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Abstract

Compressive sensing is a method to recover the original image from undersampled

measurements. In order to overcome the ill-posedness of this inverse problem, image

priors are used such as sparsity, minimal total-variation, or self-similarity of images.

Recently, deep learning based compressive image recovery methods have been pro-

posed and have yielded state-of-the-art performances. They used data-driven ap-

proaches instead of hand-crafted image priors to regularize ill-posed inverse prob-

lems with undersampled data. Ironically, training deep neural networks (DNNs) for

them requires “clean” ground truth images, but obtaining the best quality images

from undersampled data requires well-trained DNNs.

To resolve this dilemma, we propose novel methods based on two well-grounded

theories: denoiser-approximate message passing (D-AMP) and Stein’s unbiased risk

estimator (SURE). Our proposed methods, LDAMP SURE and LDAMP SURE-T,

were able to train deep learning based image denoisers from undersampled mea-

surements without ground truth images and without additional image priors and

to recover images with state-of-the-art qualities from undersampled data. We evalu-

ated our methods for various compressive sensing recovery problems with Gaussian

random, coded diffraction pattern, and compressive sensing MRI (CS-MRI) mea-

surement matrices. Our proposed methods yielded state-of-the-art performances for

all cases without ground truth images. Our methods also yielded comparable per-

formances to the approaches with ground truth data. Moreover, we have extended

our methods to deal with a Gaussian noise in a measurement domain and further

enhance reconstruction quality by developing image refining method called LDAMP

SURE-FT.
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CHAPTER I

Introduction

1.1 Compressed Sensing

Over the past decade, compressed sensing theory also known as compressive sampling (CS)

drew great attention in many practical applications, because of its ability to sample and re-

construct a signal at a significantly lower rate than Nyquist sampling theory states. This novel

acquisition technique demonstrated that by exploiting redundancy in a signal, one can sample

and perform compression simultaneously. Consequently, CS enables fast data acquisition and

eases the need for large memory space, making it attractive for a wide range of applications,

including accelerated magnetic resonance imaging (MRI) [2–4], radar imaging [1, 5], single-

pixel imaging [6, 7], CT [8], hyperspectral imaging [9, 10], and coded aperture imaging [11, 12].

Moreover, CS applications have been investigated extensively and now some systems are com-

mercialized for practical usages such as low-dose CT and accelerated CS-MRI (see Figure 1.1).

Compressed sensing allows us to significantly shorten the measurement acquisition time and

perform image reconstruction off-device. However, estimating the original signal from under-

sampled measurements is a challenging ill-posed problem that requires prior knowledge about

the desired signal to solve it. Based on a signal prior types, CS reconstruction methods can

be grouped into two major categories: conventional optimization based CS techniques, which

mainly use hand-crafted priors [13–18] and deep learning based methods, which are based on

data-driven approach [19–22].
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Conventional methods usually have well-understood behavior and are based on interpretable

priors, which makes them appealing to use. Although traditional methods for CS image recov-

ery have well-proven theoretical convergence guarantees they suffer from the computational

overhead, which prevents their usage for real-time applications [23].

Moreover, with the emergence of deep learning and the empirical proof of its superior per-

formance in many computer vision tasks, data-driven CS image reconstruction methods become

more and more popular. Because of its strong representation power, deep learning based image

recovery networks were able to learn local as well as deep features and have established them-

selves as a de facto benchmark [24–26]. These deep learning based methods take advantage of

potentially available high-quality training image datasets though in practice acquiring those

images is very costly in some applications and usually we have a large amount of undersampled

measurement data.

Figure 1.1: Applications of Compressed Sensing: (a) MR scanning, (b) Radar imaging, (c) Single
pixel camera at Rice University [1], (d) Coded-aperture imaging, (e) Hyperspectral image blocks.

1.2 Purpose of This work

Thus, the primary aim of this paper is to investigate two main questions:

1. Can we exploit those compressively sampled measurements, which are in abundance, to

train the deep learning based network for image reconstruction?

2. If yes, then to what extent it is worse/better than the deep learning based network trained

on ground-truth images and traditional methods?
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1.3 Organization and contribution of the Thesis

Firstly, we found that it is possible to train deep learning networks and successfully recover

images from undersampled measurements. In this work, we propose unsupervised training meth-

ods for deep learning based CS image recovery based on two well-grounded theories: D-AMP

and SURE. Our proposed methods were able to train DNN based image denoisers from under-

sampled measurements without ground truth images and to recover images with state-of-the-art

qualities from undersampled data. Contributions of this work are listed below:

(1) Proposing a method to train DNN denoisers from undersampled measurements without

ground truth and without additional image priors. Only one realization for each measurement

was required. An accurate noise estimation method was also developed to train deep denoisers

with MC-SURE.

(2) Proposing a CS image recovery method by modifying LDAMP [26] to have up to a single

(or few) denoiser(s) instead of 9 denoisers with comparable performance to reduce training time.

(3) Extensive evaluations of the proposed method using high-resolution natural and MR

images for the CS recovery problems with Gaussian random, coded diffraction pattern, and

realistic CS MR measurement matrices.

(4) Investigating the reconstruction performance of the proposed method under the AWGN

contaminated measurement data.

(5) Proposing a unsupervised fine-tuning method based on [27] for a given test CS measure-

ment. This method often outperformed LDAMP trained with ground truth.

Secondly, the proposed approach yielded the best image recovery performance among tra-

ditional methods and in some cases was able to beat “clean” image trained networks.

It is worth to note that a part of this thesis will be presented at the 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) [28] and its extended version

was submitted to IEEE Transactions on Image Processing (TIP) including more experiments

on noisy measurements (see Chapter 3.3.1) and proposed unsupervised fine-tuning method (see

Chapter 3.3.2).

This thesis is organized as follows. Chapter II reviews classical works on CS image recovery

as well as state-of-the-art methods and explains two theories namely D-AMP and MC-SURE

that were used as a foundation for the proposed method. In chapter III, we describe proposed

LDAMP SURE, LDAMP SURE-T, and LDAMP SURE-FT algorithms in detail and evaluate

its performance on different sensing matrices for various sampling rates. Finally, chapter IV

draws a conclusion of this work by summarizing results and showing future directions.
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CHAPTER II

Background and Literature review

2.1 Compressed Sensing Theory

Compressed Sensing (CS) or Compressive Sampling is modeled as a linear equation for the

measurement:

y = Ax+ ε (II.1)

where y ∈ RM is a measurement vector, A ∈ RM×N is a sensing matrix with M � N , x ∈ RN

is an unknown signal to reconstruct, and ε ∈ RM is a noise vector. It is a challenging ill-posed

inverse problem to estimate x from the undersampled measurements y with M � N .

Sparsity has been investigated as prior to regularize the ill-posed problem of CS recovery.

CS theories allow to use l1 norm for good signal recovery instead of l0 norm [15, 16]. Min-

imizing l1 norm is advantageous for large-scale inverse problems since l1 norm is convex so

that conventional convex optimization can be used. There have been many convex optimization

algorithms for solving CS recovery problems with non-differentiable l1 norm such as iterative

shrinkage-thresholding algorithm (ISTA) [13], a fast iterative shrinkage-thresholding algorithm

(FISTA) [14], alternating direction minimization (ADM) [17], and approximate message passing

(AMP) [29], to name a few.

The signal x itself is not usually sparse, but a transformed signal is often sparse. Signal-

s/images are sparse in the wavelet domain and/or discrete cosine transform (DCT) domain. In

high-resolution imaging, images have sparse edges that are often promoted by minimizing total
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variation (TV) [30]. Sparse MR image recovery used both wavelet and TV priors [2] or dictionary

learning prior from highly undersampled measurements [3]. Similarly, CS color video and depth

recovery used both wavelet and DCT [31]. Hyperspectral imaging utilized manifold-structured

sparsity prior [9] or reweighted Laplace prior [10]. Self-similarity is also used for CS image recov-

ery such as NLR-CS [32] and denoiser-AMP (D-AMP) [23]. D-AMP utilized powerful modern

denoisers such as BM3D [33] and has recently been extended to sparse MRI [34].

2.2 Deep learning in compressive image recovery

Deep learning with massive amount of data has revolutionized many computer vision tasks [35].

It has also influenced many low level computer vision tasks such as image denoising [36–41] and

CS recovery [20, 25, 26, 42–45]. There are largely two different approaches using deep neural

networks (DNNs) for CS recovery. One is to use a deep network to directly map from an ini-

tially recovered low-quality image from compressive samples to a high-quality ground truth

image [20, 43]. The other approach for deep learning based CS image recovery is to use DNN

structures that unfold optimization algorithms and learned image priors, inspired by learned

ISTA (LISTA) [19]. In sparse MRI, ADMM-Net [24] and variational network [42] were proposed

with excellent performances. Both methods learned parametrized shrinkage functions as well

as transformation operators for sparse representation from training data. Recently, instead of

using explicit parametrization in shrinkage operator, DNNs were used to unfold optimizations

for CS recovery such as learned D-AMP (LDAMP) [26], ISTA-Net [45], CNN-projected gradient

descent for CT [25], and Laplacian pyramid reconstructive adversarial network [44]. Utilizing

generative adversarial network (GAN) for CS was also investigated [46]. These methods have

one important requirement: “clean” ground truth images must be available for training.

2.3 Deep learning without ground truth

One of the most important factors for the success of deep learning based data-driven ap-

proaches in CS recovery is the availability of high quality ground truth images. Unfortunately,

obtaining such ground truth images is often challenging or infeasible for the case that one de-

sires undersampled compressive measurements. It is often expensive or infeasible to acquire clean

data, for example, in medical imaging (long acquisition for MR, high radiation dose for CT) or

airborne hyperspectral imaging. Thus, ironically, training DNNs requires “clean” ground truth

images, while obtaining the best quality images from undersampled data requires well-trained

DNNs.
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Recently, there have been a few attempts to train DNNs for low-level computer vision tasks

in unsupervised ways. Lehtinen et al. proposed noise2noise to train DNNs for image denois-

ing, inpainting, and MR reconstruction [47]. This work was able to train DNN denoisers with

two contaminated data for each image. However, applying noise2noise to more general CS ap-

plications does not seem straightforward and obtaining two independent realizations per each

image may not be possible in some cases. Bora et al. proposed AmbientGAN, a training method

for GAN with contaminated images and applied it to CS recovery [46, 48]. However, Ambient-

GAN was trained with artificially contaminated images, rather than with CS measurements.

Moreover, the method of [46] is limited to i.i.d. Gaussian matrix theoretically and was evalu-

ated with relatively low-resolution images. Soltanayev et al. proposed a Stein’s unbiased risk

estimator (SURE) based training method for deep learning based denoisers [49]. This method

requires only one noise realization, but it is limited to i.i.d. Gaussian noise. Moreover, it is not

straightforward to extend this work to CS image recovery problems.

It is worth noting that Metzler et al. concurrently proposed unsupervised training methods

with CS measurements and investigated a number of different theoretical approaches [50]. One

of the methods in the work of Metzler applied MC-SURE and LDAMP to approximate the

MSE in measurement domain and evaluated only with 6 standard test images, a CDP with 20%

sampling ratio, and unit variance complex Gaussian measurement noise, while our proposed

methods applied MC-SURE to approximate the MSE in image domain inside LDAMP and

were investigated with much more cases and test images. LDAMP SURE in [50] was not able to

outperform BM3D-AMP (30.9dB vs. 31.5dB) as well as LDAMP with ground truth (32.7dB),

while our proposed methods outperformed BM3D-AMP for all cases and often outperformed

LDAMP with ground truth using fine-tuning.

The summary of existing approaches for training DNN denoisers are illustrated in Fig. 2.1

(top, middle). The primary difference between them and our proposed (see in Fig. 2.1 (bottom))

methods is that image denoisers were trained with CS measurements.

2.4 Denoiser-based AMP (D-AMP)

D-AMP is an algorithm designed to solve CS problems where one needs to recover image

vector x from the set of measurements y using prior information about x. Based on the model

(II.1), the problem can be formulated as:

min
x
‖y −Ax‖22 subject to x ∈ C (II.2)
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Figure 2.1: Approaches to train deep learning based denoisers with ground truth images (su-
pervised, top), with noisy images or pairs of noisy images (unsupervised, middle), and with
undersampled CS measurements (unsupervised, bottom).

where C is the set of natural images. D-AMP solves (II.2) relying on approximate message

passing (AMP) theory. It employs appropriate Onsager correction term bt at each iteration, so

that xt+A
Hzt in Algorithm 1 becomes close to the ground truth image plus i.i.d. Gaussian noise.

D-AMP can utilize any denoiser as a mapping operator Dw(σ̂t)(·) in CS recovery (Algorithm 1)

for reducing i.i.d. Gaussian noise as far as the divergence of denoiser can be obtained.

D-AMP [51] first utilized conventional state-of-the-art denoisers such as BM3D [33] for

Dw(σ̂t)(·) in Algorithm 1. Given a standard deviation of noise σ̂t at iteration t, BM3D was

applied to a noisy image xt + AHzt to yield estimated image xt+1. Since BM3D can not be

represented as a linear function, analytical form for divergence of this denoiser is not available

for obtaining Onsager term. This issue was resolved by using Monte-Carlo (MC) approximation

for divergence term divDw(σ̂t)(·) [52]: For ε > 0 and ñ is a standard normal random vector,

divDw(σ̂t)(·) ≈
ñ′

ε

(
Dw(σ̂t)(·+ εñ)−Dw(σ̂t)(·)

)
. (II.3)

Recently, LDAMP [26] was proposed to use deep learning based denoisers for Dw(σ̂t)(·) in

7



Algorithm 1. Nine DNN denoisers were trained with noiseless ground truth data for different

noise levels. LDAMP consists of 10 D-AMP layers (iterations) and DnCNN [40] was used in each

layer as a denoiser operator. Unlike other unrolled neural network versions of iterative algorithms

such as learned-AMP [53] and LISTA [19], LDAMP exploited imaging system models, which

are fixed A and AH operators while the parameters for DnCNN denoisers were trained with

ground truth data in the image domain.

Algorithm 1 (Learned) D-AMP algorithm [23,26]

1: Signal initialization x0 = 0,y,A

2: for t = 0 to T do

3: Update Onsager correction term:

bt = zt−1divDw(σ̂t−1)(xt−1 +AHzt−1)/M

4: Calculate the residual in measurement domain:

zt = y −Axt + bt

5: Estimate signal noise standard deviation:

σ̂t = ‖zt‖2/
√
M

6: Estimate the reconstructed signal by denoising noisy image:

xt+1 = Dw(σ̂t)(xt +AHzt)

7: end for

8: Final reconstructed signal: xT

2.5 Unsupervised training with Stein’s unbiased risk estimator

Over the past years, DNN based denoisers have been well investigated [36–41] and often

outperformed conventional denoisers such as BM3D [33] and non-local filtering [54, 55]. DNN

denoisers such as DnCNN [40] yielded state-of-the-art denoising performance at multiple noise

levels and are typically trained by minimizing the mean square error (MSE) between the output

8



image of denoiser and the noiseless ground truth image:

1

K

K∑
j=1

‖Dw(σ)(z
(j))− x(j)‖2 (II.4)

where z ∈ RN is a noisy image of the ground truth image x contaminated with i.i.d. Gaussian

noise with zero mean and fixed σ2 variance, Dw(σ)(·) is a deep learning based denoiser with

large-scale parameters w to train, and (z(1),x(1)), . . . , (z(K),x(K)) is a training dataset with K

samples in image domain.

Recently, a method to train deep learning based denoisers only with noisy images was pro-

posed [49]. Instead of minimizing MSE, the following Monte-Carlo Stein’s unbiased risk esti-

mator (MC-SURE) of MSE was minimized with respect to large-scale weights w in the DNN

without noiseless ground truth images:

1

K

K∑
j=1

‖z(j) −Dw(σ)(z
(j))‖2 −Nσ2 +

2σ2ñ′

ε

(
Dw(σ)(z

(j) + εñ)−Dw(σ)(z
(j))
)

. (II.5)

In compressive image recovery applications, there are often cases where no ground truth

data or no Gaussian contaminated images are available, but only compressive samples in mea-

surement domain are available for training. However, it is not straightforward to use MSE or

MC-SURE based deep denoiser networks for CS image recovery unless additional image priors

are used. The goal of this article is to propose a method to train DNN denoisers directly from

compressive samples without additional image prior and to simultaneously recover images.
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CHAPTER III

Proposed LDAMP-SURE

In this chapter, we first explain the proposed methods in details and try to optimize the

LDAMP network by reducing the number of deep denoisers in it without losing much perfor-

mance. Then, we prove the importance of the estimated noise accuracy for MC-SURE perfor-

mance. Finally, several experiments for different measurement matrices are conducted to verify

the effectiveness of our approach.

3.1 Methodology

3.1.1 Towards a single denoiser

The original LDAMP utilized 9 DnCNN denoisers trained on “clean” images for different

noise levels (σ = 0-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-150, 150-300, 300-500). However,

we argue that training a single DnCNN denoiser is often enough to achieve almost the same

performance.

Extensive studies have been performed to understand how the number of denoisers can affect

the performance of LDAMP network with the goal of reducing the number of denoisers from

9 [26] to 1 or more without losing much performance. All networks were trained on BSD-500

dataset and with a MSE as a loss function. The results are tabulated in Table 3.1, where the

number indicates the number of denoisers in LDAMP. For instance, LDAMP-3 means LDAMP

with 3 DnCNN denoisers trained on noise ranges specified in the “Trained noise range” column.
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It turned out that the more number of DnCNN denoisers and the finer discretization of the

noise range are used, the better performance of the LDAMP.

On the other hand, we found that the hybrid approach using LDAMP-1 and BM3D could

achieve comparable performance with only 1 DnCNN. When we utilized state-of-the-art BM3D

denoiser for larger noise levels and use one blind DnCNN at low noise range, comparable re-

construction performance to LDAMP-9 was able to be achieved. This reduces network training

time significantly.

Table 3.1: Performance of LDAMP networks on 100 test images with 180×180 for M/N = 25%
sampling rate.

Networks Gaussian CDP CS-MRI Trained noise range

LDAMP-9 [26] 31.30 35.07 31.41 σ ∈ [0− 10, 10− 20, ..., 300− 500]

LDAMP-4 31.19 32.84 29.64 σ ∈ [0− 50, ..., 200− 500]

LDAMP-3 31.35 32.96 29.42 σ ∈ [0− 50, 50− 150, 150− 500]

LDAMP-3 30.92 33.06 29.47 σ ∈ [0− 100, 100− 200, 200− 500]

LDAMP-1 28.45 31.00 28.56 σ ∈ [0− 500]

LDAMP w BM3D 31.65 33.88 31.33 σ ∈ [0− 55] and BM3D for larger noise

3.1.2 Unsupervised DNN training from CS measurement data

Our proposed method exploits D-AMP (LDAMP) [23,26] to yield Gaussian noise contami-

nated image estimates during compressive image recovery from large-scale undersampled mea-

surements and to train a single DNN denoiser with these noisy estimates at different noise

levels using MC-SURE based denoiser learning [49]. Since Onsager correction term in D-AMP

makes x + AHz term to be close to the ground truth image plus Gaussian noise, we conjec-

ture that these can be utilized for MC-SURE based denoiser training. Our joint algorithm is

detailed in Algorithm 1. Note that for large-scale CS measurements y(1), . . . ,y(K), both images

x̂
(1)
L , . . . , x̂

(K)
L and trained denoising DNN DwL(σ)(·) were able to be obtained. After training,

fast and high performance CS image recovery was possible without further training of denoising

DNN.

Firstly, we propose to pre-train a DnCNN network for the standard deviation of σ ∈ [0, 55]

with the reconstructed images using BM3D-AMP as ground truth and with additive Gaussian

noise. Then, our proposed Algorithm 1 generates denoised image estimate xt+1 using pre-trained

DnCNN blind denoiser Dwl(σ̂t) with xt + AHzt for the noise level between [0, 55] (line 10

in Algorithm 1) or using BM3D filter BM3Dσ̂t for higher level noise reduction (line 12 in
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Algorithm 1). Depending on a sampling ratio and forward operator A, initial 2-4 iterations

are usually utilized BM3D to decrease the noise level that is sufficient enough for using blind

DnCNN. After T iterations, the set of training data s
(1)
l , . . . , s

(K)
l can be generated and then

those noisy training images were used for further training the DnCNN with MC-SURE.

Note that the noise level range for DnCNN is subject to change depending on a particular

problem. For example, we found that for i.i.d. Gaussian and CDP matrices, training DnCNN

with σ ∈ [0, 55] seems to work well, while for CS MRI case, the range should be shortened to

σ ∈ [0, 10] for comparable results to the original 9 DnCNN denoisers.

For highly undersampled cases (e.g. M/N = 5%), the noise range of a single DnCNN denoiser

was extended to σ ∈ [0, 80] for Gaussian sensing matrices. However, for CDP matrices, using

more denoisers was necessary to maintain the performance. Thus, we used three blind DnCNN

denoisers that were trained for σ1 ∈ [0, 55], σ2 ∈ [55, 110], and σ2 ∈ [110, 165] noise ranges,

respectively, for M/N = 5%.

3.1.3 Noise estimation accuracy for MC-SURE based denoiser learning

In D-AMP and LDAMP [23,26], noise level was estimated in measurement domain using

σ̂t = ‖zt‖2/
√
M . (III.1)

The accuracy of this estimation was not critical for D-AMP or LDAMP since denoisers in both

methods were not sensitive to different noise levels. However, accurate noise level estimation

was quite important for MC-SURE based deep denoiser network learning. We investigated

the accuracy of (III.1). It turned out that the accuracy of noise level estimation depends on

measurement matrices.

With i.i.d. Gaussian measurement matrix A, (III.1) was very accurate and comparable to

the ground truth standard deviation that was obtained from the true residual (xt +AHzt) −
xtrue. However, with coded diffraction pattern measurement matrix A that yields complex

measurements, it turned out that (III.1) yielded over-estimated noise level for multiple examples.

Since the image xt is real, we propose a new standard estimation method for D-AMP:

σ̂t = ‖Re(AHzt)‖2/
√
N . (III.2)
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Algorithm 2 Simultaneous LDAMP and MC-SURE deep denoiser learning algorithm

1: Input the set of measurements and sensing matrix: y(1), . . . ,y(K),A

2: for l = 1 to L do

3: for k = 1 to K do

4: for t = 0 to T do

5: Update Onsager correction term:

bt = zt−1divDwl(σ̂t−1)(xt−1 +AHzt−1)/M

6: Calculate the residual in measurement domain:

zt = y(k) −Axt + bt

7: Estimate signal noise standard deviation:

σ̂t = ‖zt‖2/
√
M

8: Estimate the reconstructed signal by denoising noisy image:

9: if σ̂t ≤ 55. then

10: xt+1 = Dwl(σ̂t)(xt +AHzt)

11: else

12: xt+1 = BM3Dσ̂t(xt +AHzt)

13: end if

14: end for

15: Saving reconstructed image and pseudo data:

x̂
(k)
l = xT+1

s
(k)
l = xT +AHzT

16: end for

17: Train Dwl(σ)(·) with s
(1)
l , . . . , s

(K)
l at different noise levels σ

18: end for

19: Return reconstructed image and trained denoiser: x̂
(1)
L , . . . , x̂

(K)
L ,DwL(σ)(·)
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We performed comparison studies between (III.1), (III.2), and the ground truth from true

residual (xt +AHzt) − xtrue and found that they are all very similar for i.i.d. Gaussian mea-

surement matrix, but our proposed method (III.2) yielded more accurate estimates of standard

deviation than previous method (III.1). Figure 3.1 illustrates the accuracy of our estimator

Figure 3.1: Normalized residual histograms of “Boat” image after 10 iterations using LDAMP-
BM3D for CDP matrix. Normalization was done with estimated sigma from (a) true residual
(b) zT (D-AMP) and (c) Re(AHzT ) (Proposed).

compared to previous one. When normalizing the true residual, using accurate sigma estima-

tion yields good fitting to standard normal density (red line). Normalized histogram of true

residual using ground truth and our proposed standard deviation estimation yielded good fit-

ting to that, but the previous estimation method yielded sharper histogram, which indicates

that the previous method overestimates noise level. Our proposed estimation was critical for

the high performance of our proposed method with CDP measurement matrix (see Table 3.2).

Table 3.2: Average PSNR of 100 images of four different methods including our proposed method
for CDP measurements.

Method M/N = 25%

BM3D-AMP [51] 31.40 dB
LDAMP BM3D 31.65 dB
LDAMP SURE w/ Proposed Noise Est. 33.26 dB

LDAMP SURE w/ Prev. Noise Est. 21.40 dB

We observed that LDAMP SURE trained with this original method yielded the worst result.

Our proposed noise estimation method (Eq. (7)) significantly improved the performance of our

LDAMP SURE (see Table 3.2). We compared the following four methods: BM3D-AMP [23,51],

LDAMP BM3D (the same method as [26], but trained with the results of BM3D-AMP as the

ground truth using MSE), LDAMP SURE w/ Prev. Noise Est. (our proposed method, but

using the previous noise estimation in [26]), and LDAMP SURE w/ Proposed Noise Est. (our

proposed method with the new noise estimation). LDAMP SURE w/ Prev. Noise Est. yielded
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10 dB lower than conventional BM3D-AMP, indicating that accurate noise estimation is one of

the key factors for successful denoiser training using MC-SURE.

Moreover, we found out that proposed noise estimator (III.2) also can be applied to a CS-

MRI case, when k-space data is not highly undersampled. Therefore, for a sampling rate of

larger than 35-40%, true residual follows a Gaussian noise, which can be accurately measured

by (III.2) and further utilized for training deep denoisers with MC-SURE.

3.2 Simulation Results

3.2.1 Experimental Setup

3.2.1.1 Datasets

We used images from DIV2K [56], Berkeley’s BSD-500 [57] datasets, and standard test

images for training and testing our proposed method on i.i.d. Gaussian and CDP matrices. The

training dataset was comprised of all 500 images from BSD-500, while a test set of 100 images

included 75 randomly chosen images from DIV2K dataset and 25 standard test images. Since the

proposed method used measurement data and fixed linear operator for image reconstruction, all

test and train images had to have the same size. Thus, all images were subsampled and cropped

to the size of 180 ×180 and then compressively sampled using the forward model A to generate

CS measurement data.

For CS-MRI reconstruction, Stanford dataset with 3D FSE (fast spin echo) [58] was pulled

from the open repository at http://mridata.org/. The knee dataset included 20 patients each

having 256 slices of 320 × 320 images. Among 20 cases of knee data, 3 cases were used for

training and 1 case for testing. Images were transformed into k-space measurements and then

subsampled with realistic radial sampling patterns at various sampling rates.

We implemented all methods on the Tensorflow framework and used Adam optimization [59]

with the learning rate of 10-3, which was dropped to 10-4 after 40 epochs and further trained for

10 epochs. The batch size was set to 128 and training the DnCNN denoiser took approximately

12-14 hours on one NVIDIA Titan X (Pascal).

3.2.1.2 Initialization of DnCNN denoiser

For a given measurement data y from BSD-500 and linear operator A, initial images were

firstly reconstructed using a conventional CS recovery algorithm, BM3D-AMP. Even though

the quality of these initial images was not close to the ground truth images, they still provided

good pre-training data for DnCNN denoisers. Recovered images were rescaled, cropped, flipped,
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and rotated to generate 298,000 image patches whose sizes are 50×50. These patches were

used as ground truth to pre-train DnCNN denoiser with MSE. Since our approach does not

require dataset with ground truth, it is possible to use measurement data from the test set.

Thus, we also generated 357,600 50×50 patches from reconstructed test and train images. Our

DnCNN denoiser was trained for σ ∈ [0, 55] noise level range with either training patches only or

training and testing patches together. The former pre-trained DnCNN denoiser in the LDAMP

framework is denoted by “LDAMP BM3D” and the latter pre-trained DnCNN with LDAMP is

denoted by “LDAMP BM3D-T”.

BM3D-AMP-MRI was specifically tailored for CS-MRI reconstruction [34] and thus yielded

significantly better results than conventional BM3D-AMP. Therefore, k-space knee dataset was

reconstructed using it and then the resulted images were rescaled, cropped, flipped, and ro-

tated to generate 267,240 and 350,320 50×50 patches for training LDAMP BM3D and LDAMP

BM3D-T, respectively. We trained DnCNN denoisers for σ ∈ [0, 10] noise range.

3.2.1.3 Training LDAMP SURE

Firstly, LDAMP SURE was run T = 10 iterations using pre-trained DnCNN denoiser and

BM3D. At the last iteration, we collected images and estimated noise standard deviation with

(III.2). Then, all images with noise levels in [0, 55] range (CS-MRI case: σ ∈ [0, 10]) were grouped

into one set, while images with larger noise levels were replaced by Gaussian noise added BM3D-

AMP recovered images. Thus, we have the dataset of all images with σ ∈ [0, 55] (CS-MRI case:

σ ∈ [0, 10]) to train DnCNN denoiser with MC-SURE. These steps were repeated L times to

further improve the performance of our proposed method. Although training DnCNN with MC-

SURE involves estimation of a noise standard deviation for an entire image, we assume that a

patch from an image has the same noise level as the image itself. Thus, we generated patches

without using rescaling to avoid noise distortion to train LDAMP SURE.

To train DnCNN with SURE, we initialized DnCNN with the weights of pre-trained DnCNN

and trained it using Adam optimizer [59] with a learning rate of 10-4 and batch size 128 for

10 epochs. Then, we decreased the learning rate to 10-5 and trained it for another 10 epochs.

Training process took about 3 hours for LDAMP SURE and about 4 hours for LDAMP SURE-

T. We empirically found that after L=2 iterations (line 3 in Algorithm 1) of training LDAMP

SURE, the results converge for both CDP and i.i.d. Gaussian cases, while for CS-MRI, L = 1.

The accuracy of MC-SURE approximation depends on the selection of constant value of ε,

which is directly proportional to σ [49,60]. Therefore, for training DnCNN with SURE, ε value

was calculated for each patch based on its noise level.
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3.2.2 Results on various measurement matrices

3.2.2.1 Gaussian measurement matrix

We compared our proposed LDAMP SURE with the state-of-the-art CS methods that do not

require ground truth data such as BM3D-AMP [51], NLR-CS [32], and TVAL3 [30]. BM3D-AMP

was used with default parameters and run for 30 iterations to reduce high variation in the results,

although PSNR1 approached its maximum after 10 iterations [23]. The proposed LDAMP SURE

algorithm was run 30 iterations but also showed convergence after 8-10 iterations. NLR-CS was

initialized with 8 iterations of BM3D as justified in [23], while TVAL3 was set to its default

parameters. We additionally reported the results of LDAMP with a single DnCNN (denoted as

LDAMP MSE) that was trained on ground truth images to see the performance gap.

Table 3.3: Average PSNRs (dB) and run times (sec) of 100 180×180 image reconstructions for
i.i.d. Gaussian measurements case (no measurement noise) at various sampling rates (M/N ×
100%).

Method Training Time
M/N = 5% M/N = 15% M/N = 25%

PSNR Time PSNR Time PSNR Time

TVAL3 [30] N/A 20.46 9.71 24.14 22.96 26.77 34.87
NLR-CS [32] N/A 21.88 128.73 27.58 312.92 31.20 452.23
BM3D-AMP [51] N/A 21.40 25.98 26.74 24.21 30.10 23.08

LDAMP BM3D 10.90 hrs 21.41 8.98 27.54 3.94 31.20 2.89
LDAMP BM3D-T 14.30 hrs 21.42 8.98 27.61 3.94 31.32 2.89
LDAMP SURE 15.05 hrs 21.44 8.98 27.65 3.94 31.46 2.89
LDAMP SURE-T 17.97 hrs 21.68 8.98 27.84 3.94 31.66 2.89

LDAMP MSE 10.17 hrs 22.07 8.98 27.78 3.94 31.65 2.89

From Table 3.3, proposed LDAMP SURE and LDAMP SURE-T outperformed other meth-

ods at higher CS ratios by 0.26-0.46 dB, while at a highly undersampled case, it is to NLR-CS.

Nevertheless, it is clear that SURE based LDAMP is able to improve the performance of pre-

trained LDAMP BM3D and surpasses BM3D-AMP by 0.28-1.56 dB. In Figure 3.2, reconstruc-

tions of all methods on a test image are represented for 25% sampling ratio. Proposed LDAMP

SURE and LDAMP SURE-T provide sharper edges and preserve more details.

In terms of run time, the dominant source of computation comes from using BM3D denoiser

at initial iterations, while DnCNN takes less than a second for inference. LDAMP SURE utilizes

1PSNR stands for peak signal-to-noise ratio and is calculated by following expression: 10log10(
2552

mean(x̂−xgt)2
)

for pixel range ∈ [0− 255]
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CPU for BM3D and GPU for DnCNN. Consequently, proposed LDAMP SURE was faster than

BM3D-AMP, NLR-CS, and TVAL3 methods.

(a) Ground [56]
truth

(b) TVAL3 [30]
21.73 dB

(c) BM3D-AMP [51]
24.96 dB

(d) NLR-CS [32]
26.96 dB

(e) LDAMP SURE
27.72dB

(f) LDAMP SURE-T
27.83 dB

Figure 3.2: Reconstructions of 180×180 test image with i.i.d. Gaussian matrix with M/N = 0.25
sampling rate.
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3.2.2.2 Coded diffraction pattern measurements

LDAMP SURE was tested with randomly sampled coded diffraction pattern [61] and yielded

high-quality images retaining most structure, while details in traditionally reconstructed images

were completely vanished (see Figure 3.3). Quantitative analysis demonstrates that LDAMP

SURE and LDAMP SURE-T achieved about 1.8 dB performance gain over BM3D-AMP (see

Table 3.4), showing the best performance at higher sampling rates. However, at extremely low

sampling ratio, our method slightly falls behind TVAL3. LDAMP SURE requires better data

than BM3D-AMP reconstructed images from highly undersampled data to pretrain DnCNN.

Therefore, one way to surpass TVAL3 at the highly undersampled case is to pretrain DnCNN

with TVAL3 images.

Table 3.4: Average PSNRs (dB) and run times (sec) of 100 180x180 image reconstructions for
CDP measurements case (no measurement noise) at various sampling rates (M/N × 100%).

Method Training Time
M/N = 5% M/N = 15% M/N = 25%

PSNR Time PSNR Time PSNR Time

TVAL3 [30] N/A 22.57 0.85 27.99 0.75 32.82 0.67
NLR-CS [32] N/A 19.00 93.05 22.98 86.90 31.24 119.70
BM3D-AMP [51] N/A 21.66 22.15 27.29 22.28 31.40 17.00

LDAMP BM3D 10.56 hrs 21.97 23.43 28.04 7.01 31.65 2.71
LDAMP BM3D-T 12.67 hrs 21.93 23.43 28.01 7.01 32.12 2.71
LDAMP SURE 15.22 hrs 22.18 23.43 29.14 7.01 33.26 2.71
LDAMP SURE-T 17.61 hrs 22.06 23.43 29.17 7.01 33.51 2.71

LDAMP MSE 10.17 hrs 22.12 23.43 28.87 7.01 33.88 2.71

Following the same steps as described in our paper, instead of using BM3D-AMP outputs,

DnCNN was pre-trained with the TVAL3 reconstructed images (we denote this as LDAMP-

TVAL3) and then was further trained using compressive sensing measurements using our pro-

posed LDAMP SURE (we denote this as LDAMP SURE*). These results are reported in Ta-

ble 3.5. In Table 3.4, LDAMP SURE was not able to outperform TVAL3 for CDP case when

undersampled measurements were only M/N = 5%. However, by using a different pre-trained

network, the same proposed method surpassed all methods including TVAL3.
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Table 3.5: Average PSNRs of 100 test images with 180×180 reconstructed for CDP at M/N = 5%.

Methods PSNR (dB)

TVAL3 [30] 22.57
NLR-CS [32] 19.00
BM3D-AMP [51] 21.66

LDAMP-TVAL3 22.72
LDAMP SURE* 22.88

(a) Ground
truth

(b) TVAL3 [30]
27.52 dB

(c) BM3D-AMP [51]
24.08 dB

(d) NLR-CS [32]
22.29 dB

(e) LDAMP SURE
29.17 dB

(f) LDAMP SURE-T
28.92 dB

Figure 3.3: Reconstructions of 180×180 test image with CDP measurement matrix for M/N =
0.15 sampling rate. 20



3.2.2.3 CS MR measurement matrix

LDAMP SURE was applied to CS MRI reconstruction problem to demonstrate its gen-

erality and to show its performance on images that contain structures different from natural

image dataset. We compared LDAMP SURE with state-of-the-art BM3D-AMP-MRI [34] for

CS-MR image reconstruction along with TVAL3, BM3D-AMP, and dictionary learning based

DL-MRI [3]. Average image recovery PSNRs and run times are tabulated in Table 3.6. The

quantitative results demonstrate that proposed LDAMP SURE-T outperforms existing algo-

rithms in all sampling ratios, yielding 0.15-0.33 dB gain over the second best reconstruction

algorithm, BM3D-AMP-MRI.

Table 3.6: Average PSNRs (dB) and run times (sec) of 100 180x180 image reconstructions for
CS-MRI measurements case (no measurement noise) at various sampling rates (M/N × 100%).

Method Training Time
M/N = 40% M/N = 50% M/N = 60%

PSNR Time PSNR Time PSNR Time

TVAL3 [30] N/A 36.76 0.58 37.13 0.24 38.35 0.21
DL-MRI [3] N/A 36.60 98.51 37.81 97.58 39.13 99.44
BM3D-AMP-MRI [34] N/A 37.42 14.76 38.94 15.00 40.51 15.36
BM3D-AMP [51] N/A 36.15 96.23 36.29 84.34 39.53 98.01

LDAMP BM3D 9.31 hrs 37.12 6.26 38.63 6.14 39.53 6.10
LDAMP BM3D-T 12.41 hrs 37.65 6.26 38.92 6.14 39.87 6.10
LDAMP SURE 12.04 hrs 37.40 6.26 38.70 6.14 40.62 6.10
LDAMP SURE-T 16.05 hrs 37.77 6.26 39.09 6.14 40.71 6.10

Visual comparison analysis shows that proposed LDAMP SURE-T and BM3D-AMP-MRI

produce high-quality reconstruction with almost no artifacts (see Figure 3.4). On the other hand,

the residual error maps (red box) of TVAL3, BM3D-AMP, and Dl-MRI clearly contain some

structures, which indicates information loss in some image regions. Moreover, we can notice

that BM3D-AMP reconstructed images are smoothed out, while proposed LDAMP SURE-T

was able to preserve texture and fine details.

In sum, reconstruction results demonstrate that our proposed method yielded state-of-the-

art performance, close to the ground truth.
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(a) Ground
truth [58]

(b) TVAL3 [30]
37.44 dB

(c) BM3D-AMP [51]
36.54 dB

(d) DL-MRI [3]
36.76 dB

(e) BM3D-AMP-MRI [34]
37.85 dB

(f) LDAMP SURE-T
38.22 dB

Figure 3.4: Reconstructions of 180×180 test image with CS-MRI measurement matrix for M/N =
0.40 sampling rate. Residual errors are shown in red boxes.
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3.3 Extensions

3.3.1 Extension to a noisy measurement data

Noise in the measurement domain is an inevitable part of every compressed sensing system.

Thus, in this part, we have conducted experiments with additive white Gaussian noise con-

taminated measurement data to imitate a more realistic case. Firstly, we generated noiseless

measurements using i.i.d. Gaussian matrix and added AWGN noise with the -20dB signal to

noise ratio (SNR):

SNR = −20× log10
‖y‖2
‖ε‖2

(III.3)

Following the same procedures as described in Section 3.2.1, we obtained results for the pro-

posed LDAMP SURE and LDAMP SURE-T (see Table 3.7). It is clear that our methods are

advantageous over other unsupervised approaches in the presence of noise in the measurement

domain. Moreover, we found that in highly undersampled case (M/N = 5%) NLR-CS is more

susceptible to the noise in measurements, while LDAMP SURE was more robust showing the

best performance.

When we reconstruct highly undersampled noisy measurement test data, the performance

of the pretrained network (LDAMP BM3D) and proposed LDAMP SURE was similar (0.05 dB

difference), whereas at M/N = 15% sampling rate, MC-SURE trained network (LDAMP SURE)

provided 0.2 dB performance gain over LDAMP BM3D. This indicates that undersampled

measurements should have contained enough information to learn with MC-SURE and hence

with higher quality measurement data, LDAMP SURE could gain more advantage.

Table 3.7: Average PSNRs (dB) and run times (sec) of 100 180x180 image reconstructions for
Gaussian measurements case and observation noise with SNR = -20 dB at various sampling
rates.

Method
M/N = 5% M/N = 15% M/N = 25%

PSNR, dB Time, sec PSNR, dB Time, sec PSNR, dB Time, sec

TVAL3 [30] 19.87 9.30 22.19 32.11 23.03 36.78
NLR-CS [32] 19.85 134.3 23.18 296.0 23.95 517.6
BM3D-AMP [51] 20.47 24.12 23.97 28.07 25.58 27.64

LDAMP BM3D 20.65 9.35 24.44 6.59 26.23 3.05
LDAMP BM3D-T 20.63 9.35 24.44 6.59 26.35 3.05
LDAMP SURE 20.70 9.35 24.63 6.59 26.38 3.05
LDAMP SURE-T 20.71 9.35 24.69 6.59 26.49 3.05

LDAMP MSE 20.91 9.35 24.67 6.59 26.47 3.05
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3.3.2 Unsupervised fine-tuning using MC-SURE

Our proposed LDAMP SURE method does not require ground-truth images, therefore up

to now, we have been using test measurement data for training LDAMP SURE-T. However,

it is slow and less practical, since, for the future test data, one needs to retrain the network

from scratch. Therefore, we propose a more convenient and faster method LDAMP SURE-FT,

which also can take advantage of available test measurement data. LDAMP SURE-FT utilizes

pretrained network parameters to fine-tune them on a test measurement data by minimizing

MC-SURE.

The proposed fine-tuning process requires fixing the parameters of batch normalization in

a pretrained denoiser. In our experiments, we took LDAMP SURE from Section 3.2.2.1 as a

pretrained network for the fine-tuning process. Firstly, we reconstructed a single test image

from measurement data with LDAMP SURE. Then, we estimated noise standard deviation

and DnCNN denoiser was fine-tuned with MC-SURE on an individual noisy image (without

patchifying) for 20 epochs with the learning rate of 10−4 and 50 epochs at 10−5. Finally, fine-

tuned DnCNN was used in LDAMP SURE-FT to reconstruct the image from its measurements.

The fine-tuning process required around 20-25 seconds per 256×256 image, while reconstruction

time is the same as for LDAMP SURE.

We evaluated the performance of proposed LDAMP SURE-FT as well as other methods

on widely used 12 images (Set 12) with the size of 256×256 for various sampling ratios. Also,

we included L-DAMP MSE performance for better comparison. Results of various methods are

tabulated on Table 3.8. It is impressive that at M/N = 0.25 sampling rate, LDAMP SURE-

FT has superior performance over other methods including LDAMP MSE on most of the test

images and also on average. Proposed LDAMP SURE-FT was able to improve the performance

over the LDAMP SURE on almost all of the test images, gaining 0.32dB on average. Such way

of learning unique patterns and details inherent to each test image by the denoiser and hence

tailoring the network for each test data allows LDAMP SURE-FT to effectively reconstruct

images.

However, as the sampling rate decreases, we can observe that the performance of LDAMP

SURE-FT degrades, finally making it inferior to LDAMP SURE at M/N = 0.05. Indeed, it is

challenging to capture unique features from extremely undersampled data and consequently,

LDAMP SURE-FT struggles to ”overfit” the single test measurement data. In this case, it

is more advantageous to use LDAMP SURE that utilizes priors from training measurement

dataset.
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Table 3.8: Results of image reconstruction methods on Set 12 (256×256) for various sampling
rates (Performance in dB).

Image C.Man House Peppers Starfish Monar. F-16 Parrot Lena Barbara Boat Man Couple Average

Sampling rate: M/N = 0.25

TVAL3 [30] 30.22 34.89 31.66 27.71 30.32 29.20 29.62 31.39 28.40 28.74 29.23 28.19 29.96

NLR-CS [32] 34.66 39.71 35.50 32.28 36.04 32.18 32.42 38.34 36.18 32.27 31.75 32.27 34.47

BM3D-AMP [51] 33.98 39.38 35.39 31.87 34.13 31.83 32.60 37.66 35.09 32.32 31.64 32.44 34.03

L-DAMP BM3D 32.45 37.92 35.74 33.80 36.39 32.58 32.52 38.40 32.37 33.67 32.71 33.53 34.34

L-DAMP SURE 33.32 38.51 35.88 34.28 36.91 32.90 32.83 38.67 32.53 33.80 32.98 33.67 34.69

L-DAMP SURE-FT 34.00 39.09 36.09 34.55 37.00 33.32 33.32 38.71 33.78 33.80 32.82 33.68 35.01

L-DAMP MSE 33.82 38.49 35.89 34.20 36.80 33.05 33.21 38.41 32.50 33.57 32.94 33.34 34.69

Sampling rate: M/N = 0.15

TVAL3 [30] 27.07 32.45 27.92 24.79 26.35 25.39 26.53 28.54 26.27 26.17 26.80 25.74 27.00

NLR-CS [32] 30.41 37.03 32.90 28.84 31.67 28.67 29.30 34.41 32.01 28.78 28.72 28.83 30.96

BM3D-AMP [51] 30.52 37.03 32.55 28.59 30.52 28.29 29.56 33.98 31.56 28.87 28.72 28.85 30.75

L-DAMP BM3D 30.36 35.90 33.39 30.10 32.21 29.30 29.63 35.14 30.07 29.82 29.47 29.78 31.26

L-DAMP SURE 30.78 36.09 33.49 30.38 32.79 29.70 30.07 35.18 30.17 30.13 29.81 29.97 31.55

L-DAMP SURE-FT 31.25 36.52 33.41 30.88 32.97 29.63 30.35 35.18 30.68 30.00 29.59 29.75 31.68

L-DAMP MSE 31.21 36.38 33.63 30.62 33.09 29.91 30.46 35.19 30.25 30.11 29.90 29.97 31.73

Sampling rate: M/N = 0.05

TVAL3 [30] 22.15 26.32 21.72 20.81 20.19 21.06 21.01 23.64 22.43 22.47 23.08 22.25 22.26

NLR-CS [32] 24.96 32.08 25.60 22.32 23.64 23.11 24.59 27.21 25.51 23.95 24.08 23.57 25.05

BM3D-AMP [51] 24.92 32.58 26.28 22.68 23.97 23.17 24.56 27.46 25.61 23.85 24.30 23.15 25.21

L-DAMP BM3D 25.93 32.63 26.92 22.76 25.29 23.65 25.27 27.99 25.76 24.28 24.65 23.75 25.74

L-DAMP SURE 26.23 32.64 27.19 22.82 25.51 23.82 25.41 28.25 25.83 24.46 24.81 23.87 25.90

L-DAMP SURE-FT 25.90 32.72 27.18 22.55 25.21 23.39 24.96 27.84 25.41 24.39 24.65 23.75 25.66

L-DAMP MSE 26.94 32.94 27.32 23.03 26.01 24.46 25.63 28.34 25.95 24.96 25.03 24.11 26.23

In sum, proposed LDAMP SURE-FT is a more practical way of utilizing test measurement

data to reconstruct high-quality images in case of higher sampling rates. Moreover, our method

yielded the best PSNR performance compared to all methods including LDAMP MSE for high

sampling ratio.
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CHAPTER IV

Conclusion

In this work, we proposed methods for unsupervised training of image denoisers with un-

dersampled CS measurements. Our methods simultaneously performed CS image recovery and

DNN denoiser learning. Our proposed method yielded better image quality than conventional

methods at higher sampling rates for i.i.d Gaussian, CDP, and CS MR measurements. Thus, it

may be possible that this work can be helpful for areas where obtaining ground truth images is

challenging such as hyperspectral or medical imaging. Our proposed method can potentially be

used with more advanced DNN denoisers for potentially better performance as far as they are

trainable with MC-SURE loss [49].

We must point out that LDAMP SURE-T indeed requires additional training time with test

set measurements. For large amount of test data, LDAMP SURE-T seems reasonable to use,

but for a small amount of test data, LDAMP SURE-FT could be a better choice to minimize

training time. Proposed LDAMP SURE-FT demonstrated superior performance over LDAMP

SURE and was able to beat LDAMP MSE at higher sampling ratio. As shown in Table 3.8, using

SURE-FT is less advantageous with lower sampling ratio possibly due to the lack of information

in highly undersampled CS measurement. Training deep learning based image denoisers from

undersampled training data still requires to contain enough information in the undersampled

measurements. Only 5% of the full samples did not seem enough to achieve state-of-the-art

performance possibly due to lack of information in the measurement. However, it seems that

using a large number of highly undersampled measurements is beneficial to improve performance
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since SURE-T achieved stat-of-the-art performance among all methods without ground truth

data as shown in Tables 3.4 and 3.7.

There are some of the open directions that can be further explored and investigated in the

near future. One of them is implementation of LDAMP SURE for color RGB image recovery.

Dealing with compressively sampled measurements for each channel and applying our proposed

method could potentially help to solve hyperspectral image reconstruction in an unsupervised

way. Another open problem that needs attention is “clipping” in measurement domain, which

is usually happening because of hardware limitations. In that case, measurement data is no

longer contaminated with AWGN, but with clipped i.i.d. Gaussian noise. Moreover, in this

work, we have conducted experiments with three different sensing matrices (Gaussian, CDP,

undersampled Fourier), while there are plently left (e.g. radon transform in CT imaging). This

also can be one of the possible directions for our research.
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