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Abstract

The Internet of Things (IoT) emerges as a system paradigm that encompasses a
wide spectrum of technologies and protocols related to Internetworking, services
computing, and device connectivity. The main objective is to achieve an environ-
ment whereby physical devices and everyday objects can communicate and inter-
act with each other over the Internet. The Internet of Things is heralded as the
next generation Internet, and introduces significant opportunities for novel appli-
cations in many different domains. What is missing right now is a programming
model whereby developers as well as end-users can specify any addressable re-
source at a higher level of abstraction, and consequently utilize these abstractions
to define compositions, or scripts, among resources that allow for the customiz-
able exchange of data among the resources, the evaluation of conditions based on
exchanged data, and the enactment of actions provided that specific events occur
and specific conditions are met.

In this thesis, we investigate the problem of designing a programming model
for composing resources or "things", with applications in the IoT domain, and im-
plement a proof of concept prototype in order to evaluate the feasibility of such a
programming model. More specifically, this thesis attacks the problem of devising
an IoT programming model from three directions. The first direction is the design
of a Meta-Object Facility meta-model, that allows for URI addressable entities to
be specified at a higher level of abstraction. Such a meta-model can be consid-
ered as domain specific language that allows for the denotation of types of entities
(resources) in different application domains. The second direction is the design
of an actionable composition model for IoT devices and other URI addressable
resources. In this respect, this thesis investigates the use of the Event-Condition-
Action paradigm as a basis of a runtime environment whereby action models can
be enacted once events occur and condition models are fulfilled. A resource com-
position model also allows for resources to exchange data through input and output
plugs implemented on top of the OPC UA publish subscribe middleware. The third
direction deals with the design of a layered architecture that allows for scalability,
robustness, security, and fault tolerance to be considered. Such an architecture
takes advantage of a publish subscribe framework and utilizes proxies and facades
to efficiently connect with third party components.

Keywords: Internet of Things, Internet of Everything, Internetworked things,
programming model, middleware, Event-Condition-Action, goal modeling
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Chapter 1
Introduction

In this chapter, we first introduce the concept of Internet of Things (IoT) and three
key questions it brings about. We then discuss the problem statement, thesis con-

tributions and thesis outline.

1.1 Internet of Things and Resources

During the past few decades we have witnessed the extraordinary success and
usefulness of the Internet. The World Wide Web enables people to access global
information and services, which include searching for information, shopping on-
line, engaging in social networking and so on. However, the Internet is not only
about the Web. It is also a suite of protocols that allow for a wide range of devices
to use the Internet’s global connectivity in order to engage in a variety of inter-
actions. These interactions can range from simple exchange of data, to services
computing. More recently, the emergence of resource oriented computing and the
connectivity offered to a wide spectrum of inter-networked devices has given rise
to what is referred to as the Internet of Things, or IoT. The Internet of Things is
considered as the next generation of Internet use, which extends the Internet con-
nectivity from software agents to physical devices and everyday connected objects.

The term Internet of Things was first coined by Kevin Ashton in 1999 in the con-
text of supply chain management [26]. With the rapid development of technology,
the definition of IoT has been more inclusive covering a variety of applications.
According to [54]], the Internet of Things is a system of physical objects that can be
discovered or interacted with, by electronic devices that communicate over various

networking interfaces and eventually can be connected to the wider Internet. The
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Internet of Things concept has been since extended to include what is referred to
as the Internet of Everything (IoE). According to [63], the IoE encompasses people,
data, process and things. Its major objective is to provide a platform that allows for
a) the massive extraction of information from various sources (e.g., sensors) and
b) utilization of intelligent layers to automate machine to machine and machine to
people processes [9].

According to Cisco, 500 billion devices are expected to be connected to the In-
ternet by 2030 [10]. Cisco also predicts that the global Internet of Things market
will be $14.4 trillion by 2022. IoT has great potential in a wide range of application
domains. IoT devices can be applied in home automation, which includes lighting
and temperature control, intrusion detection, energy optimization, etc. IoT can
also be applied to other areas such as healthcare by enabling remote health moni-

toring and emergency notification, transportation, manufacturing and agriculture.

However, the Internet of Things, and consequently the Internet of Everything,
have introduced a wealth of new problems and challenges to address, ranging
from modeling and programming issues, all the way to infrastructure, scalability,

and security issues.

In this thesis, we investigate techniques which focus on modeling and compos-
ing resources as well as associating actions that these resources can perform as
they exchange data and interact in an inter-networked IoT/IoE environment. More
specifically, this thesis aims to address three key questions related to programming
and composing resources. The first question deals with how we can model inter-
networked resources (i.e., IoT resources) at a higher level of abstraction, and how
we can utilize semantic web technologies for instantiating such abstract models
of resources to concrete URI addressable resources that are accessible over the
Internet communication protocols. The second question deals with the problem
of providing a model of composing resources so that these can not only exchange
data, but also enact actions as the result of such interactions and provided that cer-
tain conditions are met. In this respect, we aim for devising an initial programming
model which can be used by application developers as well as IoT end-users to de-
fine plug and play applications that are based on the interaction of inter-networked

resources.

The third question deals with the problem of what is an appropriate and scal-
able architecture that can be used to deploy such a system in a massive scale. In
this respect, we investigate a layered architecture that utilizes publish-subscribe
infrastructure middleware components. Such an architecture can be easily ported
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to a distributed publish-subscribe system that utilizes distributed brokers.

In this respect, this thesis proposes a model whereby intelligence can be intro-
duced on the interaction among "things" in a resource-oriented environment. This
can provide a step towards achieving the Internet of Everything goal.

1.2 Problem Statement

The available Web services are constantly increasing in number and variety as the
Internet expands. The last few years we have also witnessed the rapid increase of
inter-networked IoT devices and resources consuming and producing data which
come from various sources such as repositories, Web services or IoT devices. In
such an IoT environment, data may come from either Web services or IoT devices.
In such an environment, this thesis aims to address three major questions related
to IoT system compositionality and programmability.

The first question to be addressed in this thesis is how to achieve a level of
ease of programmability in an environment where resources or "things" exchange
data, enact actions, and generate events. This question encompasses the prob-
lem of devising a meta-modeling framework to denote and compose resources at
a higher level of abstraction and to provide a unified interface to access resources
and their associated data representations, given that these may come from various
information sources. Such a modeling and resource composition abstraction is the
essential first step for facilitating a programming model for IoT application devel-
opment. This thesis considers models of resources at two levels of abstraction:
a) abstract resources and b) concrete resources. The abstract resources, which
we refer to as Abstract Domain Resources (ADRs), denote conceptual high level
representations or categories of actural resources that are addressable entities by
Internet protocols such as HTTP and URI. The concrete resources which we refer
to as Domain Resources (DRs), are instantiations of models of abstract resources.
This instantiation is achieved through the use of semantic web technologies such as
RDF/S and model transformers which generate concrete resource instances from
abstract ones. The instantiation process takes into account a number of factors
for choosing a candidate resource to instantiate an abstract one. Such factors may
include cost, latency and, reliability of a resource so that the instantiation pro-
cess can select the optimal combination of candidate resources to be used when
instantiating an abstract resource.

The second question deals with devising a programming abstraction for a run-
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time model for IoT devices and inter-networked resources composition and inter-
operation. More specifically, the problem here is that given a collection of data
shared among resources, how to apply a feasible actionable composition model.
In this respect, we consider an Event-Condition-Action type of system. Here, we
have first to identify how to evaluate local conditions when a new event happens.
One can employ a rule-based system which utilizes of a fact base and a rule base.
Whenever an event occurs, the system checks all relevant rules to determine any
consequent actions. The problem here is that developing a suitable rule frame-
work is of substantial work and suffers from what is known plan-fullness (i.e. we
are never sure we have a fully complete set of rules). The second problem is devel-
oping an action model whereby upon the availability of events and the satisfaction
of conditions, resources can invoke or enact actions. For this thesis we utilize an
existing action model that has been developed as an earlier thesis [27] which al-
lows for actions to be specified as collections of tasks that aim to achieve an agent’s
goal.

The third question deals with the architectural choices that need be consid-
ered for designing such a system, given that scalability, robustness, security, and
fault tolerance are important non-functional requirements to consider. For this
thesis, we consider the use of layered, and event-driven architectures that utilize
a publish-subscribe paradigm for data exchange and implicit invocation of ser-
vices (i.e. evaluation of conditions, invocation of actions). In this respect, the
middleware serves as a data exchange and invocation abstraction bridge between
“things” and applications.

1.3 Thesis Contributions

In order to tackle the problems mentioned above, we first propose a meta-model to
abstract IoT resources. Here the use of the metamodel serves as means to create
a specification of Abstract Domain Resources in various domains (e.g. banking, in-
surance, healthcare) and for which serve as templates. These templates are used
for describing a user’s view and usage of a resource in the 10T domain. By means
of semantic technologies and resource selection algorithms, templates are instanti-
ated later and point to specific information sources. Ontologies are employed in an
instantiation step to provide semantics to the model elements and create mappings
between terms in different sources. We formulate the resource selection problem

as a knapsack problem and implement a Dynamic Programming type of algorithms
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to solve this problem in an efficient manner.

The second contribution of the thesis is modeling conditions and actions utiliz-
ing goal model frameworks [80]. More specifically, we employ goal modeling for
specifying and evaluating condition models as well as action models for compiling
action plans when the aforementioned condition models are satisfied. For the con-
ditions, goals in a goal model represent conditions or states which are attached
to the individual evaluators. The action model represents tasks or atomic actions
the system has to perform in order to achieve the top level task (i.e. the root of
the action model). Reasoners developed as part of previous theses are used first
to evaluate conditions (i.e. goal models) using a fuzzy reasoner, and second to
generate sequences of tasks that satisfy the agent’s goals.

The third contribution of the thesis is to propose a scalable architecture that
is based on the implicit invocation architectural style, and the use of publish-
subscribe middleware technologies. To evaluate the feasibility of our architecture,
this thesis proposes a prototype system that is based on semantic web technolo-
gies and the OPC UA middleware environment [60]. The OPC UA framework sup-
ports event-based communication between different software components. We em-
ploy OPC UA to integrate the server and client components of the running system.
Server components register in event channels, while client components subscribe
to channels and get notified when a new event is posted. When the condition is
satisfied, the runtime of the prototype system executes corresponding actions as
specified by the analysis of the action models. As part of a related project, the pro-
posed system was also linked with the PADRES middleware [56] and the Node-RED
framework [[15]].

1.4 Thesis Outline

The remainder of this thesis is organized as follows.

In Chapter 2, we provide background and related work information about the
programming model, middleware architecture, modeling framework, ontology de-
velopment, edge computing, resource oriented computing and gap analysis.

Chapter 3 discusses the proposed system architecture, which includes a general
overview of the system and descriptions for each component.

In Chapter 4, we present programming abstractions and the instantiation pro-
cess, which consists of semantic technologies and resource selection algorithms.

In Chapter 5, we describe the modeling and reasoning for the condition and
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action by utilizing goal models. We also introduce a mapper model which associate
output ports and input ports across different resource models, condition models
and action models, facilitating thus the creation of "scripts" or "IoT programs".

In Chapter 6, we present a prototype that is based on the programming model
and utilize OPC UA middleware framework.

Finally, in Chapter 7 we conclude the thesis and provide pointers for the future

research.



Chapter 2

Background and Related Work

This chapter describes the background of the proposed work. The foundation of
our proposed approach relies on programming model, middleware architecture,
modeling framework, ontology development, edge computing and resource ori-
ented computing. The last section presents the gap analysis.

2.1 Programming Model

IoT applications can control and interact a wide variety of devices. For example,
using IoT applications, people can not only control their home appliances remotely
from their smartphones, but also automate some everyday tasks. One way this
automation can be achieved is by predefined rules, where users specify events
of interest as well as corresponding actions to be taken whenever these events
occur. Under certain circumstances, the execution of an action also requires the
fulfillment of specific conditions. Such an event-driven architecture consists of
event producers that generate the events, and event consumers that listen for the
events and act upon receiving these events.

Such an event-driven architecture can be implemented using a publish sub-
scribe style as depicted in Figure @ [19]. In a publish/subscribe model, any event
published to a channel is immediately received by all of the subscribers of this
channel. In such an architecture, event producers and consumer are decoupled.
Hence, the event-driven architecture is highly scalable and distributed. Based on
the complexity of event processing required, event-driven architectures can be fur-
ther divided into two programming paradigms: the Trigger-Action paradigm and
the Event-Condition-Action paradigm. One concrete example of event-driven pro-
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gramming model is Node-RED [15].

&
) =|] 5“

s T g2
& =|]

1l

PUBLISHER

SUBSCRIBER

Figure 2.1: Publish Subscribe Model

2.1.1 Trigger-Action Programming

A concrete example of the trigger-action paradigm is the IFTTT service [8], which
stands for “if this, then that”. For example, if a user’s Facebook profile picture
changes, then such a service can update the user’s Twitter profile picture to match.
Such if-then rules are easy to denote and cover many real-life scenarios. In [50],
Ghiani et al. present a trigger-action rule editor that provides the possibility to
create more flexible rules than IFTTT. Joé€lle Coutaz and James L. Crowley pro-
pose AppsGate [45], an end-user development environment designed to empower
people with tools to monitor and control their home. Corcella et al. [44] present
a visual trigger-action tool for personalizing user’s IoT context-dependent appli-
cations, the users’ feedback is encouraging and promising. Besides simple “one
trigger, one action” rules, Ur et al. [78] conduct three studies which prove that
trigger-action programming with multiple triggers and multiple actions can be a
practical approach to smart home programming.

Trigger-action programming also introduce many drawbacks. Many trigger-
action programming interfaces lack feedback during rule creation [50]. Chan-
drakana Nandi and Michael D. Ernst [65] caution that even if the action block of a
rule is implemented correctly, inadequate triggers can lead to too few firings of the
rule. Brackenbury et al. [33] identify ten different categories of bugs that might
arise in trigger-action programming, such as Priority Conflict, Missing Reversal,
Infinite Loop, etc. Ur et al. [78] note that they are unable to evaluate the rela-
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tive strengths and weaknesses of trigger-action programming due to insufficient

control experiments.

2.1.2 Event-Condition-Action Pattern

Another programming paradigm of event-driven architecture is the Event-Condition-
Action (ECA) pattern, which originates in database systems for efficiently respond-
ing to sources of incoming events or data [40]. ECA rules basically conform to the

following form:

“When some events occur, and
If some conditions are true,

Then perform some actions.”

It is obvious that such rule-based systems are easier to model and program, than
systems built on general purpose programming languages, and are powerful enough
for many IoT applications. Actually, there are already a few commercial plat-
forms which try to strike a balance between expressiveness and simplicity. In
[21], users can write event-condition-actions rules for IoT devices via a smart-
phone app. Home Assistant [7/] is an open source platform written in Python, in
which automation programs are made up of event-condition-action rules. It can
also attach delays to event handlers and to actions. A critical part of ECA rules is
semantics, which influence both programmability and expressivity. Newcomb et al.
[66] present the Internet of Things Automation (IOTA) calculus, which models an
ECA language formalism with abstractions constructs related to time, state, and
device aggregation, as well as ECA syntax and precise semantics.

‘ ' ‘ Rule engine ‘

Event Event Event . Action

detection subcription processing | | | performer
|

| ‘ Fact base Rule base

Action

Event T
Condition

Figure 2.2: Event-Condition-Action based Platform

Cano et al. [35] focus on the safety and security issues of ECA rules in IoT
environments. They propose an extension of ECA semantics by control theory and
validate it with a case study. From a broader view, Bhandari et al. [31] propose
an ECA framework, which includes four layers, namely device layer, service layer,
ECA platform and event based application. The ECA platform is illustrated in Fig-
ure [2.2] As is shown, the event part is divided into event detection, subscription
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> output uses the Express bodyParser
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> advanced node, the content-type header of the
request must be set to
application/json
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response to the hittp request. This
should be done with a subsequent
HTTP Resnonse node.

Figure 2.3: Node-RED Editor

and processing. The condition part handles the condition evaluation and it adopts
a rule based system, which consists of a fact base and a rule base. The action
part includes an action engine that is used to execute actions after condition is

evaluated to true.

2.1.3 Node-RED

Node-RED is a programming tool for wiring together hardware devices, APIs and
online services in new and interesting ways [15]. It was originally developed by
IBM Emerging Technology Services and now is a JS Foundation project. Node-RED
is implemented in JavaScript using the Node.js framework, which provides a visual
browser-based flow editor. The developers can either drag, drop and wire up the
nodes in the editor, or import JavaScript code in order to create applications.

The editor window of Node-RED has three main components as depicted in

Figure [2.3]

1) Palette. The palette contains all the nodes that are available to use. The
nodes are classified as several categories, such as input, output, function,
etc. Typically, a JavaScript file describes the node’s functionality, and an
HTML file defines its properties, edit dialog and help text.

2) Workspace. The main workspace is where flows are developed by dragging
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nodes from the palette and wiring them together. The wiring is achieved by

connecting the output port of one node with the input port of the other node.

3) Sidebar. The sidebar provides a number of useful tools within the editor. For
example, Information panel shows the properties about the current selected
node. Debug panel displays log messages from the runtime. Other tools
include Configuration Nodes and Context Data.

The Node-RED runtime is built on the Node.js event API, taking full advantage
of its event-driven, non-blocking model. This enables the lightweight runtime to be
easily deployed in the edge network as well as the cloud. Additionally, Node-RED
offers powerful build-in nodes (e.g. HTTP and MQTT), which hide the complexity
of interacting with the real word. In this way, the developers can focus on the
application development, instead of on the programming details. These character-
istics make Node-RED an ideal tool to create applications, especially applications
that have an event-driven feature such as IoT applications.

The differences between Node-RED and the proposed framework are summa-
rized in two main points. The first point is that the approach proposed in this
thesis allows for the definition of arbitrary types of resources that can be instan-
tiated at run-time by actual resources depending the system’s operational context
and user profile, while the Node-RED nodes have to be determined at specification
time. The second point is that Node-RED is based on JavaScript technologies while
the proposed approach allows for integration with any third party language and
system. However, as part of a related project we have created a transformer that
takes Node-Red specifications and generates a Mapper model (see Section [5.1]).

2.2 Middleware Architecture

Due to the device and network heterogeneity, IoT application development is a very
challenging task. Middleware addresses this problem by decoupling the applica-
tions from the underlying physical devices. It serves as the middle layer between
the hardware and application layer. In this way, application developers can fo-
cus more on the development, instead of on how to interact with diverse physical
devices.

Middleware development has been an active area of research in the IoT domain
over the past few decades. Middleware is designed based on different architectural
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styles. According to their unique features (design techniques, level of program-
ming abstractions, infrastructure scale, etc.), each architecture can be classified
differently. Based on design approaches taken in these middleware frameworks, in
this section we discuss three categories of middleware architectures, namely the
event based, service oriented and sematic oriented.

2.2.1 Event Based Middleware

Generally, an event-based architecture can also be viewed as an architecture fol-
lowing the publish subscribe, asynchronous, many-to-many communication model
for distributed systems [48]. In this kind of middleware, all components interact
with each other via events, where publishers also produce events and subscribers
consume these events. Subscribers describe certain kinds of events that they are
interested in and get notified when publishers post such events.

Publish subscribe systems can be divided into two forms: topic-based and content-
based. The major distinction lies in how event subscribers express their interest
in events. In topic-based systems, subscribers specify their interests in a topic
(channel or subject) and receive all events published on this topic. These systems
are easier to implement since they can adopt a group communication mechanism
like IP multicast. However, they are inflexible as subscribers may need to filter
events which come from general topics. In content-based systems, subscribers
express their interests using event attributes. A subscription is often expressed
in a subscription language that specifies a filter expression over events [72]]. This
form of publish subscribe achieves stronger expressiveness at the cost of increased
overhead.

Figure |2.4] illustrates a distributed implementation of a publish/subscribe sys-
tem [73]. Such implementation consists of two components, namely event clients
and event brokers. Event clients can be publishers or subscribers and use the
services provided by the middleware. The event brokers comprise the actual mid-
dleware which accept subscriptions and then distribute events from publishers to
all registered subscribers.

There are several advantages of the event-based architectures. Firstly, it de-
couples space and time. Publishers and subscribers do not need to know about
each other or run at the same time. Secondly, the event-based pattern can achieve
greater scalability than a traditional client-server approach, because the loose cou-
pling removes dependencies between clients. Lastly, it is capable of filtering events
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Event Publisher

S) Event Subscriber

Figure 2.4: A Distribute Implementation of Publish Subscribe System

based on their attributes.

HERMES [72] is an event-based middleware architecture created for large-
scale distributed systems. HERMES has type-based and attribute-based events,
and encompasses two routing algorithms: type-based and type- and attribute-
based routing. The former only supports subscriptions depending on the event
type of event publications, while the latter extends the type-based routing with
content-based filtering on event attributes in publications [72]. Another event-
based architectures is Data Distribution Service (DDS) developed by Object Man-
agement Group (OMG) [69].

2.2.2 Service Oriented Middleware

Just like other software, IoT middleware solutions often follow the Service Oriented
Architecture (SOA) approach. SOA aims to decompose complex and monolithic sys-
tem into simpler independent components, which provide services through acces-
sible interfaces. The SOA approach also allows for software and hardware reuse,
because it does not impose a specific technology for the implementation of services
[701.

In this context, OpenloT is a popular open source cloud solution for the IoT
domain, which also comprises a service-oriented middleware for collecting data
from any sensor [[76]]. OpenloT supports flexible configuration and deployment of
algorithms for collection, and filtering data streams stemming from the internet-
connected physical objects, while at the same time generating and processing
events. The implementation of OpenloT extends the Global Sensor Networks (GSN)
sensor middleware and is called X-GSN [23].
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2.2.3 Semantic Oriented Middleware

Semantic oriented middleware focuses on solving the interoperability problem in
IoT, that is, different types of devices interact using different communication pro-
tocols and data models. Ontologies and semantic web technologies address this
problem by providing a unified interface for data access.

Semantic web was originally designed to make information understandable by
machines. In this way, interoperation among machines and integration of infor-
mation is enhanced. Additionally, semantic web can provide context-awareness to
applications, in which the search space for automatic service discovery and com-
position is reduced [52]. Last but not least, semantic web technologies facilitate
reasoning of actionable knowledge from various heterogeneous data sources.

SemloT is a middleware platform which employs semantic web technologies,
existing ontologies and architectural style REST [58]]. SemlIoT applies the OSGi ar-
chitecture [24] to allocate an independent service to a different type of devices. It
also applies semantic web technologies such as RDF, OWL and SPARQL to achieve
semantic interoperability. As for ontologies, SemloT extends SSN ontology [42] to
model and annotate devices’ data.

2.3 Modeling Framework

The Meta Object Facility (MOF) [14] has emerged as the defacto standard for
model-driven engineering of the Object Management Group (OMG). Its purpose is
to provide the formal definition of modeling languages (including UML). Now MOF
is one of the foundations of model-driven architecture (MDA). The MOF specifica-
tion defines a hierarchy of four-layer models, and is designed to support extensions

for more sophisticated metamodeling. The four layers are as follows:

* Layer 1: The M3 layer, or meta-meta model layer, is the highest abstraction
layer. It is the top layer of the hierarchy and used by MOF to build M2 layer
models, i.e. metamodels (such as UML). The meta-meta models at this layer
are essentially the definitions of the languages used in the metamodel specifi-
cation. This layer is self-referential, which means that the meta-meta models

constructs in this layer can also be used to describe themselves.

* Layer 2: M2 layer or metamodel layer. A metamodel is an instance of a meta-
meta model. The primary responsibility of this layer is to define a language
for specifying metamodels. A typical example of this layer is UML.
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* Layer 3: M1 layer or domain model layer. This layer describes a domain
model that is used as a "schema" for defining entities in a specific application
domain, such as banking, insurance and healthcare, to name a few. Such
domain models are instantiated to form concrete information models at M0

layer.

* Layer 4: The MO layer or information layer. This layer contains the runtime
instances of data elements conforming to corresponding to a domain model,
they are instances of. That is an MO model stems from its corresponding

domain model at M1 layer.
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Figure 2.5: MOF Hierarchy

Figure [2.5] illustrates the MOF hierarchy [68]. The value of MOF lies in that
it provides a straightforward framework for mapping MOF models to implemen-
tations like Java Metadata Interface (JMI). In addition, the MOF allows models to
be stored with standards such as XML Metadata Interchange (XMI), which can be
transferred to another application and extended easily later on.
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Figure 2.6: The ontology development process
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2.4 Ontology Development

A widely quoted definition of an ontology is “a formal, explicit specification of a
shared conceptualization” [53]]. Here conceptualization refers to an abstract model
of the way people think about things in the world. An explicit specification means
that the concepts and relationships in the abstract model are given explicit names
and definitions [[79]. Formal means that there should not be any ambiguity about
the specification, which is usually done by employing a logic-based language. In
this respect, a common vocabulary for a certain domain can be established and
ontologies can be shared and reused for other purposes.

Ontology generally characterizes different kinds of concepts and their relation-
ships in a domain of interest. These concepts are called classes in the ontology, and
they are usually the focus of an ontology. Just as in an object-oriented language, a
class can have multiple subclasses which represent concepts that are more specific
than the superclass. Various features and attributes of each concept are modeled
as properties. An ontology together with a set of concrete instances (also called in-
dividuals) of the class constitutes a knowledge base. RDFS (Resource Description
Framework Schema) [34] is a lightweight ontology language which allow us to de-
fine classes, properties as well as their hierarchies. OWL (Web Ontology Language)
[62] is an extension to RDFS which provides much more powerful expressiveness
and reasoning capability.

Ontology design is not an easy task. Noy and McGuiness [67]] propose three
fundamental rules in ontology design. Despite what approach is used for the design

of ontology, their advice is helpful for making design decisions:

1) There is no single correct way to model a domain - there are always viable
alternatives. The best solution almost always depends on the application that
a modeler has in mind and the extensions that a modeler anticipates.

2) Ontology development is an iterative process.

3) Concepts in the ontology should be close to objects (physical or logical) and
should stem from the domain of interest. These are most likely to be nouns
(objects) or verbs (relationships) in sentences that describe the domain. [[67]

As there is no a single unified and formal definition of the ontology, there are
plenty of methodologies for building an ontology. Figure [2.6|provides a flowchart of
the whole ontology development process as this is proposed by Noy and McGuiness
1671.
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2.4.1 Edge Computing

While IoT has great potential in various industry-specific and cross-industry use
cases, it also brings about several issues, such as data storage, data processing,
data analytics, etc. In the last few years, the integration of the IoT with cloud com-
puting has overcome the computation and storage limitations [47]. Nevertheless,
this also leads to an increase of latency in communications, especially for IoT ap-
plications in which devices usually span a large geographical area. To fulfill this
gap, edge computing is introduced to provide computing and storage services at
the edge of the network, instead of sending all the data to the cloud. Edge can
perform computing offloading, data storage, caching and processing, as well as
distribute request and delivery service from cloud to user [75]. Figure [2.7]
illustrates the edge computing paradigm. As is shown, “things” are not only data
producers, but also data consumers. At the edge, “things” can not only collect
data but also perform computing tasks. Therefore, the two-way computing stream
between the edge and the cloud is achieved.
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Figure 2.7: Edge Computing Paradigm
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Generally, it is beneficial to support IoT applications by combining the high
computation capacity and large storage of cloud computing with the advantages of
edge computing. Specifically, edge computing-based IoT has following advantages
[84]:

* transmission: By offloading the data processing and storage to end users,
the latency, bandwidth and energy consumption are significantly reduced.

* storage: Edge computing-based storage is distributed to different edge nodes,
which leverages load balancing and failure recovery technique to realize
availability.

* computation: The computation task is also assigned to several edge nodes

by utilizing the task scheduling scheme.

2.5 Resource Oriented Computing

REST (Representational State Transfer) was first introduced and defined in 2000
by Roy Fielding in his doctoral dissertation [49]. REST is a software architectural
style for creating Web services by taking advantage of existing protocols. The
REST architectural style is founded on a set of constraints. These include being
stateless, having a client/server architecture, complying to a uniform interface,
achieving cacheability, being a layered system and providing capabilities for offer-
ing code on demand. REST is not exclusively bound to a specific application layer
protocol such as HTTP, but it is most commonly associated with it when we are
talking about RESTful Web services. The central idea of REST revolves around the
notion of a resource which is any component of an application that is worth being
uniquely identified by a URI and linked to, utilizing an application layer protocol
(e.g. HTTP) [53]. In this respect, resources can include physical devices (e.g., a
temperature sensor), abstract concepts such as Web resources, but also dynamic
concepts such as server-side states. When designing a RESTful API, there are five
issues we need to address:

* Resource Identification. It is a common practice to utilize Uniform Re-
source Identifiers (URIs) to identify resources on the Web. Representations
of resources also contain links to other resources. Clients of RESTful APIs

can follow the links to find resources to interact with, just like browsing Web
pages.
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* Resource Representation. In order to represent data objects and attributes
in a resource, we also need to agree on resource representation formats. For
machine-oriented services, JavaScript Object Notation (JSON) and Extensible
Markup Language (XML) have gained widespread support across server and
client platforms. Besides, HTML representation increases the readability of

resources for humans.

* Uniform Interface. In REST, interacting with resources and retrieving their
representations are achieved through a uniform interface, which decouples
clients from servers. On the Web, uniform interface is defined by HTTP, which
provides four main methods to interact with resources: GET, PUT, POST and
DELETE. GET is used to retrieve the representation of a resource. PUT up-
dates the state of an existing resource or creates a resource if it does not
exist. POST creates a new resource while DELETE removes a resource. Fi-
nally, the status of the response is represented by standard status codes in
the header of the HTTP message.

» Stateless Interactions. Stateless means that interactions store no client
context on the server between requests. This requires that when the client
makes a request, it includes all the information for the server to fulfill that
request. HTTP is a stateless protocol in that it has no knowledge beyond
the request/response interaction. This helps increase the RESTful API’s reli-
ability by having all the data necessary to make the request. In addition, a
stateless application is easier to distribute across load-balanced servers and
cache.

The flexibility of REST allows for building the applications that meet both devel-
opers’ and users’ needs. Moreover, because of the decentralization and massive
scalability inherent in the RESTful architecture, it is extremely useful in the IoT
domain. There are millions of available resources and clients, with millions of
concurrent interactions with one service provider. In such scenarios, RESTful ar-

chitecture scales better than RPC-based client server type of architectures.

2.6 Gap Analysis

Over the last decade, a number of researchers and practitioners have investigated
programming frameworks for IoT which support application development. As dis-
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cussed in Section [2.1] those frameworks mostly employ an event-driven architec-
ture which can be divided into two programming paradigms: the Trigger-Action
paradigm and the Event-Condition-Action paradigm. The Trigger-Action paradigm
is proved to be easy to use for the end-users in real-life scenarios like smart home.
In such simple scenarios, one or two triggers are enough. However, in other com-
plex scenarios which require multiple triggers, the semantics of composing them
are complicated and confusing for the end-users. In addition, the Trigger-Action
paradigm does not contain temporal information in triggers. Generally, the trigger
could be an event, a condition, or some combination. If there are both event and
condition involved in a rule, they do not compose well. For example, the exact
moment someone shuts down the computer is unlikely to be the exact moment the

computer is completely off.

Although the programming models based on the Event-Condition-Action paradigm
do not have aforementioned drawbacks, they pose other limitations. First of all,
most proposed frameworks use direct sensors (e.g., "temperature is 25 degrees"
or "motion is detected") for event detection. They are simple to implement but con-
strained in terms of data acquisition. Ideally, data can come from either IoT devices
and appliances (e.g., sensors) or inter-networked resources (e.g., Web resources).
Secondly, to the best of our knowledge, all proposed ECA based programming
frameworks utilize a rule-based approach, which consists of a rule engine, a fact
base and a rule base for condition evaluation. The development and verification of
a rule-based system are time consuming. Also, any changes to the rule base or fact
base may introduce potential errors. Lastly, the proposed programming framework
cannot express inherently vague concepts in conditions. For example, a condition
may be "the weather is too hot", where "hot" is ambiguous and person-dependent.
Therefore, there is a need for studying how to interpret concrete readings from
sensors for condition evaluation.

To tackle the problems mentioned above, we develop a system which is built on
the Event-Condition-Action paradigm. As depicted in Figure [3.1] the lowest layer
is modeling. In our approach, the modeled resources not only include physical IoT
devices (e.g., sensors), but also inter-networked resources (e.g., Web resources or
Web services). In this case, any resource which is uniquely identified by a URI can
server as a data source. Furthermore, instead of modeling one atomic resource
at a time, we consider resources at a higher level of abstraction. Such abstract
resources serve as "templates", which extract reusable parts of a resource for a

specific domain. The instantiation process is performed at runtime and generates
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concrete resources for the composition. Secondly, we employ goal modeling rather
than rule-based system for the condition evaluation. Specifically, goals in a goal
model represent conditions or states which are attached to the individual evalua-
tors. After reasoning, we can obtain a truth value for the root node of the model
and determine any consequent actions that need to be initiated. Goal modeling is
also employed for specifying action models and compiling action plans. Another
advantage of goal modeling is that it support more complicated relationships be-
tween two goals. Lastly, we utilize fuzzy logic for evaluating condition models.
Fuzzy logic allows for reasoning on vague concepts (e.g., "hotness") and is robust
to tolerate imprecise readings. The runtime system is developed using a pub-
lish/subscribe middleware in consideration of scalability and other non-functional

requirements.
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System Architecture

In this chapter, we present the architecture of the proposed system, which is graph-
ically depicted in Figure [3.1I] Generally, the whole system has three subsystems:
the Modeling subsystem, the Instantiation subsystem and the Runtime system. We
then present the component view of the system followed by the detail descriptions
of each component. To illustrate the workflow of the activities and actions, we also
provide the activity diagram of the runtime system and a corresponding workflow

example.

3.1 System Overview

The architecture of the proposed system is structured across seven layers, as de-
picted in Figure [3.1] Each layer builds upon the functionality provided by the layer
below, and exposes interfaces to the layer above. In addition, layers are indepen-
dent of each other. Each layer has its own implementation and it can be replaced
by a different implementation if necessary. For example, if a more scalable Pub/-
Sub middleware becomes available, the system can employ it without major mod-
ification. Next, we will discuss the responsibilities of each layer of the proposed
architecture, starting with the lowest one.

* Modeling Subsystem.

- Modeling Layer. The lowest layer is the modeling layer which hosts all
the components for a user to draft and edit models related to abstract do-
main resources (ADRs), models related to conditions, models related to
actions and models related to the composition of the above entities. This

23
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Figure 3.1: High Level Conceptual View of the System’s Architecture

layer contains two components, namely the AbstractResourceCondition-
Action Modeling component and the Composition Modeling component.
In this layer, we model abstract domain resource, abstract condition,

abstract action and composition.
* Instantiation Subsystem.

- Instantiation Layer. This layer hosts components that instantiate ab-
stract domain resource models to concrete ones (see Section [4.2). The
instantiation process begins with the resource localization and then, with
the help of domain ontology and a resource selection algorithm, a con-
crete resource is selected for instantiating an abstract domain resource.

* Runtime Subsystem.

- Facade Daemon Layer. This layer is responsible for collecting data and
handling responses. It provides an interface for the Process Server to
transmit and receive data from an external medium (e.g. the Internet
through RESTful Web services).
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- Process Server Layer. The Process Server implements the functionality
required by the runtime system. This functionality includes the sequenc-
ing and facilitation of data provision, condition evaluation and action

evaluation.

- Publish/Subscribe Middleware. This layer represents a specific mid-
dleware employed in the runtime system. Specifically, we utilize the
OPC UA system as a middleware framework for providing publish and
subscribe services for the runtime system. The proposed system is also
integrated with the PADRES middleware as part of a related project.

- Publish/Subscribe Proxy Layer. This layer acts as an intermediary
between the Runtime and the Publish/Subscribe Middleware. It exposes
Pub/SubProxyService as an interface to control the access to a specific
Publish/Subscribe middleware (e.g. OPC UA, PADRES, etc.).

- Runtime Layer. This layer integrates services provided by the underly-

ing layers and implements the prototype runtime system.

3.2 Component View

The component diagram of the proposed system is depicted in Figure [3.2] As is
shown, there are three major subsystems in the whole system. The first subsystem
is the Modeling subsystem, which provides services to model abstract resources,
conditions, actions as well as compositions. The second subsystem is the Instanti-
ation subsystem, which provides services to instantiate abstract models obtained
from the Modeling subsystem and provides concrete models to the runtime en-
vironment. The third major subsystem is the Runtime subsystem. The Runtime
subsystem employs an event driven architectural style. Specifically, it uses the
Publish/Subscribe model to process events in the middleware.The detailed descrip-
tions of the individual components in each module making the proposed architec-

ture, are discussed in the next Section.

3.3 Component Descriptions

Here, we describe the functionality of each component in the proposed architec-

ture along with the relationships between each component.
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3.3.1 Modeling Subsystem

Component

Descriptions

AbstractResourceModeler

This component provides services to read abstract do-
main resource specifications as well as initialize and
load AbstractResourceModel(s) into the memory. It
exposes the interface which is used by Composition-
ModelServer component.

AbstractConditionModeler

This component provides services to edit, read as well
as initialize and load into the memory AbstractCondi-
tionModel(s). It exposes the interface which is used
by CompositionModelServer component.

AbstractActionModeler

This component provides services to read abstract ac-
tion specifications as well as to initialize and load into
the memory AbstractActionModel(s). It exposes the
interface which is used by CompositionModelServer
component.

Table 3.1: AbstractResourceConditionAction Modeling (ARCAM) Module

Component

Descriptions

ComposerEditor

This component provides a textual editor service for
modeling compositions. It exposes CompositionSer-
vice as an interface.

CompositionModelServer

This component consumes CompositionService from
ComposerEditor and abstract models generated from
ARCA Modeling Module. CompositionModelServer
initializes and loads AbstractCompositionModel into
the memory. It exposes the interface which is used by
ScriptingServer component.

Table 3.2: Composition Modeling (CM) Module




28

Chapter 3. System Architecture

3.3.2 Instantiation Subsystem

Component

Descriptions

ResourcelocalizationServer

This component provides services to access the re-
source repository and retrieve all available resources
for a particular domain based on user’s preferences
and context. It exposes Resourcel.ocalization service
as its interface.

ResourceSelectionServer

This component consumes ResourcelLocalization ser-
vice and provides services to select the resource with
the highest utility value with the help of Dynamic
Programming algorithm. It generates Instantiate-
dResource as a result.

ScriptingServer

This component provides services to model elements
in the AbstractCompositionModel so that a composi-
tion model can be created (see Section [5.1). It ex-
poses ScriptingProvisionService as an interface.

Table 3.3: Resource Instantiation (RI) Module
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3.3.3 Runtime Subsystem

Component

Descriptions

FacadeConnector

This component provides services to connect the
required interface of DataProvisionServer, Con-
ditionEvaluationServer and ActionEvaluationServer
with the provided interfaces of Facade Daemon mod-
ule (i.e. the DaemonGatewayServer).

DataProvisionServer

This component provides services to provision data
for the runtime system. It consumes ConnectionSer-
vice provided by FacadeConnector component and ex-
poses DataProvisionService as an interface. Its aim
is to decouple the process of provisioning data from
an external sources from the evaluations of condition
and action models.

ConditionEvaluationServer

This component provides services to evaluate condi-
tion models. It exposes ConditionEvaluationService
as an interface.

ActionEvaluationServer

This component provides services to evaluate actions
in an action model. It consumes ConnectionSer-
vice provided by FacadeConnector component and ex-
poses ActionEvaluationService as an interface.

Table 3.4: Process Module
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Component Descriptions

InvocationServer This component performs HTTP requests to collect
data from external sources. It consumes Authentica-
tionService (when it is provided) and exposes Invoca-
tionService as an interface.

ResponseHandler This component handles the response of the HTTP re-
quest. It consumes DaemonGatewayService and ex-
poses ResponseService as an interface.

AuthenticationServer This component provides an access token which could

be used in a HTTP request of InvocationService (op-
tional), in order to authenticate a user or a session.

DaemonGatewayServer

This component provides an access point to the Pub/-
Sub Proxy Module. It consumes Pub/SubProxyService
and exposes DaemonGatewayService as an interface.

Table 3.5: Facade Daemon

Component Descriptions

Pub/SubProxyServer This component provides services to decouple the
backend system (through its facade daemon) from the
underlying middleware technology used.

BindingServer This component provides services for binding of a spe-

cific underlying pub/sub framework (e.g. OPC UA,
PADRES) used by the runtime system. It consumes
AuthenticationService when it is provided and ex-
poses the Pub/SubProxyService as an interface.

Table 3.6: Pub/Sub Proxy Module
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3.4 System Workflow

After applying the modeling and the instantiation processes, we obtain concrete
DomainResource models as well as concrete Condition and Action models. In or-
der to build the sever and the client of the runtime system, we use the OPC UA
publish/subscribe middleware framework. Specifically, the server creates fold-
ers in the middleware for DomainResoruce, Condition and Action. We also have
four clients, namely Domain Resource Client, Daemon, Condition Client and Ac-
tion Client, which subscribe to the corresponding folders and publish events to the

middleware. The activity diagram of the runtime system is depicted in Figure [3.3]

G G D
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Figure 3.3: Activity Diagram of Runtime System
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3.5 Workflow Example

In this section, a workflow example is given about the weather domain. Let us first

assume that a concrete resource has the structure as depicted in Figure [3.4]

<?xml version="1.0" encoding="UTF-8"7>
<iot:DomainResource xmi:versicn=r2.0" Reference to the resource repository containing
xmlns:xmi="http://www.omg.org/XMI" metadata for each concrete resource
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance” considered in the system.
xmlns:iot="http://org.eclipse.example/iot"

repositoryReference="repository/resourceRepository.ttl" Reference to the ontology about the weather data.
semanticReference="ontology/openweathermap.ttl” /

label="current weather information" domain="Weather"«——— Reference to the domain name.
host="api.openweathermap.org"
urlReference="http://api.openweathermap.org/data/2.5/weather?g=${city}">

<resourceMetaModel>

<serialization xsi:type="iot:StringTemplateSerialization” Reference to the CRUD action interface.
</resourceMe taModel>

<ActionInterface xsi:type="iot:Read" label="Find out weather information">
<output> Reference to the resource’s output plugs.

<outputMetaModel>

plugPath="%.main. temp”
semanticsReference="http: . ap.com#Temp™ />
<gutputPlug key="humidify" label="Humidxfy in percentage"
plugPath="%$.main.humidity"
semanticsReference="http A www.openweathermap.com#Humidity" />
<gutputPlug key="pressure” label="AtmosphericPressure in hPa"
plugPath="%$.main.pressure"
semanticsReference="http://www.openweathermap.com#Pressure” />
</outputMetaModel> Reference to the resource’s input plug.
</output>
<inputPlug key="city" label="Name of a city" type="string"/>
<fActionInterface=

</iot:DomainResource>

Figure 3.4: DomainResource Example for Weather Domain

Then, the steps that depict the system operation and correspond to the activity
diagram in the Figure [3.3]are as follows:

1) An agent (e.g. an external actor, Condition Client or Action Client) publishes
the event to the middleware folder (i.e. DR/Weather/Input/city).

2) The Domain Resource Client gets notified about the event, composes a re-
quest object and publishes to the middleware folder, (i.e. Request/Request-
Variable).

3) Daemon gets notified about the request event, issues HTTP request and gets
the response.
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Daemon publishes the response data to the corresponding middleware fold-
ers, (i.e. Condition/Input/temp, Condition/Input/humidity and Condition/In-
put/pressure).

Condition Client gets notified about the response event. If additional data
is required, go back to step 1-3 (not shown for clarity in the corresponding
Figure [3.3). If not, continue.

Condition Client obtains the reference to the goal model and builds it.
Condition Client evaluates the goal model and gets evaluation result.

Condition Client publishes the evaluation result to the middleware folder; i.e.
Condition/Output/ConditionResult.

Action Client gets notified about the evaluation result been posted. If the

condition is evaluated to false, terminate. If not, continue.

If additional data is required, go back to step 1-3 (not shown for clarity in the
corresponding Figure [3.3). If not, continue.

Action Client obtains the reference to the task model and builds it.
Action Client evaluates the task model and compiles action plans.
Action Client performs actions.

System terminates.
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Resource Abstraction Metamodel

and Instantiation

Service computing has emerged as a major paradigm for clients to access remote
services. Such services can be invoked either through well defined message-
oriented interfaces (as it is the case for classic message-oriented Web services),
or through uniform resource identifiers as addressable resources (as it is the case
for RESTful Web services). In either case, services are accessed through well de-
fined end points. In this context, a major problem is for application developers and
end users to choose the right end point (i.e. services) from many external ones.
For instance, there are already over 1000 APIs under the Mapping category on
ProgrammableWeb [18]. Of course there are thousands of APIs in other domains
including the IoT domain. And this does not count even more resources which are
available in IoT domain, such as sensors, actuators, processors, etc. On the other
hand, developers may not be familiar with the details of service interfaces that the
resources provide, which may include how to create an HTTP client to access ser-
vice, parse the response data, etc. These issues guide us to consider an abstract
model of resources (template), which provide abstractions for resource categories
and service interfaces. Such abstractions are later instantiated with the help of
the domain ontology and resource selection algorithm.

4.1 Resource Abstraction Metamodel

The Resource Abstraction Metamodel (RAMM) denotes the nature, capabilities and
interfaces of RAMM resources. A RAMM resource serves as a "template", which

34
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abstracts the reusable part of a resource. With the help of domain ontologies and
a resource selection algorithm, the template can be instantiated in an automatic
and flexible way. The RAMM is depicted in Figure

Generally, the RAMM resources are parameterized with respect to some at-
tributes, so that the templated resources can be configured and customized given
the specific application scenario based on users’ preferences and context. Such a
template is more suitable in a dynamic environment where the users’ preferences
and context are constantly changing. In addition, this facilitates the sharing and
reuse of templates, as well as the creation of template instances. The main element
in RAMM is the AbstractDomainResource, which represents RAMM’s resources for
a particular domain. An AbstractDomainResource has references to the resource
repository and the domain ontology which are useful in the instantiation process
by discovering the proper resources. After instantiation, the “host” and “urlRefer-
ence” attributes of DomainResource are given specific values. The former specifies
the provider of the resource, and the latter provides the URL or the URL template
of the resource, when the RAMM resource is associated with a single underlying
instance resource. The descriptions for each class and its attributes are given in

Section [4. 111
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4.1.1 RAMM Classes and Attributes

AbstractDomainResource This abstract class models general RAMM resources

in a particular domain. It abstracts the reusable parts
of IoT resources at design time. Generally, it is con-
figured based on the user’s preferences and context.
At runtime, it is instantiated to a DomainResource el-
ement.

repositoryReference This attribute specifies the URI of the resource repos-

itory associated with the AbstractDomainResource.

semanticReference This attribute specifies the URI of the ontology asso-

ciated with the AbstractDomainResource element.

label

This attribute describes the RAMM resources mod-
eled by the AbstractDomainResource abstract class.

domain

This attribute specifies the domain which AbstractDo-
mainResource abstract class models.

resourceMetamodel This attribute associates an AbstractDomainResource

with a structure description denoted by the Re-
souceMetaModel class.

actionInterface

This attribute associates an AbstractDomainResource
with an interface denoted by the subclass of ActionIn-
terface class.

Table 4.1: AbstractDomainResource Class

DomainResource

This class extends AbstractDomainResource class. It models a
particular RAMM resource. More specifically, a DomainResource
element specifies a semantically distinct, concrete resource which
is subject to state manipulation or activity triggering. Typically,
a DomainResource element is associated with a single underlying
IoT resource.

host

This attribute specifies the identifier of the provider of the IoT
resource associated with the DomainResource.

urlReference

This attribute specifies the URL or URL template of the IoT re-
source associated with the DomainResource.

Table 4.2: DomainResource Class
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ResourceMetaModel | This class defines the structure of an associated DomainRe-
source element by referring to an appropriate serialization
mechanism.

serialization This attribute associates the ResourceMetaModel class with

the SerializationMechanism abstract class.

Table 4.3: ResourceMetaModel Class

ActionInterface

This abstract class provides a common abstraction for inter-
action points of an RAMM resource. The ActionInterface is
extended by four concrete interface definition classes that
denote the CRUD semantics, i.e. Create, Read, Update and
Delete.

label

This attribute provides a description for the interface.

resourceReference

This attribute specifies the URL or URL template of an IoT
resource associated with the action implemented by the in-
terface (optional). When provided, the value of this attribute
overrides the value of the urlReference DomainResoruce at-
tribute.

inputPlug

The inputPlug attribute associates the ActionInterface class
with the InputPlug class. Specifically, an interface can be as-
sociated with a set of data elements which are included in the
request message.

output

The output attribute associates the ActionInterface class with
the Output class.

Table 4.4: ActionInterface Class

Create The Create class is a subclass of ActionInterface abstract class. It

defines a specific action with resource creation semantics. Create is
mapped to HTTP POST.

Table 4.5: Create Class
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Read The Read class is a subclass of Actionlnterface abstract class. It
defines a specific action with resource retrieval semantics. Read is
mapped to HTTP GET.

Table 4.6: Read Class

Update The Update class is a subclass of ActionInterface abstract class. It
defines a specific action with resource modification semantics. Update
is mapped to HTTP PUT.

Table 4.7: Update Class

Delete The Delete class is a subclass of ActionInterface abstract class. It
defines a specific action with resource deletion semantics. Create is
mapped to HTTP DELETE.

Table 4.8: Delete Class

Output The output class specifies the outcome of the interaction with

the interface.

responseCode This attribute denotes the status of the interaction.

outputMetaModel This attribute associates the Output class with the Output-

MetaModel class which describes the expected payload of the
output of the interaction.

Table 4.9: Output Class

OutputMetaModel This class models the response payload of an interface inter-

action. It also allows for the specification of the corresponding
schema type.

serialization

This attribute associates the OutputMetaModel class with the
SerializationMechanism class.

Table 4.10: OutputMetaModel Class
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OutputPlug This class specifies elements of the response payload that
need to be distinctly identified so that they can be used in
compositions and conditions.

plugPath This attribute is used to locate the element that comprise the
OutputPlug data element in the response payload structure.

plugPathSyntax This attribute specifies the syntax that the value of the plug-
Path attribute conforms to. The possible values of plugPath-
Syntax are specified by the PathSyntax enumeration.

Table 4.11: OutputPlug Class

InputPlug The InputPlug class models data elements included in
request message payloads.

optional This attribute specifies whether the input element is
optional (true) or required (false) (optional).

schemaDefinition This attribute specifies a schema document that in-
cludes the definition of the InputPlug element’s type
(optional).

type This attribute specifies the element of the schemaDef-

inition document that constitutes the type of the In-
putPlug element (optional).

inputElementPath This attribute is used to locate the InputPlug element
in the exchanged message, when SchemaBasedSerial-
ization is utilized to specify the structure of the mes-
sage payload.

inputElementPathSyntax This attribute is used when a value is specifies for the
inputElementPath attribute. It denotes which syntax
is used for the path expression. The possible values
that this attribute can take are specifies by the Path-
Syntax enumeration.

Table 4.12: InputPlug Class
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PathSyntax This enumeration is used to specify the list of languages that can

be used for the expressions contained in values of the inputEle-
mentPath and plugPath attributes. In this thesis, two language
are considered, namely XPath and JSONPath.

Table 4.13: PathSyntax Class

DataElement This abstract class denotes entities that are used as com-
mon abstractions for the classes InputPlug, OutputPlug
and EventAttribute.

key This attribute is used to uniquely identify the data element
within the scope of a single use case scenario.

label This attribute is used to describe the data element (op-
tional).

value This attribute is used to provide a fixed or default value
for the data element (optional).

semanticReference This attribute is used to assign semantics to the data ele-

ment by pointing to a URI that identifies a corresponding
ontology element (optional).

Table 4.14: DataElement Class

SerializationMechanism

This abstract class specifies the structure for the ex-
changed message. The SerializationMechanism class
is extended by the StringTemplateSerialization and
SchemaBasedSerialization classes.

Table 4.15: SerializationMechanism Class
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StringTemplateSerialization

This class extends the SerializationMechanism class
and specifies a string-based template to serialize and
deserialize messages.

template This attribute specifies the string-based template of
the message.
language This attribute specifies the identifier for the template

language used (optional).

Table 4.16: StringTemplateSerialization Class

SchemaBasedSerialization

This class extends the SerializationMechanism class
and specifies a schema-based template to serialize
and deserialize messages.

type This attribute provides the name of the schema type
that specifies the structure of the message.
schemaDefinition This attribute specifies a URI of a schema location
which defines the structure of the message.
Table 4.17: SchemaBasedSerialization Class
EventTopic This class specifies a type of event that the RAMM resource may

publish or subscribe, when it utilizes a Publish/Subscribe client.

eventAttributes | This attribute associates the EventTopic class with the EventAt-

Topic.

tribute class. It allows for the specification of the particular events
in the messages that are desired to be received by subscribers.
There should be at least one EventAttribute specified for an Event-

serialization This attribute associates the EventTopic class with the Serializa-

tionMechanism class.

Table 4.18: EventTopic Class
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Pub/SubClient

This abstract class provides a common abstraction for the middle-
ware client which refers to DomainResource element. The Pub/-
SubClient is extended by the concrete middleware specifications
which provide publish and subscribe services.

publish

This method is used by Pub/Sub Client to publish response data
which is acquired through the interaction with the interface.

subscribe

This method is used by Pub/Sub Client to subscribe events in the
middleware and get notified when specific events occur.

Table 4.19: Pub/SubClient Class

OPCUACIlient

The OPCUACIient class is a subclass of Pub/SubClient abstract
class. It is a middleware implementation which provides publish
and subscribe services for the runtime system.

Table 4.20: OPCUACIlient Class
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4.1.2 Abstract and Concrete Resource Example

In a smart home environment, light sensors can detect light levels for the purposes
of saving energy and improving the security in the house. There are usually several
light sensors in a house. Depending on the user’s needs, different sensor may be
used to detect light levels. Also, users may want the light sensor to function during
a specific time period of the day. The obtained light data is useful for controlling
lights in a smart home.

Figure [4.2] demonstrates an AbstractDomainResource used in the smart home
for light detection. As it shows, the root element is AbstractDomainResource. It
specifies the domain as “SmartHome” and shows that this resource models light
level information. AbstractDomainResource has references to the resource repos-
itory and the domain ontology. The resourceMetaModel attribute specifies the
serialization mechanism for this resource is SchemaBasedSerialization (XML).

<?xml version="1.0" encoding="UTF-8"?>
<iot:AbstractDomainResource xmi: =2.0” :xmi="http://www.omg.org/XMI"
:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
siot="http://org.eclipse.example/iot"
repositoryReference="resourceRepository.ttl” semanticReference="smarthome.ttl"

label="light level information" domain="SmartHome"> "SchemaBasedSerialization” specifies

the response data format as XML.

<resourceMetaModel>

<serialization xsi: ="iot:SchemaBasedSerialization"/>

</resourceMetaModel>

<Actioninterface xsi: label="Find out light level">

<output> "Read" interface is equivalent to HTTP GET method.

<outputMetaModel>

"LightLevel" is the field to capture in the
<outputPlugkey="LightLevel"/> response message.

</outputMetaModel>

</output> "timeSpan" is given as the query parameter of the "Read" interface.
<inputPlug(key="timeSpan")label="Time span in a day" ="string"/>

</Actioninterface>

</iot:AbstractDomainResource>

Figure 4.2: AbstractDomainResource Example for Smart Home
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Subsequently, a Read interface is specified to capture the HTTP GET interaction
point provided by the API. The response of the GET request returns a representa-
tion of the light level information in a particular time span of the day. In this smart
home scenario, we are interested in one particular field included in the response
message: LightLevel. This field is used later for condition evaluation and composi-
tion. Lastly, an inputPlug element specifies the timeSpan when we want to query

light level information.

<?xml version="1.0" encoding="UTF-8"?>

<ijot:DomainResource xmi: =“2.0”

______ "host" specifies the identifier of the selected resource in the repository.
@am.smanhome.com@
<resourceMetaModel> "urlReference" specifies the URL template

T . T for the resource access.
<serialization xsi: ="iot:SchemaBasedSerialization"/>

</resourceMetaModel>
<Actioninterface xsi: ="iot:Read" label="Find out light level">

<output>

<outputMetaModel "label" describes the element "luminouslintensity”.
<outputPlug abel=“Luminous intensity in candela’
ugpath:--/mainllightdata/lumW "plugPath” specifies the XPath of
"luminousintensity” in the response.
@ncef'hﬂp://WWW.smarthome.com#Light" >
</outputMetaModel> : : :
"semanticReference" is used to associate

</output> "luminouslintensity” with the element in the ontology.

<inputPlug key="timeSpan" label="Time span in a day" ="string"/>
</Actioninterface>

</iot:DomainResource>

Figure 4.3: DomainResource Example for Smart Home

Figure [4.3] demonstrates a DomainResource used in the smart home example.
After the instantiation process is applied (see Section[4.2), A DomainResource (i.e.
a concrete resource) is generated as an instance of the AbstractDomainResource
class. There are two new attributes added in DomainResource. The host attribute
denotes that LightSensor resource is selected in the repository. The urlReference
gives the URL template for the resource access. Subsequently, the fields in the
outputPlug are instantiated in terms of LightSensor resource. Specifically, the

"luminousintensity” corresponds to the "lightLevel" in the AbstractDomainResource.
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label describes the element (luminousintensity) and plugPath specifies the XPath
of luminousIntensity in the response message. The sematicReference is used to

assign semantics and map to elements in other models.

4.2 Resource Instantiation Framework

In our approach, a RAMM resource template is first defined based on users’ re-
quirements. In other words, end users specify what kind of information they want
the resource to denote as well as related inputs, outputs and preferred response
format. The template instantiation process comprises two key components: se-
mantic web modeling and a resource selection algorithm. Figure [4.4| demonstrates
the whole resource instantiation process.

Before we delve into the details of the instantiation process, let us consider a

simple example.

Domain
Ontology

Instance
(Concrete)
Resources

Resource

Resource Instantiation
Repository

Abstract z
(Templated) o

Resources

E_

Figure 4.4: Resource Instantiation Process

Suppose we consider a system that involves three types of domain resources.
The problem is for instantiation process to find one concrete resource in each
resource type. Let us further assume that we have three possible Abstract Domain
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Resource models (ADR;, i = 1, 2, 3). Each of the ADRs describes its input, output
and CRUD interface of the abstract resource in each domain. The instantiation
process starts with finding all available resources in the repository. Here, let us
assume for each AbstractDomainResource, there are three candidate resources
available.

Figure [4.5| illustrates this scenario. ADR and DR are the abbreviations for Ab-
stract Domain Resource and DomainResource, respectively. We consider that each
candidate resource DR;; (i = 1, 2, 3, j = 1, 2, 3) that can be used to instantiate the
corresponding abstract domain resource ADR; is associated with a five-dimensional
vector which describes its QoS metrics, e.g. response time, cost, accuracy, avail-
ability and reliability. Based on the QoS metrics, we can also calculate a utility
value for each resource. In addition, there is a total response time limit for the
system. Hence, the goal of our resource selection step is to select exactly one
resource from each domain such that the sum of the utility values is maximized
without exceeding the total response time limit. In section 4.4, we propose two
algorithms for the resource selection problem, namely Exhaustive Search and Dy-

namic Programming.

ADR;

Figure 4.5: A Resource Instantiation Example

Suppose we select DR,, DR,; and DR3; for the resource composition, the next
step is to provide values for elements in each selected resource using domain
knowledge. For this purpose, we have a global ontology which provides a shared
vocabulary for each domain. For each resource in a domain, we also have a lo-
cal ontology which corresponds to the global ontology. After resource selection,
we can instantiate the AbstractDomainResource using mappings between the lo-
cal and global ontology. The domain ontology development and semantic mapping
steps are elaborated in the next section. In summary, after the resource instantia-
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tion process commences, the Abstract Domain Resources (ADR|, ADR,, ADR;) now
have become concrete DomainResource ( DR|,, DR;;, DR3;) after resource instanti-
ation process.

4.3 Semantic Interoperation

With the rapid development of Linked Open Data and Knowledge Graph [32} [11],
different datasets can be linked together to achieve better knowledge representa-
tion and sharing. As one of the most popular Linked Open Data sources, the DBpe-
dia dataset [59] describes 6.0M entities which as of April 2016, includes 1.5M per-
sons and 810k places [22]]. While data can be collected from a variety of sources,
it is a big challenge for us to integrate data across distributed heterogenous data
sources. This is also known as interoperability problem. For example, the concept
“Human” may be referenced as “Person” in one source and as “Individual” in an-
other. The use of ontology and its description language is a promising approach to
resolve the problem of semantic heterogeneity.

4.3.1 Domain Ontology Development

It is worth mentioning that Figure only provides an outline for an iterative
process for the ontology development. There is no need to strictly follow those
steps one after another. Hereafter we use this methodology to develop an ontology
for the weather domain. The WeatherDemo ontology is implemented in OWL using
an open source ontology editor and the Java based knowledge management system
Protégé 5.2.0 [6]], which is developed by researchers at Stanford University.

First, we need to create an IRI (Internationalized Resource Identifier) for the
ontology. Here the IRI for the WeatherDemo ontology is: http://www.weatherdemo
.com. Since weather is not an open domain, we use a top-down process for the
class hierarchy development. In OWL, every class is a subclass of owl:Thing. There
are three main classes in our ontology, namely City, WeatherData and Weather-
Source. WeatherData is further categorized into six subclasses, namely Tempera-
ture, Humidity, AtomosphericPressure, Wind, Rain and CloudCover. Then accord-
ing to the source of weather data, WeatherSource class is specialized into Device-
Source and ServiceSource, meaning that weather data can be acquired through
either a device (i.e. sensors) or a Web Service.

There are two main kinds of properties in OWL: Object properties and Datatype
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properties. The former, link individuals to individuals, and the latter, link individ-
uals to data values [29]. In this case, the domain and range are both classes for
object properties. On the other hand, the domain and range for datatype properties
are classes and literals respectively. OWL also supports constructs to express ad-
ditional characteristics of properties. For instance, Listing 4.1] uses owl:inverseOf
to suggest the relation of hasSource and hasProvided properties.

<owl:0bjectProperty rdf:about="http://www.weatherdemo.com#hasProvided">
<owl:inverseOf rdf:resource="http://www.weatherdemo.com#hasSource"/>
<rdfs:domain rdf:resource="http://www.weatherdemo.com#WeatherSource"/>
<rdfs:range rdf:resource="http://www.weatherdemo.com#WeatherData"/>
</owl:0bjectProperty>

Listing 4.1: Definition of hasProvided property

Finally, we can define instances in the ontology. For the sake of simplicity of
our example, we only define three instances for the City class, namely Toronto,
Beijing and Athens. The built ontology (not include imported ontologies) is visual-
ized by OntoGraf plugin of Protégé in Figure which depicts the concepts, their
relationships and the instance of WeatherDemo ontology.

As is shown in Figure [2.6] we often need to consider reusing existing ontolo-
gies when we develop our own. In our WeatherDemo ontology, in order to repre-
sent weather data accurately, ontologies related to units of measurement can be
adopted. Specifically, QUDT (Quantity, Unit, Dimension and Type) ontologies are
imported to specify units of weather data [20]. Figure [4.7] shows how an instance
of Temperature would be implemented without units of measurements. After the
introduction of QUDT ontologies, “hasTemperatureValue” is transformed from a
datatype property to an object property. It now links to a blank node which is an
instance of QuantityValue class. The blank node has two properties: numericValue
and unit. The datatype property numericValue refers to a literal. Another object
property unit points to DegreeCelsius which is an instance of QUDT’s concept Unit.
The resulting model is depicted in Figure [4.8| in which the upper part corresponds
to the ontology layer and lower part corresponds to the data layer.
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Figure 4.6: The WeatherDemo ontology
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hasTemperatureValue

Figure 4.7: An instance of Temperature of -5.0 (without using a unit ontology)
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hasTemperatureValue qudt:unit
qudt:QuantityValue qudt:Unit

rdf:type | rdf:type ;

hasTemperatureValue

,‘J rdf:type

qudt:numericValue qudt:unit

unit:DegreeCels\’us‘

Figure 4.8: An instance of Temperature of -5.0 (using QUDT ontologies)

4.3.2 Semantic Mapping

The existence of a large number of heterogenous data sources on the Internet re-
quires the use of a unified interface to access data. Data may come from numerous
Web Services or ubiquitous IoT devices, e.g. sensors. Therefore, it is crucial for
data integration and interoperability, to define a way of how to apply ontology to
address issues like semantic heterogeneity from various data sources

In [82], the authors put forward three directions for semantic interoperability:

1) Single ontology approach. This approach uses one global ontology which
provides a shared vocabulary for the specification of the semantics.

2) Multiple ontologies approach. In this approach each data source is de-
scribed by its own ontology. This approach is more flexible than the single
ontology approach.

3) Hybrid approach. In this approach a global ontology provides a shared
vocabulary of a domain among local ontologies. The semantics of each source
is represented by its own ontology.

In the third approach, new data sources can easily be integrated, and users can
interact such sources through a unified interface. Due to these advantages, in this
thesis we have opted to utilize the hybrid approach.

The hybrid approach provides a solution to a problem known as ontology map-
ping, that is how to create and denote associations between entities in the global
ontology and entities in local ontologies. To resolve this issue, first local ontolo-
gies of each source are developed independently while capturing local specific
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Global Ontology | Local Ontology 1 | Local Ontology 2 | Local Ontology 3
WeatherData WeatherReport WeatherInfo WeatherRecord
Rain Rainfall Precipitation PRCP
hasWeatherData | hasWeatherReport | hasWeatherInfo | hasWeatherRecord

Toronto CityofToronto TorontoCA TRT

Table 4.21: Mapping between global and local ontology

information. Next, a global ontology is constructed by extracting common terms
used in the local ontologies. The last step is to map semantically equivalent en-
tities between them. OWL offers three built-in properties to link two entities:
owl:equivalentClass for mapping same classes, owl:equivalentProperty for map-
ping same properties and owl:sameAs for mapping same individuals. In our ex-
ample, weather domain, Table demonstrates a sample mapping between local
and global ontologies.

4.3.3 RDF and SPARQL

The Resource Description Framework (RDF) is a modeling language that has been
developed in order to provide a flexible mechanism for describing web resources
and relationships between them [43]. The underlying data structure of RDF is a
collection of triplets, each consisting of three components: a subject, a predicate
(or property) and an object. A set of triplets is called an RDF graph, as is indicated
in the data layer of Figure [4.8] In order to facilitate sharing and exchange of RDF
data on the Web, several serialization formats have been developed. Until now,
those mainly include Turtle, N-Triples, JSON-LD, RDFa, RDF/XML, etc. In light of
readability and compactness, in this thesis we adopt the Turtle format [30]. For
instance, triples in Figure [4.8| could be written as in Listing [4.2]

@prefix : <http://www.weatherdemo.com#> .
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@prefix source: <http://www.weatherdemo.com/source/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xml: <http://www.w3.0rg/XML/1998/namespace> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

source:10086 :hasTemperatureValue source:10000.

source:10000 qudt:numericValue "-5.0"""xsd:double;
qudt:unit unit:DegreeCelsius.

Listing 4.2: RDF example encoded in Turtle syntax

Two major disadvantages of RDF are that first it falls short of its capability to
denote abstractions and second its limited capability of denoting semantic annota-
tions. That is to say, RDF is not able to describe things which belong to a common
set. Additionally, RDF can barely understand the meaning, or semantics, of the
terms used in triples. This is where the ontology comes into play. By means of the
ontology language, such as RDFS and OWL, the expressivity of RDF is significantly
enhanced. One thing to notice is that RDFS and OWL can be serialized in RDF,
hence they also have serialization formats like RDF/XML and Turtle.

Now that we have our own ontologies and RDF data, the next step is how to re-
trieve useful information from them. Like SQL is used to query relational database,
RDF data is queried using a language called SPARQL [74]. SPARQL stands for
SPARQL Protocol and RDF Query Language, which consists of two parts: query
language and protocol. Besides its common query ability like SQL and XQuery,
SPARQL differs in that it is capable of transmitting queries and results between a
client and a SPARQL endpoint via HTTP protocol. SPARQL queries are based on
the concept of graph pattern matching. A basic SPARQL query is simply a graph
pattern with some variables [13]. Therefore, if RDF data matches a graph pattern,
the specific value in RDF is returned as the result.

In this thesis, we utilize Apache Jena’s SPARQL client library ARQ, which is a
query engine that supports the SPARQL RDF Query Language [2]. In ARQ, the RDF
dataset is first read into a data structure called Model using Jena’s RDF API. The
query is then executed along with the Model. Finally, the query result is handled as
a stream of solutions and system memory is released. Listing[4.3|shows an example
of querying all weather sources which are located in Canada using SPARQL.
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PREFIX : <http://www.weatherdemo.com#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

SELECT ?s WHERE {
?s rdf:type :WeatherSource.
?s :locatedIn ?o.
FILTER(?0 = "Canada")

}

Listing 4.3: SPARQL code to query all weather sources which are located in Canada

4.4 Resource Selection Algorithm

Recently, there has been a growing number of Web Services and IoT devices. While
it may seem tempting to have a diversity of ecosystem for prototyping, it is usually
difficult and time consuming to find suitable IoT resources. Based on Quality of
Service (QoS) metrics, this chapter discusses that the resource selection problem
can be transformed to the 0-1 Multiple Choice Knapsack Problem (0-1 MCKP). We
also propose two possible approaches to find a global optimal solution, namely
Exhaustive Search and Dynamic Programming. Finally, the performance of these
algorithms is compared by considering a simple scenario.

4.4.1 Problem Formulation

In the previous chapter, we discussed how to discover IoT resources of a certain
domain using SPARQL queries in the resource repository [4.3] The next step is to
select and combine those resources together to accomplish a complex task. The
difficulty of this step lies in both the scale and complexity of IoT. In addition to an
increasing number of Web Services active on the Internet, an even larger number
of IoT devices are deployed in all kinds of application scenarios. Various aspects of
IoT resources need to be considered before composing IoT applications.

The runtime performance of services is important for applications. For exam-
ple, IoT applications such as disaster warning, smart transportation and emer-
gency treatment may require a real-time response. QoS for Web Services refers to
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various nonfunctional characteristics such as response time, throughput, availabil-
ity, and reliability. Besides these characteristics, IoT resources may also need to
take other measurement metrics, such as cost, accuracy and fidelity, into account.
In this thesis, we consider five QoS metrics of IoT resources: response time, cost,
accuracy, availability and reliability.

In the context of this thesis, we use the following terminology:

* Atomic resource: An atomic resource (or candidate resource) is associated
with a QoS vector, which specifies parameters [61].

* Resource class: A resource class is a set of atomic resources that provide a

common functionality like weather forecast.

» Utility value: Each atomic resource has an associated utility value, which is
calculated by the utility function.

The 0-1 Multiple Choice Knapsack Problem (MCKP) is a generalization of the
basic 0-1 Knapsack Problem. In 0-1 MCKP, we are given g groups N, .., N, of items
to pack in a knapsack of capacity c. Each item j € N; has a profit p;; and a weight
w;;. The goal is to select exactly one item from each group such that the total profit
P is maximized without the total weight W exceeding c¢. 0-1 MCKP is NP-hard as
it contains the 0-1 KP as a special case [28]. Figure illustrates the MCKP. We
have to choose exactly one item from each group. At the same time, we must

3

satisfy > w;< 50 and maximize the total profit of the chosen items. It is important
i=1

to note that there may be no solution, which means that no set of items satisfying

the total weight constraint.

p =26 p =28

w =14 w =15

p=18 p =50 p=8 _

w =10 ’ w =28 w=5 Sum (w) <= 50

N

p=34 p =32 p =24

w =20 w =19 w =14

Group 1 Group 2 Group 3 Knapsack

Figure 4.9: 0-1 Multiple Choice Knapsack Problem
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Based on the definition of MCKP, we can formulate the resource selection prob-

lem as a MCKP as follows.

1) Each resource class is mapped to a group in MCKP.

2) Each atomic resource in a resource class is mapped to an item in a group in
MCKP.

3) The response time of the atomic resource is mapped to the weight of the item
in MCKP.

4) The utility value of the atomic resource is mapped to the profit of the item in
MCKP.

5) The goal is to maximize the sum of the utility values without exceeding the
total response time limit.

Suppose there are k resources class (51, .., S;) and total response time constraint
is R. The mathematical form of the resource selection problem is as follows:

k
max Z Z UijXij

i=1 jes;
k
S.t. ZZFU}C,‘]’ SR, (41)
i=1 jeS;
Dxy=1, =1k
JES;
xijG{O,l}, i:1,...,k,j€Ni

where x;; denotes whether the atomic resource j is selected for class S; or not.
u;; and r;; are the utility value and response time of the atomic resource j, respec-
tively. The sum of response time of all selected atomic resources must be less than

or equal to the total response time constraint R.

4.4.2 Resource Selection

Before diving into algorithms for solving the resource selection problem, we first
need to calculate the utility value for each atomic resource. Since different QoS
metrics have different scales and natures, combining the values of them directly

may distort the ranges of values or lose information. Hence, the normalization
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technique (specifically min-max normalization) is applied to the values of QoS met-
rics. There are two different kinds of metrics. For instance, a higher value for
reliability indicates better quality, while a higher value for response time means
the opposite effect. Equation 3.2 and 3.3 are used for the former and latter ones,
respectively.

myaluesmmin -y gy — momin # 0

m.value = { "M (4.2)
1, m.max — m.min =0

m.max—m.value m.max — m.min # 0

_ T
m.value = { "M (4.3)
1, m.max —m.min =0

After normalization, the utility value of each atomic resource could be calcu-
lated by summing up the product of each normalized value and its corresponding
weight as shown below.

u= Z(mlf.value *W;) (4.4)

Obviously, the candidate resource with the largest utility value has a higher
quality of service than others in that resource class. If there is no constraint on
any QoS metrics like response time, we can select the atomic resource with the
largest utility value from each resource class efficiently. However, in reality, this is
not the case for resource selection on the basis of the QoS parameters. From now
on, we propose two approaches for finding the global optimal solution to resource
selection problem.

Exhaustive Search Algorithm

This algorithm is straightforward, that is considering all possible resource combi-
nations and select the best one from them. Without doubt it can find the global
optimal solution, yet it is time consuming. As a result, exhaustive search algorithm
only suits to occasions when both the number of resource classes and the number
of atomics resources in each class are small. Assuming that there are k resource
classes and each class has n;(i = 1,2,..,k) candidates, the time complexity of this
algorithm is 0(]"[?‘21 n;). Algorithm 1 gives the pseudo-code for this approach.
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Dynamic Programming Algorithm

The resource selection problem can also be solved with dynamic programming

technique by following the following steps:

1. Characterize the optimal solution
Suppose there are G resource classes and total response time constraint is R.
We first construct an array M[i, r] to represent the maximum utility value with
r response time limit for the first i resource classes. In this case, if we can
compute all the entries of this array, then the array entry M[G, R] will contain
the maximum utility value that satisfies the response time constraint.

2. Recursively define the value of the optimal solution
It is clear that M[0,r] = 0. For class i = 1, we should choose the atomic
resource with the maximum utility value without violating the response time
constraint. The same for class i >= 2, except that we must make sure one
atomic resource from each previous class k(k = 1,2, ..,i— 1) have been chosen.

3. Compute value of the optimal solution
Based on step 1 and 2, now we can solve the problem using bottom-up method.
Algorithm 2 gives the pseudo-code for this method. Assuming there are n can-
didate resources in total, it is not hard to derive that the complexity of this
algorithm is O(nR).

4. Construct the optimal solution by backtracking
In step 3, we only get the maximum sum of the utility values. In order to
construct the actual optimal solution, we add an auxiliary array A[i, j] which
is computed in line 14 and 24 in Algorithm 2. Suppose A[i, j] = k, it means
that we decide to choose the k—th atomic resource in M[i, j]. Given this array,
we can construct the optimal solution as is shown in Algorithm 3.

Performance Evaluation Results

To evaluate the performance of Exhaustive Search Algorithm and Dynamic Pro-
gramming Algorithm, we conducted experiments on a 3.40 GHz Intel Core i7-4770
CPU with 32.0 GB RAM and JDK 1.8.0. In Figure 4.10], we can conclude that the
running time of Dynamic Programming Algorithm has linear correlation with both
the number of resources classes and the number of candidate resources in each

class.
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Figure 4.10: Performance of Dynamic Programming algorithm

From Table [4.22| we know that Exhaustive Search Algorithm is time consuming,
especially when problem size expands. Hence it is only suitable when the number
of resource classes k and candidate resources of each class n are both small. On
the other hand, Dynamic Programming Algorithm still performs well when k and
n become larger. In conclusion, Dynamic Programming Algorithm is a feasible

approach to get a global optimal solution to resource selection problem.



60 Chapter 4. Resource Abstraction Metamodel and Instantiation

Algorithm 1: Exhaustive Search Algorithm

Input: R: total response time constraint
G: total number of resource classes
n;: number of atomic resource in class i
r;j: response time of j-th item in class i
u;: utility value of j-th item in class i

Output: s;: select s;-th item from class i

U0

s;«<0,i=1,...,G

c;<—0,i=1,...,G

Recursive-SOLVE(G)

if s; = 0 then

10 return null

11 else

12 return s

13 end

W N e

© 0 9 o

14 Recursive-SOLVE(g)
// Base case: all groups have been considered.
15 if g = 0 then

16 r—2o
17 u«—20
18 fori=1toG do
19 r < r+ri,
20 U« U+ uy,
21 end
// Update the solution if needed.
22 if r <R and u > U then
23 U«u
24 fori=1toG do
25 S; ¢
26 end
27 end
28 return
29 end

// Recursive cases: there are n, items in class g.
30 fori=1ton, do
31 Co 1
32 Recursive-SOLVE(g—1)
33 end
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Algorithm 2: Dynamic Programming Algorithm

W N =

© o N o u

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Input: R: total response time constraint
G: total number of resource classes
n;: number of atomic resource in class i
r;j: response time of j-th item in class i
u;: utility value of j-th item in class i

Output: Msr: maximum sum of the utility values

Mj<0,i=1,...,G, j=1,...,R

Aij<—0,i=1,...,G,j=1,...,R

fori=0toR do

| My <0

end

fori=0toR do

for j=1ton,; do

ifi>r; and u,;; > M,; then

M,; U
Ay j
end
end
end

fork=2toG do

fori=0toR do

for j=1ton,do

1« i—l”kj

if T j <iand Mk—l,t and Ugj + Mk—l,t > My; then

My «— I/lkj+Mk— 1,¢
Ay J
end
end
end

end
return Mgi




62

Chapter 4. Resource Abstraction Metamodel and Instantiation

Algorithm 3: Find Solution Algorithm

W N =
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