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Risk and sensitivity quantification of
fracture failure employing cohesive
zone elements
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Abstract
Many structures are subjected to the risk of fatigue failure. For their reliability-based design, it is thus important to calcu-
late the probability of fatigue failure and assess the relative importance of the involved parameters. Although various
studies have analyzed the fatigue failure, the stage of fracture failure has been less focused. In particular, the risk analysis
of fracture failure needs to be conducted considering its importance in actual structures. This article proposes a new
probabilistic framework for the risk and sensitivity analysis of structural fatigue failure employing cohesive zone ele-
ments. The proposed framework comprises three steps, namely finite element analysis using cohesive zone elements,
response surface construction, and risk and sensitivity analysis of fatigue failure, which require several mathematical tech-
niques and algorithms. The proposed framework is tested by applying it to an illustrative example, and the corresponding
analysis results of fracture failure probability with different threshold values of a limit-state function are presented. In
addition, the sensitivities of failure risk with respect to the statistical parameters of random variables are presented and
their relative importance is discussed.
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Introduction

Fatigue is one of the main causes of structural failure.
Many structures in various engineering disciplines are
subjected to the risk of fatigue-induced failure caused
by repeated loading over their life cycle.1 When a struc-
ture is subjected to repeated loading over its lifetime, a
local crack may propagate and lead to a disproportion-
ally large damage such as structural collapse.
Therefore, an adequate level of structural safety should
be provided to prevent such a fatigue-induced struc-
tural failure from causing significant loss.

One of the most widely used approaches for fatigue
analysis is based on the S-N curve, which has been pre-
sented in several studies.2,3 This method is also called
the ‘‘stress-life’’ method and has been developed as a
‘‘safe-life’’ approach for the design against fatigue.4

Although the S-N curve has been applied to various
structures and has been proven to be effective since its
development, the fatigue life of structures cannot be
determined with sufficient accuracy because various
sources of uncertainties (i.e. random variables (RVs))
are involved in the fatigue process. During an S-N test,
it is observed that the same material specimen fails after
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different numbers of cycles over the same range of
applied stress, and a large amount of these uncertainties
are mainly due to material inhomogeneity.5 Hence, the
application of statistical and probabilistic theories is
challenging to account for these uncertainties. Because
of the scatter in the S-N experimental data, the mean of
the probabilistic distribution of the number of cycles,
N, is plotted against the stress range, S, to obtain a
meaningful S-N curve. Because S-N curve experiments
are relatively easy and inexpensive to conduct, a vast
amount of experimental S-N data exists for most
materials.

Another important approach that has been widely
used for fatigue analysis is the Paris equation, which
accounts for the crack propagation rate and is based
on the fracture mechanics theory.6 The introduction of
the Paris equation was an important breakthrough
because it facilitates the characterization of fatigue
crack growth and allows for the assessment of service
life or inspection intervals required under definite load-
ing conditions and service environments. Hence, the
Paris equation has been applied to various steel struc-
tures including bridges,7 aircraft,8 ship structures,9 off-
shore platforms,10,11 and wind turbine blades.12

In this approach, the fatigue failure process is classi-
fied into three stages: (1) crack initiation stage (i.e.
Stage I), which involves crack nucleation and short
crack propagation; (2) crack propagation stage (i.e.
Stage II), which involves propagation of long cracks;
and (3) fracture stage (i.e. Stage III), in which the fail-
ure occurs due to an extremely high crack propagation
rate. Although the Paris equation has been applied to
various structural problems, it cannot be applied to the
crack initiation and fracture stages. To overcome this
limitation, advanced models have been proposed by
several researchers including Dowling et al.,13 Klesnil
and Lukáš,14 and Donahue et al.15 However, there is
still a limitation on the analysis of the fracture stage
(i.e. Stage III), because the increase in the crack propa-
gation rate is considerable. As such, considering that
this is the stage in which a structure actually fails, it is
very important to introduce a sophisticated method to
deal with the fracture stage in the fatigue analysis.

For this reason, cohesive zone modeling (CZM) was
developed and has been widely used.16,17 Although
CZM is a powerful method to analyze fatigue and

fracture, many uncertainties are involved.18,19 The
uncertainties related to fatigue become more evident
from the scatter in the S-N data, and a statistical and
probabilistic approach is required to account for these
uncertainties.

This article proposes a new probabilistic framework
for the risk and sensitivity analysis of fracture failure
employing cohesive zone elements (CZEs). As listed in
Table 1, the proposed framework comprises three steps:
(1) finite element analysis; (2) response surface con-
struction; and (3) risk and sensitivity quantification,
which require several numerical methods and computa-
tional tools.

In the first step, that is, finite element analysis, a
model, which can appropriately represent the fatigue
and fracture behaviors of a structure, is built. For this
task, a finite element model for ABAQUS� is con-
structed using CZEs, and the details can be found in
section ‘‘Finite element analysis employing CZEs.’’ The
second step, that is, response surface construction,
focuses on deriving an analytical function (the so-called
response surface function), which can approximate the
relationship between the uncertainty sources (i.e. RVs)
and the structural quantity of the interests. This method
is often called the response surface method (RSM), and
it requires performing repeated finite element analyses
with different values of RVs. For this task, a new com-
putational platform, termed the MATLAB-ABAQUS,
is developed by connecting MATLAB� and ABAQUS,
the details of which are described in section ‘‘Response
surface construction.’’ In the third step, that is, risk and
sensitivity analysis, the failure probability of a structure
and its sensitivity with respect to the statistical para-
meters (e.g. mean and standard deviation) of each RV
are determined, and first-order reliability method
(FORM), which is one of the widely used reliability
analysis methods, is introduced with a reliability analy-
sis software package, namely Finite Element Reliability
Using MATLAB (FERUM). The details of this are
given later in this article.

Proposed framework

Finite element analysis employing CZEs

As mentioned previously, one of the most widely used
models to analyze fatigue crack propagation is the

Table 1. Overview of the proposed framework for probabilistic fracture analysis.

Step Task Method Computational tool

1 Finite element analysis Cohesive zone element ABAQUS�

2 Response surface construction Response surface method MATLAB–ABAQUS
3 Risk and sensitivity quantification First-order reliability method FERUM

FERUM: Finite Element Reliability Using MATLAB.
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Paris equation, which provides a phenomenological
relationship between the crack growth rate and the
stress intensity factor range. Several numerical methods
have been developed to calculate the stress intensity
factor for a complex structure by incorporating one or
several cracks, for example, the finite element alternat-
ing method20 and the extended finite element method.21

Such methods can be used in combination with the
Paris equation to model fatigue crack growth.22,23

However, the use of the Paris equation is limited
because the equation is applicable only when specific
requirements are met; a long initial crack must be pres-
ent and the yielding at the crack tip must be limited. In
reality, however, initial cracks can exist in a structure
for several reasons, including manufacturing defects,
voids in welds, and metallurgical discontinuities.3

Furthermore, the initial crack length is known to pos-
sess uncertainty and is often considered as an RV.8,11

A cohesive element, which was developed by
Dugdale16 and Barenblatt,17 is an alternative method
to account for the crack growth and fracture via finite
element simulation. In the method, cohesive elements
are assumed to be zero-thickness elements inserted
between the bulk elements and account for the resis-
tance to crack opening by following a dedicated trac-
tion displacement law. The cohesive force dissipates, at
least partially, the energy associated with crack forma-
tion. De Borst et al.24 introduced a partition of a unity-
based approach, which allows modeling the cohesive
cracks independently from the mesh.

However, the cohesive elements described above are
unsuitable for modeling fatigue crack growth. In such
cases, the parameters of the finite element model no
longer vary after a few cycles, leading to crack arrest.
Nguyen et al.25 extended the cohesive law to include
fatigue crack growth. To account for fatigue crack
growth, the material properties at each cycle were
assumed to deteriorate. During the unloading–
reloading process, a hysteresis loop is induced as per
the cohesive law, and a slight reduction in the stiffness
results in fatigue crack propagation. Such cohesive ele-
ments account for both crack initiation and crack
propagation.

Hillerborg et al.26 introduced new cohesive elements
into a finite element model to simulate a fictitious
crack. This model, which has also been referred to as
the cohesive zone model, is merely an application of
the strip-yield model proposed by Dugdale16 and
Barenblatt.17 In the Hillerborg model, the stress displa-
cement behavior observed in the damage zone of a ten-
sile specimen is expressed in terms of material property.

At the traction-free crack tip, the damage zone
reaches a critical displacement dc. The tractions are
zero at this point; however, they are equal to the tensile
strength at the tip of the damage zone. Assuming that
the closure stress s and opening displacement d are

uniquely related, the energy release rate G for crack
growth can be expressed as follows

G=

ðdc

0

sdd ð1Þ

Whenever the stress or energy release rate of each
cohesive element reaches a critical value, the element
eventually ruptures and loses its stiffness, and it can be
eliminated from the finite element model. Finally, this
sequential elimination of the cohesive elements repre-
sents crack propagation.

In this study, a finite element model using CZEs is
constructed for ABAQUS, which is a commercial soft-
ware package for finite element analysis. It offers a
library of cohesive elements, which can be applied to
model various structural behaviors including crack pro-
pagation, adhesive joints, and interfaces in compo-
sites.27 Among the available elements, in this research,
the traction-separation-based modeling of the available
features is employed. The cohesive elements help model
the initial loading, the initiation of damage, and the
propagation of damage, which eventually leads to fail-
ure at the bonded interface. The interface behavior
prior to the initiation of damage is often described as
linear elastic in terms of the penalty stiffness, which
decreases under tensile and/or shear loading but is unaf-
fected under pure compression.27

ABAQUS provides the cohesive elements for both
two-dimensional (2D) and three-dimensional (3D)
modeling, namely COH2D4 and COH3D8, respec-
tively. For 3D problems, three components of separa-
tion are assumed in the traction-separation-based
model: one normal to the interface and two parallel to
it; and the corresponding stress components are
assumed to be active at a material point. For 2D prob-
lems, two components of separation are assumed in the
traction-separation-based model assumes: one normal
to the interface and the other parallel to it, and the cor-
responding stress components are assumed to be active
at a material point.27

Response surface construction

The RSM is a set of mathematical and statistical tech-
niques designed to gain a better understanding of the
overall response by designing experiments and subse-
quent analysis of experimental data.28,29 It uses empiri-
cal (non-mechanistic) models, in which the response
function is replaced by a simple function (often polyno-
mial), which is fitted to the data for a set of carefully
selected points. The RSM is particularly useful for the
modeling and analysis of problems in which a response
of interest is influenced by several variables and the
objective is to optimize the response.
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The response surface construction requires perform-
ing finite element analysis repeatedly, with different
values of the RVs. In this study, as a computational
tool, ABAQUS is connected to MATLAB, which is a
widely used programming platform. The computational
platform is termed MATLAB–ABAQUS. Figure 1
shows the data flow in the platform. First, MATLAB
is used to determine the RV values based on their sta-
tistical parameters such as mean and standard devia-
tion. Next, ABAQUS input files with the determined
RV values are automatically generated and then sent to
ABAQUS. Finite element analyses are performed using
the input files, and the output responses, for example,
force or displacement, evaluated by the structural anal-
ysis performed using ABAQUS are obtained. By cou-
pling the two software packages, the proposed
framework allows for a more convenient and efficient
response surface construction.

The RSM can be employed before, during, or after
the regression analysis is performed on the data. In the
design of experiments (DOEs), it is used before the
regression analysis, whereas in the application of opti-
mization techniques, it is used after.

In this study, two types of response surfaces are con-
sidered. The first one is a function proposed by Bucher
and Bourgund28 and the other one is the central compo-
site design (CCD) function.29 The general formulations
are given as

fapprox �ð Þ= b0 +
Xn

i= 1

bixi +
Xn

i= 1

bix
2
i ð2aÞ

fapprox �ð Þ= b0 +
Xn

i= 1

bixi +
Xn

i= 1

bix
2
i +

Xn�1

i= 1

Xn

j= i+ 1

bijxixj

ð2bÞ

where b0, bi, bii, and bij are coefficients, and xi and xj
are the values of the RVs. As shown in equations (2a)
and (2b), the only difference between the two types of
response functions is the additional coupling terms in
the CCD function. This makes it possible for the CCD
model to represent the true response function more
accurately. However, it is also obvious that a greater
number of experiments are required to construct the
CCD model. For both the response functions, the coef-
ficients can be obtained using equation (3)

bf g= X½ �T X½ �
� ��1

X½ �T yf g ð3Þ

where b and y are the vectors of the coefficients and
simulations, respectively, and X is a matrix constructed
from the terms of equation (3) and variables xi and xj.

Risk and sensitivity quantification

Once the response surface is constructed, it can be
applied to the risk and sensitivity analyses using a relia-
bility analysis method. Different reliability analysis
methods have been developed and employed in various
engineering disciplines,30 and they can be classified into
two groups, namely sampling-based methods and ana-
lytical (or non-sampling-based) methods, which can be
represented using Monte Carlo simulation (MCS) and
FORM, respectively. Melchers31 and Der Kiureghian32

have provided detailed reviews on the above two meth-
ods. In this article, FORM is introduced to overcome
the disadvantages of MCS for the derivation of seismic
fragility curves. The methods are briefly introduced in
this section.

In structural reliability analyses, an event is generally
defined as an incident when the structure has a certain
level of damage. However, the criterion to determine its
structural damage depends on the purpose of analysis,
namely inordinate displacement, velocity or accelera-
tion, and excessive strain. The analytical functions rep-
resenting the structural damage states are called the
limit-state functions. In a structural reliability problem,
a limit-state function is represented as g(x), and the
event of interest (often called ‘‘failure’’) is expressed as
g(x) ł 0, where x is a column vector of n RVs, that is,
x=[x1, x2, ., xn]

T, representing the uncertainties in
the given problem. The probability of the event Pf can
be expressed as follows

Pf =P g xð Þł 0½ �=
ð

g xð Þł 0

fx xð Þdx ð4Þ

where fx(x) is the joint probability density function
(PDF) of x.

Although it is impractical to calculate the failure
probability Pf using the multi-dimensional integration
shown in equation (4), FORM allows us to calculate
the probability analytically, by solving a constrained
optimization problem.

In addition, FORM enables sensitivity analysis to
evaluate the effects of the RVs on the failure

Statistical 
properties 

of RVs

Finite 
element 
model

Finite 
element 
analysis 
results

ABAQUS
input file 

generation

Finite 
element 
analysis

Input

MATLAB ABAQUS

Figure 1. Data flow in MATLAB-ABAQUS.
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probability, and it facilitates effective risk management
by finding the most critical variable for reducing the
risk. The sensitivity analysis provides not only quanti-
tative measures for determining the importance of vari-
ables but also gradient-based optimizers for structural
optimization.33 FORM provides not only the compo-
nent failure probability but also the component sensi-
tivity, that is, the influence of the RVs on the
component failure probability.

Each RV and the associated probability have differ-
ent scales, and this affects the scale of the sensitivity.
Therefore, the sensitivity of each RV should be normal-
ized to assess its contribution to structural failure. The
normalized sensitivity is simply the product of the non-
normalized sensitivity and the standard deviation of an
RV, as follows

di =
∂Pf

∂mi

si ð5aÞ

hi =
∂Pf

∂si

si ð5bÞ

where di and hi denote the normalized probability sen-
sitivities of the mean and standard deviation of the ith
design variable, respectively. These normalized sensitiv-
ities provide information for design optimization, qual-
ity control, and uncertainty management.

In this study, FERUM is selected for the reliability
analysis. FERUM is a reliability analysis package
developed by researchers from the University of
California at Berkeley to perform various reliability
analyses.34 FERUM offers functions of various reliabil-
ity analysis methods including FORM, second-order
reliability method (SORM), MCS, and importance
sampling simulation, and most of the common prob-
ability distribution types are available for the program.
In addition, the source codes of the program are open
to the public (http://projects.ce.berkeley.edu/ferum). In
addition, FERUM is built in MATLAB, which facili-
tates the reliability analysis via the response surface
function obtained using MATLAB-ABAQUS.

Illustrative example: steel plate

Finite element analysis

As an illustrative example, the proposed framework is
applied to a steel plate. As shown in Figure 2 (left), the
steel plate has a width of 100mm and a length of
200mm, and an initial crack with a length of 0.1mm is
assumed on the left side of the center. The crack
assumed at the center propagates under the application
of a point load at the top left of the plate, ultimately
leading to the fracture failure of the steel plate. As
shown in Figure 2 (right), a finite element model is con-
structed for ABAQUS. The steel plate is modeled with

shell elements, and cohesive elements are introduced
along the centerline to simulate crack propagation. It is
assumed that this model would exhibit elastic and geo-
metrically nonlinear behavior. Finally, this model is
controlled in terms of the displacement at the left-upper
point for a better convergence of solutions.

To model the numerical example of this study for
ABAQUS, the CPS4R element, which is a four-node
bilinear element with reduced integration, is used for
the steel plate, and the COH2D4 element, which is a
four-node 2D cohesive element, is used for the potential
cracking zone. The traction-separation-based modeling
is employed, and using the QUADS criterion, damage
is assumed to initiate when a quadratic interaction func-
tion involving the nominal stress ratios reaches a value
of 1, which can be expressed by

tn

t0
n

� �2

+
ts

t0
s

� �2

= 1 ð6Þ

where tn and ts denote the normal and shear tractions,
respectively, and t0

n and t0
s denote their respective peak

values. In this example, t0
n and t0

s are assumed to be 450
and 260MPa, respectively.

Once the damage is initiated, it evolves, which even-
tually leads to failure at the bonded interface when the
damage reaches a certain level. In this example, the evo-
lution of damage is estimated in terms of energy using
the following equation

Gn

GIC

� �2

+
Gs

GIIC

� �2

= 1 ð7Þ

where Gn and Gs denote the cohesive energies in normal
and shear, respectively, and GIC and GIIC denote their
threshold values. In this example, GIC and GIIC are
assumed to be 50 and 20kJ/m2, respectively.

Figure 2. Illustrative example (left) and its ABAQUS model
(right).
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Table 2 lists the statistical properties (i.e. mean, stan-
dard deviation, and distribution type) of the RVs, all of
which are material properties. As it is an illustrative
example, for the sake of simplicity, it is also assumed
that the RVs are statistically independent normal vari-
ates. However, if appropriate experimental data are
available, other types of probability distributions and
non-zero correlation coefficients can be introduced into
the reliability analysis using FERUM, and such a para-
metric study is also conducted in this research.

Figure 3 shows the stress distribution and crack propa-
gation from the finite element analysis with the mean val-
ues of the seven RVs. As shown in the figure, the cohesive
elements are continuously eliminated, and the stress is
concentrated around the cracking zone as the crack
propagates.

In addition, Figure 4 shows the force–displacement
plot at the loading point. The force stops increasing at a
critical point and decreases until failure. When employ-
ing the mean values of the RVs, the maximum force
and the corresponding displacement are found to be
1.594 3 103N and 2.676 3 1021mm, respectively.

Regarding this finite element analysis, it should be
noted that each analysis takes approximately 1–2h
(using a general personal computer with 3.60GHz
CPU and 8.00GB of RAM). Several approaches have
been developed to perform reliability analysis in

conjunction with finite element analysis.35–40 However,
such an approach requires performing finite element anal-
ysis repeatedly, which makes the analysis expensive and
impractical. To overcome this issue, the RSM is intro-
duced in the framework proposed in this article, in which
the response surface function can be identified by per-
forming only a few iterations of finite element analysis.

Response surface construction

To construct a response surface, as mentioned in sec-
tion ‘‘Response surface construction,’’ the RV values in

Table 2. Statistical properties of the RVs.

RV Mean Standard deviation Distribution type

Young’s modulus (E) 2 3 105 MPa 1 3 104 MPa Normal
Shear modulus (G) 8 3 104 MPa 4 3 103 MPa
Poisson’s ratio (n) 0.3 0.015
Cohesive energy in tension (GIC) 50 kJ/m2 2.5 kJ/m2

Cohesive energy in shear (GIIC) 20 kJ/m2 1 kJ/m2

Tensile strength (Su_tensile) 450 MPa 9 MPa
Shear strength (Su_shear) 260 MPa 5.2 MPa

RV: random variable.

Figure 3. Finite element analysis results using mean values of RVs.
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Figure 4. Force–displacement curve.
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equation (2a) or (2b) need to be determined. They are
often determined by adding to or subtracting from the
mean a certain multiple of the standard deviation. In
this illustrative example, for each RV, two times the
standard deviation is added to or subtracted from the
mean. A finite element analysis is then performed with
these values. Table 3 lists the corresponding FE analy-
sis results obtained from ABAQUS. In the table, for
example, DOE No. 1 is the case with the mean values
of all the RVs. In Nos 2 and 3, compared to No. 1, only
Young’s modulus (E) is changed; twice the standard
deviation (i.e. 2 3 1 3 104MPa) is added to and sub-
tracted from the mean, respectively. Similarly, the other
DOEs (i.e. Nos 4–15) can be determined.

The finite analysis results, listed in Table 3, demon-
strate that the effects of changes in shear modulus (G),
Poisson’s ratio (n), cohesive energy in shear (GIIC), and
shear strength (Su_shear) on the critical force and displa-
cement are largely insignificant. It is known that the

error of the FORM analysis may increase as the num-
ber of RVs increases.41 In addition, reducing the num-
ber of RVs can result in a more efficient analysis. For
these reasons, these four RVs are neglected in all fur-
ther analyses.

With the remaining three RVs, that is, Young’s mod-
ulus (E), cohesive energy in tension (GIC), and tensile
strength (Su_tensile), additional DOEs are determined,
and a finite element analysis is then performed to con-
struct the CCD response function with better accuracy.
For the additional DOEs, all the combinations of the
‘‘mean 6 2 standard deviation’’ are considered for the
three dominant RVs, whereas only the mean values are
used for the other RVs. Table 4 lists the corresponding
analysis results.

Based on the finite analysis results listed in Tables 3
and 4, the response surface functions for the critical
force (Pc) and displacement (uc) are constructed as
follows

Table 3. Finite element analysis results for response surface construction.

DOE no. E (MPa) G (MPa) v GIC (kJ/m2) GIIC (kJ/m2) Su_tensile (MPa) Su_shear (MPa) Pc (N) uc (mm)

1 2.0 3 105 8.0 3 104 0.3 50 20 450 260 1594.49 0.269
2 1.8 3 105 8.0 3 104 0.3 50 20 450 260 1576.56 0.288
3 2.2 3 105 8.0 3 104 0.3 50 20 450 260 1610.89 0.249
4 2.0 3 105 7.2 3 104 0.3 50 20 450 260 1594.61 0.268
5 2.0 3 105 8.8 3 104 0.3 50 20 450 260 1594.38 0.268
6 2.0 3 105 8.0 3 104 0.27 50 20 450 260 1594.2 0.268
7 2.0 3 105 8.0 3 104 0.33 50 20 450 260 1594.8 0.267
8 2.0 3 105 8.0 3 104 0.3 45 20 450 260 1573.1 0.257
9 2.0 3 105 8.0 3 104 0.3 55 20 450 260 1614.13 0.269
10 2.0 3 105 8.0 3 104 0.3 50 18 450 260 1594.46 0.268
11 2.0 3 105 8.0 3 104 0.3 50 22 450 260 1594.52 0.268
12 2.0 3 105 8.0 3 104 0.3 50 20 432 260 1545.18 0.264
13 2.0 3 105 8.0 3 104 0.3 50 20 468 260 1643.11 0.280
14 2.0 3 105 8.0 3 104 0.3 50 20 450 249.6 1594.1 0.267
15 2.0 3 105 8.0 3 104 0.3 50 20 450 270.4 1594.65 0.268

DOE: design of experiment.

Table 4. Additional results of finite element analysis for CCD response function.

DOE no. E (MPa) G (MPa) v GIC (kJ/m2) GIIC (kJ/m2) Su_tensile (MPa) Su_shear (MPa) Pc (N) uc (mm)

16 1.8 3 105 8.0 3 104 0.3 45 20 432 260 1507.45 0.273
17 1.8 3 105 8.0 3 104 0.3 45 20 468 260 1601.39 0.281
18 1.8 3 105 8.0 3 104 0.3 55 20 432 260 1547.42 0.285
19 1.8 3 105 8.0 3 104 0.3 55 20 468 260 1645.23 0.293
20 2.2 3 105 8.0 3 104 0.3 45 20 432 260 1540.58 0.236
21 2.2 3 105 8.0 3 104 0.3 45 20 468 260 1637.77 0.242
22 2.2 3 105 8.0 3 104 0.3 55 20 432 260 1578.51 0.247
23 2.2 3 105 8.0 3 104 0.3 55 20 468 260 1679.67 0.254

CCD: central composite design; DOE: design of experiment.
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Pc = � 70:24+ 9:416 3 10�4E+ 4:317GIC

+ 2:979Su tensile

� 4:975 3 10�6EGIC + 2:292 3 10�6ESu tensile

+ 0:01089GICSu tensile

� 2:193 3 10�9E2 � 0:03949 3 G2
IC

� 0:001411S2
u tensile

ð8aÞ

uc = 0:9367+ 3:928 3 10�7E + 0:02641GIC

� 0:006026Su tensile

� 1:641 3 10�9EGIC � 7:06 3 10�10ESu tensile

+ 7:069 3 10�7GICSu tensile

� 2:387 3 10�12E2 � 2:522 3 10�4 3 G2
IC

+ 7:087 3 10�6S2
u tensile

ð8bÞ

To analyze the approximation error of the response
surface functions, the function values are compared
with the true values obtained from finite element analy-
ses for all DOEs. As shown in Table 5, the maximum
values of absolute error ratios are calculated to be
0.048% and 1.274% for Pc and uc, respectively, which
means that the response surface functions in equations
(8a) and (8b) can provide good approximations of Pc

and uc.

Risk and sensitivity quantification results

Using the response surface functions expressed in equa-
tions (6a) and (6b), the FORM analysis is performed
by FERUM. The first available result is the uncertainty
quantification of the output, that is, Pc and uc, in terms
of the PDF and cumulative density function (CDF), as
shown in Figures 5 and 6. The figures show the prob-
abilistic distribution of the uncertain outputs induced
by the input uncertainties.

Another result of the reliability analysis is risk quan-
tification, which can be obtained by evaluating a failure
probability for a given limit-state function. For exam-
ple, the probability of Pc being lower than 1530N (i.e.
Pc2 1530\ 0 named E1 hereafter) is calculated to be
0.991% from the FORM analysis. Similarly, the prob-
ability of uc being greater than 0.290mm (i.e. 0.292 uc
\ 0 named E2 hereafter) is calculated to be 1.690%.
To verify these FORM analysis results, MCS with 106

samples is performed, and the failure probabilities are
estimated to be 1.013% and 1.685% for E1 and E2,
respectively, which shows a good agreement with the
FORM analysis. In addition, when all of the RVs are
assumed to follow the lognormal distributions with the
same statistical parameters (i.e. the means and standard
deviations given in Table 2), the probabilities are esti-
mated to be 0.930% and 1.398% for E1 and E2, respec-
tively, which shows only a certain degree of change,
but not a dramatic change.

Table 5. Error analysis of the response surface functions.

DOE no. Pc uc

FEA (N) RSM (N) Absolute error ratio (%) FEA (mm) RSM (mm) Absolute error ratio (%)

1 1594.49 1594.86 0.023 0.269 0.269 0
2 1576.56 1577.04 0.03 0.288 0.287 0.347
3 1610.89 1610.93 0.002 0.249 0.249 0
4 1594.61 1594.86 0.016 0.268 0.269 0.373
5 1594.38 1594.86 0.03 0.268 0.269 0.373
6 1594.2 1594.86 0.041 0.268 0.269 0.373
7 1594.8 1594.86 0.004 0.267 0.269 0.749
8 1573.1 1573.41 0.02 0.257 0.257 0
9 1614.13 1614.34 0.013 0.269 0.269 0
10 1594.46 1594.86 0.025 0.268 0.269 0.373
11 1594.52 1594.86 0.021 0.268 0.269 0.373
12 1545.18 1545.59 0.027 0.264 0.267 1.136
13 1643.11 1643.22 0.007 0.280 0.276 1.429
14 1594.1 1594.86 0.048 0.267 0.269 0.749
15 1594.65 1594.86 0.013 0.268 0.269 0.373
16 1507.45 1507.62 0.011 0.273 0.273 0
17 1601.39 1601.65 0.016 0.281 0.282 0.356
18 1547.42 1547.59 0.011 0.285 0.285 0
19 1645.23 1645.54 0.019 0.293 0.294 0.341
20 1540.58 1540.85 0.018 0.236 0.235 0.424
21 1637.77 1638.17 0.024 0.242 0.243 0.413
22 1578.51 1578.83 0.02 0.247 0.246 0.405
23 1679.67 1680.07 0.024 0.254 0.255 0.394

DOE: design of experiment; FEA: finite element analysis; RSM: response surface method.
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In addition to such failure probabilities, using equa-
tions (5a) and (5b), FORM can provide the normalized
sensitivity of the probability with respect to the statisti-
cal parameters of RVs, and these results are presented
in Table 6. Su_tensile and E are observed to be the most
important RVs for E1 and E2, respectively (from Table
6). All of the three RVs exhibit negative probability sen-
sitivities for E1 with respect to their mean values, which
means that the failure probabilities of E1 decrease with
increasing mean values. In contrast, for E2, E exhibits a
negative sensitivity, but GIC and Su_tensile exhibit posi-
tive sensitivities, which means the failure probabilities
of E2 decrease with the increasing mean values of E and
the decreasing mean values of GIC and Su_tensile. Finally,
for the probabilities of both E1 and E2, all of the RVs
exhibit positive sensitivities with respect to their stan-
dard deviations.

In addition, to investigate the effect of statistical
dependence between random variables on the failure

probabilities for E1 and E2, the FORM analysis is per-
formed with varying correlation coefficients between
the three assumed RVs (i.e. Young’s modulus (E),
cohesive energy in tension (GIC), and tensile strength
(Su_tensile)). As shown in Table 7, with the increasing
correlation coefficient, the probability of E1 increases
but the probability of E2 decreases.
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Figure 5. PDF and CDF of Pc.
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Figure 6. PDF and CDF of uc.

Table 6. Normalized sensitivity of probability with respect to the statistical parameters of RVs.

RVs E1: Pc 2 1530\0 E2: 0.29 2 uc\0

di =
∂Pf

∂mi
si hi =

∂Pf

∂si
si di =

∂Pf

∂mi
si hi =

∂Pf

∂si
si

Young’s modulus (E) 28.02 3 1023 5.67 3 1023 23.87 3 1022 7.6 3 1022

Cohesive energy in tension (GIC) 29.71 3 1023 8.31 3 1023 7.9 3 1023 3.15 3 1023

Tensile strength (Su_tensile) 22.32 3 1023 4.76 3 1022 1.4 3 1022 9.94 3 1023

RV: random variable.

Table 7. Parametric study on the effect of correlation between
RVs.

Correlation
coefficient

Probability (%)

E1: Pc 2 1530\0 E2: 0.29 2 uc\0

0 0.991 1.69
0.2 1.986 0.996
0.4 3.151 0.448
0.6 4.377 0.11
0.8 5.602 0.03

RV: random variable.
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Using FORM, it is also possible to estimate the con-
tributions of the input uncertainties to the output
uncertainties in terms of the importance measure. The
importance measure is a normalized relative measure to
100%, representing the importance of the uncertainty
of an RV with respect to the variance of the output
uncertainty. In other words, the higher the importance
measure, the higher is the degree of contribution. Table
8 lists the results.

From this table, it is confirmed that the tensile stress
(Su_tensile) is the most important RV with respect to E1,
whereas Young’s modulus (E) is the most important
RV with respect to E2. The reliability analysis results
are understandable because it is known that the ulti-
mate tensile stress governs the strength of a steel plate
in mode I. However, in the case of the critical displace-
ment, it would be Young’s modulus. In this manner,
the proposed framework enables the quantitative eva-
luation of the relative importance of RVs efficiently.

Conclusion

This article proposes a new probabilistic framework for
the risk and sensitivity analysis of structural fatigue fail-
ure employing CZEs. The proposed framework com-
prises three steps, namely finite element analysis using
CZEs, response surface construction, and risk and sen-
sitivity analyses of fatigue failure, which require several
mathematical techniques. The proposed framework was
illustrated by applying it to a numerical example, and
the analysis results of fatigue failure probability with
different threshold values of a limit-state function were
obtained. In addition, the normalized sensitivity of fail-
ure risk with respect to the statistical parameters of each
random variable was presented and discussed. The pro-
posed framework allows quantifying the output uncer-
tainties and risk for any limit-state function, and the
failure probability results were compared with those
from MCS. In addition, the framework helps compare
the relative importance of the inputs in terms of their
contribution to the output uncertainties. An illustrative
example of a steel plate cracking problem was intro-
duced to demonstrate the applicability of the proposed
framework, and the corresponding analysis results
proved the merits of the proposed framework employ-
ing cohesive zone modeling successfully.
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