adding some new resource

nodes and links. In the task model, nodes are either tasks, actions or resources.

Tasks can be further divided into AND task nodes and OR task nodes. Action nodes

represent atomic activities, and resource nodes represent input parameters of the

action nodes. Figure 5.4 depicts a simple task tree.

Figure 5.3: Conceptual Goal Tree

Apart from node decomposition, goal model may also contain binary links be-

5.2. Goal Modeling and Reasoning 67

Figure 5.4: Conceptual Task Tree

tween nodes. There are five types of binary links in our complete metamodel,

which is depicted in Figure 5.5. The most crucial links are called contribution

links, which consist of four types. Adopting the notations from [40], ++S and –S

means that the satisfaction of the source node leads to the satisfaction (denial) of

the target node. ++D and –D means that the denial of the source node leads to

the denial (satisfaction) of the target node. Besides contribution links, there are

other binary links used in the action model. These include Logical Precedence,

Temporal Precedence, Resource Dependency, Timeout Link, Timedifference Link.

Logical precedence links are used when the target node can only be performed if

the source node has already been performed. On the other hand, temporal prece-

dence links implies that if both the source and target node are involved in an action

plan, then source node must perform before the target node. In this way, temporal

precedence is essentially a weaker precedence than logical precedence.

68 Chapter 5. Condition and Action Modeling

Figure 5.5: Goal Metamodel

5.2. Goal Modeling and Reasoning 69

What’s more, resource dependency link indicates the fact that the source node

(action) provides a value to the target node (resource), which can be easily trans-

formed to a ++S contribution link. Parallel link points out that which nodes can be

performed in parallel. A complete description of the semantics of the above links

can be found in [27].

5.2.2 Condition Goal Model Reasoning

After building the goal model, the next step is evaluating the individual goal model

nodes, so that we can obtain a truth value for the root node of the model and

thus assist in the decision making process in the ECA environment. Reasoning on

goal models has been extensively studied in the academia for run-time analysis.

In [51], the authors propose a qualitative and a quantitative reasoning with goal

models. Another quantitative reasoning approach is presented in [39], in which a

Markov Logic Network (MLN) probabilistic reasoner is used to evaluate the root

goal nodes.

Besides the reasoning techniques mentioned above, one can also utilize fuzzy

logic for reasoning on goal models. Fuzzy logic uses specific membership func-

tions and ad-hoc operators to model and manage information through a reasoning

process that is similar to human reasoning [57]. Also, fuzzy logic is robust and

tolerant when IoT devices like sensors have imprecise or unreliable readings. Last

but not least, fuzzy logic is more intuitive to understand and implement comparing

to other techniques which are based on probability theory. In this thesis we opt to

use a fuzzy reasoner for goal models.

According to [38], fuzzy reasoning on the goal model consists of four steps:

1. Conditional weighted fuzzy rules generation

This step can be further divided into two phases: Preprocessing goal model

rules and weighted fuzzy rules generation. Because some goal nodes may

serve as child nodes to both AND and OR decomposition rules, we need to

transform those nodes by introducing pseudo-nodes. Secondly, [38] also de-

scribes the algorithm for generating weighted fuzzy rules.

2. Fuzzification

This is a standard process in fuzzy reasoning which transforms observable

characteristics to fuzzy values with the help of the membership functions.

3. Inference

70 Chapter 5. Condition and Action Modeling

Based on the step 1 and 2, we are able to deploy a reasoner to deduct the

membership degrees for all goals.

4. Defuzzification

In this step, the centroid defuzzification method is utilized to calculate the

quantifiable result for fuzzy goals by combing the membership degrees.

Let us use an example to show the condition goal model reasoning. Listing 5.1

demonstrates an example of condition goal model, and it is visualized in Figure 5.6.

As it shows, the root goal (AndGoalNode) is decomposed into two sub-goals, namely

G1 and G2. G1 (AndGoalNode) is further decomposed into two atomic goals,

namely G3 and G4. And G2 (OrGoalNode) is further decomposed into another two

atomic goals, namely G5 and G6. There are also three contribution links between

nodes, i.e. ++D link from G1 to G2, ++S link from G4 to G5 and –S link from G3

to G6.

<?xml version="1.0" encoding="UTF-8"?>

<goal:GoalModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:goal="http://org.eclipse.example/goal">

<root xsi:type="goal:CompositeGoalNode" name="WinterTime">

<hasDecomposition>

<decomposedTo xsi:type="goal:CompositeGoalNode" name="G1">

<hasDecomposition>

<decomposedTo xsi:type="goal:AtomicGoalNode" name="G3"/>

<decomposedTo xsi:type="goal:AtomicGoalNode" name="G4"/>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:CompositeGoalNode" name="G2">

<hasDecomposition decomType="OR">

<decomposedTo xsi:type="goal:AtomicGoalNode" name="G5"/>

<decomposedTo xsi:type="goal:AtomicGoalNode" name="G6"/>

</hasDecomposition>

</decomposedTo>

</hasDecomposition>

</root>

<contains xsi:type="goal:ContributionLink"

from="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/@decomposedTo.1"

5.2. Goal Modeling and Reasoning 71

to="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/@decomposedTo.0"

contrType="PPS"/>

<contains xsi:type="goal:ContributionLink"

from="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/@decomposedTo.0"

to="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/@decomposedTo.1"

contrType="MMS"/>

<contains xsi:type="goal:ContributionLink"

from="//@root/@hasDecomposition/@decomposedTo.0"

to="//@root/@hasDecomposition/@decomposedTo.1" contrType="PPD"/>

</goal:GoalModel>

Listing 5.1: Condition Goal Model Instance

RootGoal

G1 G2

G3 G4 G5 G6

AND

AND OR

++S

­­S

++D

Figure 5.6: Condition Goal Model Visualization

Let us assume that the initial truth values of G3, G4, G5 and G6 are all 1. By

utilizing the fuzzy reasoning on condition goal model depicted in Figure 5.6, we can

compute the defuzzified value of the RootGoal which in this case is 79.52. In other

words, the satisfaction degree of RootGoal is 79.52% (here the fuzzy reasoning

process assumes values of parameters are 0, 0, 10, 60, and 40, 90, 100, 100 for

the "low" and "high" membership functions, respectively). In another case, let

us assume the initial truth values of G3, G4, G5 and G6 are 1, 0, 1, 0. After

fuzzy reasoning, the defuzzified value of the RootGoal is 20.48, which means the

72 Chapter 5. Condition and Action Modeling

satisfaction degree of RootGoal in this case is 20.48%.

5.2.3 Task Model Reasoning

While the objective of goal model reasoning for conditions is determining the sat-

isfaction degree of the root goal, task model reasoning aims to find a execution

sequence of actions which can achieve the root task. The reasoning process nor-

mally involves two steps. The first step is identifying the possible combinations of

actions for model resolution, and the second is computing a feasible scheduling

of the selected actions. The first step is also called backward reasoning because

it adopts the top-down procedure on the model. Several reasoning techniques ap-

plied for this step include propagation of labels, domain specific heuristics and SAT

solvers. In a SAT solver based approach, the model is first encoded in a Boolean

formula in conjunctive normal form (CNF), then the solver tries to find a truth

assignment of the clauses to make the formula true. A lot of tools have been devel-

oped to solve the SAT problem in a reasonable amount of time, such as the zChaff

tool [64]. Apart from reasoning in the static environment, the environment maybe

dynamic due to context changes. In [37], the authors investigate the use of local

search algorithms and Boolean expression evaluators for reasoning in the dynamic

environment.

Once the actions of the final solution are identified, the next step is compiling a

feasible execution sequence of the actions. In [36], the dependency graph analysis

technique is applied for the task realization process. The main point here is cap-

turing ordering information from the binary links. Suppose that for an action node

a, a∈̂T indicates that a belongs to a set the task node T decomposes to, and a −→

b means that action b depends on action a. For the precedence links like logical

precedence or temporal precedence, there are four rules for translating the link to

dependencies based on the types of the node [36]:

1) Task T1
Precedence
−−−−−−−→ Task T2 ⇐⇒ ∀x∈̂T1, y∈̂T2 : x −→ y

2) Task T
Precedence
−−−−−−−→ Action a ⇐⇒ ∀x∈̂T : x −→ a

3) Action a
Precedence
−−−−−−−→ Task T ⇐⇒ ∀x∈̂T : a −→ x

4) Action a
Precedence
−−−−−−−→ Action b ⇐⇒ a −→ b

Resource dependency links (RD links) can also contain ordering information

between actions. For example, suppose a resource node has a parent action node

5.2. Goal Modeling and Reasoning 73

y and exactly one incoming resource dependency link from action node x. In this

case, the temporal relationship is x −→ y because the execution of action y requires

a value which could be produced by the action x.

Given the dependency information of selected actions, Action Dependency Graph

is then constructed to compute a valid scheduling of actions [36]. An ADG can be

viewed as a Directed Acyclic Graph (DAG), which is solvable by means of the topo-

logical sorting algorithm. One advantage of the algorithm is that its time complex-

ity is linear to the sum of the number of actions and the number of dependencies.

Let us use an example to show the task model reasoning. Listing 5.2 demon-

strates an example task model, and it is visualized in Figure 5.7. After task model

reasoning, we can get an execution sequence of actions which is shown in List-

ing 5.3. As is shown, the execution sequence starts at node A1 and ends at node

A4. There is a parallel node P0 which allows for the parallel executions of node A5

and A2. Also, the time allocated for the parallel execution is 459ms.

<?xml version="1.0" encoding="UTF-8"?>

<goal:TaskModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:goal="http://org.eclipse.example/goal" name="TaskModel1">

<root xsi:type="goal:Task" name="root">

<hasDecomposition>

<decomposedTo xsi:type="goal:Task" name="T1">

<hasDecomposition>

<decomposedTo xsi:type="goal:Action" name="A1">

<requires name="R1"/>

<requires name="R2"/>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A2">

<requires name="R3"/>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:Task" name="T2">

<hasDecomposition decomType="OR">

<decomposedTo xsi:type="goal:Task" name="T3">

<hasDecomposition>

<decomposedTo xsi:type="goal:Action" name="A3">

74 Chapter 5. Condition and Action Modeling

<requires name="R4"/>

<requires name="R5"/>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A4">

<requires name="R6"/>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A5">

<requires name="R7"/>

<requires name="R8"/>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

</hasDecomposition>

</root>

<contains xsi:type="goal:ContributionLink"

from="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/@decomposedTo.0"

to="//@root/@hasDecomposition/@decomposedTo.0" contrType="PPD"/>

<contains xsi:type="goal:LogicalPrecedence"

from="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/@decomposedTo.0"

to="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/@decomposedTo.0"/>

<contains xsi:type="goal:ResourceDependency"

from="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/@decomposedTo.1"

to="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/@decomposedTo.0/

@hasDecomposition/@decomposedTo.0/@requires.1"/>

<contains xsi:type="goal:TemporalPrecedence"

from="//@root/@hasDecomposition/@decomposedTo.0"

to="//@root/@hasDecomposition/@decomposedTo.1"/>

<parallel name="P0" timeout="459"

preNode="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/@decomposedTo.1

//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/@decomposedTo.1"/>

</goal:TaskModel>

Listing 5.2: Task Model Instance

5.2. Goal Modeling and Reasoning 75

RootTask

A1

T2T1

A2 A5T3

A4A3

R1 R2 R3

R4 R5

R8R7

R6

Task

Action

Resource

++D

LP

RD

TP

AND

AND

AND

OR

P0 P0

Figure 5.7: Task Model Visualization

One sequence is:

SP A1 P0 A3 A4 JP

One sequence for parallel P0 is:

SP0 A5 JP0

SP0 A2 JP0

The nodes [A5, A2] will have 459ms to synchronize

Listing 5.3: Execution Sequence of Actions

Chapter 6

Implementation and Case Study

The implementation of the prototype system consists of three major parts: model-

ing and code generation; data collection; and prototype development. For the mod-

eling and code generation, the Eclipse Modeling Framework (EMF) is employed to

build the RAMM and goal metamodel, as well as to generate code from the meta-

models. As it was presented in Chapter 4, data may come from various information

sources, such as Web resources, IoT devices, etc. In this thesis, we have devel-

oped a Java client program to access various Web Services and retrieve relevant

information, so that it can be used for evaluating and reasoning purposes. Finally,

a prototype is developed and tested utilizing Open Platform Communications Uni-

fied Architecture (OPC UA) middleware as means to disseminate data between the

various composed Domain Resources. The verified result proves that our proposed

programming model is feasible for the IoT application development.

6.1 Modeling and Code Generation Framework

EMF is an open source modeling and code generation framework for building tools

and other applications based on a structured data model. The core EMF framework

includes an Ecore metamodel for describing models and runtime support for the

models including change notification, persistence support with default XMI serial-

ization, and a very efficient reflective API for manipulating EMF objects generically

[5]. Ecore can be seen as a simplified subset of the UML class diagram. Figure 6.1

shows four main components of Ecore [77].

• EClass: Represents a modeled class. It has a name, multiple EAttributes and

multiple EReferences.

76

6.1. Modeling and Code Generation Framework 77

Figure 6.1: Ecore Metamodel

• EAttribute: Represents a modeled attribute. It has a name and EDataType.

• EReference: Represents one end of an association between classes. It has a

name, a Boolean flag to indicate if it represents containment, and an ERefer-

ence type which is another class.

• EDataType: Represents the type of an EAttribute. A type can be a primitive

type like int or an object type like java.util.Date.

Figure 5.5 in Chapter 4 can be viewed as a metamodel for goal models. In the

metamodel, GoalModel is an EClass and it has an EAttribute “name”. The “name”

EAttribute’s EDataType is EString which is analogous to java.lang.String. Also, the

GoalModel EClass has two containment EReference entities. One references the

root element of the model which is an instance of a GoalModelNode EClass. The

other references to abstract EClass BinaryLink which represents the relationship

between nodes in the model.

Given the goal metamodel, we can also create a concrete model instance by the

means of Eclipse runtime. The generated editor for a simple goal model instance

is presented in Figure 6.2.

Besides the Ecore metamodel, EMF has another metamodel which is called

Genmodel. While Ecore contains information about the defined classes and their

relationships, Genmodel allows us to configure how the code should be generated.

The generated Java code consists of three packages:

• model: Contains interfaces and the Factory to create Java classes.

78 Chapter 6. Implementation and Case Study

Figure 6.2: Goal Model Instance

• model.impl: Contains concrete implementations of the interfaces defined in

the model.

• model.util: Contains an AdapterFactory that provides interfaces for editing

and display.

Each generated interface extends the EObject interface. EObject is the root of

every EMF class and it is equivalent to java.lang.Object. After code and instance

creation, we can load the model instance using code demonstrated in Listing 6.1 ,

suppose the path to the instance file is “instances/my.goal”.

public GoalModel loadModel() {

// Initialize the model

GoalPackage.eINSTANCE.eClass();

// Register the XMI resource factory

Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;

Map<String, Object> m = reg.getExtensionToFactoryMap();

m.put("goal", new XMIResourceFactoryImpl());

// Obtain a new resource set

ResourceSet resSet = new ResourceSetImpl();

// Get the resource

Resource resource = resSet.getResource(URI.

createURI("instances/my.goal"), true);

// Get the first model element and cast it to the right type

GoalModel goalModel = (T) resource.getContents().get(0);

return goalModel;

6.2. Data Collection 79

}

Listing 6.1: Load an EMF Model

6.2 Data Collection

Data collection is the process of collecting data from various information sources,

such as the Web, sensors, etc. These sources should provide APIs for data ac-

cess to the application developer or end user in either case. In this section, we

demonstrate weather data collection procedure using OpenWeatherMap service

[17]. OpenWeatherMap provides an API for accessing current weather data by city

name, city ID, geographic coordinates or ZIP code. Depending on the request pa-

rameter, weather data is returned in JSON, XML or HTML format. JSON format is

used by default. For instance, the current weather condition for Toronto, Canada

is returned by sending an HTTP GET request to the following URL.

http://api.openweathermap.org/data/2.5/weather?q=Toronto,ca

An example of API response is shown in Listing 6.2 [3].

1 {"coord":{"lon":139,"lat":35},

2 "sys":{"country":"JP","sunrise":1369769524,"sunset":1369821049},

3 "weather":[{"id":804,"main":"clouds","description":"overcast

clouds","icon":"04n"}],

4 "main":{"temp":289.5,"humidity":89,"pressure":1013,

5 "temp_min":287.04,"temp_max":292.04},

6 "wind":{"speed":7.31,"deg":187.002},

7 "rain":{"3h":0},

8 "clouds":{"all":92},

9 "dt":1369824698,

10 "id":1851632,

11 "name":"Shuzenji",

12 "cod":200}

Listing 6.2: API Response Example

80 Chapter 6. Implementation and Case Study

For the client side, we employ the Java’s API for RESTful Web Services (JAX-RS),

specifically javax.ws.rs-api 2.0.1, to access web services [71]. JAX-RS provides a

client API to retrieve resources on the Web. Listing 6.3 demonstrates a JAX-RS

client API usage scenario. The code specifies the response format as JSON.

public void createClient(String url){

Client client = ClientBuilder.newClient();

WebTarget target = client.target(url);

Response response = target.

request(new MediaType("application", "JSON")).get();

String responseStr = response.readEntity(String.class);

}

Listing 6.3: Create JAX-RS Client

Now that we have weather data from the selected resource (see Listing 6.2),

the next step is to extract the elements that we are interested in from the response

data as specified in the system’s Domain Resource model. For example, if we refer

to the resource in Listing 6.7, the inputPlug is denoted as "temp". Just as XPath

to XML, there is also a similar tool for JSON which is called JSONPath. In this

section, we adopt Jayway [12], a Java implementation of the JSONPath, to analyze,

transform and selectively extract data out of JSON documents. JSONPath expres-

sions refer to a JSON structure in the same way as XPath expressions are used in

combination with an XML document. Since a JSON structure is always anonymous

and doesn’t necessarily has a “root member object”, the root element in JSONPath

is always referred to as $ regardless if it is an object or array. JSONPath expression

can use the dot-notation or the bracket-notation. For example, the JSONPath to the

element “temp” in Listing 6.2 is written as the following.

$.main.temp or $[‘main’][‘temp’]

6.3 Prototype Development

OPC UA is a publish subscribe middleware framework that ensures the open con-

nectivity, interoperability, security, and reliability of industrial automation devices

6.3. Prototype Development 81

and systems [16]. OPC UA defines objects in terms of variables and methods. Fig-

ure 6.3 illustrates the OPC UA object model [1]. As it is shown, OPC UA provides

services to access the objects and their components such as reading or writing a

variable value, receiving events from the object or calling a method. The elements

of the object model are represented in the address space as nodes. Each node is

an instance of a node class including object, variable, method, etc. For example,

Listing 6.4 depicts DataType node (RequestHolder) which is used to represent an

HTTP request.

Figure 6.3: OPC UA Object Model

public class RequestHolder {

private final String urlReference;

private final String targetFolder;

private final HashMap<String, String> inputPlugs;

private final String responseFormat;

private final HashMap<String, String> outputPlugs;

private final String timeStamp;

private final String sessionID;

private final UInteger interval;

....

82 Chapter 6. Implementation and Case Study

}

Listing 6.4: OPC UA DataType Node Example, see also activity diagram in

Figure 3.3

Eclipse Milo is an open source Java implementation of OPC UA [4]. We employ

Milo to build the OPC UA server and client of the runtime system. During run-

time, OPC UA server is first initialized, and each address space is registered in the

server. There are five clients involved in and their responsibilities are introduced

below.

1) DomainResourceClient – Creates nodes in the server for all inputs in each

DomainResource and subscribes to them. Upon receiving a new value from

subscriptions, constructs a new RequestHolder node and writes it back.

2) ConditionClient – Loads all the condition goal models, creates nodes in the

server for all inputs in each model and subscribes to them. Upon receiving

a new value from subscriptions, re-evaluates the condition goal model and

writes the result to the server.

3) ActionClient – Subscribes to the corresponding condition results. Upon re-

ceiving a new value from subscriptions, determines whether triggering the

action or not, if yes, loading corresponding task model and performs the se-

quence of actions which is specified in the task model.

4) DaemonManager – Creates a thread pool based on the size of the DomainRe-

source, subscribes to the RequestHolder node. Upon receiving a new value

from subscriptions, dispatches the thread execution to the Daemon.

5) Daemon – Performs HTTP request to collect data and writes the response

data to the corresponding nodes in the server.

Figure 6.4 depicts a simplified sequence diagram for the runtime system.

6.4. Case Study: Winter Notification Example 83

Actor

DRClient DeamonManager Deamon ConditionClient ActionClient

Write Input

Return
Write Request

Return Execute New
Thread

Write Response
Data

Return

Write
ConditionResult

Return

Alternative

[Target folder is Condition]

[Else] Write Response
Data

Return

Figure 6.4: Runtime Sequence Diagram

In a nutshell, the runtime system proceeds as follows: An actor first initiates an

event. DomainResourceClient receives the event, composes a HTTP request and

send it to the server. Then DaemonManager receive the request and dispatches the

data collection job to the Daemon. After Daemon retrieves the data and writes to

the server, the ConditionClient evaluates the condition goal model and produces a

fuzzy value result. At this point ActionClient gets notified and performs reasoning

process based on action goal model and compiles possible action plans if needed.

Every subscribe and write operation is returned with a StatusCode "Good" if it is

successful.

6.4 Case Study: Winter Notification Example

In this section, we discuss a "Winter Notification" example (i.e. script) that follows

the proposed programming model. This Winter Notification example is used to

explain and demonstrate all components and models used by the runtime system.

84 Chapter 6. Implementation and Case Study

6.4.1 Overview of The Winter Notification Example

The Winter Notification example specifies a simple scenario in which weather data

in a city is retrieved. If the evaluation result of the condition model is satisfied,

then an atomic action or action plan is performed or compiled. The Winter No-

tification example basically consists of four parts. The first part is modeling an

AbstractDomainResource using RAMM and instantiating it via a DomainResource

(concrete resource). The second part is specifying Condition, Action as well as

Mapper models using the corresponding metamodels. The third part is modeling

goal models for conditions and actions. The output of each model is a textual spec-

ification which is used in the runtime system. The last part is the result obtained

by analyzing the task model.

6.4.2 AbstractDomainResource and DomainResource

Listing 6.5 demonstrates an AbstractDomainResource used in the Winter Notifica-

tion example. As it is depicted, the root element is an AbstractDomainResource. It

specifies the domain as “Weather” and shows that this resource models current

weather information. AbstractDomainResource has references to the resource

repository (i.e. "repository/resourceRepository.ttl") and the global ontology (i.e.

"ontology/weatherdemo.ttl") as depicted in Listing 6.6 and Figure 4.6. The re-

sourceMetaModel attribute specifies the serialization mechanism for this resource

is StringTemplateSerialization.

6.4. Case Study: Winter Notification Example 85

<?xml version="1.0" encoding="UTF-8"?>

<iot:AbstractDomainResource xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:iot="http://org.eclipse.example/iot"

repositoryReference="repository/resourceRepository.ttl"

semanticReference="ontology/weatherdemo.ttl"

label="current weather information" domain="Weather">

<resourceMetaModel>

<serialization xsi:type="iot:StringTemplateSerialization"/>

</resourceMetaModel>

<ActionInterface xsi:type="iot:Read" label="Find out weather

information">

<output>

<outputMetaModel>

<outputPlug key="Temperature"/>

<outputPlug key="Humidity"/>

<outputPlug key="AtmosphericPressure"/>

</outputMetaModel>

</output>

<inputPlug key="city" label="Name of a city" type="string"/>

</ActionInterface>

</iot:AbstractDomainResource>

Listing 6.5: AbstractDomainResource Example

@prefix : <http://www.weatherdemo.com#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@base <http://www.weatherdemo.com> .

:openweathermap rdf:type :WeatherSource ;

:endPoint "api.openweathermap.org";

:foundedDate 2012;

86 Chapter 6. Implementation and Case Study

:architecturalStyle "REST";

:plugPath "$.main.";

:hasURLReference

"http://api.openweathermap.org/data/2.5/weather?q={cityName}".

:aerisapi rdf:type :WeatherSource;

:endPoint "api.aerisapi.com";

:foundedDate 2008;

:architecturalStyle "REST";

:plugPath "$.response.ob.";

:hasURLReference

"http://api.aerisapi.com/observations/{locationKey}".

:accuweather rdf:type :WeatherSource;

:endPoint "developer.accuweather.com";

:foundedDate 1962;

:architecturalStyle "REST";

:hasURLReference

"http://dataservice.accuweather.com/currentconditions/

v1/{locationKey}".

....

Listing 6.6: Resource Repository Example

Subsequently, a Read interface is specified through the ActionInterface element

to capture the HTTP GET interaction point provided by the API. The response of

the GET request returns a representation of the current weather conditions in the

specified city as depicted in the outputPlug element with key attributes "Temper-

ature", "Humidity" and "Atmosphericpressure". In the Winter Notification exam-

ple, we are interested in three particular fields included in the response message:

Temperature, Humidity and AtmosphericPressure. These fields are used later for

condition evaluation and composition. Lastly, an inputPlug element specifies the

cityName as URL query parameter.

6.4. Case Study: Winter Notification Example 87

<?xml version="1.0" encoding="UTF-8"?>

<iot:DomainResource xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:iot="http://org.eclipse.example/iot"

repositoryReference="repository/resourceRepository.ttl"

semanticReference="ontology/openweathermap.ttl"

label="current weather information" domain="Weather"

host="api.openweathermap.org"

urlReference="http://api.openweathermap.org/data/2.5/weather?q=${city}">

<resourceMetaModel>

<serialization xsi:type="iot:StringTemplateSerialization"/>

</resourceMetaModel>

<ActionInterface xsi:type="iot:Read" label="Find out weather

information">

<output>

<outputMetaModel>

<outputPlug key="temp" label="Temperature in Fahrenheit"

plugPath="$.main.temp"

semanticsReference="http://www.openweathermap.com#Temp"/>

<outputPlug key="humidity" label="Humidity in percentage"

plugPath="$.main.humidity"

semanticsReference="http://www.openweathermap.com#Humidity"/>

<outputPlug key="pressure" label="AtmosphericPressure in hPa"

plugPath="$.main.pressure"

semanticsReference="http://www.openweathermap.com#Pressure"/>

</outputMetaModel>

</output>

<inputPlug key="city" label="Name of a city" type="string"/>

</ActionInterface>

</iot:DomainResource>

Listing 6.7: An Instantiated DomainResource (from www.openweathermap.org)

Listing 6.7 demonstrates a DomainResource used in the Winter Notification

example. After instantiation process, DomainResource is generated on the basis

of AbstractDomainResource. There are three new attributes added in DomainRe-

88 Chapter 6. Implementation and Case Study

source. The host attribute denotes that OpenWeatherMap resource is selected in

the repository based on the utility value. The semanticReference specifies the URI

of the ontology associated with DomainResource see Listing 6.8. The urlReference

gives the URL template for the resource access. Subsequently, the fields in the out-

putPlug are instantiated in terms of OpenWeatherMap resource. Specifically, the

label, plugPath and sematicReference are given values to assist in data collection

and assign semantics.

@prefix : <http://www.openweathermap.com#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@base <http://www.openweathermap.com> .

<http://www.openweathermap.com> rdf:type owl:Ontology ;

owl:imports <http://www.weatherdemo.com> .

:WeatherObservation rdf:type owl:Class .

:Humidity rdf:type owl:Class ;

owl:equivalentClass <http://www.weatherdemo.com#Humidity> ;

rdfs:subClassOf :WeatherObservation ;

rdfs:label "Humidity in percentage".

:Pressure rdf:type owl:Class ;

owl:equivalentClass

<http://www.weatherdemo.com#AtmosphericPressure> ;

rdfs:subClassOf :WeatherObservation ;

rdfs:label "AtmosphericPressure in hPa".

:Temp rdf:type owl:Class ;

owl:equivalentClass <http://www.weatherdemo.com#Temperature> ;

rdfs:subClassOf :WeatherObservation ;

rdfs:label "Temperature in Fahrenheit".

6.4. Case Study: Winter Notification Example 89

....

Listing 6.8: Local Ontology for Openweathermap

6.4.3 Mapper

Listing 6.9 presents the Mapper model for the example, and it is visualized in

Figure 6.5. As it is shown, it has two connections. One connects AbstractDomain-

Resource with Condition, another connects AbstractDomainResource with Action.

In the first connection, three mappings are established between fields in Abstract-

DomainResource and elements in Condition model. In the second connection, the

mapping between “city” in AbstractDomainResource and “cityName” in Action is

established.

<?xml version="1.0" encoding="UTF-8"?>

<iot:Mapper xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:iot="http://org.eclipse.example/iot">

<connection source="template.iot" destination="condition.iot">

<mapping from="Temperature" to="temp"

fromSemanticReference="http://www.weatherdemo.com#Temperature"

toSemanticReference="http://www.openweathermap.com#Temp"/>

<mapping from="Humidity" to="humidity"

fromSemanticReference="http://www.weatherdemo.com#Humidity"

toSemanticReference="http://www.openweathermap.com#Humidity"/>

<mapping from="AtmosphericPressure" to="pressure"

fromSemanticReference="http://www.weatherdemo.com#AtmosphericPressure"

toSemanticReference="http://www.openweathermap.com#Pressure"/>

</connection>

<connection source="template.iot" destination="action.iot">

<mapping from="city" to="cityName"

fromSemanticReference="http://www.weatherdemo.com#City"

toSemanticReference="http://www.openweathermap.com#CityName"/>

</connection>

</iot:Mapper>

Listing 6.9: Mapper Example

90 Chapter 6. Implementation and Case Study

inputActionPlugKeys key = cityNameinputPlug key = city

Condition AbstractDomainResource Action

inputConditionPlugKeys key= temp

inputConditionPlugKeys key= humidity

inputConditionPlugKeys key= pressure

outputPlug key= Temperature

outputPlug key= Humidity

outputPlug key= Atmospheric
Pressure

inpugPlug key
= city is

provided by an
external trigger

Figure 6.5: Mapper Diagram

6.4.4 Condition and Action

Listing 6.10 depicts the Condition model used in our Winter Notification exam-

ple. Here, the Condition element has a reference to the goal model which is used

to evaluate conditions. The resultType attribute specifies the fuzzy reasoning ap-

proach is employed for condition model reasoning e.g. boolean, fuzzy, probabilis-

tic. Condition also contains three elements, namely temp, humidty and pressure

which correspond to the fields in the response of AbstractDomainResource. The

Condition specification see Listing 6.10 also references through the element Con-

ditionGoalModel, a goal modle to be evaluated for this Condition. Note that the

association between the inputConditionPlugKeys with keys "temp", "humidity" and

"pressure" follows the keys in outputPlug elements in Listing 6.7.

<?xml version="1.0" encoding="UTF-8"?>

<iot:Condition xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:iot="http://org.eclipse.example/iot"

conditionGoalModel="instances/condition.goal" resultType="Fuzzy">

<inputConditionPlugKeys key="temp"

semanticsReference="http://www.openweathermap.com#Temp"/>

<inputConditionPlugKeys key="humidity"

semanticsReference="http://www.openweathermap.com#Humidity"/>

<inputConditionPlugKeys key="pressure"

semanticsReference="http://www.openweathermap.com#Pressure"/>

</iot:Condition>

Listing 6.10: Condition Example

Listing 6.11 depicts the Action model for the example. Similar to the Condition

6.4. Case Study: Winter Notification Example 91

model, Action also has a reference to a goal model, i.e. task model. However,

this goal model is utilized to compile possible action plans [27]. The triggerInput

attribute in the Action corresponds to the resultType in the Condition. Here, Action

only contains one element cityName which corresponds to the city attribute in

inputPlug element of AbstractDomainResource see Listing 6.5.

<?xml version="1.0" encoding="UTF-8"?>

<iot:Action xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:iot="http://org.eclipse.example/iot"

actionGoalModel="instances/action.goal" triggerInput="Fuzzy">

<inputActionPlugKeys key="cityName"

semanticsReference="http://www.openweathermap.com#CityName"/>

</iot:Action>

Listing 6.11: Action Example

6.4.5 Condition Goal Model and Task Goal Model

Listing 6.12 demonstrates a Condition Goal Model used in the Winter Notification

Example, and it is visualized in Figure 6.6. As it is shown, the root goal is “Win-

terTime”. It is a composite goal which is decomposed into two sub-goals, namely

“LowHumidityOrHighPressure” and “LowTemperature”. The former is also a com-

posite goal which is further decomposed into two atomic goals, namely “HighPres-

sure” and “LowHumidity”. The “LowTemperature” is already an atomic goal and

cannot be decomposed. Each atomic goal in the ConditionGoalModel is attached

to an Evaluator class which is used to evaluate the goal. For instance, Listing 6.13

shows the evaluator for “LowTemperature” goal.

<?xml version="1.0" encoding="UTF-8"?>

<goal:GoalModel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:goal="http://org.eclipse.example/goal">

<root xsi:type="goal:CompositeGoalNode" name="WinterTime">

<hasDecomposition>

92 Chapter 6. Implementation and Case Study

<decomposedTo xsi:type="goal:CompositeGoalNode"

name="LowHumidityOrHighPressure">

<hasDecomposition decomType="OR">

<decomposedTo xsi:type="goal:AtomicGoalNode"

name="HighPressure" conditionPlugKey="pressure"/>

<decomposedTo xsi:type="goal:AtomicGoalNode" name="LowHumidity"

conditionPlugKey="humidity"/>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:AtomicGoalNode" name="LowTemperature"

conditionPlugKey="temp"/>

</hasDecomposition>

</root>

</goal:GoalModel>

Listing 6.12: Condition Goal Model Example

WinterTime

LowHumidityOr

HighPressure
LowTemperature

AND

LowHumidity HighPressure

OR

Figure 6.6: Condition Goal Model Diagram

6.4. Case Study: Winter Notification Example 93

public class TempEvaluator{

String value;

public boolean evaluate() {

if(Double.parseDouble(value) < 32.0) return true;

else return false;

}

....

}

Listing 6.13: Temperature Evaluator Example

As it is mentioned above, the action can be as simple as sending a SMS message

which notifies people that winter is coming. Action can also be complex enough to

form an action plan. Listing A.1 demonstrates a complex Task Model used in the

Winter Notification example, and it is visualized in Figure 6.7. As it shows, besides

the tree structure, we also add some binary links between two nodes as discussed

in Section 5.2.1. For example, there is a temporal precedence link from node T6 to

node T5. And there is a resource dependency link from node A11 to R1.

94 Chapter 6. Implementation and Case Study

Figure 6.7: Action Model Diagram

6.4. Case Study: Winter Notification Example 95

6.4.6 Result Applying an Action Model

Suppose the root goal “WinterTime” in the Condition Goal Model is satisfied after

applying fuzzy reasoning. For the sake of our example, let us consider a sample ac-

tion model defined in Listing A.1 and in Figure 6.7. After applying task model rea-

soning using the system proposed in [27], there are several execution sequences

of actions with time constraints which conform to the task model. Listing 6.14 de-

picts a possible action sequence that can be generated by the system proposed in

[27]. The complete solution is shown in Listing B.

One sequence is:

SP A5 A12 A13 P0 A4 A11 A1 A8 A2 A14 JP

Constraints are: The max TimeDifference period between A12 and A8 is

373ms

One sequence for parallel P0 is:

SP0 A10 JP0

SP0 A7 JP0

SP0 A6 JP0

The nodes [A10, A7, A6] will have 323ms to synchronize

Listing 6.14: Action Plan Example

As is shown in Listing 6.14, the execution sequence starts at node A5 and ends

at node A14. There is a parallel node P0 which allows for the parallel executions of

node A10, A7 and A6. Also, the time allocated for the parallel execution is 323ms.

In addition, there is a time difference constraint between node A12 and node A8,

which means that A8 has to wait for at least 373ms to execute after the execution

of A12.

Once such actions are executed, the output is written in a corresponding OPC

UA middleware, so that if there are any other domain resources for which the

input plugs can be fed by data provided by these actions, the whole process initi-

96 Chapter 6. Implementation and Case Study

ates again (i.e. the conditions of the domain resources are evaluated and if these

conditions succeed, the actions of these resources are triggered).

6.4.7 Evaluation

In this thesis the proposed programming model is applied using the Winter Noti-

fication Example case study. From this case study we obtain initial evidence that

the proposed programming model can be used for IoT application development and

goal-driven resource composition.

Firstly, we consider a generic definition of resources, which include not only

physical IoT devices (e.g., sensors), but also other inter-networked resources such

as Web resources and Web services. In this way, we overcome the limitation oc-

curred by single data source. Moreover, we model resources at a high level of

abstraction, which are referred as Abstract Domain Resources. Normally, abstract

models (i.e., templates) of resources represent entities in a particular domain (e.g.,

Weather in the case study). The Abstract Domain Resources are instantiated to

concrete resources (e.g., OpenWeatherMap in the case study) using Semantic Web

technologies and Resource Selection algorithm. The performance results in Sec-

tion 13 demonstrate the linear time complexity of our proposed algorithm.

Secondly, instead of utilizing a rule-based system for condition evaluation, we

employ goal modeling technique to model both condition and actions. Goal mod-

els allows for expressing complex semantics (e.g., contribution link and temporal

precedence), as shown in our built condition and action models. Another advantage

of goal modeling is that it supports reasoning. There are quite a few off-the shelf

reasoning approaches for condition and action goal models. Those approaches are

proved to be efficient and easy to use. Hence, we can avoid checking an abundant

rule base in the rule-based approach which is error prone. The result in the case

study verifies the feasibility of both goal modeling and reasoning approaches.

Last but not least, we utilize fuzzy reasoning technique to evaluate conditions.

Instead of relying on standard logic whose outcome is either true or false, the

proposed system employs fuzzy logic which allows for reasoning about ambiguous

concepts (e.g., LowTemperature and HighPressure in the case study). After apply-

ing fuzzy reasoning, the obtained result can be any value between 0 and 1, which

assist in more accurate control and adjustment. For example, we can adjust the

luminosity of light according to the conditions of the outside light, rather than turn

on/off the light directly.

6.4. Case Study: Winter Notification Example 97

In summary, the case study indicates that the proposed programming model is

promising for IoT application development, however more extensive evaluations

should be performed. For instance, we could test the performance of the imple-

mentation when the number of resources scale up. Another thing that worth the

evaluation is how our proposed work is compared to other competing approaches

to IoT programming.

Chapter 7

Conclusion and Future Work

This chapter summarizes the delivered thesis work and provides ideas for the fu-

ture work.

7.1 Conclusion

Internet is undergoing a major transformation leading to a new era which is known

as the Internet of Things (IoT). To fully explore the potential of IoT, we need a pro-

gramming model that will enable developers and end-users to easily compose and

assemble IoT applications, utilizing concepts and constructs specified at a higher

level of abstraction than the constructs found in general purpose programming

languages. This thesis discusses the design and implementation of a framework

that can serve as the basis of an IoT programming model that is founded on the

Event-Condition-Action (ECA) paradigm.

The thesis addresses three major issues. The first issue deals with the design of

a framework that allows for the denotation of different types of physical and cyber

resources in the form of abstract entities, which we refer to as Abstract Domain

Resources. An instantiation process that utilizes a utility-based function and a se-

lection process as well as semantic web technologies, such as ontologies (OWL)

linked data (RDF/S), allows for identifying and instantiating models or Abstract

Domain Resources to concrete resources, we refer to as Domain Resources (or

Concrete Resources). The instantiation process is based on Dynamic Programming

for selecting optimal concrete resources for instantiating an abstract resource to

a concrete one, given a collection of utility parameters such as cost, latency, accu-

racy, reliability and availability. In this respect, a model of an Abstract Domain Re-

98

7.2. Future Work 99

source (e.g. the concept of a "banking account" as a resource) can be instantiated

to a concrete resource (e.g. "Henry’s HSBC savings banking account") according

to the operational context in each system session and the user’s profile.

The second issue this thesis addresses, is the definition of an event-driven archi-

tecture that is based on the collective composition of Abstract Domain Resources,

Condition models and Action models, and the use of publish-subscribe middleware

frameworks. The conceptual architecture is founded on seven layers (see Fig-

ure 3.1), and aims to decouple the run-time environment from the modeling and

evaluation processes that are related to the Conditions and Actions in any given

session. The architecture also decouples the run-time environment from the acqui-

sition of data from external sources (e.g. the Web) through the use of Facades and

Proxies. In the proposed concrete architecture (see Figure 3.2), a Daemon Mod-

ule is responsible for issuing requests (i.e. invocations) and processing responses

for the integration of the proposed system with external data sources and service

providers.

The third issue is the design and development of a run-time environment as a

proof of concept of the proposed programming model. For this thesis we have used

the Eclipse Modeling Framework as the underlying meta-modeling foundation and

the Open Platform Communications Unified Architecture (OPC UA) as the middle-

ware of choice to build and test the prototype. OPC UA is a lightweight event-

based middleware which employs a client server approach. For experimentation

purposes we have also designed adapters with the PADRES distributed publish-

subscribe middleware. In the run-time environment, the different software compo-

nents communicate with each other by sending events and receiving events in the

event channels. The prototype run-time environment indicates that the approach

is feasible and can be extended so that it can be deployed to real-life applications.

7.2 Future Work

This thesis tackles the IoT programming model question by investigating the de-

sign and implementation of a prototype system. In this respect, there is a number

of different directions which can be taken to extend the work presented in this

thesis.

An interesting future direction is to employ other middleware solutions for the

proposed programming model. While OPC UA is a topic-based publish/subscribe

middleware, there is another category of publish/subscribe middleware which is

100 Chapter 7. Conclusion and Future Work

known as content-based. The major distinction lies in that how event subscribers

express their interests in events. Content-based middleware usually allows more

flexibility for the event filtering in that events are classified based on their proper-

ties. In OPC UA, events are classified according to topic names, such as tempera-

ture, humidity, pressure etc. It is worthwhile to explore the filtering mechanism in

a content-based publish/subscribe middleware for the programming model.

The second possible issue to investigate is the use of virtualization and micro-

services to tackle issues related to scalability which poses an important require-

ment for real-life applications and deployments. As a result, we need to consider

much larger computing system infrastructures that are based on container tech-

nology. In a real world scenario, there may be thousands of events producing

and consuming at the same time. Also, IoT devices typically collect a tremendous

amount of data. It is therefore necessary to consider distributed publish-subscribe

environments as well as new deployment strategies so that distributed and com-

plex event processing and scalable evaluation of condition and action models can

be achieved. One way to solve this issue is adopting cloud computing and micro-

services technology.

A third possible avenue of work is to consider how security is incorporated in

the current model. The architecture allows for authentication and proxy modules

but these need to be defined and linked to particular security and cryptography

solutions. Furthermore, it is important for the system to be able to protect an

individual’s privacy and business secrets in such a pervasive and inter-connected

environment. When designing a programming model and middleware for IoT, we

need to take into account additional security issues, such as access control, user

authorization and data provenance, to name a few.

Lastly, a fourth possible direction is to investigate the application of data inte-

gration techniques. As we mentioned earlier, data may come from various informa-

tion sources. In this thesis, we select only one source with the highest utility value

based on QoS metrics. However, there may be situations where data from differ-

ent sources have to be combined in order to be useful. This poses the question of

investigating techniques for data and schema integration as a necessary step for

IoT application development.

Concluding, we say that we embark a new and exciting era of the use of Internet

Technologies, which has the potential to create very useful everyday applications

for the benefit of the users and the public. Smart cities, health care, and Industry

4.0 applications may be only the beginning of this new era.

Bibliography

[1] Address space concepts. https://documentation.unified-automation.

com/uasdkhp/1.0.0/html/_l2_ua_address_space_concepts.html. Ac-

cessed: 2019-03-25.

[2] Arq - a sparql processor for jena. https://jena.apache.org/

documentation/query/. Accessed: 2019-03-20.

[3] Current weather data. https://openweathermap.org/current. Accessed:

2019-03-25.

[4] Eclipse milo. https://projects.eclipse.org/projects/iot.milo. Ac-

cessed: 2019-03-25.

[5] Eclipse modeling framework (emf). https://www.eclipse.org/modeling/

emf/. Accessed: 2019-03-25.

[6] A free, open-source ontology editor and framework for building intelligent

systems. https://protege.stanford.edu/. Accessed: 2019-03-20.

[7] Homeassistant. https://www.home-assistant.io/. Accessed: 2019-03-25.

[8] ifttt. https://ifttt.com/. Accessed: 2019-03-25.

[9] The internet of everything global public sector economic analysis.

https://www.cisco.com/c/dam/en_us/about/business-insights/docs/

ioe-value-at-stake-public-sector-analysis-faq.pdf. Accessed: 2019-

03-25.

[10] Internet of things at a glance. https://www.cisco.com/

c/dam/en/us/products/collateral/se/internet-of-things/

at-a-glance-c45-731471.pdf. Accessed: 2019-03-25.

101

https://documentation.unified-automation.com/uasdkhp/1.0.0/html/_l2_ua_address_space_concepts.html
https://documentation.unified-automation.com/uasdkhp/1.0.0/html/_l2_ua_address_space_concepts.html
https://jena.apache.org/documentation/query/
https://jena.apache.org/documentation/query/
https://openweathermap.org/current
https://projects.eclipse.org/projects/iot.milo
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://protege.stanford.edu/
https://www.home-assistant.io/
https://ifttt.com/
https://www.cisco.com/c/dam/en_us/about/business-insights/docs/ioe-value-at-stake-public-sector-analysis-faq.pdf
https://www.cisco.com/c/dam/en_us/about/business-insights/docs/ioe-value-at-stake-public-sector-analysis-faq.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf

102 BIBLIOGRAPHY

[11] Introducing the knowledge graph: things, not strings. https://googleblog.

blogspot.com/2012/05/introducing-knowledge-graph-things-not.html.

Accessed: 2019-03-20.

[12] Jsonpath. https://github.com/json-path/JsonPath. Accessed: 2019-03-

25.

[13] Learn sparql. https://www.cambridgesemantics.com/blog/

semantic-university/learn-sparql/. Accessed: 2019-03-20.

[14] Meta object facility. https://www.omg.org/spec/MOF/. Accessed: 2019-03-

25.

[15] Node-red. https://nodered.org/. Accessed: 2019-03-25.

[16] Opc foundation and microsoft: Accelerating the

future of manufacturing. https://cloudblogs.

microsoft.com/industry-blog/manufacturing/2017/03/21/

microsoft-and-opc-foundation-accelerating-the-future-of-manufacturing/.

Accessed: 2019-03-25.

[17] openweathermap. https://openweathermap.org/. Accessed: 2019-03-25.

[18] programmableweb. https://www.programmableweb.com/category/

mapping/api. Accessed: 2019-03-25.

[19] pub-sub-messaging. https://aws.amazon.com/cn/pub-sub-messaging/. Ac-

cessed: 2019-03-25.

[20] Qudt ontologies overview. http://www.qudt.org/pages/QUDToverviewPage.

html. Accessed: 2019-03-20.

[21] Smartrules. http://smartrulesapp.com/. Accessed: 2019-03-25.

[22] Yeah! we did it again ;) – new 2016-04 dbpe-

dia release. https://blog.dbpedia.org/2016/10/19/

yeah-we-did-it-again-new-2016-04-dbpedia-release/. Accessed: 2019-

03-20.

[23] Karl Aberer, Manfred Hauswirth, and Ali Salehi. Global sensor networks.

EPFL, Lausanne, Tech. Rep, 2006.

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://github.com/json-path/JsonPath
https://www.cambridgesemantics.com/blog/semantic-university/learn-sparql/
https://www.cambridgesemantics.com/blog/semantic-university/learn-sparql/
https://www.omg.org/spec/MOF/
https://nodered.org/
https://cloudblogs.microsoft.com/industry-blog/manufacturing/2017/03/21/microsoft-and-opc-foundation-accelerating-the-future-of-manufacturing/
https://cloudblogs.microsoft.com/industry-blog/manufacturing/2017/03/21/microsoft-and-opc-foundation-accelerating-the-future-of-manufacturing/
https://cloudblogs.microsoft.com/industry-blog/manufacturing/2017/03/21/microsoft-and-opc-foundation-accelerating-the-future-of-manufacturing/
https://openweathermap.org/
https://www.programmableweb.com/category/mapping/api
https://www.programmableweb.com/category/mapping/api
https://aws.amazon.com/cn/pub-sub-messaging/
http://www.qudt.org/pages/QUDToverviewPage.html
http://www.qudt.org/pages/QUDToverviewPage.html
http://smartrulesapp.com/
https://blog.dbpedia.org/2016/10/19/yeah-we-did-it-again-new-2016-04-dbpedia-release/
https://blog.dbpedia.org/2016/10/19/yeah-we-did-it-again-new-2016-04-dbpedia-release/

BIBLIOGRAPHY 103

[24] OSGi Alliance. Osgi service platform, release 3. IOS press, 2003.

[25] Daniel Amyot. Introduction to the user requirements notation: learning by

example. Computer Networks, 42(3):285–301, 2003.

[26] Kevin Ashton et al. That ‘internet of things’ thing. RFID journal, 22(7):97–114,

2009.

[27] Michalis Bachras. Model-based management of the internet of things infras-

tructure. Master’s thesis, Athens Greece, 2018.

[28] M Bansal and V Venkaiah. Improved fully polynomial time approximation

scheme for the 0-1 multiple-choice knapsack problem.

[29] Sean Bechhofer, Frank Van Harmelen, Jim Hendler, Ian Horrocks, Deborah L

McGuinness, Peter F Patel-Schneider, Lynn Andrea Stein, et al. Owl web

ontology language reference. W3C recommendation, 10(02), 2004.

[30] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers.

Rdf 1.1 turtle. World Wide Web Consortium, 2014.

[31] Shiddartha Raj Bhandari and Neil W Bergmann. An internet-of-things system

architecture based on services and events. In 2013 IEEE Eighth Interna-

tional Conference on Intelligent Sensors, Sensor Networks and Information

Processing, pages 339–344. IEEE, 2013.

[32] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The story so

far. In Semantic services, interoperability and web applications: emerging

concepts, pages 205–227. IGI Global, 2011.

[33] Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Jason Vallee, Weijia He,

Guan Wang, Michael L Littman, and Blase Ur. How users interpret bugs in

trigger-action programming. In Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems, page 552. ACM, 2019.

[34] Dan Brickley, Ramanathan V Guha, and Brian McBride. Rdf schema 1.1. W3C

recommendation, 25:2004–2014, 2014.

[35] Julio Cano, Eric Rutten, Gwenaël Delaval, Yazid Benazzouz, and Levent Gur-

gen. Eca rules for iot environment: a case study in safe design. In 2014

IEEE Eighth International Conference on Self-Adaptive and Self-Organizing

Systems Workshops, pages 116–121. IEEE, 2014.

104 BIBLIOGRAPHY

[36] George Chatzikonstantinou, Michael Athanasopoulos, and Kostas Kontogian-

nis. Towards a goal driven task personalization specification framework. In

2013 IEEE Ninth World Congress on Services, pages 180–184. IEEE, 2013.

[37] George Chatzikonstantinou, Michael Athanasopoulos, and Kostas Kontogian-

nis. Task specification and reasoning in dynamically altered contexts. In In-

ternational Conference on Advanced Information Systems Engineering, pages

625–639. Springer, 2014.

[38] George Chatzikonstantinou and Kostas Kontogiannis. Run-time requirements

verification for reconfigurable systems. Information and Software Technol-

ogy, 75:105–121, 2016.

[39] George Chatzikonstantinou, Kostas Kontogiannis, and Ioanna-Maria Attarian.

A goal driven framework for software project data analytics. In International

Conference on Advanced Information Systems Engineering, pages 546–561.

Springer, 2013.

[40] Amit K Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Rea-

soning about agents and protocols via goals and commitments. In Proceedings

of the 9th International Conference on Autonomous Agents and Multiagent

Systems: volume 1-Volume 1, pages 457–464. International Foundation for

Autonomous Agents and Multiagent Systems, 2010.

[41] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-

functional requirements in software engineering, volume 5. Springer Science

& Business Media, 2012.

[42] Michael Compton, Payam Barnaghi, Luis Bermudez, RaúL GarcíA-Castro, Os-

car Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson,

Arthur Herzog, et al. The ssn ontology of the w3c semantic sensor network

incubator group. Web semantics: science, services and agents on the World

Wide Web, 17:25–32, 2012.

[43] World Wide Web Consortium et al. Rdf 1.1 concepts and abstract syntax.

2014.

[44] Luca Corcella, Marco Manca, Fabio Paternò, and Carmen Santoro. A vi-

sual tool for analysing iot trigger/action programming. In International Con-

BIBLIOGRAPHY 105

ference on Human-Centred Software Engineering, pages 189–206. Springer,

2018.

[45] Joëlle Coutaz and James L Crowley. A first-person experience with end-user

development for smart homes. IEEE Pervasive Computing, 15(2):26–39, 2016.

[46] Umeshwar Dayal, Barbara Blaustein, Alex Buchmann, Upen Chakravarthy,

Meichun Hsu, R Ledin, Dennis McCarthy, Arnon Rosenthal, Sunil Sarin,

Michael J. Carey, et al. The hipac project: Combining active databases and

timing constraints. ACM Sigmod Record, 17(1):51–70, 1988.

[47] Manuel Díaz, Cristian Martín, and Bartolomé Rubio. State-of-the-art, chal-

lenges, and open issues in the integration of internet of things and cloud

computing. Journal of Network and Computer applications, 67:99–117, 2016.

[48] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Ker-

marrec. The many faces of publish/subscribe. ACM computing surveys

(CSUR), 35(2):114–131, 2003.

[49] Roy Thomas Fielding. Rest: architectural styles and the design of network-

based software architectures. Doctoral dissertation, University of California,

2000.

[50] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro. Per-

sonalization of context-dependent applications through trigger-action rules.

ACM Transactions on Computer-Human Interaction (TOCHI), 24(2):14, 2017.

[51] Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and Roberto Sebas-

tiani. Reasoning with goal models. In International Conference on Conceptual

Modeling, pages 167–181. Springer, 2002.

[52] Aitor Gómez-Goiri and Diego López-de Ipiña. A triple space-based semantic

distributed middleware for internet of things. In International Conference on

Web Engineering, pages 447–458. Springer, 2010.

[53] Thomas R Gruber. A translation approach to portable ontology specifications.

Knowledge acquisition, 5(2):199–220, 1993.

[54] Dominique Guinard and Vlad Trifa. Building the web of things: with examples

in node. js and raspberry pi. Manning Publications Co., 2016.

106 BIBLIOGRAPHY

[55] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. From

the internet of things to the web of things: Resource-oriented architecture

and best practices. In Architecting the Internet of things, pages 97–129.

Springer, 2011.

[56] Hans-Arno Jacobsen, Alex Cheung, Guoli Li, Balasubramaneyam Maniymaran,

Vinod Muthusamy, and Reza Sherafat Kazemzadeh. The padres publish/sub-

scribe system. In Principles and Applications of Distributed Event-Based Sys-

tems, pages 164–205. IGI Global, 2010.

[57] Gupta M.M. Kaufmann, A. Introduction to fuzzy arithmetic: theory and appli-

cations. Van Nostrand Reinhold Company, 1985.

[58] Maxim Kolchin, Nikolay Klimov, Ivan Shilin, Daniil Garayzuev, Alexey Andreev,

and Dmitry Mouromtsev. Semiot: an architecture of semantic internet of

things middleware. In 2016 IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and Communications (Green-

Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE

Smart Data (SmartData), pages 416–419. IEEE, 2016.

[59] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,

Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef,

Sören Auer, et al. Dbpedia–a large-scale, multilingual knowledge base ex-

tracted from wikipedia. Semantic Web, 6(2):167–195, 2015.

[60] Stefan-Helmut Leitner and Wolfgang Mahnke. Opc ua–service-oriented archi-

tecture for industrial applications. ABB Corporate Research Center, 48:61–

66, 2006.

[61] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P King, and Richard

Franck. Web service level agreement (wsla) language specification. Ibm cor-

poration, pages 815–824, 2003.

[62] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology lan-

guage overview. W3C recommendation, 10(10):2004, 2004.

[63] Mahdi H Miraz, Maaruf Ali, Peter S Excell, and Rich Picking. A review on

internet of things (iot), internet of everything (ioe) and internet of nano things

(iont). In 2015 Internet Technologies and Applications (ITA), pages 219–224.

IEEE, 2015.

BIBLIOGRAPHY 107

[64] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an efficient sat solver. In Proceedings of

the 38th annual Design Automation Conference, pages 530–535. ACM, 2001.

[65] Chandrakana Nandi and Michael D Ernst. Automatic trigger generation for

rule-based smart homes. In Proceedings of the 2016 ACM Workshop on Pro-

gramming Languages and Analysis for Security, pages 97–102. ACM, 2016.

[66] Julie L Newcomb, Satish Chandra, Jean-Baptiste Jeannin, Cole Schlesinger,

and Manu Sridharan. Iota: a calculus for internet of things automation. In

Proceedings of the 2017 ACM SIGPLAN International Symposium on New

Ideas, New Paradigms, and Reflections on Programming and Software, pages

119–133. ACM, 2017.

[67] Natalya F Noy, Deborah L McGuinness, et al. Ontology development 101: A

guide to creating your first ontology, 2001.

[68] Cezary Orłowski, Artur Ziółkowski, Aleksander Orłowski, Paweł Kapłański,

Tomasz Sitek, and Witold Pokrzywnicki. Ontology of the design pattern lan-

guage for smart cities systems. In Transactions on Computational Collective

Intelligence XXV, pages 76–100. Springer, 2016.

[69] Gerardo Pardo-Castellote. Omg data-distribution service: Architectural

overview. In 23rd International Conference on Distributed Computing Sys-

tems Workshops, 2003. Proceedings., pages 200–206. IEEE, 2003.

[70] James Pasley. How bpel and soa are changing web services development.

IEEE Internet Computing, 9(3):60–67, 2005.

[71] Santiago Pericas-Geertsen and Marek Potociar. Jax-rs: Java™ api for restful

web services. Oracle Corporation, pages 1–84, 2013.

[72] Peter R Pietzuch. Hermes: A scalable event-based middleware. Technical

report, University of Cambridge, Computer Laboratory, 2004.

[73] Peter R Pietzuch and Jean M Bacon. Hermes: A distributed event-based mid-

dleware architecture. In Proceedings 22nd International Conference on Dis-

tributed Computing Systems Workshops, pages 611–618. IEEE, 2002.

[74] Eric Prud, Andy Seaborne, et al. Sparql query language for rdf. 2006.

108 BIBLIOGRAPHY

[75] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge comput-

ing: Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646,

2016.

[76] John Soldatos, Nikos Kefalakis, Manfred Hauswirth, Martin Serrano, Jean-

Paul Calbimonte, Mehdi Riahi, Karl Aberer, Prem Prakash Jayaraman, Arkady

Zaslavsky, Ivana Podnar Žarko, et al. Openiot: Open source internet-of-things

in the cloud. In Interoperability and open-source solutions for the internet of

things, pages 13–25. Springer, 2015.

[77] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:

eclipse modeling framework. Pearson Education, 2008.

[78] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L Littman. Prac-

tical trigger-action programming in the smart home. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pages 803–

812. ACM, 2014.

[79] Michael Uschold and Michael Gruninger. Ontologies and semantics for seam-

less connectivity. ACM SIGMod Record, 33(4):58–64, 2004.

[80] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided

tour. In Proceedings fifth ieee international symposium on requirements en-

gineering, pages 249–262. IEEE, 2001.

[81] Axel Van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-

oriented requirements engineering. IEEE Transactions on software engineer-

ing, 26(10):978–1005, 2000.

[82] Holger Wache, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt, Ger-

hard Schuster, Holger Neumann, and Sebastian Hübner. Ontology-based inte-

gration of information-a survey of existing approaches. In IJCAI-01 workshop:

ontologies and information sharing, volume 2001, pages 108–117. Citeseer,

2001.

[83] Eric Yu. Modelling strategic relationships for process reengineering. Social

Modeling for Requirements Engineering, 11:2011, 2011.

[84] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin, and

Xinyu Yang. A survey on the edge computing for the internet of things. IEEE

access, 6:6900–6919, 2017.

Appendix A

Task Model Example

<?xml version="1.0" encoding="UTF-8"?>

<goal:TaskModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:goal="http://org.eclipse.example/goal" name="TaskModel1">

<root xsi:type="goal:Task" name="root">

<hasDecomposition>

<decomposedTo xsi:type="goal:Task" name="T4">

<hasDecomposition>

<decomposedTo xsi:type="goal:Task" name="T6">

<hasDecomposition decomType="OR">

<decomposedTo xsi:type="goal:Task" name="T1">

<hasDecomposition>

<decomposedTo xsi:type="goal:Action" name="A14">

<requires name="R7"/>

<requires name="R8"/>

<requires name="R9"/>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A4">

<requires name="R16"/>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:Task" name="T2">

<hasDecomposition>

<decomposedTo xsi:type="goal:Action" name="A9">

<requires name="R10"/>

109

110 Chapter A. Task Model Example

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A3">

<requires name="R17"/>

<requires name="R18"/>

<requires name="R19"/>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:Task" name="T7">

<hasDecomposition>

<decomposedTo xsi:type="goal:Task" name="T3">

<hasDecomposition>

<decomposedTo xsi:type="goal:Action" name="A5">

<requires name="R11"/>

<requires name="R12"/>

<requires name="R13"/>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A8">

<requires name="R20"/>

<requires name="R21"/>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A1">

<requires name="R1"/>

<requires name="R2"/>

<requires name="R3"/>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A11">

<requires name="R23"/>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:Task" name="T5">

111

<hasDecomposition>

<decomposedTo xsi:type="goal:Task" name="T8">

<hasDecomposition>

<decomposedTo xsi:type="goal:Action" name="A7">

<requires name="R4"/>

<requires name="R5"/>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A6">

<requires name="R14"/>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:Task" name="T9">

<hasDecomposition>

<decomposedTo xsi:type="goal:Action" name="A12">

<requires name="R6"/>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A2">

<requires name="R15"/>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A13">

<requires name="R24"/>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

</hasDecomposition>

</decomposedTo>

<decomposedTo xsi:type="goal:Action" name="A10">

<requires name="R22"/>

</decomposedTo>

</hasDecomposition>

</root>

<contains xsi:type="goal:ContributionLink"

from="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/@decomposedTo.1"

to="//@root/@hasDecomposition/@decomposedTo.0" contrType="PPD"/>

<contains xsi:type="goal:LogicalPrecedence"

from="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.0/

112 Chapter A. Task Model Example

@hasDecomposition/@decomposedTo.0/@hasDecomposition/@decomposedTo.1"

to="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/@decomposedTo.1

/@hasDecomposition/@decomposedTo.1"/>

<contains xsi:type="goal:ContributionLink"

from="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.0/@hasDecomposition/@decomposedTo.0"

to="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.1/@hasDecomposition/@decomposedTo.0" contrType="PPD"/>

<contains xsi:type="goal:ResourceDependency"

from="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.1/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.0"

to="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/

@decomposedTo.1/@hasDecomposition/@decomposedTo.0/@requires.0"/>

<contains xsi:type="goal:ResourceDependency"

from="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.2"

to="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.1/@hasDecomposition/@decomposedTo.1/@requires.0"/>

<contains xsi:type="goal:TimeoutLink"

from="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.0/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.0"

to="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.0/@hasDecomposition/@decomposedTo.1/@hasDecomposition/

@decomposedTo.1"/>

<contains xsi:type="goal:TimeDifferenceLink"

from="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/

@decomposedTo.1/@hasDecomposition/@decomposedTo.0"

to="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.1/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.1" timeDifference="373"/>

<contains xsi:type="goal:TemporalPrecedence"

from="//@root/@hasDecomposition/@decomposedTo.1"

to="//@root/@hasDecomposition/@decomposedTo.0/@hasDecomposition/

@decomposedTo.0"/>

<parallel name="P0" timeout="323"

preNode="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/

113

@decomposedTo.0 //@root/@hasDecomposition/@decomposedTo.2"/>

<parallel name="P0" timeout="323"

preNode="//@root/@hasDecomposition/@decomposedTo.1/@hasDecomposition/

@decomposedTo.0 //@root/@hasDecomposition/@decomposedTo.2"/>

</goal:TaskModel>

Listing A.1: Task Model Example [27]

Appendix B

Experiment Result Example

One sequence is:

SP A5 A12 A13 P0 A4 A11 A8 A1 A2 A14 A3 A9 JP

Constraints are: Timeout period between A14 and A3 is 0,

TimeDifference period between A12 and A8 is 373

One sequence for parallel P0 is:

SP0 A10 JP0

SP0 A7 JP0

SP0 A6 JP0

The nodes [A10, A7, A6] will have 323 to synchronize

One sequence is:

SP A5 A12 A8 A13 A2 P0 A9 A11 A1 A3 JP

Constraints are: TimeDifference period between A12 and A8 is 373

One sequence for parallel P0 is:

114

115

SP0 A10 JP0

SP0 A7 JP0

SP0 A6 JP0

The nodes [A10, A7, A6] will have 323 to synchronize

One sequence is:

SP A5 A12 A13 P0 A4 A11 A1 A8 A2 A14 JP

Constraints are: TimeDifference period between A12 and A8 is 373

One sequence for parallel P0 is:

SP0 A10 JP0

SP0 A7 JP0

SP0 A6 JP0

The nodes [A10, A7, A6] will have 323 to synchronize

Listing B.1: Experiment Result Example [27]

Curriculum Vitae

Name: Hao Jiang

Post-Secondary Jinan University
Education and Guangzhou, Guangdong, China
Degrees: 2010 - 2014 B.E.

Western University (University of Western Ontario)
London, ON, Canada
2017 - 2019 M.Sc.

Honours and National Scholarship, China
Awards: 2012-2013

Related Work Teaching Assistant
Experience: Western University

2017 - 2019

Research Assistant
Western University
2017 - 2018

116

	A Programming Model for Internetworked Things
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Internet of Things and Resources
	Problem Statement
	Thesis Contributions
	Thesis Outline

	Background and Related Work
	Programming Model
	Trigger-Action Programming
	Event-Condition-Action Pattern
	Node-RED

	Middleware Architecture
	Event Based Middleware
	Service Oriented Middleware
	Semantic Oriented Middleware

	Modeling Framework
	Ontology Development
	Edge Computing

	Resource Oriented Computing
	Gap Analysis

	System Architecture
	System Overview
	Component View
	Component Descriptions
	Modeling Subsystem
	Instantiation Subsystem
	Runtime Subsystem

	System Workflow
	Workflow Example

	Resource Abstraction Metamodel and Instantiation
	Resource Abstraction Metamodel
	RAMM Classes and Attributes
	Abstract and Concrete Resource Example

	Resource Instantiation Framework
	Semantic Interoperation
	Domain Ontology Development
	Semantic Mapping
	RDF and SPARQL

	Resource Selection Algorithm
	Problem Formulation
	Resource Selection
	Exhaustive Search Algorithm
	Dynamic Programming Algorithm
	Performance Evaluation Results

	Condition and Action Modeling
	Condition, Action and Mapper Metamodel
	Goal Modeling and Reasoning
	Goal Modeling
	Condition Goal Model Reasoning
	Task Model Reasoning

	Implementation and Case Study
	Modeling and Code Generation Framework
	Data Collection
	Prototype Development
	Case Study: Winter Notification Example
	Overview of The Winter Notification Example
	AbstractDomainResource and DomainResource
	Mapper
	Condition and Action
	Condition Goal Model and Task Goal Model
	Result Applying an Action Model
	Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Task Model Example
	Experiment Result Example
	Curriculum Vitae

