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I 

 

Abstract 
 

 

The study of chemical structure is crucial in chemistry and materials science. Materials structure can be 

classified in various ways, and the most familiar approach is to classify them according to the dimension 

of structure. For example, carbon composed of the same elements can be categorized into zero-

dimensional (0D) fullerene, one-dimensional (1D) carbon nanotube, two-dimensional (2D) graphene, 

and three-dimensional (3D) diamond, but due to particular arrangements of atoms the properties are 

significantly different depending on the structural dimension. Bearing this in mind, many organic 

structures were created by designing the symmetry of the molecules and using the polymerization to 

control the size of the structure (bottom-up strategy). The synthesized organic structures showed 

applicability to various applications such as gas separation, storage, membrane, and catalysis, etc. 

depending on the structural dimension. However, covalently bonded organic structures are limited in 

some areas because they are thermally unstable and have low conductivity. This thesis presents the 

results of applying a fully-fused aromatic networks (FANs) structure to energy materials to overcome 

the aforementioned limitations. The fused-ring has no free torsional motion, allowing stable electron 

transfer and providing thermal and chemical stability. By using these properties, the iron particles were 

encapsulated in the 2D structure, which showed excellent activity as a semi-permanent oxygen 

reduction catalyst and the 3D structure exhibited high hydrogen storage with excellent thermal stability. 

In addition, a new type of 2D structure that introduces insights into how to design materials in organic 

structures for gas separation and storage. Based on these studies, it is shown that FANs can be a 

promising material for electrochemical catalysts, gas storage, separation by using advantage of excellent 

electron mobility and thermochemical stability. Furthermore, I also studied carbon material as a catalyst 

having excellent activity and good stability in the conversion of ethylbenzene into styrene. 

 

 

 



 

  

 

 



II 

 

Table of Contents 

Abstract ................................................................................................................................................... I 

Table of Contents ................................................................................................................................. II 

List of Figures ....................................................................................................................................... V 

List of Tables ........................................................................................................................................ X 

Nomenclature ...................................................................................................................................... XI 

Chapter Ⅰ. Synthesis of Hexaazatrinaphthylene Hexaamine: Potential Candidate for Functional 

Organic Materials ................................................................................................................................. 1 

1.1 Abstract ......................................................................................................................................... 1 

1.2 Introduction ................................................................................................................................... 1 

1.3 Materials ....................................................................................................................................... 3 

1.4 Synthesis Procedure & Analysis Results from DPDS to DPH ..................................................... 3 

1.4.1 N,N'-(4,5-diamino-1,2-phenylene)dibenzenesulfonamide (DPDS). ...................................... 3 

1.4.2 Diquinoxalino[2,3-a:2',3'-c]phenazine-2,3,8,9,14,15-hexayl-hexabenzenesulfonamide 

(DPHS) ................................................................................................................................................ 4 

1.4.3 Diquinoxalino[2,3-a:2',3'-c]phenazine-2,3,8,9,14,15-hexaamine (hexaazatrinaphthylene 

hexamine) (DPH) ................................................................................................................................ 6 

1.5 Synthetic Procedure for DPDS Preparation .................................................................................. 8 

1.5.1 N,N'-(1,2-phenylene)dibenzenesulfonamide ........................................................................... 8 

1.5.2 N,N'-(4,5-dinitro-1,2-phenylene) dibenzenesulfonamide ...................................................... 10 

1.6 References ................................................................................................................................... 12 

Chapter Ⅱ. Two-dimensional Polymer Encapsulated Zero-valent Iron Nanoparticles as a 

Durable Oxygen Reduction Electrocatalyst ..................................................................................... 14 

2.1 Abstract ....................................................................................................................................... 14 

2.2 Introduction ................................................................................................................................. 14 

2.3 Results and Discussion ................................................................................................................ 15 

2.4 Conclusion .................................................................................................................................. 30 

2.5 Experimental Methods ................................................................................................................ 31 

2.5.1 Synthesis of The Fe@Aza-PON Catalyst ............................................................................ 31 



III 

 

2.5.2 Synthesis of Fe@TAB ......................................................................................................... 31 

2.5.3 Preparation of Hybrid Li-Air Cell ........................................................................................ 32 

2.6 Materials ..................................................................................................................................... 32 

2.7 Instrumentations .......................................................................................................................... 32 

2.8 Electrochemical Analysis ............................................................................................................ 33 

2.9 References  ................................................................................................................................. 34 

Chapter Ⅲ. A Robust 3D Cage-like Ultramicroporous Network Structure with High Gas-

Uptake Capacity .................................................................................................................................. 36 

3.1 Abstract ....................................................................................................................................... 36 

3.2 Introduction ................................................................................................................................. 36 

3.3 Results and Discussion ................................................................................................................ 37 

3.4 Conclusion .................................................................................................................................. 47 

3.5 Experimental Methods ................................................................................................................ 47 

3.5.1 Synthesis of Triptycenehexaamine (THA) Hexahydrochloride ........................................... 47 

3.5.2 Synthesis of Robust Three-Dimensional (3D) Cage-Like Organic Network (CON) .......... 49 

3.5.3 Low Pressure Gas Adsorption Analysis (up to 1 bar) .......................................................... 49 

3.5.4 High Pressure Gas Sorption Measurements ......................................................................... 49 

3.6 Materials ..................................................................................................................................... 49 

3.7 Instrumentations .......................................................................................................................... 50 

3.8 References ................................................................................................................................... 53 

Chapter Ⅳ. Standing-like 2D Porous Organic Network for Efficient Gas Separation................ 55 

4.1 Abstract ....................................................................................................................................... 55 

4.2 Introduction ................................................................................................................................. 55 

4.3 Results and discussion ................................................................................................................ 56 

4.4 Conclusion .................................................................................................................................. 62 

4.5 Methods ....................................................................................................................................... 63 

4.5.1 Synthesis of Fully-fused Aromatic 2D-Standing Network Structure ................................... 63 

4.5.2 Synthesis of Fully-fused Aromatic 2D-Flat Network Structure ........................................... 63 

4.5.3 Synthesis of 3D Cage-like Organic Network (3D-CON)..................................................... 63 



IV 

 

4.6 Instrumentations .......................................................................................................................... 63 

4.7 References ................................................................................................................................... 64 

Chapter Ⅴ. Mechanochemically Induced Fe-Graphitic Nanoplatelets as Catalysts for the 

Oxidative Dehydrogenation ............................................................................................................... 66 

5.1 Abstract ....................................................................................................................................... 66 

5.2 Introduction ................................................................................................................................. 66 

5.3 Results and Discussion  .............................................................................................................. 67 

5.4 Conclusions ................................................................................................................................. 79 

5.5 Materials ..................................................................................................................................... 79 

5.6 Instrumentations .......................................................................................................................... 79 

5.7 Preparation of Catalysts .............................................................................................................. 80 

5.7.1 Preparation of (L)Fe-XGnPs ................................................................................................ 80 

5.7.2 Heat-treatment Process of (L)Fe-XGnPs ............................................................................. 80 

5.8 Oxidative Dehydrogenation Reaction Procedure ........................................................................ 80 

5.9 References ................................................................................................................................... 81 

Appendix I. Curriculum Vitae ........................................................................................................... 83 

Appendix II. Permission from Cited Journal Paper in This Thesis ............................................... 88 

Acknowledgement ............................................................................................................................... 91 

 



V 

 

List of Figures 
 

Figure 1.1. The synthesis scheme of DPH. a) DPDS react with hexaketocyclohexane in the acetic acid 

solution, refluxed, 16 h, 90.5% of DPHS. b) DPHS be stirred in concentrated sulfuric acid, 24 h, 93% 

of DPH 

Figure 1.2. UV-vis spectra and PL spectra of DPH in DMF solvent at 25 °C. The PL spectra is measured 

under 350 nm excitation energy. 

Figure 1.3. 1H NMR, MALDI-TOF MS spectrum of DPDS. 

Figure 1.4. 1H NMR, 13C NMR and MALDI-TOF MS spectrum of DPHS. 

Figure 1.5. 1H NMR, 13C NMR and MALDI-TOF MS spectrum of DPH. 

Figure 1.6. Scheme of synthesis for DPDS precursors a) benzene-1,2-diamine. b) N,N'-(1,2-

phenylene)dibenzenesulfonamide. c) N,N'-(4,5- dinitro -1,2-phenylene)dibenzenesulfonamide. d) N,N'-

(4,5- diamino -1,2-phenylene)dibenzenesulfonamide.  

Figure 1.7. 1H NMR, 13C NMR and MALDI-TOF MS spectrum of DPDS. 

Figure 1.8. 1H NMR, 13C NMR and MALDI-TOF MS spectrum of N,N'-(4,5-dinitro-1,2-phenylene) 

dibenzenesulfonamide. 

Figure 2.1. Schematic representation for the synthesis for the formation of Fe@Aza-PON. 

Figure 2.2. High-power X-ray diffraction patterns. (a) Fe@Aza-PON-BH (before heat treatment). (b) 

Fe@TAB-BH, Fe@TAB. The magnetite (dark cyan bar) and iron carbide (dark green bar) peaks are 

shown in (a), (b), respectively. 

Figure 2.3. Structural analysis. (a) XRD pattern of Fe@Aza-PON; iron carbide (Fe3C, blue bar) and 

iron (Fe, red dot) peaks. (b) Transmission electron microscope (TEM) image of Fe@Aza-PON-BH 

(before heat-treatment). (c) X-ray photoelectron spectroscopy (XPS) of Fe@Aza-PON: N 1s, inset: Fe 

2p; (d) TEM image of Fe@Aza-PON after heat-treatment at 750 °C. Inset: the fast Fourier transform 

(FFT) corresponding iron carbide. 

Figure 2.4. TEM images of Fe@Aza-PON. (a-c) Before heat-treatment. (d-h) After heat-treatment. 

Figure 2.5. HR-TEM images of heat-treated Fe@Aza-PON. (a-c) Dark red arrows indicate the structure 

of holes after leaching off of the Fe nanoparticles. 

Figure 2.6. The energy dispersive spectroscopy (EDS) elemental mapping images of Fe@Aza-PON. 

(a) High-angle annular dark-field (HAADF) image. (b) Total element mapping image. (c) Oxygen. (d) 

Iron. (e) Nitrogen. (f) Carbon.  

Figure 2.7. TGA thermograms were measured at a ramping rate of 10 °C min−1. (a) Fe@Aza-PON-BH: 



VI 

 

in air (solid line), in nitrogen (dot line). (b) in air, Fe@Aza-PON (dark red): The residual char yield of 

27.70 wt% at 600 °C, which was associated with iron oxide (Fe2O3) and the corresponding amount of 

Fe is 19.39 wt%; Fe@TAB (dark blue): The residual char yield of 13.72 wt% and pure Fe is 9.06 wt%.  

Figure 2.8. XPS spectra of Fe@Aza-PON. (a) Survey spectrum; inset is deconvoluted O 1s spectra. (b) 

C 1s spectra. 

Figure 2.9. Nitrogen adsorption-desorption isotherms at 77 K. (a) Fe@Aza-PON-BH before heat-

treatment. (b) Fe@Aza-PON after heat-treatment. Inset: pore size distribution was calculated by 

NLDFT. 

Figure 2.10. (a, b) SEM images of Fe@Aza-PON at different magnification. 

Figure 2.11. Schematic representation of the synthesis of Fe@TAB.  

Figure 2.12. HR-TEM images of Fe@TAB. (a-f) Most of Fe particles are leached off by acid treatment 

(dark red arrows). 

Figure 2.13. Electrochemical ORR performance in 0.1 M aq. KOH. (a) Rotating ring-disk electrode 

(RRDE) polarized curves recorded with Fe@Aza-PON, Pt/C and Fe@TAB (red: Fe@Aza-PON, black: 

Fe@TAB, blue: Pt/C) (b) Tafel plot, (c) the test for catalytic stability and (d) result for methanol 

poisoning. 

Figure 2.14. Study of elemental composition changes and dependence of electrocatalytic performance 

on annealing temperature. (a) Element contents of Fe@Aza-PON with respect to annealing 

temperatures. Inset is a numerical percentage of each element. (b) XPS spectra of Fe@Aza-PON with 

respect to annealing temperatures. Inset: numerical percentage of each element. (c) CV curves of 

samples annealed at different temperatures in 0.1 M aq. KOH Condition (catalyst loading: 20 μg, scan 

rate: 10 mV s−1). (d) Average onset potential vs. annealing temperature plots after three measurements 

(dark red dot). 

Figure 2.15. Rotating ring-disk electrode (RRDE) voltammograms recorded with Fe@Aza-PON, Pt/C 

and Fe@TAB in 0.1 M aq. HClO4 solution. (a) LSV curves. (b) Tafel plots (each 30 µg of catalyst 

amount is loaded, scan rate: 10 mV s−1 at 1600 rpm).  

Figure 2.16. The electron transfer number with HO2
− (or H2O2) concentration for Fe@Aza-PON, 

Fe@TAB, and Pt/C. (a) 0.1 M aq. KOH. (b) 0.1 M aq. HClO4 (scan rate: 10 mV s−1). 

Figure 2.17. Current retention with respect to chronoamperometric cycling 0.1 M aq. HClO4 solution. 

Inset: 100 000 cycles of Fe@Aza-PON (scan rate: 100 mV s−1). 

Figure 2.18. Rotating ring-disk electrode (RRDE) voltammograms after 10,000 cycles in both aq. KOH 

(0.1 M) and aq. HClO4 (0.1 M) solutions. (a, c) LSV curves of Fe@Aza-PON. (b, d) LSV curves of 



VII 

 

Fe@TAB. Dark green curve: after 10,000 cycles. Insets in (a-d): resulting negative shifts after 10,000 

cycles (30 µg of catalyst amount was loaded, scan rate: 10 mV s−1 at 1600 rpm). TEM images of 

Fe@Aza-PON: (e) 0.1 M aq. KOH and (f) 0.1 M aq. HClO4 after 10,000 cycles. 

Figure 2.19. (a) Illustration of Li-Air cell system with Fe@Aza-PON. (b) Discharge-charge curves of 

Pt/C and Fe@Aza-PON, respectively, in 0.5 M LiOH with 1.0 M LiNO3 at each current density. (c) 

cycling performance at 0.1 A g-1.   

Figure 2.20. CV curves of samples in oxygen-saturated condition. (a) in alkaline medium (0.1 M KOH), 

(b) in acidic medium (0.1 M HClO4). CO poisoning tests (0.1 M KOH): (c) Pt/C, (d) Fe@Aza-PON. 

The amount of sample loading in each case was 20 µg (scan rate: 10 mV s−1). 

Figure 3.1. Synthetic scheme triptycenehexaamine (THA) hexahydrochloride. Key procedure to afford 

pure THA is hydrochlorination, since ortho-amino groups in THA are unstable against oxidation. 

Figure 3.2. Schematic illustration of robust 3D-CON structure. Triptycene-based hexamine (THA) and 

hexaketocyclohexane (HKH) in ethylene glycol and acetic acid (3 M) mixture used to form the 3D-

CON. The three structures on the right side are from the different view angle. 

Figure 3.3. Digital images and NMR spectrum of 3D-CON. (a) Tilted Pyrex glass ampule showing the 

clean reaction solvent after completion of the reaction. (b) After draining the reaction solvent from the 

Pyrex glass ampule. (c) During Soxhlet extraction with water and methanol. (d) After freeze drying at 

−120 °C for four days under dynamic vacuum. (e) Solid-state 13C CP-MAS NMR spectrum. 

Figure 3.4. Structural characterization of the robust 3D-CON structure. (a) Powder X-ray diffraction 

(PXRD) pattern. (b) TGA curve of the as-prepared sample under nitrogen atmosphere after in situ 

activation at 150 °C in a TGA instrument, to remove any adsorbed guest molecules, at 10 °C min−1. (c, 

d) SEM images at different magnifications. (e) Energy dispersive X-ray spectroscopy (EDS) spectrum 

with corresponding SEM image, showing elemental contents. (f) N2 adsorption and desorption isotherm 

at 77 K. The inset is the corresponding pore size distribution from the NLDFT approximation.  

Figure 3.5. SEM elemental mappings of 3D-CON. (a) SEM image, (b) carbon, (c) nitrogen, (d) oxygen. 

Figure 3.6. TEM images of 3D-CON. (a) Low magnification. (b) High resolution. (c) TEM image with 

corresponding fast Fourier transform (FFT) pattern from the highlighted region, showing low 

crystallinity as expected from the high molecular weight 3D organic network. 

Figure 3.7. (a) Full XPS survey spectrum of 3D-CON. Deconvoluted XPS spectra: (b) C 1s; (c) N 1s; 

and (d) O 1s.  

Figure 3.8. (a) H2 adsorption isotherms of 3D-CON measured at 77 K. (b) CH4 adsorption isotherm at 

273 K. (c) CO2 adsorption isotherms at 273 K in millimoles per gram and centimeter cube per gram 

scale.  



VIII 

 

Figure 3.9. Gas storage properties of 3D-CON and literature comparison. (a) H2 adsorption-desorption 

isotherm at 77 K. Inset: isosteric heat of adsorption (Qst) as a function of gas loading calculated from 

low pressure isotherms at 77 and 87 K. (b) CH4 adsorption-desorption isotherm at 273 K. Inset: Qst as 

a function of gas storage obtained from low pressure isotherms at 77 and 87 K. (c) CO2 adsorption-

desorption isotherms at 273 K. Inset: Qst for the CO2 as a function of gas uptake estimated from low 

pressure isotherms at 273 and 298 K. (d) High pressure gas (H2, CH4 and CO2) uptakes. (e) Ar 

adsorption-desorption isotherm measured at 87 K. Inset: pore size distribution calculated from NLDFT. 

(f) Comparison of H2 uptakes for organic porous materials (OPMs) at 1 bar and 77 K. 

Figure 3.10. Adsorption isotherms of 3D-CON measured at 298 K: (a) CH4, (b) CO2. 

Figure 3.11. Recrystallization of triptycenehexaamine (THA) hexahydrochloride in dilute aqueous HCl 

solution. (a) Before crystallization. (b) After crystallization overnight standing at room temperature. 

White needle-type crystals were formed. 

Figure 3.12. Characterizations of the triptycenehexaamine (THA) hexahydrochloride. (a) 1H-NMR 

spectrum (D2O). (b) 13C-NMR spectrum (D2O). (c) DIP-MS spectrum. 

Figure 4.1. Illustrate of 2D-Flat and 2D-Standing network structure. Each element is drawn as different 

color (gray: carbon, cyan: nitrogen, red: oxygen). 

Figure 4.2. Structural characterization of the structures. (a) X-ray diffraction patterns of the frameworks 

(b) N2 adsorption/desorption isotherms measured at 77 K. Filled circles: adsorption; blank circles: 

desorption. (c) CP/MAS 13C NMR spectra of 2D-Standing (top) and 2D-Flat (bottom) structure. (d) 

TGA of each organic network structure in the air atmosphere (ramping rate: 10 ˚C/min).  

Figure 4.3. High-resolution XPS spectra of 2D-Standing (a-d) and 2D-Flat (e-h). (a, e) Survey spectrum. 

(b, f) C 1s spectra. (c, g) N 1s spectra. (d, h) O 1s spectra.  

Figure 4.4. NLDFT pore size distribution (PSD) results of (a) 2D-Flat and (b) 2D-Standing.  

Figure 4.5. High-resolution transmission electron microscopy (HR-TEM) images of 2D-Standing 

network structure (a, b) and 2D-Flat structure (c, d) at different magnification. 

Figure 4.6. Gas adsorption properties of 2D-Standing, 2D-Flat and 3D-CON regarding CH4 and N2 at 

293 K. (a) adsorption amount (mmol g-1) of CH4 and N2. (b) the separation selectivity of IAST-predicted 

CH4/N2 mixture. (c) graph of CH4 uptakes and selectivity trends for each structure. Dark blue stands for 

2D-Standing, dark green for 2D-Flat and dark red stands for 3D-CON. 

Figure 4.7. Gas adsorption amount regarding (a) CH4 and (b) N2. Both graphs show adsorption amount 

(mmol g-1). Both graphs show the amount of adsorption (mmol g-1), measured at 293 K (downward 

triangle) and 298 K (upward triangle). Dark red stands for 3D-CON, dark blue for 2D-Standing, and 

dark green for 2D-Flat. 



IX 

 

Figure 5.1. A schematic of the preparation of Fe-XGnP catalysts (X = H, C, N, or V) with in-situ Fe-

doping, and functionalization with different elements at the edges of the graphene nanoplatelets (GnPs). 

After heat-treatment, the higher Fe content (5 mm balls) are designated Fe-XGnPs and the lower Fe-

containing NGnPs (3 mm balls) are named LFe-NGnPs.  

Figure 5.2. Powder X-ray diffraction patterns of XGnPs (X = H, C, N or V). L is lower Fe containing 

XGnPs (milled with 3 mm of steel balls).  

Figure 5.3. Structure analysis of heat-treated (L)Fe-XGnPs. a) Powder X-ray diffraction patterns; iron 

carbide (Fe3C, dark green bars), iron oxide (main peaks of Fe3O4, sky blue square diamond dots) and 

Fe (black dots). b) Full XPS survey spectra. High-resolution survey spectra are shown in Figure 5.4. c) 

TGA thermograms obtained with a ramping rate of 10 °C min−1 in air, providing quantitative Fe contents 

in the samples based on char yields at 800 °C. 

Figure 5.4. High-resolution XPS spectra of Fe-XGnPs: a) O 1s; b) C 1s and c) N 1s. Each intensity 

scale is shown in the graph. 

Figure 5.5. Schematic of the experimental setup. The syringe pump was used for ethylbenzene injection, 

and the N2 and CO2 gases were controlled by a mass flow controller (MFC). The final products passing 

through the quartz reactor are analyzed by gas chromatography (GC). 

Figure 5.6. Catalytic properties of (L)Fe-XGnPs (X = H, C, N, or V) with respect to reaction duration 

time for the ODH of an ethylbenzene (EB) stream. a) The rate of styrene (ST) formation for each 

catalyst according to the reaction temperature. b) Conversion ratio of EB to ST using the Fe-NGnPs 

with respect to reaction time and temperature. c) Durability test of the Fe-NGnPs. d) Comparison of the 

rate of ST formation with reported carbon-based catalysts. Reaction conditions: 300 mg of catalyst, 100 

μmol min−1 of EB/CO2 (EB/CO2 = 1) mixture, N2 is a balance gas, and total flow rate is 10 ml min−1. 

Figure 5.7. Oxidative dehydrogenation reaction of Fe-XGnPs catalysts with time and temperature. In 

case of Fe-CGnPs and LFe-NGnPs, the conversion was unstable at 350 °C. 

Figure 5.8. The product ratio of each catalyst from ODH reaction at 500 °C after 10 h reaction. 

Figure 5.9. Powder X-ray diffraction patterns: Fe-XGnPs after ODH reaction (Fe3O4 is marked as red 

bar, ICDD no. 98-000-0294). 

Figure 5.10. TEM images of Fe-NGnPs. a) Low magnification image. b) High magnification image. 

Red arrows indicate the structural curvatures.  

Figure 5.11. FT-IR spectra of Fe-XGnPs. The peak ranges from 1400 to 1750 cm-1 of the measured IR 

is indicated by an enlarged scale on the right graph. The ketone groups remaining in the heat-treated 

(700 °C) multilayers of graphene nanoplatelets are observed in the form of shoulders due to overlapping 

with the C=C peak. 



X 

 

List of Tables 

Table 2.1. Comparison of structural differences, Fe (wt%) content in the catalyst, catalytic performance 

and stability between Fe@Aza-PON and Fe@TAB 

Table 2.2. ORR stability of Fe-N-C, Fe/Fe3C and other literature reported nonprecious metal composites 

compared to Fe@Aza-PON 

Table 3.1. Elemental composition of the 3D-CON from different characterization techniques 

Table 3.2. Hydrogen, CO2 and CH4 uptake of various literature reported organic porous materials 

(OPMs)  

Table 4.1. Atomic compositions of surface of 2D-Standing and 2D-Flat structures as determined by the 

survey of XPS regarding carbon (C), nitrogen (N), and oxygen (O) 

Table 4.2. Elemental analysis data of 2D-Standing and 2D-Flat structures 

Table 4.3. Table showing methane (CH4) and nitrogen (N2) absorption in two temperature, heat of 

adsorption and selectivity (at 293 K) by gas ratio for each structure 

Table 5.1. Atomic compositions of (L)Fe-XGnPs before (top) and after (bottom) heat-treatment 

determined by X-ray photoelectron spectroscopy 

Table 5.2. Elemental analysis of (L)Fe-XGnPs before (top) and after (bottom) heat-treatments 

Table 5.3. Brunauer-Emmett-Teller (BET) analysis of (L)Fe-XGnPs before (left) and after (right) heat-

treatments using nitrogen adsorption/desorption at 77 K 

Table 5.4. Styrene (ST) formation rate of various literature reported carbon-based ethylbenzene 

dehydrogenation catalysts 

 

 

 

 

 

  



XI 

 

Nomenclature 

0D zero-dimensional 

1D one-dimensional 

2D two-dimensional 

3D three-dimensional 

BET Brunauer-Emmett-Teller  

CMP conjugated microporous polymer 

CNT carbon nanotube 

COF covalent organic framework  

CON cage-like organic network  

CP/MAS  cross-polarization/magic angle spinning  

DH dehydrogenation 

DMF N,N-dimethylformamide  

DOE department of energy  

DPDS N,N'-(4,5-diamino-1,2-phenylene)dibenzenesulfonamide  

DPH diquinoxalino[2,3-a:2',3'-c]phenazine-2,3,8,9,14,15-hexaamine  

DPHS diquinoxalino[2,3-a:2',3'-c]phenazine-2,3,8,9,14,15-hexayl-

hexabenzenesulfonamide  

EA elemental analysis  

EB ethylbenzene  

EDX energy-dispersive X-ray spectroscopy  

FAN fully-fused aromatic network 

FFT fast Fourier transform  

FT-IR Fourier transform infrared  

GnPs graphene nanoplatelets  

HATN-HA hexaazatrinaphthylene hexamine  

HCP hyper-cross-linked polymer 

HKH hexaketocyclohexane octahydrate  

HOR hydrogen oxidation reaction  

IAST ideal adsorbed solution theory  

MOF metal-organic framework 



XII 

 

NLDFT nonlocal density functional theory  

ODH oxidative dehydrogenation 

OER oxygen evolution reaction 

OPM organic porous material 

ORR oxygen reduction reaction  

POF porous organic framework 

PON porous organic network 

PPM porous polymeric material 

PSA pressure swing adsorption  

RDE rotating disk electrode  

RRDE Rotating ring-disk electrode  

SEM scanning electron microscopy  

ST styrene 

TAB tetraaminobenzene 

TEM transmission electron microscopy  

TGA thermogravimetric analysis  

THA triptycenehexaamine 

XPS X-ray photoelectron spectroscopy  

XRD X-ray diffraction  



1 

 

I. Synthesis of hexaazatrinaphthylene hexaamine: Potential candidate for 

functional organic materials 

 

1.1 Abstract 

C3-symetric molecules with tri- and hexaamino functional groups have been an important building 

blocks for the synthesis of functional organic materials. However, large molecules containing 

mutifunctional amino groups are difficult to synthesize. Here, we report a facile method for the synthesis 

of diquinoxalino[2,3-a:2',3'-c]phenazine-2,3,8,9,14,15-hexaamine (DPH) in good yield. DPH can be 

useful for the synthesis of a variety of π-conjugated robust organic frameworks for gas storages, organic 

opto-electronics and catalysis. 

 

1.2 Introduction 

The C3-symmetric hexaazatrinaphthylene molecule is an important building block for the synthesis 

of polynitrogenated heteocyclic systems1 and covalent organic frameworks (COFs),2-6 which can be 

used in gas storages,7 opto-electronics,8,9 and catalysis.10 As crystalline network structures, extended 

conjugated hexaazatrinaphthylene hexamine (HATN-HA), which has C3-symetry, could be utilized for 

the fabrication of two-dimensional (2D) COFs with new interesting properties.11,12 The HATN-HA has 

rigid 2D structure and is advantageous in the synthesis of robust 2D COFs.12,13  

The phenazine based diamine unit has been used to synthesize a variety of functional moieties, such 

as discotic liquid crystals,14 pyrazine-containing acene-type molecular ribbons,15 and amine-derived 

hexaazatrinaphthylenes.16 Although it has been reported that the HATN-HA,16 its detailed synthetic 

procedure and analyses have not been separately reported later. The HATN-HA is a potentially 

important substance as a building block for the synthesis of star-shaped quantum size molecules, 

conjugated 2D COFs and organogelators.17 Hence, the synthesis of HATN-HA is of high interest for the 

researchers in the materials synthesis.  

The ortho-diamino groups of HATN-HA can spontaneously react with keto groups to form fused 

aromatic rings such as quinoxilines,18 benzimidazoles,19 and benzotriazoles,20 as well as coordinate with 

transition metals to yield 2D metal-organic frameworks (MOFs).21 In this report, we introduce a new 

synthetic protocol for specific C3-symmetic HATN-HA, diquinoxalino[2,3-a:2',3'-c]phenazine-

2,3,8,9,14,15-hexaamine (DPH), which has hexaamino groups (three ortho-diamino groups).  

The synthetic process starts with the protection of the 1,2-diaminobenzene22 with benzenesulfonyl 

chloride in pyridine. The protected diaminobenzene (1) was nitrated using nitric acid (HNO3) in acetic 

acid to give N,N’-(4,5-dinitro-1,2-phenylene)dibenzenesulfonamide (2).23 The hydrogenation of (2) in 

the presence of palladium on activated carbon (Pd/C) to give N,N’-(4,5-diamino-1,2-

phenylene)dibenzenesulfonamide (3).24 This protected tetraamine (3) was reacted with 
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hexaketocyclohexane octahydrate (HKH) in acetic acid under nitrogen atmosphere to quantitatively 

afford benzenesulfonamide protected DPH (4, DPHS)25 in pure form (Figure 1.1). The obtained DPHS 

was in greenish powder. Interestingly, the color change was obserevd after dissolution in different 

solvents, due to the interaction of DPHS with solvent molecule varies the length of π–conjugation. The 

SDPH was de-protected in concentrated sulfuric acid (H2SO4) at ambient temperature for 24 hours. 

After neutralizing crude product with 10% aq. potassium carbonate and washing with deoxygenated 

deionized water,26 it recrystallized from dimethyformamide DMF/water mixture. Proton nuclear 

magnetic resonance (1H-NMR) shows strong water peak due to its hygroscopic nature of final DPH.  

 

 

Figure 1.1. The synthesis scheme of DPH. (a) DPDS react with hexaketocyclohexane in the acetic acid 

solution, refluxed, 16 h, 90.5% of DPHS. (b) DPHS be stirred in concentrated sulfuric acid, 24 h, 93% 

of DPH. 

 

The UV-vis spectrum of DPH in N,N-dimethylformamide (DMF) (left inset, Figure 1) shows the π-

π* transition bands centered at 477 nm (Figure 1.2). When the solution was excited by UV lamp (350 

nm), the strong photoluminescent (PL) peak was appeared at 530 nm, which corresponds to green color 

(right inset, Figure 1.2)  

DPH is expected to have potential utility in the synthesis of discotic liquid crystals,27 materials with 

low barrier to electron and hole transport for the possible application in organic electronics,28 synthesis 

of macrocyclic structures,29 donor-acceptor based organic materials, expanded conjugated electron 

deficient systems,30 fluorescence sensors for heavy metals.31 In addition, we expect that DHP can be 

extended to the formation of 2D COFs for various applications.12,32,33  

In summary, we report the straight forward synthesis of C3-symmetric hexaazatrinaphthylene 

hexamine (HATN-HA), specifically diquinoxalino[2,3-a:2',3'-c]phenazine-2,3,8,9,14,15-hexaamine 

(DPH), in good yield. We strongly believe that our versatile method for DPH will be highly useful step 

toward the synthesis of various functional materials.  
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Figure 1.2. UV-vis spectra and PL spectra of DPH in DMF solvent at 25°C. The PL spectra is measured 

under 350 nm excitation energy. 

 

1.3 Materials 

All the reactions were maintained under inert (nitrogen, 99.999%) atmosphere. All the solvents, 

chemicals and reagents were purchased from Aldrich Chemical Inc., unless otherwise stated.  

 

1.4 Synthesis procedure & analysis results from DPDS to DPH 

1.4.1 N,N'-(4,5-diamino-1,2-phenylene)dibenzenesulfonamide (DPDS). 

N,N’-(4,5-Dinitro-1,2-phenylene)dibenzenesulfonamide  (7.2 g, 15 mmol) was placed in pressure 

bottle containing ethyl acetate (100 ml) with Pd/C (70 mg). The bottle was mounted on the 

hydrogenation apparatus and agitated under H2 atmosphere (60 psi) for 24 h. After the completion of 

the reaction, Pd/C was filtered through pad of Celite and the filtrate was dried to afford DPDS powder 

in quantitative yield (98%). 1H NMR (400 MHz, DMSO-d6) δ 4.52 (s,2H), 6.13 (s,1H),7.52 (t,2H), 7.62 

(t,3H), 8.57 (s,1H); 13C NMR δ 123.47, 125.94, 126.82, 128.30, 129.66, 133.25, 138.96. MS (MALDI-

TOF): m/z (%) = 418 (17) [M]+, 218 (100) Anal. Calcd for C18H18N4O4S2: C, 51.66; H, 4.34; N, 13.39; 

S, 15.32; O, 15.29. Found: C, 51.00; H, 4.34; N, 12.53; S, 15.49 (Figure 1.3). 
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Figure 1.3. 1H NMR (top), MALDI-TOF MS spectrum (bottom) of DPDS. 

 

1.4.2 Diquinoxalino[2,3-a:2',3'-c]phenazine-2,3,8,9,14,15-hexayl-hexabenzenesulfonamide 

(DPHS).  

4,5-Diamino-1,2-phenylene-dibenzenesulfonamide (2.10 g, 5.0 mmol, ~3 eq.) and 

hexaketocyclehexane octahydrate (0.50 g, 1.60 mmol) was placed in three-necked round bottom flask 

containing deoxygenated acetic acid (45 mL). The mixture was heated under reflux for 16 h. After 

cooled to room temperature, the mixture was poured into the cold water. The powdery precipitates were 

collected by filtration. The air-dried solids were dissolved again in warm ethanol containing charcoal 

and the solution was filtered while it is warm. The product was filtered and dried in the vacuum oven 

overnight at 70 °C. (90.5 % yield) 1H NMR (400 MHz, DMSO-d6) δ 7.61 (m,2H), 7.67 (m,1H),7.92 
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(m,2H), 7.97 (m,1H); 13C NMR δ 118.24, 126.93, 129.69, 133.69, 134.40, 138.92, 139.66, 143.05; MS 

(MALDI-TOF): m/z (%) = 1317 (100) [M+1]+, Anal. Calcd for C60H42N12O12S6: C, 54.79; H, 3.22; N, 

12.78; S, 14.62; O, 14.60. Found: C, 53.90; H, 3.35; N, 12.53; S, 14.86; O, 13.05 (Figure 1.4). 

 

 

Figure 1.4. 1H NMR (top), 13C NMR (bottom) and MALDI-TOF MS spectrum of DPHS (MALDI-TOF 

MS is on the next page).  
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1.4.3 Diquinoxalino[2,3-a:2',3'-c]phenazine-2,3,8,9,14,15-hexaamine (hexaazatrinaphth- ylene 

hexamine) (DPH) 

Diquinoxalino[2,3-a:2',3'-c]phenazine-2,3,8,9,14,15-hexayl-hexabenzenesulfonamide (1.0 g, 0.76 

mmol) and concentrated H2SO4 (22 mL) were placed one-neck round bottom flask and stirred at room 

temperature for 24 h. The mixture was poured into ice (700 g). The precipitates were collected by 

filtration. The product was dispersed in 10% aq. potassium carbonate solution and stirred for 1 h. Then, 

the product was collected by filtration and repeatedly washed with deoxygenated deionized water (93% 

yield) 1H NMR (400 MHz, DMSO-d6) δ 6.12 (s,12H), 7.21 (s,6H); 13C NMR δ 104.61, 138.78, 139.80, 

142.91. MS (MALDI-TOF): m/z (%) = 475 (100) [M+1]+. HRMS (ESI) m/z: [M+Na]+ Calcd for 

C24H18N12Na 497.1675; Found 497.1671. Anal. Calcd for C24H18N12.3H2O: C, 54.54; H, 4.58; N, 31.80. 

Found: C, 54.41; H, 4.28; N, 30.66 (Figure 1.5). 
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Figure 1.5. 1H NMR (top), 13C NMR (bottom) and MALDI-TOF MS spectrum of DPH (MALDI-TOF 

MS is on the next page).  
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1.5 Synthetic procedure for DPDS preparation 

 

Figure 1.6. Scheme of synthesis DPDS (a) benzene-1,2-diamine. (b) N,N'-(1,2-

phenylene)dibenzenesulfonamide. (c) N,N'-(4,5- dinitro -1,2-phenylene)dibenzenesulfonami- de. (d) 

N,N'-(4,5- diamino -1,2-phenylene)dibenzenesulfonamide. 

 

1.5.1 N,N'-(1,2-phenylene)dibenzenesulfonamide 

1,2-diaminobezene (20 g, 185 mmol) dissolved in pyridine (70 ml). The solution was added slowly 

to pyridine solution containing bezenesulfonyl chlroride (50 ml, 400 mmol). The mixture reacted for 5 

hours under 100 ℃. Pour into water and recrystallize with ethanol. (96% yield) 

1H NMR (400 MHz, DMSO-d6) δ 7.00 (m,2H), 7.53 (m,2H),7.61 (m,2H), 7.74 (m,2H), 9.39 (s,1H); 

13C NMR δ 123.47, 125.94, 126.82, 128.30, 129.66, 133.25, 138.96. MS (MALDI-TOF): m/z (%) = 

388 (87) [M]+, 247 (100) Anal. Calc. For C18H16N2O4S2: C, 55.66; H, 4.15; N, 7.21; S, 16.51; O, 16.47; 

Found: C, 55.60; H, 4.15; N, 7.22; S, 16.73 (Figure 1.7).  
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Figure 1.7. 1H NMR (top), 13C NMR and MALDI-TOF MS spectrum of DPDS (MALDI-TOF MS is 

on the next page).  
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1.5.2 N,N'-(4,5-dinitro-1,2-phenylene) dibenzenesulfonamide.  

1,2-Bis-(phenylenesulfonamido)benzene (20 g, 51 mmol) dissolved in acetic acid (160 ml). Drop 

nitric acid (7 ml) into previous solution and react for 30 min under 60℃. Then, pour into water and 

recrystallize with acetic acid. (89% yield) 1H NMR (400 MHz, DMSO-d6) δ 7.55 (m,2H), 7.65 

(m,1H),7.69 (s,1H), 7.69 (m,2H), 7.77 (m,2H); 13C NMR δ 115.79, 126.80, 129.56, 133.63, 134.07, 

136.93, 138.96. MS (MALDI-TOF): m/z (%) = 478 (45) [M]+, 337 (100) Anal. Calc. For C18H14N4O8S2: 

C, 45.19; H, 2.95; N, 11.71; S, 13.40; O, 26.75; Found: C, 45.35; H, 2.93; N, 11.82; S, 14.28 (Figure 

1.8).  
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Figure 1.8. 1H NMR (top), 13C NMR (bottom) and MALDI-TOF MS spectrum of N,N'-(4,5-dinitro-

1,2-phenylene) dibenzenesulfonamide (MALDI-TOF MS is on the next page).  
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Ⅱ. Two-Dimensional Polymer Encapsulated Zero-Valent Iron Nanoparticles 

as a Durable Oxygen Reduction Electrocatalyst 

 

2.1 Abstract 

Fe/Fe3C and Fe-N-C based catalysts have gained considerable attentions as oxygen reduction reaction 

(ORR) catalysts owing to their high activity. However, their applications are mainly hindered by the 

poor stability, which originates from the non-uniform nanostructure, and low quality of crystallinity. 

Here, we introduce a synthetic strategy for a uniform, compact encapsulation through fully-aromatic 

two-dimensional (2D) porous organic networks (PONs). The catalyst was synthesized by in-situ 

encapsulating zero-valent iron (Fe0) in 2D phenazine-based structure (denoted as Fe@Aza-PON). 

Compared to without PON (Fe@TAB) which was encapsulated by single monomer, Fe@Aza-PON 

showed superior catalytic performance (half-wave potential, 13 mV and Tafel slope, 60 mV dec−1). 

Thanks to the structural advantages of PON, the catalytic activity is maintained even after 100,000 

cycles with tolerance against contaminations (methanol and CO poisoning). In addition, Fe@Aza-PON 

demonstrates competitiveness in the hybrid Li-air cell as an outstanding alternative synthetic strategy 

for practical applications.  

 

2.2 Introduction 

To address pressing energy and environmental issues, fuel cells and metal-air cells, which are 

considered sources of future clean energy, have been intensively explored as alternatives to fossil 

fuels.1,2 However, their development has been hampered by the sluggish cathodic oxygen reduction 

reaction (ORR), which is approximately six orders of magnitude slower than the corresponding anodic 

hydrogen oxidation reaction (HOR).  

Among efforts to develop alternative ORR catalysts to replace precious platinum (Pt)-based ones, 

non-precious metal-doped carbon-based materials have been reported to contribute to significantly 

enhanced ORR activity. In addition, Fe/Fe3C and Fe-N-C materials are regarded as promising ORR 

catalysts in alkaline media.3-6 Based on these results, there have been a number of studies attempting to 

encapsulate Fe nanoparticles (Fe/Fe3C) in carbon-based materials, such as carbon nanotubes (CNTs), 

graphene, and other carbonaceous materials.7,8  

However, pure carbon-based materials are basically neutral and fail to provide abundant interaction 

sites for the protective encapsulation of unstable Fe nanoparticles.8,9 To provide better interaction, a 

mixture of Fe precursor and nitrogen containing small molecules, such as melamine and porphyrin, 

have been pyrolyzed at high temperature to form Fe/Fe3C and Fe-N-C catalysts.6,10 Although they have 

demonstrated high electrocatalytic activity, comparable to Pt-based catalysts,5,11-13 they still suffer from 

poor long-term stability for practical application, due most likely to defective encapsulation.  
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Heteroatom-containing two-dimensional (2D) porous organic networks (PONs) have also been 

explored as materials for energy conversion and storage.14,15 In addition to having controllable pore 

dimensions and thereby tunable intrinsic properties,15 their extended π-conjugated structure helps 

electron transport, for better conductivity and stronger dipole interaction for efficient electron/ion 

diffusion.16 

Fused all aromatic PONs are regarded as promising materials for applications such as light 

harvesting,17,18 heterogeneous catalysis,19,20 and gas adsorption.21-23 The 2D phenazine-based PONs 

(denoted as Aza-PONs) have also shown good performance in supercapacitors24 and have been studied 

as catalysts for the production of hydrogen peroxide.25 In addition, the pyridinic nitrogen (N) in the 

structure of Aza-PON can facilitate better oxygen diffusion onto the catalytically active sites.26 For these 

reasons, in this study, Aza-PON was selected to encapsulate zero-valent Fe (Fe0) nanoparticles for the 

synthesis of a stable Fe-based ORR electrocatalyst. 

 

2.3 Results and discussion 

 

Figure 2.1. Schematic representation for the synthesis for the formation of Fe@Aza-PON. 

  Figure 2.1 shows the synthesis procedures for the Fe@Aza-PON. The reaction between 1,2,4,5-

tetraaminobenzene (TAB) and hexaketocyclohexane (HKH) in the presence of iron(III) chloride (FeCl3) 

forms Fe3+ sandwiched between Aza-PON sheets (Fe3+@Aza-PON). The built-in nitrogenated holey 

phenazine units (fused aromatic C4=C4N2=C4 rings) in the Aza-PON structure can provide abundant 

coordination sites to stably sandwich Fe3+. According to theoretical calculations,27 the aromatic nitrogen 

in phenazine can coordinate with Fe2+/Fe3+ and allows stability during the rest of the treatments 

(reduction of Fe3+ into Fe0 with sodium borohydride (NaBH4) and washing off free FeCl3 with distilled 

water). The sandwiched Fe2+/Fe3+ species can be completely reduced into zero-valent Fe (Fe0) 

nanoparticles encased in nitrogenated graphitic layers after heat-treatment at 750 °C.  



16 

 

 

Figure 2.2. High-power X-ray diffraction patterns. (a) Fe@Aza-PON-BH (before heat treatment). (b) 

Fe@TAB-BH, Fe@TAB. The magnetite (dark cyan bar) and iron carbide (dark green bar) peaks are 

shown in (a), (b), respectively. 

 

Figure 2.3. Structural analysis. (a) XRD pattern of Fe@Aza-PON; iron carbide (Fe3C, blue bar) and 

iron (Fe, red dot) peaks. (b) Transmission electron microscope (TEM) image of Fe@Aza-PON-BH 

(before heat-treatment). (c) X-ray photoelectron spectroscopy (XPS) of Fe@Aza-PON: N 1s, inset: Fe 

2p; (d) TEM image of Fe@Aza-PON after heat-treatment at 750 °C. Inset: the fast Fourier transform 

(FFT) corresponding iron carbide. 
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Before heat-treatment of the samples, the X-ray diffraction (XRD) pattern shows strong magnetite 

(Fe3O4) peaks, corresponding to Fe2+/Fe3+@Aza-PON (Fe@Aza-PON-BH; BH stands for before heat-

treatment, Figure 2.2a). After heat-treatment, Aza-PON, in contact with Fe2+/Fe3+ moieties, was 

converted into nitrogenated graphitic shells on the surface of reduced zero-valent Fe (Fe0) nanoparticles. 

Encapsulated Fe nanoparticles distributed on the Aza-PON (Fe@Aza-PON) is then produced (Figure 

2.1). Finally, defectively encapsulated Fe nanoparticles were leached off with 3.0 M aq. hydrochloric 

acid (HCl) for 24h to produce a durable Fe@Aza-PON catalyst.  

The XRD pattern of the Fe@Aza-PON catalyst (Figure 2.3a) shows pure Fe0 and iron carbide (Fe3C) 

peaks along with a (002) peak (d-spacing of 0.337 nm), which corresponds to a typical van der Waals 

distance of graphitic layers. The Fe peaks at 44.7°, 65.0° and 82.3° correspond to Fe (110), Fe (200) 

and Fe (211), respectively.  

 

 

Figure 2.4. TEM images of Fe@Aza-PON. (a-c) Before heat-treatment. (d-h) After heat-treatment. 
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Figure 2.5. HR-TEM images of heat-treated Fe@Aza-PON. (a-c) Dark red arrows indicate the structure 

of holes after leaching off of the Fe nanoparticles. 

  The transmission electron microscopy (TEM) image of the Fe@Aza-PON-BH (before heat-treatment) 

shows well distributed nanoparticles in the range of 5-10 nm on 2D Aza-PON (Figure 2.3b and Figure 

2.4a-c). After the heat-treatment and acid leaching procedures, the Fe@Aza-PON shows Fe0 

nanoparticles encapsulated in approximately 3-7 graphitic shells which corresponds to layers thickness 

of 1.01-2.36 nm. (Figure 2.3d, Figure 2.4d-h). This result suggests that the Aza-PON matrix was 

converted into graphitic layers on the surface of the Fe0 nanoparticles. 

In some cases, empty shells were observed (dark red arrows, Figure 2.5), because defectively 

encapsulated Fe nanoparticles were leached by the strong acid treatment. Accordingly, Fe nanoparticles 

that remained intact within the Fe@Aza-PON were expected to be stably encased in graphitic. 

Energy-dispersive X-ray spectroscopy (EDX) indicated that the catalyst consisted of C, N and Fe 

elements (Figure 2.6). The loading amount of Fe in the Fe@Aza-PON catalyst was approximately 20 

wt% as determined by thermogravimetric analysis (TGA) in air atmosphere (Figure 2.7).  

 

Figure 2.6. The energy dispersive spectroscopy (EDS) elemental mapping images of Fe@Aza-PON. 

(a) High-angle annular dark-field (HAADF) image. (b) Total element mapping image. (c) Oxygen. (d) 

Iron. (e) Nitrogen. (f) Carbon.  
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The chemical bonding nature of the Fe@Aza-PON was investigated by X-ray photoelectron 

spectroscopy (XPS). As expected, the survey spectrum showed only C, N, O and Fe peaks without other 

peaks (Figure 2.3c, Figure 2.8). Deconvoluted N 1s peaks corresponding to graphitic N (401.0 eV), 

pyrrolic N (400.0 eV) and pyridinic N (398.4 eV), indicated the presence of nitrogenated graphitic shells 

from the pyrolysis of the Aza-PON moiety during heat-treatment. The Fe (Fe 2p) survey spectrum 

showed Fe0 (720.2, 707.1 eV), Fe3+ 2p1/2 (723.0 eV), and 2p3/2 (709.9 eV), suggesting the co-existence 

of pure Fe0 core particles and Fe3C interfaces.  

 

Figure 2.7. TGA thermograms were measured at a ramping rate of 10 °C min−1. (a) Fe@Aza-PON-BH: 

in air (solid line), in nitrogen (dot line). (b) in air, Fe@Aza-PON (dark red): The residual char yield of 

27.70 wt% at 600 °C, which was associated with iron oxide (Fe2O3) and the corresponding amount of 

Fe is 19.39 wt%; Fe@TAB (dark blue): The residual char yield of 13.72 wt% and pure Fe is 9.06 wt%. 

 

 

Figure 2.8. XPS spectra of Fe@Aza-PON. (a) Survey spectrum, inset is deconvoluted O 1s spectra. (b) 

C 1s spectra. 
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Figure 2.9. N2 adsorption-desorption isotherms at 77 K. (a) Fe@Aza-PON-BH before heat-treatment. 

(b) Fe@Aza-PON after heat-treatment. Inset: pore size distribution was calculated by NLDFT. 

 

The Fe@Aza-PON sample exhibited a high Brunauer-Emmett-Teller (BET) specific surface area of 

393.98 m2 g−1 (Figure 2.9). The type IV hysteresis adsorption plot in the mesoporous region indicated 

bottle-like empty graphitic shells after leaching of the defectively encapsulated Fe nanoparticles (arrows, 

Figure 2.5). In addition, scanning electron microscopy (SEM) images (Figure 2.10) also reflect the 

presence of empty shells of the Fe@Aza-PON catalyst. 

For comparison with Aza-PON (macromolecular network), Fe on carbonized TAB (Fe@TAB) was 

synthesized by simply mixing FeCl3 and TAB (a monomeric building block) without the presence of 

HKH (a counterpart monomeric building block). Mixing the Fe precursor and a small amount of organic 

substance, and then subsequently carbonizing the mixture, is a typical approach for the formation of the 

Fe-N-C catalyst (experimental details described in Supplementary Information, Figure 2.11).6,10,12,28,29 

In this approach, TAB acts as a small molar mass feedstock for the C and N elements during 

graphitization.  

 

Figure 2.10. (a, b) SEM images of Fe@Aza-PON at different magnification. 
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For comparison with Aza-PON, Fe@TAB was synthesized by mixing FeCl3 and TAB without 

presence of HKH (Supporting information). The carbonization is a typical approach for the formation 

of Fe-N-C catalyst.6, 9-10, 12, 29 In this approach, TAB plays as a small molar mass feedstock for C and N 

elements during graphitization. After acid leaching, the Fe@TAB exhibits a similar XRD pattern with 

Fe@Aza-PON, but its iron peak intensity is relatively much lower (Figure 2.2b). The TEM images are 

well agreed with XRD result, showing much more empty shells after acid leaching (arrows, Figure. 

2.12). 

 

 

Figure 2.11. Schematic representation of the synthesis of Fe@TAB.  

 

Now, how Aza-PON is converted into void-free nitrogenated graphitic sheets on the surface of Fe 

nanoparticles? The Fe3O4-catalyzed conversion of carbon feedstock into graphitic structure for 

encapsulation is well-known mechanism,30-32 in which Fe3O4 is prone to reduce into the forms of FeO, 

Fe and Fe3C. During the heat-treatment, the Fe3O4 nanoparticles in contact with Aza-PON frameworks 

are reduced to form Fe3C at the boundary, while their core part is reduced to Fe0 only. Hence, as 

schematically represented in Figure 2.1, the structure of Fe@Aza-PON can be described as follow; 

encapsulated Fe nanoparticles in near the surface of nitrogenated graphitic shells protected further 

reduction of Fe0 then, forming the Fe/Fe3C composite simultaneously. In case of Fe@TAB, TAB is not 

able to form crystalline void-free graphitic shells then, reduction from Fe0 to Fe3C can be easily 

proceeded. As a result, the ratio of Fe/Fe3C in Fe@TAB is lower than that in Fe@Aza-PON.  

After acid leaching, the Fe@TAB exhibited an XRD pattern similar to that of Fe@Aza-PON. 

However, its iron peak intensity was relatively much lower (Figure 2.2b). The XRD result agreed well 

with TEM images, which showed many more empty shells after acid leaching (arrows, Figure 2.12). 

The result implies that the 2D layered PON can accommodate much more Fe precursor, resulting in a 

lower rate of defective encapsulation of Fe nanoparticles (Table 2.1). For the Fe@TAB case, because 

the TAB forms defective graphitic shells, further heat treatment converts the Fe0 into Fe3C. As a result, 

the ratio of Fe/Fe3C in Fe@TAB is lower than that in Fe@Aza-PON (Table 2.1). The defective free 

encapsulation is related to the flexible nature and strong affinity of the Aza-PON for the Fe metal due 

to presence of nitrogen atoms around the holes as an anchoring points.27,30  
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Table 2.1. Comparison of structural differences, Fe (wt%) content in the catalyst, catalytic performance 

and stability between Fe@Aza-PON and Fe@TAB 
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Figure 2.12. HR-TEM images of Fe@TAB. (a-f) Most of Fe particles are leached off by acid treatment 

(dark red arrows). 

 

Figure 2.13. Electrochemical ORR performance in 0.1 M aq. KOH. (a) Rotating ring-disk electrode 

(RRDE) polarized curves recorded with Fe@Aza-PON, Pt/C and Fe@TAB (red: Fe@Aza-PON, black: 

Fe@TAB , blue: Pt/C) (b) Tafel plot, (c) the test for catalytic stability and (d) result for methanol 

poisoning. 
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Next, the mechanism for converting Aza-PON into nitrogenated graphitic shells on the surface of Fe 

nanoparticles was investigated. The Fe3O4-catalyzed conversion of carbon feedstock into graphitic 

structures for void-free encapsulation is a well-known mechanism,31-33 in which the Fe3O4 is prone to 

reduce into the forms of FeO, Fe and Fe3C. During heat-treatment, the Fe3O4 nanoparticles in contact 

with the Aza-PON frameworks are reduced to form Fe3C at the boundary, while their core part is reduced 

to Fe0.  

 

Figure 2.14. Study of elemental composition changes and dependence of electrocatalytic performance 

on annealing temperature. (a) Element contents of Fe@Aza-PON with respect to annealing 

temperatures. Inset is a numerical percentage of each element. (b) XPS spectra of Fe@Aza-PON with 

respect to annealing temperatures. Inset: numerical percentage of each element. (c) CV curves of 

samples annealed at different temperatures in 0.1 M aq. KOH Condition (catalyst loading: 20 μg, scan 

rate: 10 mV s−1). (d) Average onset potential vs. annealing temperature plots after three measurements 

(dark red dot). 

Hence, as schematically represented in Figure 2.1, the structure of the Fe@Aza-PON can be 

described as follows. The Fe@Aza-PON is composed of Fe nanoparticle cores encapsulated in 

nitrogenated graphitic shells, which can protect against further reduction of Fe0 into Fe3C at the interface 

and are distributed on the Aza-PON matrix (Figure 2.1). 
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To optimize catalytic performance, control experiments were carried out. As the temperature 

increased, carbon content increased while nitrogen content decreased (Figure 2.14a, b). At higher 

temperature, the content of pyridinic nitrogen from pyrazine rings in the Aza-PON decreased, as 

indicated by the reduction in supercapacitance (Figure 2.14c).24 This result is related to the rate of 

oxygen diffusion as the ratio of Aza-PON was reduced.  

However, electron conductivity was improved due to the removal of edge groups,34,35 which allows 

better conductive contact. From this complementary relationship between oxygen diffusion and electron 

conductivity, the optimum annealing temperature was selected to be 750 °C (Figure 2.14d). Thus, the 

catalyst heat-treated at 750 °C was further studied to investigate detailed ORR catalysis.  

 

 

Figure 2.15. Rotating ring-disk electrode (RRDE) voltammograms recorded with Fe@Aza-PON, Pt/C 

and Fe@TAB in 0.1 M aq. HClO4 solution. (a) LSV curves. (b) Tafel plots (each 30 µg of catalyst 

amount is loaded, scan rate: 10 mV s−1 at 1600 rpm).  

 

 

Figure 2.16. The electron transfer number with HO2
− (or H2O2) concentration for Fe@Aza-PON, 

Fe@TAB, and Pt/C. (a) 0.1 M aq. KOH. (b) 0.1 M aq. HClO4 (scan rate: 10 mV s−1). 
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Given its structural configuration, Fe@Aza-PON was evaluated as a stable indirect-contact ORR 

catalyst (with non-contact between the surface of the Fe nanoparticle and oxygen). To begin with, 

rotating ring disk electrode (RRDE) measurements were conducted with a scan rate of 10 mV s−1 at 

1600 rpm. For comparison, Fe@TAB and commercial Pt/C (20 wt%) were also tested under the same 

conditions. As shown in Figure 2.13a, the half potential of Fe@Aza-PON is 13 mV higher than that of 

Pt/C in alkaline condition (0.1 M aq. KOH solution). The Tafel slopes of Fe@Aza-PON, Fe@TAB and 

Pt/C are 60, 112 and 90 mV decade−1 from the Koutecky-Levich (K-L) equation, respectively (Figure 

2.13b). In acidic condition (0.1 M aq. HClO4) (Figure 2.15), the values are 116, 250 and 142 mV 

decade−1. The lowest Tafel slope for the Fe@Aza-PON in both conditions indicates the fastest kinetics. 

In addition, the yield of peroxide species (HO2
− and H2O2) was found to be below 15%, which 

corresponds to an electron transfer number (n) of ~3.7 in both conditions (Figure 2.16). A number close 

to 4 indicates that the ORR mechanism proceeds kinetically with a favorable 2-step pathway.36  

The different performances of the Fe@Aza-PON and Fe@TAB can be explained by their structural 

differences. A high Fe/Fe3C ratio along with high pyridinic N can contribute to high ORR activity (see 

Table 2.1).3,6,37 In addition, the polar phenazine-based structure in the Aza-PON not only assists oxygen 

diffusion26,38 but also promotes oxygen activation.25  

 

Figure 2.17. Current retention with respect to chronoamperometric cycling 0.1 M aq. HClO4 solution. 

Inset: 100 000 cycles of Fe@Aza-PON (scan rate: 100 mV s−1). 

Like other reported Fe-N-C and Fe/Fe3C systems,6,9,11,13,29 the Fe@Aza-PON catalyst showed ORR 

activity similar to Pt/C. However, it displayed superior durability, showing high current retention (zero 

loss) even after 100,000 cycles (see insets in Figure 2.13c, 2.17-2.18). Compared to other Fe-N-C and 

Fe/Fe3C systems (Table 2.2), the unusual stability of Fe@Aza-PON stems from its indirect-contact 

ORR catalysis, which can be realized thanks to the void-free encapsulation of the Fe nanoparticle cores 

in graphitic shells. The electrochemically stable graphitic shells are not only able to protect the Fe 

nanoparticle cores from oxidation (rusting), but also allow efficient electron tunneling for efficient ORR 

catalysis.  
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These structural advantages contribute to durable catalytic activity and protection from impurities 

such as methanol crossover (Figure 2.13d) and CO poisoning (Figure 2.18).39,40  

 

Table 2.2. ORR stability of Fe-N-C, Fe/Fe3C and other literature reported nonprecious metal composites 

compared to Fe@Aza-PON 
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Figure 2.18. Rotating ring-disk electrode (RRDE) voltammograms after 10,000 cycles in both aq. KOH 

(0.1 M) and aq. HClO4 (0.1 M) solutions. (a, c) LSV curves of Fe@Aza-PON. (b, d) LSV curves of 

Fe@TAB. Dark green curve: after 10,000 cycles. Insets in (a-d): resulting negative shifts after 10,000 

cycles (30 µg of catalyst amount was loaded, scan rate: 10 mV s−1 at 1600 rpm). TEM images of 

Fe@Aza-PON: (e) 0.1 M aq. KOH and (f) 0.1 M aq. HClO4 after 10,000 cycles. 



29 

 

 

Figure 2.19. (a) Illustration of Li-Air cell system with Fe@Aza-PON. (b) Discharge-charge curves of 

Pt/C and Fe@Aza-PON, respectively, in 0.5 M LiOH with 1.0 M LiNO3 at each current density. (c) 

cycling performance at 0.1 A g-1.  

  

As a potentially practical application, Fe@Aza-PON was tested in a hybrid Li-air cell (Figure 

2.19a).41,42 Figure 2.19b shows the first discharge-charge curves of Fe@Aza-PON and Pt/C in 0.5 M 

aq. LiOH/1.0 M aq. LiNO3 electrolytes at different current densities, in the range of 0.5 to 2.0 A g−1. 

The discharge voltage plateau was observed at around 3.1 V for both the Fe@Aza-PON and Pt/C at a 

current density of 0.5 A g−1.  

At the same time, the Fe@Aza-PON exhibited superior performance with respect to its oxygen 

evolution reaction (OER) activity during the charging process. The charge plateaus were observed at 

3.67 and 3.90 V, respectively, for Fe@Aza-PON and Pt/C at the current density of 0.5 A g−1. These 

outstanding electrocatalytic properties can be attributed to the robust void-free encapsulation of Fe 

nanoparticles in the Fe@Aza-PON, while the Pt/C is vulnerable to OER process.41,42  
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Figure 2.20. CV curves of samples in oxygen-saturated condition. (a) in alkaline medium (0.1 M KOH), 

(b) in acidic medium (0.1 M HClO4). CO poisoning tests (0.1 M KOH): (c) Pt/C, (d) Fe@Aza-PON. 

The amount of sample loading in each case was 20 µg (scan rate: 10 mV s−1). 

  

As shown in Figure 2.19c, the cycling performance of Pt/C at a constant current density of 0.1 A g−1 

was substantially degraded with an increase in the discharge-charge voltage gap from 0.85 V to 1.21 V. 

However, the Fe@Aza-PON exhibited constant cycling performance for 40 h (the voltage gap remained 

less than 0.7 V). Based on these results, the Fe@Aza-PON catalyst was determined to be an efficient 

bifunctional catalyst with performance comparable to the benchmark Pt/C in a hybrid Li-air cell. 

 

2.4 Conclusions 

We introduced a high-quality iron (Fe)-based oxygen reduction reaction (ORR) catalyst, consisting 

of Fe nanoparticle cores stably encapsulated in nitrogenated graphitic shells, which were uniformly 

distributed in a phenazine-based porous organic network (Aza-PON). To realize a stable catalytic 

structure, the two-dimensional (2D) fused aromatic Aza-PON was key, providing feedstock for the 

formation of defect-free graphitic shells to protect unstable Fe nanoparticle cores. The well-defined 

graphitic shells also efficiently facilitated electron tunneling and provided abundant pyridinic N sites 

for enhanced oxygen diffusion. Due to its structural benefits, the Fe@Aza-PON catalyst displayed 
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comparable ORR activity, and superior durability, to commercial Pt/C.  

Moreover, the bifunctional Fe@Aza-PON catalyst exhibited promising practical performance in a 

full hybrid Li-air battery cell. Based on this study, the synthesis strategy suggests two important features: 

(1) the 2D fused aromatic PON forms better void-free encapsulation of vulnerable metallic 

nanoparticles for improved stability; and (2) considering the availability of various building blocks for 

the PON syntheses, and non-precious metals, the new design and synthesis of indirect-contact catalysts 

is very promising for various additional applications.  

 

2.5 Experimental Methods 

2.5.1 Synthesis of the Fe@Aza-PON catalyst 

Into a 3-necked round flask, 1,2,4,5-benzenetetramine tetrahydrochloride (1.1 g, 3.87 mmol), 

hexaketocyclohexane octahydrate (0.8 g, 2.56 mmol), iron (III) chloride (1.0 g, 6.17 mmol) and 

anhydrous N-methyl-2-pyrrolidinone (NMP, 80 mL) were placed. The mixture was stirred at 150 °C 

under nitrogen atmosphere for 8 h. After cooling to room temperature, sodium borohydride (NaBH4, 10 

wt%, 40 mL NMP) was slowly added then heated again at 150 °C for 5 h. The crude was poured into 

distilled water (1.5 L). The black precipitates were collected by filtration through 

polytetrafluoroethylene (PTFE, 0.45 μm) and Soxhlet extracted with water and methanol for 3 days. 

Then, freeze-dried (at −120 °C under 10−5 mmHg) for 48 h. The black powders were heat-treated at 

different temperature under argon atmosphere for 2 h. After heat-treatment, the samples were leached 

with 3.0 M aq. HCl for 24 h. Finally, the samples were repeatedly washed with distilled water and 

freeze-dried for 48 h.   

 

2.5.2 Synthesis of Fe@TAB 

The procedure is similar to Fe@Aza-PON. For the preparation of Fe@TAB (Figure 2.11), 

hexaketocyclohexane octahydrate was not used. Into a 3-necked round bottom flask, 1,2,4,5-

benzenetetramine tetrahydrochloride (1.1 g, 3.87 mmol), iron (III) chloride (1.0 g, 6.17 mmol) and 

anhydrous N-methyl-2-pyrrolidinone (NMP, 80 mL) were placed. The mixture was stirred at 150 °C 

under nitrogen atmosphere for 8 h. After cooling to room temperature, sodium borohydride (NaBH4, 10 

wt%, 40 mL NMP) was slowly added then heated again at 150 °C for 5 h. The crude was poured into 

distilled water (1.5 L). The black precipitates were collected by filtration through 

polytetrafluoroethylene (PTFE, 0.45 μm) membrane and Soxhlet extracted with water and methanol for 

3 days each. Then, freeze-dried (at −120 °C under 10−5 mmHg) for 48 h. The black powders were heat-

treated at different temperature under argon atmosphere for 2 h. After heat-treatment, the samples were 

leached with 3.0 M aq. HCl for 24 h. Finally, the samples were repeatedly washed with distilled water 

and freeze-dried for 48 h.  
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2.5.3 Preparation of hybrid Li-air cell  

A lithium metal foil (0.2 mm thickness) was purchased from Honjo Metal and the disk with a diameter 

of 1.0 cm were prepared for use as the anode. 1.0 M lithium hexafluorophosphate (LiPF6, Sigma-Aldrich 

Co.) in tetraethylene glycol dimethyl ether (TEGDME, Sigma-Aldrich Co.) was used as an organic 

anolyte, and 0.5 M lithium hydroxide (LiOH, Sigma-Aldrich Co.) + 1.0 M lithium nitrate (LiNO3, 

Sigma-Aldrich Co.) in distilled water was used as an aqueous catholyte. Li1+x+yTi2-xAlxP3-ySiyO12 (0.15 

mm thickness) solid Li-ion conducting ceramic glass (OHARA Inc.) used as a separator between 

anolyte and catholyte. The catalyst ink (10 mg mL-1) was prepared by dispersing in the binder stock 

solution. The binder stock solution is mixture with a volumetric ratio of 45:45:10 for ethanol, isopropyl 

alcohol, and Nafion (5 wt.%, Sigma-Aldrich Co.), respectively. An air electrode was prepared by drop-

coating the catalyst ink onto a gas-diffusion layer (Toray TGP-H-090) with loading density of 1.0 mg 

cm-2. The applied current densities are normalized by the loading weight of catalyst. Titanium metal 

mesh was used as a current collector onto the gas diffusion layer and electrochemical measurements 

were conducted on a Biologic VMP3 at ambient air conditions.         

   

2.6 Materials 

All reagents and solvents were purchased from Sigma-Aldrich Chemical Inc., unless otherwise stated. 

Solvents were degassed with nitrogen purging prior to use. All reactions were performed under nitrogen 

atmosphere using oven dried glassware.  

 

2.7 Instrumentations 

Powder X-ray diffraction (PXRD) studies were taken on a High-Power X-Ray Diffractometer 

D/MAX 2500V/PC (Cu–Kα radiation, 40 kV, 200 mA, λ = 1.54056 Å) (Rigaku Inc., Japan). High-

resolution transmission electron microscopy (HR-TEM) was performed by using a JEM-2100F 

microscope (JEOL Inc., Japan) under an operating voltage of 200 keV. The samples for TEM images 

were prepared by dropping dispersed NMP solution on holey carbon TEM grid and dried in oven at 

80 °C under reduced pressure. X-ray photoelectron spectroscopy (XPS) was performed on an X-ray 

Photoelectron Spectrometer Thermo Fisher K-alpha (UK). Thermogravimetric analysis (TGA) was 

conducted in air and in nitrogen atmosphere at a ramping rate of 10 °C min-1 using a Thermogravimetric 

Analyzer Q200 (TA Instrument Inc., USA). Scanning electron microscope (SEM) images were taken 

with a Field Emission Scanning Electron Microscope Nanonova 230 (FEI Inc., USA). The surface area 

was calculated by nitrogen adsorption-desorption isotherms using the Brunauer-Emmett-Teller (BET) 

method on BELSORP-max (BEL Japan Inc., Japan). Elemental analysis was conducted with a Flash 

2000 Analyzer (Thermo Scientific Inc., USA). 
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2.8 Electrochemical analysis  

For all samples in this work, a typical ink preparation procedure was used. Briefly, 5 mg sample and 

40 μL Nafion solution were dispersed in 1 ml isopropyl alcohol/water solution with a volume ratio of 

1:4, followed by ultrasonication for 30 minutes to form homogeneous catalyst inks. To test 

electrochemical catalyst performance and stability, three-neck electrode cell and potentiostat (1470E, 

Solartron, UK) were used. Pt gauze was used as a counter electrode and Ag/AgCl as a reference 

electrode, which is stored in saturated KCl. The working electrodes were prepared by drop casting 

catalyst inks onto the glassy carbon (GC) disk electrodes. The 20 µg of catalyst ink was loaded on 

working electrodes and further dried thoroughly at room temperature prior to measurements. The 

prepared sample electrodes were tested at ambient condition in each medium (0.1M aq. KOH and 0.1M 

aq. HClO4) under oxygen (O2) saturated condition. The 100,000 cycles stability of Fe@Aza-PON, 

Fe@TAB and Pt/C (Figure 2.13c, Figure 2.17) were conducted in acid and alkaline media at a scan rate 

of 100 mV s−1. The CO poisoning tests (Figure 2.20c-d) were performed by the same method (scan rate 

of 10 mV s−1).  

Rotating ring-disk electrode (RRDE) measurement were carried out using CompactStat.h as a 

potentionstat (Ivium Inc., NED) and RRDE-3A (ALS Co., Japan). The 30 µg of catalyst was loaded 

onto a RRDE (4 mm in diameter, 0.1256 cm2 surface area) and dried at ambient condition prior to 

electrochemical tests. Linear sweep voltammetry was measured in O2 saturated 0.1 M aq. KOH and 

HClO4 at a scan rate of 10 mV s−1 with a rotation speed of 1600 rpm (Figure 2.13a, 2.15). The ring 

potential was constant at 0.4 and 0.9 V vs. Ag/AgCl in each solution respectively. For checking the 

stability, the scanning was maintained up to 10,000 cycles (Figure 2.18a-d). The % hydrogen peroxide 

concentration was calculated by concentration (%) = 200 ×
𝐼𝑟

𝑁
÷ (𝐼𝑑 +

𝐼𝑟

𝑁
)  relation and electron 

transfer number (n) was determined by n = 4 ×
𝐼𝑑

𝐼𝑑+𝐼𝑟/𝑁
 equation (Id is disk current, Ir is ring current 

and N is current collection efficiency of Pt ring. N was determined to be 0.424 from the reduction of 

K3Fe[CN]6) (Figure 2.16). The Tafel plot was derived from 
1

𝑖𝑚
=

1

𝑖𝑙
+

1

𝑖𝑘
 relation (im means measured 

current, il is limiting current, ik is kinetic current).1,2 Methanol crossover experiments were performed 

using rotating disk electrode (RDE) by loading 20 μg of catalyst on glassy carbon RDE (3 mm diameter, 

0.0706 cm2 surface area). The current–time (j–t) chronoamperometric response (Figure 2.13d) at 0.5 V 

(vs. RHE) at a rotation rate of 2,500 rpm in 0.1 M aq. KOH with the addition of 3 M methanol (2 mL). 
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Ⅲ. A Robust 3D Cage-like Ultramicroporous Network Structure with High 

Gas-Uptake Capacity 

 

3.1 Abstract 

Uncertainties in energy supply and resource depletion, climate change and the rising costs of 

conventional energy sources present significant challenges to current research. To tackle these issues, 

the storage of hydrogen (H2), methane (CH4) and carbon dioxide (CO2) by adsorption in porous 

materials at relatively low pressure and ambient temperature has been proposed as a solution. Here, we 

report a three-dimensional (3D) cage-like organic network (3D-CON) structure synthesized via the 

straightforward condensation of building blocks designed with gas adsorption properties. The 3D-CON 

can be prepared using an easy but powerful route, which is essential for commercial scale-up. The 

resulting fused aromatic 3D-CON exhibited a high Brunauer-Emmett-Teller (BET) specific surface area 

of up to 2247 m2 g−1. More importantly, the 3D-CON displayed outstanding low pressure hydrogen (H2, 

2.64 wt%, 1.0 bar and 77 K), methane (CH4, 2.4 wt%, 1.0 bar and 273 K) and carbon dioxide (CO2, 

26.7 wt%, 1.0 bar and 273 K) uptake with a high isosteric heat of adsorption (H2, 8.10 kJ mol−1; CH4, 

18.72 kJ mol−1; CO2, 31.87 kJ mol−1). These values are among the best reported for organic networks 

with high thermal stability (~600 °C). 

 

3.2 Introduction 

With the growing consumption of fossil fuels and demand for clean energy, worldwide environmental 

problems and gas storage needs have become increasingly important.1-4 Organic porous materials 

(OPMs) are considered fundamentally valuable for capturing carbon dioxide (CO2)5 and the safe storage 

of clean energy resources2 as well as explosive industrial gases (e.g., methane, CH4).6-7 Among clean 

energy sources, hydrogen (H2) has long been regarded as one of the best alternatives to replace fossil 

fuels. It outperforms the others, because it possesses the highest heat of combustion, and water is the 

only by-product after combustion.8   

Recent efforts have been undertaken to improve the design of porous materials and develop processes 

which result in intrinsic porosities, with the goal of enhancing H2 and CH4 storage, and CO2 capture.9-

11 A notable area of progress in porous materials research has been the evolution of porous high 

crystallinity metal-organic frameworks (MOFs), which are constructed from metal ions and organic 

linkers using reticular chemistry.12-13 Many of these interesting materials have been reported to have the 

highest surface area and gas uptake capacity among all porous materials.13-14 However, despite their 

huge flexibility in design and diversity of structure, MOFs inevitably contain a considerable amount of 

metal centers and relatively weak coordination bonds, which can badly hamper their applications.15 The 
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poor stability problems might be resolved by substituting susceptible chemical coordination bonds with 

stronger covalent bonds, as has been demonstrated using covalent organic frameworks (COFs) and 

porous polymeric materials (PPMs).9, 16-17  

OPMs (COFs and PPMs) are constructed from lightweight building blocks with strong covalent 

bonding, and have attracted a great amount of scientific and technological curiosity, while achieving 

critical importance in many applications such as gas storage, catalysis and gas separation.9, 16 These 

OPMs generally possess stable and perpetual porosity, synthetic diversity, low mass densities and 

physiochemical stability, which makes them immensely competitive in gas storage applications.18-21 

Further vigorous and intensive efforts are underway to produce OPMs with higher surface areas via 

different strategies.9  

To fabricate stable OPMs, it is typically necessary to apply rigid building blocks (repeating units) 

that prevent the collapse of the framework and fill the volume space in a more periodic manner. OPM 

rigidity is usually created by fusing repeating aromatic units. However, while significant progress has 

been made in developing robust OPMs,22 a better understanding of methods for fabricating rigid 

structures with permanent pores using light elements is still highly desired.  

 

Figure 3.1. Synthetic scheme triptycenehexaamine (THA) hexahydrochloride.1 Key procedure to 

afford pure THA is hydrochlorination, since ortho-amino groups in THA are unstable against oxidation. 

 

In the pursuit of high performance OPMs, we employed a strategy based on insights about the C2N 

structure,23 to realize a uniformly microporous robust 3D cage-like organic network (CON) structure 

by the condensation of triptycene-based hexamine (THA)24 and hexaketocyclohexane (HKH) 

octahydrate (Figure 3.1; Figure 3.2). The resulting 3D-CON has a high Brunauer-Emmett-Teller (BET) 

specific surface area as well as good thermal and physiochemical stability. In addition to its exceptional 

surface area, the as-produced 3D-CON outperformed highly porous MOFs in thermal and hydrothermal 

stability and demonstrated great potential for H2 and CH4 storage as well as CO2 capture.  
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Figure 3.2. Schematic illustration of robust 3D-CON structure. Triptycene-based hexamine (THA) 

and hexaketocyclohexane (HKH) in ethylene glycol and acetic acid (3 M) mixture used to form the 3D-

CON. The three structures on the right side are from the different view angle. 

 

3.3 Results and discussion 

The condensation reaction between THA and HKH spontaneously results in the irreversible 

formation of fused aromatic pyrazine rings without the use of an expensive catalyst. The structure of 

resulting material is highly stable in a practical range of thermal and physiochemical conditions. 

Since 3D network structures result in a higher surface area compared to two-dimensional (2D) 

framework structures, a potential multifunctional candidate (monomer) with 3D topology was 

deliberately selected to synthesize the 3D-CON in this study. This [3+3] condensation with THA used 

to form the pyrazine rings has never been previously exploited. Triptycene is considered a promising 

unit for the synthesis of 3D-CONs with good gas storage performance, because it has a special ‘internal 

free volume’ feature.25-27 Moreover, the presence of periodic nitrogen atoms, aromatic phenyl and 

pyrazine rings in the 3D-CON are very useful for the adsorption and desorption of gases and other 

metals in the structure. 

After completing the condensation reaction between the THA and HKH, a monolithic solid gel-like 

material was formed, and the reaction solvent (ethylene glycol) around the material was almost clean 

(Figure 3.3a, b), suggesting the complete digestion of the starting monomers. The subsequent Soxhlet 

extraction with water and methanol also confirmed the clean reaction (no monomer residues), with no 

color removal during the Soxhlet extraction process (Figure 3.3c). In the ethylene glycol and acetic 

acid mixture, the material looked black (Figure 3.3a, b). After the removal of ethylene glycol and acetic 

acid by washing with water, the material turned bright brown (Figure 3.3c) and the color remained after 

freeze drying, with an almost quantitative yield (Figure 3.3d).  
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Figure 3.3. Digital images and NMR spectrum of 3D-CON. (a) Tilted Pyrex glass ampule showing 

the clean reaction solvent after completion of the reaction. (b) After draining the reaction solvent from 

the Pyrex glass ampule. (c) During Soxhlet extraction with water and methanol. (d) After freeze drying 

at −120 °C for four days under dynamic vacuum. (e) Solid-state 13C CP-MAS NMR spectrum. 

 

The bright brown color is due to the breaking of aromaticity by a barrelene-like moiety. It is this 

barrelene-like core in the THA that is responsible for the formation of the stable and high surface area 

material. Once the condensation between ortho-diamines in the THA and diketones in HKH occurs, a 

fused aromatic pyrazine ring forms a stable and rigid linker between the THA and HKH units. The 

resulting structure is highly rigid and retains a diamond-like structural stability, and also creates 

sufficient periodic micropores with greatly increased internal surface areas.  

In addition, solid-state 13C cross-polarization magic angle spinning (CP-MAS) nuclear magnetic 

resonance (NMR) spectroscopy also revealed that condensation of the starting monomers resulted in 

the complete transformation to pyrazine-linked fused aromatic rings (Figure 3.2). The solid-state 13C 

CP-MAS NMR spectrum revealed seven carbon peaks with chemical shifts of 53.5, 113, 124.1, 133.63, 

143, 184 and 203 ppm, which can be assigned to the sp3 bridge carbon (e), aromatic (sp2) carbons (a, b, 

c, d, h) and the edge carbonyl (C=O) groups (f, g), respectively (Figure 3.3e).  

In order to investigate the long-range structure of the 3D-CON, powder X-ray diffraction (PXRD) 

and transmission electron microscopy (TEM) were performed. Although the peaks are broad due to the 

massive molecular size (~∞), the PXRD pattern still revealed some order in the structure (Figure 3.4a). 

The 3D-CON material does not exhibit long range crystallographic ordering, but the locally ordered 

structure is expected to support a high surface area (vide infra).  

Thermogravimetric analysis (TGA) revealed that the 3D-CON was thermally stable. When the 



40 

 

temperature was raised from 50 to 600 °C, less than 4% weight loss occurred (Figure 3.4b). The 3D-

CON is insoluble in common organic solvents such as DMF, alcohols, acetone and organic acids, even 

after stirring at ambient condition for a long time (~ month), indicating that the 3D-CON framework 

possesses high chemical stability.  

Transmission electron microscopy (TEM) images obtained from the dispersed sample revealed that 

the texture is sheet-like (Figure 3.6a), but at high resolution it exhibited uniform micropores (Figure 

3.6b, c). 

The bulk morphologies of the 3D-CON were visualized with field-emission scanning electron 

microscopy (FE-SEM). The 3D-CON showed uniform micropores and a clean morphology. Its grain 

size varied from tens to hundreds of micrometers, suggesting a fine microporous structure (Figure 3.4c, 

d). SEM coupled energy-dispersive spectroscopy (SEM-EDS) (Figure 3.4e) and SEM elemental 

mapping were used to corroborate the elemental composition of the 3D-CON. The presence of carbon 

(C), nitrogen (N) and oxygen (O) was confirmed in the SEM-EDS analysis by elemental mapping 

(Figure 3.5).  

 

Figure 3.4. Structural characterization of the robust 3D-CON structure. (a) Powder X-ray 

diffraction (PXRD) pattern. (b) TGA curve of the as-prepared sample under nitrogen atmosphere after 

in situ activation at 150 °C in a TGA instrument, to remove any adsorbed guest molecules, at a ramping 

rate of 10 ℃ min−1. (c, d) SEM images at different magnifications. (e) Energy dispersive X-ray 

spectroscopy (EDS) spectrum with corresponding SEM image, showing elemental contents. (f) 

Nitrogen adsorption and desorption isotherm at 77 K. The inset is the corresponding pore size 

distribution from the NLDFT approximation.  
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Using different elemental analyses techniques, the chemical composition of the 3D-CON was 

determined, and the results are summarized in Table 3.1. The X-ray photoelectron spectroscopy (XPS) 

technique was used to probe the bonding nature of the 3D-CON. The survey scan spectrum from the 

3D-CON indicated the presence of C 1s, N 1s and O 1s without any other elements in the structure 

(Figure 3.7a). The peak, which appeared at 398.7 eV, was attributed to the characteristic sp2-hybridized 

nitrogen atoms in the 3D-CON structure. In the high resolution XPS spectrum, C 1s can be deconvoluted 

into 284.3, 285.2 and 288.7 eV, which are assignable to sp2 C-C and sp2 C-N in the aromatic ring, and 

the minor peak at 288.7 eV is attributed to the C-heteroatoms, e.g., sp2 C=O and sp2 C-NH2 at the edges 

(Figure 3.7b). The N 1s peak shows one major peak at 398.7 eV for the pyrazine-like nitrogen in the 

structure (Figure 3.7c). The presence of the O 1s peak in the 3D-CON can be assigned to trapped 

moisture and/or oxygen in the pores and residual carbonyl (C=O) groups at the edges (Figure 3.7d).  

 

Figure 3.5. SEM elemental mappings of 3D-CON. (a) SEM image, (b) carbon, (c) nitrogen, (d) 

oxygen. 

 

Table 3.1. Elemental composition of the 3D-CON from different characterization techniques  

Technique C H N O Total 

Theoretical (wt%)  65.54 3.39 17.64 13.43 100 

EA (wt%)a  66.27 2.95 16.24 13.90 99.36 

XPS (at%) 84.11 NAb 10.35 5.54 100 

SEM EDS (wt%)  70.66 NAb 19.81c 09.53d 100 

SEM EDS (at%) 74.53 NAb 17.92 7.55 100 
a Elemental analysis (EA) is most reliable element counts for bulk sample. b NA = Not available. 
c, d The increased nitrogen content and decreased oxygen content in EDS is due to removal of adsorbed moisture and oxygen 

under high vacuum condition in SEM.  
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The porous properties and surface area of the 3D-CON was investigated by subjecting the framework 

to nitrogen adsorption-desorption experiments at 77 K. Before the sorption isotherm measurements, the 

sample was preheated at 150 °C for 12 h under dynamic vacuum.  

As the sorption isotherm displayed in Figure 3.4f, the 3D-CON isotherm was fully reversible with 

an extremely steep nitrogen uptake in the low-pressure range (0-0.01). This result reflects the permanent 

microporous nature of the material according to the IUPAC classification28. The small hysteresis 

observed over the whole range of relative pressure suggests that the pore surface has relatively strong 

gas binding force.  

The sharp uptake at very low p/po is due to enhanced adsorbent-adsorptive interactions in the 

ultramicropores, resulting in micropore filling at very low p/po. The Brunauer-Emmett-Teller (BET) 

model was used on the isotherms at a relative p/po range (0.005-0.05) to generate the BET surface area. 

The specific surface area found to be 2247 m2 g–1 with a total pore volume of 1.06 cm3 g–1 and an average 

pore diameter of 1.8 nm.  

Figure 3.6. TEM images of 3D-CON. (a) Low magnification. (b) High resolution. (c) TEM image 

with corresponding fast Fourier transform (FFT) pattern from the highlighted region, showing low 

crystallinity as expected from the high molecular weight 3D organic network.  
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Figure 3.7. (a) Full XPS survey spectrum of 3D-CON. Deconvoluted XPS spectra: (b) C 1s; (c) N 1s; 

and (d) O 1s.  

Pore size distribution obtained using the nonlocal density functional theory (NLDFT), which gives a 

more closely matching adsorption isotherm, was centered at around 0.55 nm (inset, Figure 3.4f). The 

BET measurements suggest that the 3D-CON possesses a uniform pore size (narrow pore size 

distribution), which is well related to the dimensions of the structure. Thus, it is clear that this material 

has an ordered structure.  

Given the high specific surface area, microporous nature and narrow pore size distribution of 3D-

CON material, the potential gas uptake capacities of small target molecules (H2, CH4 and CO2) were 

investigated. It has been reported that nitrogen containing microporous frameworks generally perform 

well as a material for storing small gas molecules26.  The H2 uptake capacity of the 3D-CON was then 

explored.  

The physiosorption storage of H2 for energy applications is a promising approach to replace 

conventional fossil energy sources. The standard for on-board H2 storage systems set by the US 

Department of Energy (DOE) by the year 2020 is 5.5 wt% and 40 g of H2 L–1. The H2 adsorption-

desorption isotherm of the 3D-CON was collected at 77 K with pressures up to 1.0 bar (Figure 3.8a; 

Figure 3.9a). The highest H2 uptake was 2.64 wt% (296.30 cm3 g–1). This value was higher than most 

OPMs reported recently (Figure 3.9f; Table 3.2).  
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Figure 3.8. (a) H2 adsorption isotherms of 3D-CON measured at 77 K. (b) CH4 adsorption isotherm at 

273 K. (c) CO2 adsorption isotherms at 273 K in millimoles per gram and centimeter cube per gram 

scale.  

 

 

Figure 3.9. Gas storage properties of 3D-CON and literature comparison. (a) Hydrogen adsorption-

desorption isotherm at 77 K. Inset: isosteric heat of adsorption (Qst) as a function of gas loading 

calculated from low pressure isotherms at 77 and 87 K. (b) Methane adsorption-desorption isotherm at 

273 K. Inset: Qst as a function of gas storage obtained from low pressure isotherms at 77 and 87 K. (c) 

Carbon dioxide adsorption-desorption isotherms at 273 K. Inset: Qst for the CO2 as a function of gas 

uptake estimated from low pressure isotherms at 273 and 298 K. (d) High pressure gas (H2, CH4 and 

CO2) uptakes. (e) Argon adsorption-desorption isotherm measured at 87 K. Inset: pore size distribution 

calculated from NLDFT. (f) Comparison of hydrogen uptakes for organic porous materials (OPMs) at 

1 bar and 77 K. 
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This high H2 uptake capacity can be attributed to the large surface area, which results from the 

combined effect of the ‘internal free volume’ of the triptycene-based 3D framework. The absence of 

hysteresis confirms the reversible physiosorption of H2. In addition to exhibiting high surface area and 

stability, the 3D-CON met the DOE 2020 storage target at 77 K and 59 bar (Figure 3.9d). 

As the basic constituent of natural gas, methane (CH4) is an alternative fuel that is cleaner than 

petroleum oils due to its lower carbon emissions. CH4 furnishes more energy because of its higher 

hydrogen to carbon ratio. Although CH4 is more abundant and economical than gasoline, for use in 

automobiles an efficient and secured storage is required. The storage capacity should allow the vehicle 

to drive more than several hundred kilometers before refueling.  

To further explore the different aspects that affect the CH4 uptake in the 3D-CON, CH4 adsorption 

assessments were performed at 273 K and 298 K in the low pressure range (Figure 3.9b; Figure 3.8b). 

As shown in Figure 3.9b, the CH4 uptake at 1 bar is 2.4 wt% (33.5 cm3 g–1) at 273 K and 1.55 wt% 

(21.6 cm3 g–1) at 298 K (Figure 3.10a). This CH4 uptake of 3D-CON is among the best reported values 

in the literature (Table 3.2).  

 

Figure 3.10. Adsorption isotherms of 3D-CON measured at 298 K: (a) CH4, (b) CO2. 

The discharge of CO2 due to the combustion of fossil fuels is now considered responsible for 

abnormal climate change, rising sea levels and an irreversible increase in the acidity of the oceans, 

resulting in adverse impacts on the sea ecology and environment. These issues have inspired the pursuit 

of state-of-the-art CO2 capture technology and materials. The 3D-CON material, with its well-defined 

microporous structure, holds great potential for CO2 capture.  

Testing of the low pressure CO2 uptake of the 3D-CON was performed, and it exhibited excellent 

CO2 uptake at 1.0 bar, with a value of 26.7 wt% (137 cm3 g–1) at 273 K (Figure 3.9c; Figure 3.8c) and 

17.15 wt% (88 cm3 g–1) at 298 K for CO2 (Figure 3.10b). Adsorption and desorption isotherms showed 

no hysteresis, indicating the CO2 uptake in 3D-CON was a reversible process; the interactions between 
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the 3D-CON and CO2 are weak, and the framework can be regenerated without the application of heat29.  

Again, the adsorption capacity values for 3D-CON were found to be among the highest compared to 

most of the OPMs previously reported, and were even competitive with the best reported MOFs under 

the same conditions (Table 3.2).30 

To further understand the interactions and adsorption properties of gases with the 3D-CON, the 

isosteric heat of adsorption (Qst) for H2, CH4 and CO2 was calculated from the gas adsorption isotherms 

at two different temperatures by fitting the values into the Clausius-Clapeyron equation31. The Qst for 

hydrogen was examined by using the H2 adsorption experiments at 77 and 87 K (inset in Figure 3.9a).  

One of the reasons for a lower uptake of H2 is the weak interaction of H2 with the adsorbent, due to 

a lack of binding sites. The 3D-CON displayed a Qst value of 8.10 kJ mol–1 for H2 adsorption at low H2 

uptake. Then, the Qst value decreased slowly as the hydrogen uptake increased, and reached a value of 

7.25 kJ mol–1 (inset, Figure 3.9a). This value is at the higher end compared to the reported literature9. 

At the same time, the higher Qst value in the low pressure region is indicative of the higher affinity 

toward 3D-CON, due to the narrow ultramicroporous pore size distribution and robust fused-aromatic 

framework.  

The Qst values of the 3D-CON toward CH4 and CO2 were estimated from the adsorption data collected 

at 273 and 298 K (inset, Figure 3.9b, c). In the low CH4 uptake zone, the Qst value (18.72 kJ mol–1) 

implied a highly reversible (absence of hysteresis) CH4 attraction toward 3D-CON. A strong binding 

energy is preferred for storing a large amount of CH4 at low pressure (inset, Figure 3.9b). The 

magnitude of Qst was among the optimum heat of adsorption values reported for CH4 adsorption, 

allowing both adsorption and desorption to occur at a fast rate, which is desirable for a fuel storage 

system.32  

In the low CO2 uptake zone, the 3D-CON exhibited a large Qst value (31.87 kJ mol–1) implying high 

CO2 affinity toward the 3D-CON. The reason for the high Qst value observed in the low-pressure region 

may be the strong interactions between CO2 and the 3D-CON, as well as the narrow ultramicroporosity 

(inset, Figure 3.9c). Furthermore, the 3D-CON showed a gradual decrease in Qst as a function of the 

quantity adsorbed. All of the Qst values (H2, CH4, CO2) were among the highest reported values for 

OPMs, and comparable to MOFs as well.6, 33-34   

The low pressure gas sorption studies showed that the 3D-CON was far from saturation at 1 bar 

pressure. Thus, to evaluate the high pressure gas uptake capacity, high pressure gas sorption analyses 

for H2, CH4 and CO2 were also performed (Figure 3.9d).  

The H2 uptake by the 3D-CON at 77 K revealed a gradual increase with pressure, and the H2 storage 

at 59 bar reached 5.5 wt% (27.24 mmol g–1) (Figure 3.9d) with saturation being reached at 70 bar (5.8 

wt%). This exceeds the hydrogen uptake capacities of most OPMs having a similar surface area (Table 

3.2).  
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The high pressure CH4 uptake capacity of the 3D-CON at 298 K and 84 bar was found to be 24.5 wt% 

(15.27 mmol g–1) (Figure 3.9d), which is fairly comparable to the best reported values (Table 3.2). The 

CO2 storage was quite significant, reaching 70 wt% (15.90 mmol g–1) at 298 K and 35 bar (Figure 3.9d). 

This value exceeds those of most reported OPMs (Table 3.2).  

The microporosity of the 3D-CON was further confirmed by measuring the argon (Ar) gas adsorption 

isotherm. Moreover, measuring Ar adsorption at 87 K has some advantages for micropore analysis, 

because Ar does not have a quadrupole interaction. Figure 3.9e shows the Ar isotherm measured for 

3D-CON, which exhibits a rapid Ar uptake at a very low relative pressure, indicating the typical 

behavior of permanent microporosity, followed by a very small gradual increase in Ar uptake (P/Po = 

0.05 ̶ 0.9).  

The steep uptake at very low pressure is due to enhanced interactions in the narrow micropores, a 

typical type I isotherm, resulting in micropore filling at very low pressure. The pore size distributions 

were estimated by using NLDFT from the adsorption of the Ar isotherm (inset, Figure 3.9e), showing 

that the 3D-CON has only one major peak centered at 2.82 Å. This ultrahigh microporosity could be 

the reason of its exceptional H2 uptake at low pressure, which should be associated with the robust 

fused-aromatic ring-based 3D-CON structure, suggesting a promising potential for clean energy and 

environmental applications.  

 

3.4 Conclusions 

In summary, we have presented the design and synthesis of shape persistent cage-like organic 

network structure using a rigid shape persistent building block derived from triptycene hexamine. This 

robust structure is thermally stable, ultramicroporous and display outstanding gas adsorption property. 

The cage-like organic network structure exhibits a BET surface area up to 2247 m2 g-1 and high gas 

adsorption capacity. Owing to the small pore size distribution and aromatic fused ring system, the cage-

like network structure exhibits excellent H2 uptake of up to 2.64 wt % at 77K and 1.0 bar. Uptake for 

CO2 is 26.7 wt % and CH4 is 2.4 wt % at 273 K and 1.0 bar. This strategy of exploiting the effective 

condensation reaction to synthesize organic frameworks with high uptake capacity and high 

physiochemical stabilities hold huge promise for practical applications. CON demonstrates huge 

advance in the preparation of cage-like porous aromatic frameworks for high gas storage capacity. 

 

3.5 Experimental Methods 

3.5.1 Synthesis of triptycenehexaamine (THA) hexahydrochloride.  

In a one-necked round bottom flask containing compound 3 (0.5 g, 0.38 mmol, Figure 3.2) in 

tetrahydrofuran (THF) solution (22 mL), aqueous HCl solution (2.0 M, 1.7 mL, 3.4 mmol) was slowly 

added. The mixture was stirred at room temperature for 0.5 h. The precipitate (triptycenehexaamine 
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hexahydrochloride, 4) was collected by filtration, repeatedly washed with THF and hexane. An off-

white powdery solid was dried under reduced pressure (0.01 mmHg) to yield quantitative (96%). The 

crude product was recrystallized from diluted aqueous HCl solution to give white needle-type crystals 

(Figure 3.11). 1H NMR (400 MHz, D2O) δ (ppm) 7.16 (s, triptycene aromatic C-H), 5.43 (s, 2H, 

triptycene aliphatic C-H) (Figure 3.12a). 13C NMR (400 MHz, D2O) δ (ppm) 141.61, 125.28, 117.08, 

50.46 (Figure 3.12b). DIP-MS m/z for C20N20N6: [M+] found 344.136 (Figure 3.12c). EA calculated 

for C20N26N6Cl6: (wt%) C, 42.56; H, 4.65; Cl, 37.77; N, 14.92. Found: C, 42.50; H, 4.66; N, 14.90.  

 

 

Figure 3.11. Recrystallization of triptycenehexaamine (THA, 4) hexahydrochloride in dilute aqueous 

HCl solution. (a) Before crystallization. (b) After crystallization overnight standing at room temperature. 

White needle-type crystals were formed. 

 

Figure 3.12. Characterizations of the triptycenehexaamine (THA, 4) hexahydrochloride. (a) 1H-NMR 

spectrum (D2O). (b) 13C-NMR spectrum (D2O). (c) DIP-MS spectrum. 
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3.5.2 Synthesis of robust three-dimensional (3D) cage-like organic network (CON).  

Into 120 mL Pyrex ampoule, hexaketocyclohexane (HKH) octahydrate (0.277 g, 0.887 mmol) and 

triptycene hexamine (THA) hexahydrochloride (500 mg, 0.887 mmol) were charged. Ethylene glycol 

(25 mL) and acetic acid (3 M, 25 mL) were added and the ampule was violently agitated for complete 

mixing at room temperature. Then, the mixture was degassed by charging/discharging nitrogen using 

three freeze-thaw pump cycles. The ampoule was then sealed under reduced pressure in the liquid 

nitrogen. The ampule was placed and slowly heated to 130 ℃ for 80 h. The brown precipitates were 

collected by filtration and Soxhlet extracted with water and methanol for 3 days each. The sample was 

dried under reduced pressure (0.01 mmHg) overnight to afford bright brown powder in quantitative 

yield (99.3%).  

 

3.5.3 Low pressure gas adsorption analysis (up to 1 bar).  

Low pressure gas adsorption measurements were performed on samples, which were heated 

previously under dynamic vacuum at 150 ℃ for 12 h to remove residual solvents and other adsorbates. 

Basic volumetric N2 sorption studies were carried out at 77 K using the Brunauer-Emmett-Teller (BET) 

method on BELSORP-max (BEL Japan, Inc., Japan). Liquid nitrogen, liquid argon and ice-water baths 

were used for adsorption measurement at 77, 87 and 273 K, respectively. Ultra-high purity (UHP) grade 

N2, Ar, H2, CO2 and CH4 gases (99.999% purity) were used during the adsorption measurements. A 

sample and nitrogen (99.999 %) gas supply was used in the nitrogen sorption analysis at 77 K (liquid 

nitrogen) throughout the whole measurement. Oil-free environments (vacuum pump and pressure 

regulators) were used for all measurements to avoid contamination of the samples during the degassing 

process and isotherm calculation. In order to test sample stability, the hydrogen isotherm measurements 

were repeated four times in succession over a period of eight months, during which other gas isotherms 

such as CH4, CO2 were also carried out on the same sample. There was no obvious change between the 

cycles or fluctuations were recorded due to change in the temperature and pressure.  

 

3.5.4 High pressure gas sorption measurements.  

High pressure adsorption of H2, CO2, CH4 were recorded using Gas Adsorption-Desorption 

Measurement System (PCTPro-E&E, SETARAM France) at 77 K (liquid nitrogen bath) or 298 K (room 

temperature). The samples were degassed at 150 ℃ for 15 h under dynamic vacuum prior to 

measurements until a constant mass was attained. The sample was charged into the sample holder under 

inert atmosphere. 

 

3.6 Materials.  

All the solvents, chemicals and reagents were purchased from Aldrich Chemical Inc., unless 
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otherwise stated. Solvents were degassed with nitrogen purging before use. All reactions were 

performed under nitrogen atmosphere using oven dried glassware. Triptycene hexamine (THA) 

hexahydrochloride was synthesized according to a procedure described in the literature.24 

 

3.7 Instrumentations.  

Scanning electron microscope (SEM) images were taken with a Field Emission Scanning Electron 

Microscope Nanonova 230 FEI, USA. X-ray photoelectron spectroscopy (XPS) was performed on an 

X-ray Photoelectron Spectrometer Thermo Fisher K-alpha (UK). X-ray diffraction (XRD) studies were 

taken on a High-Power X-Ray Diffractometer D/MAZX 2500V/PC (Cu–Kα radiation, 35 kV, 20 mA, 

λ = 1.5418 Å) Rigaku, Japan. Magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra 

were measured at 298 K on an Agilent VNMRS 600 spectrometer. The spectra were recorded under 

conditions of cross polarization (13C ← 1H), magic angle sample spinning high power 1H decoupling. 

The thermogravimetric analysis (TGA) was carried using a SDT Model Q600 thermal analyzer at a 

heating rate of 10 ℃ min−1 in nitrogen and dry air atmosphere. Elemental analysis (EA) was conducted 

with a Thermo Scientific Flash 2000 Analyzer. High resolution transmission electron microscopy (HR-

TEM) was performed by using a JEM-2100F microscope (JEOL, Japan) under an operating voltage of 

200 keV. The samples for TEM were prepared by drop casting an ethanol dispersion on Quantifoil holey 

carbon TEM grid and dried.  

 

Table 3.2. Hydrogen, CO2 and CH4 uptake of various literature reported organic porous materials 

(OPMs)  

Materials 
BET area 

m2 g–1 

H2 uptake 77 

K (wt%) 

CO2 uptake  

(273 K) mg g–1 

CH4 uptake  

(273 K) mg g–1 
References 

3D-CON 2247 
2.64 (1.0 bar) 

5.8 (70 bar) 

267 (1.0 bar) 

750 (35 bar, 298 

K)  

24 (1.0 bar) 

237 (85 bar, 298 

K) 

This work 

Trip(Me)-PIM 1760 
1.80 (1.0 bar), 

3.4 (18 bar) 
--- --- 

Macromolecules, 

2010, 43, 5287 

CTC-PIM 770 
1.43 (1.0 bar) 

1.7 (10 bar) 
--- --- 

Angew. Chem. Int. 

Ed. 2006, 45, 1804 

PIM-1 760 
1.04 (1.0 bar) 

1.44 (10 bar) 
--- --- 

Angew. Chem. Int. 

Ed. 2006, 45, 1804 

BDT2 571 1.5 (1.0 bar) 105 (1.0 bar) 8 (1.0 bar) 

ACS Appl. Mater. 

Interfaces 2016, 8, 

27669 

BDT3 1010 2.2 (1.0 bar) 165 (1.0 bar) 29 (1.0 bar) 

ACS Appl. Mater. 

Interfaces 2016, 8, 

27669 

PSN-1 1045 1.26 (1.0 bar) 150 (1.0 bar) --- 
Chem. Commun. 

2014, 50, 1897 

PGF-1 825 1.20 (1.0 bar) 72 (1.0 bar) --- 
Chem. Commun. 

2014, 50, 2015 
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NPTN-1 1558 1.44 (1.0 bar) 140 (1.0 bar) --- 
Macromolecules 

2014, 47, 2875 

Th-1 726 1.11 (1.0 bar) 127 (1.0 bar) --- 
Adv. Mater. 2012, 

24, 5703 

Cz-POF-1 2065 2.2 (1.0 bar) 202 (1.0 bar) 22 (1.0 bar) 
Chem. Mater. 2014, 

26, 4023 

FCTF-1-600 1535 --- 243 (1.0 bar) --- 
Energy Environ. 

Sci., 2013, 6, 3684 

Network-1 1980 1.76 (1.0 bar) 160 (1.0 bar) --- 
J. Mater. Chem. A, 

2014, 2, 8054 

Network-A 4077 --- 117 (1.0 bar) --- 
Energy Environ. 

Sci., 2011, 4, 4239 

Network-C 1237 --- 170 (1.0 bar) --- 
Energy Environ. 

Sci., 2011, 4, 4239 

Network-E 1470 --- 130 (1.0 bar) --- 
Energy Environ. 

Sci., 2011, 4, 4239 

TPI-1@IC 1053 --- 141 (1.0 bar) --- 
J. Mater. Chem. A, 

2015, 3, 878 

PPN-1 827 
1.37 (1.0 bar), 

3.30 (45 bar) 
--- --- 

Chem. Mater. 2010, 

22, 5964 

PPN-2 2790 
1.51 (1.0 bar), 

3.76 (40 bar) 
--- --- 

Chem. Mater. 2010, 

22, 5964 

PPN-3 5323 
1.58 (1.0 bar), 

4.28 (42 bar) 
--- --- 

Chem. Mater. 2010, 

22, 5964 

POP-1 1031 2.78 (60 bar) --- --- 
Chem. Commun. 

2010, 46, 4547 

POP-2 1013 2.71 (60 bar) --- --- 
Chem. Commun. 

2010, 46, 4547 

POP-3 1246 3.07 (60 bar) --- --- 
Chem. Commun. 

2010, 46, 4547 

POP-4 1033 2.35 (60 bar) --- --- 
Chem. Commun. 

2010, 46, 4547 

HPOP-1 1148 
1.50 (1.13 

bar) 
--- --- 

Macromolecules, 

2011, 44, 5573 

HPOP-2 742 
1.08 (1.13 

bar) 
--- --- 

Macromolecules, 

2011, 44, 5573 

POFs 1063 
1.5 (1.0 bar), 

4.3 (70 bar) 
--- --- 

Chem. Mater., 

2010, 22, 4974 

BILP-3 1306 2.1 (1.0 bar) 225 (1.0 bar) 24 (1.0 bar) 
Chem. Commun. 

2012, 48, 1141 

BILP-10 787 1.6 (1.0 bar) 177 (1 bar) 16.7 (1.0 bar) 
J. Mater. Chem., 

2012, 22, 25409 

TPOP-5 810 
1.07 (1.13 

bar) 
--- --- 

J. Mater. Chem., 

2011, 21, 13554 

PCTF-1 2235 1.86 (1.0 bar) 142 (1.0 bar) 16.9 (1.0 bar) 
Chem. Commun. 

2013, 49, 3961 

APOP-3 1402 1.80 (1.0 bar) 199 (1.0 bar) 21 (1.0 bar) 
Polym. Chem., 2013, 

4, 4690 

PCTF-2 784 0.9 (1.0 bar) 80.7 (1.0 bar) 10.8 (1.0 bar) 
Chem. Commun. 

2013, 49, 3961 

ALP-1 1235 2.2 (1.0 bar) 236 (1.0 bar) 26 (1.0 bar) 
Chem. Mater. 2014, 

26, 1385 
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P-PCz 1647 --- 245 (1.0 bar) --- 
Chem. Commun. 

2016, 52, 4454 

TSP-2 913 --- 180 (1.0 bar) --- 
Chem. Commun. 

2014, 50, 7933 

TAPOP-1 930 --- 154 (1.0 bar) --- 
RSC Adv., 2015, 5, 

90135 

PPN-6-

CH2DETA 
555 --- 158 (1.0 bar) --- 

Angew. Chem. Int. 

Ed. 2012, 51, 7480 

Azo-COP-2 729 --- 112 (1.0 bar) --- 
Nat. Commun. 2013, 

4, 1357 

STPI-2 541 --- 146 (1.0 bar) --- 
Polymer 2014, 55, 

3642 

PECONF-3 851 --- 153 (1.0 bar) 16 (1.0 bar) 
Nat. Commun. 2011, 

2, 401 

Polystyrene 1930 
1.4 (1.0 bar),  

5.2 (80 bar) 
--- --- 

Chem. Mater. 2006, 

18, 4430 

DCX/BCMBP 1904 
1.50 (1.0 bar),  

3.7 (15 bar), 
--- 70 (36 bar) 

Adv. Mater. 2008, 

20, 1916 

BCMBP 1366 
1.70 (1.0 bar), 

2.8 (15 bar), 
--- 88 (36 bar) 

Adv. Mater. 2008, 

20, 1916 

Polyaniline 632 0.96 (1.0 bar) --- --- 
J. Mater. Chem., 

2007, 17, 4989 

Polypyrrole 732 1.60 (1.0 bar) --- --- 
Chem. Commun. 

2009, 1526 

COF-1 750 1.46 (35 bar) 230 (35 bar) 40 (44 bar) 
J. Am. Chem. Soc. 

2009, 131, 8875 

COF-5 1990 
0.95 (1.0 bar), 

3.54 (35 bar) 
870 (55 bar) 89 (35 bar) 

J. Am. Chem. Soc. 

2009, 131, 8875 

COF-103 4630 
0.6 (1.0 bar)  

3.5 (35 bar) 
1190 (55 bar) 175 (35 bar) 

J. Am. Chem. Soc. 

2009, 131, 8875 

COF-102 3620 
0.6 (1.0 bar),  

3.6 (35 bar) 
1200 (55 bar) 187 (35 bar) 

J. Am. Chem. Soc. 

2009, 131, 8875 

COF-18Å 1263 1.55 (1.0 bar) --- --- 
Adv. Mater. 2008, 

20, 2741 

PAF-1 5600 1.6 (1.0 bar)  91 (1.0 bar) 13 (1.0 bar) 
Energy Environ. 

Sci., 2011, 4, 3991 

PAF-3 2932 2.07 (1.0 bar)  153 (1.0 bar) 19 (1.0 bar) 
Energy Environ. 

Sci., 2011, 4, 3991 

PAF-4 2246 
1.50 (1.0 bar) 

 
107 (1.0 bar) 13 (1.0 bar) 

Energy Environ. 

Sci., 2011, 4, 3991 

DCBP 2475 1.55 (1.0 bar)   
Angew. Chem. Int. 

Ed. 2008, 47, 3450 
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Ⅳ. Two-dimensional standing-like fully-fused aromatic network for efficient 

gas separation N2/CH4 

 

4.1 Abstract 

Fully-fused aromatic networks (FANs) have been widely applied as the energy materials. Gas storage 

and separation are important technologies in the energy market such as shale gas, and material 

development is the key. The organic network structure depends on the structural dimensions. The 2-

dimensional structures have been applied to separation with high selectivity, and 3-dimensional 

structures have been applied to gas storage with high gas adsorption amount. Gas separation through 

pressure swing adsorption (PSA) is considered both in terms of selectivity and capacity, but there are 

many difficulties in material development due to the trade-off relationship between the two. In this 

study, we introduce a new standing-like 2-dimensional structure, which and provide a strategy to 

complement the selectivity and storage capacity. The results provide insights into the design of polymer 

structures for gas separation. 

 

4.2 Introduction 

Rationally designed porous organic frameworks (POFs) are classified into various categories like 

ordered covalent organic frameworks (COFs), porous organic networks (PONs), hyper-cross-linked 

polymers (HCPs), conjugated microporous polymers (CMPs), fused aromatic networks (FANs), etc.1,2 

The dimension of the structure, chemical properties of the pore and their size can be controlled by 

choosing suitable monomer symmetry along with its functional groups to envision applications in the 

field of energy storage, catalysis, drug delivery, gas absorption, separation membrane and other 

significant applications.1,3-7  

FANs structures doped with heterogeneous elements (especially nitrogen) such as C2N-h2D,8 C3N,9 

Aza-CMP,10 aza-COF-1,11 and CS-COF,12 etc., have been reported to overcome the limitation of the 

two-dimensional (2D) inorganic/metallic structure (eg. graphene, MoS2, etc.), and fully-fused structures 

have exhibited excellent electronic properties with semiconductor characteristics as an energy material. 

In addition, by stably holding the metal with the electron delocalized of the bonding between nitrogen 

and carbon, they showed a high catalytic activity and strong durability.13-15  

In the gas separation field, metal organic frameworks (MOFs) have been studied a lot to overcome 

the commercial zeolite properties that are currently being used in connection with pressure swing 

adsorption (PSA), which is a technique called molecular sieve that separates the desired gas from the 

mixture by using difference in adsorption of the individual gas.16,17 Although a wide range of POFs 

structures be can design with mass production,18 but their application to PSA process is hampered by 
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the low thermal stability and the flexibility which creates variation in pore size due to rotation or folding 

of structure.   

Among the possible candidate of POFs structures for the separation, fused aromatic networks (FANs) 

can be perceived as an alternative. The FANs, which have a rigid fused ring do not rotate and renders 

higher thermal stability to the framework. However, studies on gas storage and separation related to 

fully-fused 2D structure are not actively studied. This is because the entire structure is aromatic, and 

the interlayer interaction force becomes large, so that it has a lower surface area than the three-

dimensional (3D) structure or the general POFs.  

For the successful gas separation application, not only gas selectivity which related to purity but also 

gas adsorption property is significant factor to reduce cycles of PSA process. Generally, 2D structure is 

advantageous for separation by showing high selectivity, but 3D structure is known to be for gas storage 

rather than separation because variety gas molecules easily access to open pores. Due to the trade-off 

relationship between selectivity and capacity, it may be difficult to design precise structures. Moreover, 

the conventional 2D structures have the disadvantages of blocking the pore channels depending on the 

stacking pattern such as AA, AB, or ABC.19 Although there are studies to prevent interlayer interaction 

by attaching bulky and rigid substituents to prevent layers stacking, this method has the disadvantage 

of losing original structural characteristics.20  

To cope with design and performance issues, here, we report new type of standing-like 2D fully fused 

aromatic network (2D-Standing) structure to highlight new strategies in design of gas separation 

material through reducing layered π-π interactions. To compare the structural properties of standing-

like motif, we prepared 2D (2D-Flat type) and 3D (3D-CON) structures as the conventional FANs.21  

The separation between CH4 and N2 gases is very challenging technology due to the kinetic diameter 

similarity (CH4: 3.80 Å and N2: 3.64 Å).22,23 Since the PSA process is effective for separating methane 

for natural gas upgrading, we have investigated the adsorption and selectivity with the structures 

mentioned above. 

This study will provide insight into the design of FANs structures, how these differences affect gas 

separation and adsorption properties. Furthermore, how standing-like 2D structure differs from the 

layered 2D structure. To the best of our knowledge, this is the first case of design and performance study 

of fully fused aromatic 2D-Standing structure and its comparison with the other dimensional structures 

(2D and 3D) of the same family.  

 

4.3 Results and discussion 

All the fully-fused aromatic network structures were synthesized by condensation aromatization 

between di-amine and di-ketone moieties in acidic condition (see Methods).  Phenazine rings formed 

through aromatization are partially polarized due to the pyridinic N. In addition, all structures have 
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fused rings, so it has the advantage of being strong and thermodynamic stability because it is irreversible 

reaction. For 2D-Flat, like Figure 4.1, the structure will grow in two-dimensional direction, but in case 

of 2D-Standing, we expect the units of structure to be grown 'standing-like' vertically along the growth 

2D plane. 

 

Figure 4.1. Illustrate of 2D-Flat and 2D-Standing network structure. Each element is drawn as different 

color (gray: carbon, cyan: nitrogen, red: oxygen). 

 

Figure 4.2. Structural characterization of the structures. (a) XRD patterns of the frameworks (b) 

BET isotherms measured at 77 K. Filled: adsorption; blank: desorption. (c) CP/MAS 13C NMR spectra 

of 2D-Standing (top) and 2D-Flat (bottom) structure. (d) TGA of each organic network structure in the 

air atmosphere (ramping rate: 10 ˚C/min). Dark blue: 2D-Standing, dark green: 2D-Flat. 
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Table 4.1. Atomic compositions of surface of 2D-Standing and 2D-Flat structures as determined by the 

survey of XPS regarding carbon (C), nitrogen (N), and oxygen (O) 

Results 
Element (at. %) 

C N O 

2D-Standing 
Theoretical 84.63 11.52 3.84 

Experimental 81.79 9.62 9.53 

2D-Flat 
Theoretical 84.00 12.03 3.97 

Experimental 83.90 7.71 8.39 

To analyze structure, we performed an X-ray photoelectron spectroscopy (XPS), elemental analysis 

(EA), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, Cross-polarization/magic 

angle spinning 13C nuclear magnetic resonance (CP/MAS 13C NMR), scanning electron microscopy 

(SEM), and high-resolution transmission electron microscopy (HR-TEM) for each structure.  

The atomic compositions of surface and presence of carbon (C), nitrogen (N), and oxygen (O) 

respectively in the deconvoluted XPS peaks were observed. The pyridinic N (398.28 eV), C-N (294.96 

eV), and C=O (531.42 eV, could be on the edge) peaks were identified (Figure 4.3, Table 4.1). The 

elemental analysis was well matched with the expected values and the experimental results, and other 

elements were not observed (Table 4.2). Regarding XRD patterns, interestingly in a 2D-Flat structure, 

the peak at 26o corresponds to the interlayer interaction is missing in case of 2D-Standing structure, 

which indicates the difference between the two structures (Figure 4.2a). This means that 2D-Standing 

structure does not have a π-π interaction between the layers and indirectly shows the availability of open 

pores or surface area loss by the stacking pattern.  

 

Figure 4.3. High-resolution XPS spectra of 2D-Standing (a-d, top) and 2D-Flat (e-h, bottom). (a, e) 

Survey spectrum. (b, f) C 1s spectra. (c, g) N 1s spectra. (d, h) O 1s spectra.  
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Figure 4.4. NLDFT pore size distribution (PSD) results of (a) 2D-Flat and (b) 2D-Standing.  

Table 4.2. Elemental analysis data of 2D-Standing and 2D-Flat structures 

Results 
Element (wt%) 

C N H O Total 

2D-Standing 
Theoretical 79.39 12.62 3.18 4.81 100 

Experimental 78.05 10.56 2.93 7.53 99.07 

2D-Flat 
Theoretical 79.99 13.33 2.88 3.81 100 

Experimental 76.81 10.96 2.61 6.06 96.44 

 

The BET surface area calculated by isotherm N2 sorption curves at 77 K provides information on 

regarding the surface area of the materials depending on the geometry (Figure 4.2b, Table 4.3). As 

expected, 2D-Standing indicates the higher surface area (1336.22 m2 g-1) and adsorption amount 

compared to 2D-Flat structure (743.45 m2 g-1). It can be described the creation of loose packing with 

rigid framework makes yield higher permeability and free volume.24 The pore size distribution (PSD) 

using non-local density functional theory (NLDFT) showed the major pore widths of 0.59 and 1.3 nm 

in both structures (Figure 4.4). This means that the structural difference between 2D-Flat and 2D-

Standing is the difference between lying and standing but does not affect the pore size. From the BET 

analysis, a 2D-standing structure can be indirectly understood that by eliminating π-π stacking, the gas 

molecules feel freedom for adsorption like 3D structure. This suggests that with same functional groups 

and even in the same chemical environment, the orientation of the structure (standing-like) is 

advantageous for high gas storage and large surface area. 

CP/MAS 13C NMR spectroscopy critically confirmed the difference between 2D-Standing and 2D-

Flat structure (Figure 4.2c). The resonance peak at δ = 54 (dark blue dot in Figure 4.2c) can be assigned 

to the bridging carbon of the triptycene unit (methylidyne bridge) in 2D-Standing network.21,25 In case 

of 2D-flat structure, the peak at δ = 125 shows a strong carbon peak related to aromatic pyrene and 

triphenylene moieties, and δ = 139 is associated with phenazine carbon (C=N) peak formed by the 
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reaction of di-amine and di-ketone moieties. The 2D-Standing structure also reveals the respective 

carbon peaks at δ = 127 and 142 associated to the aromatic fragment and phenazine carbon respectively, 

similar to 2D-Flat structure. The TEM images, both structures failed to obtain informative results due 

to the beam damage (Figure 4.5).25  

 

Figure 4.5. High-resolution transmission electron microscopy (HR-TEM) images of 2D-Standing 

network structure (a, b) and 2D-Flat structure (c, d) at different magnification. 

 

The materials were characterized well with the thermogravimetric analysis (TGA) according to the 

dimensions of the structure (Figure 4.2d). On the contrary, the 2D-Flat structure shows high stability 

as it prevents external heat energy from penetrating. The flatness of the structure in the PSA process be 

it can reduce the cooling process and provide an energy advantage when carried out at high temperatures. 

However, it is seen as a trade-off relationship since the amount of gas adsorption decreases significantly 

(requires more cycles). Within this relationship, 2D-Standing structure designed in this study has the 

advantage of improving gas adsorption amount while blocking π-π interactions between layers. 

Table 4.3. Table showing methane (CH4) and nitrogen (N2) absorption in two temperature, heat of 

adsorption and selectivity (at 293 K) by gas ratio for each structure 

 
CH4 (mmol g-1) N2 (mmol g-1) CH4/N2 Selectivity 

293 K 298 K 293 K 298 K 50/50 80/20 

2D-Flat 0.571 0.501 0.139 0.122 5.729 5.882 

2D-Standing 0.837 0.769 0.221 0.205 4.947 5.044 

3D-CON 0.989 0.899 0.279 0.252 4.420 4.371 

Selectivity is calculated by IAST. 
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Figure 4.6. Gas adsorption properties of 2D-Standing, 2D-Flat and 3D-CON regarding CH4 and N2 at 

293 K. (a) adsorption amount (mmol g-1) of CH4 (downward triangle) and N2 (upward triangle). (b) the 

separation selectivity of IAST-predicted CH4/N2 mixture. (c) graph of CH4 uptakes and selectivity 

trends for each structure. Dark blue stands for 2D-Standing, dark green for 2D-Flat and dark red stands 

for 3D-CON. 

 
Figure 4.7. Gas adsorption amount regarding (a) CH4 and (b) N2. Both graphs show adsorption amount 

(mmol g-1). Both graphs show the amount of adsorption (mmol g-1), measured at 293 K (downward 

triangle) and 298 K (upward triangle). Dark red stands for 3D-CON, dark blue for 2D-Standing, and 

dark green for 2D-Flat. 

To compare gas separation properties, adsorption of methane (CH4) and dinitrogen (N2) was 

conducted under two temperature conditions (293 K and 298 K) according to the characteristics of the 

structural dimension (Figure 4.6, Figure 4.7). The 3D-CON structure is a structure synthesized from 

the aromatization reaction of hexaketocyclohexane (HKH) with triptycene hexamine (THA) that 
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reported an excellent performance in hydrogen storage.21 The reason for comparing 3D-CON is to see 

the characteristic differences in the direction of the arrangement of the triptycene for 2D-Standing 

structure. The adsorption of CH4 under the 1 bar at 293 K condition showed that the 2D-Flat has 0.571 

mmol g-1 (0.92 wt%), a 2D-Standing has 0.84 mmol g-1 (1.34 wt%), and a 3D-CON has 0.99 mmol g-1 

(1.59 wt%) (Figure 4.6a). As to the N2 uptakes, values 0.139 mmol g-1 (0.39 wt%), 0.221 mmol g-1 

(0.62 wt%), and 0.279 mmol g-1 (0.78 wt%) are shown in order. 3D-CON shows the highest gas 

adsorption amount (Figure 4.6a, Table 4.3). The trend of gas uptake is increasing from 2D to 3D 

structure. The 2D-Standing and 3D-CON have structures of triptycene, which is known to be 

advantageous for gas adsorption, but differences in CH4 and N2 adsorption amount are due to the random 

arrangement (direction) of triptycene in the 3D-CON structure so that gases can easily access the 

microporous cages. 

To calculate selectivity which is the binary gas mixture separation system, the single component 

curves were fitted by using Langmuir-Freundlich isotherm model. From the results, the separation 

selectivity of CH4/N2 (50:50) mixture were predicted by ideal adsorbed solution theory (IAST) (Figure 

4.6a).26 The value of IAST represents the 5.73, 4.95, and 4.42 in turn from 2D-Flat, 2D-Standing and 

3D-CON (Figure 4.6b, Table 4.3). As expected, the structure in which the two-dimensional structure 

is layered has the best selectivity, and the larger the structural dimension, the greater the adsorption 

capacity, the less selective. Combining the preceding results, Figure 4.6c shows the relationship 

between CH4 uptakes (mmol g-1) and selectivity (293 K). The 2D-Standing showed intermediate values 

in adsorption amount of CH4 and selectivity between 3D-CON and 2D-Flat. The advantage of the 2D-

Standing structure is that it has the internal volume of the triptycene, which is advantageous for the 

absorption of gases, and that by avoiding the stacked structure, it is not necessary to consider the pore 

blockages caused by the stacking pattern. In addition, unlike 3D-CON, the structure grows in a 2D 

plane, so it has a consistent arrangement to separate the gas.  

From a structural point of view, the 2D-Flat structure has a layered structure with non-covalent π-π 

stacking interactions, 2D-Standing structure has no such interactions, thereby maximizing the surface 

area in two dimensions. Both 2D-Standing and 3D-CON structures are triptycene-based networks. In 

other words, both have an intrinsic free volume, which is expected exhibit high gas adsorption amount 

in the stable network structure. The difference between the 2D-Standing and 3D-CON can be described 

based on the arrangement of triptycene units, in case of 2D-Standing the triptycene units are arranged 

in a standing 2D plane while in case of 3D-CON the triptycene units are arranged in a 3D space. 

 

4.4 Conclusion 

The newly designed standing-like 2D structure shows that it has 3D features while simultaneously 

having 2D features. There is no need to consider stacking compared to the conventional 2D materials. 

The trade-off relationship in the gas adsorption and separation, 2D-Standing structure showed the role 
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of a compromise. While this type of structure maintains symmetry, changing the monomer can create 

an infinite number of structures. Not only gas storage and separation, but it will also provide new 

material design strategies such as catalysts and energy materials, which will have a huge impact on 

polymeric material science. 

 

4.5 Methods 

4.5.1 Synthesis of fully-fused aromatic 2D-Standing network structure  

In the 250 ml three-neck flask, triptycene hexamine (THA) hexahydrochloride (1.0 g, 1.7 mmol) and 

dihydropyrene-4,5,9,10-tetraone (0.70 g, 2.67 mmol) were taken in distilled trifluoromethanesulfonic 

acid (TFMSA, 35 ml) on ice bath. After stirring at 0 ˚C for 1 h, the ice bath was replaced with oil bath 

and gradually raised the temperature to 175 ˚C. Just after 1 h the later the thin liquid converted into like 

gel solid. The temperature was maintained for 2 h to ensure complete reaction and then cooled down to 

room temperature. The gel-like product was precipitated in deionized water and filtered on PTFE 

membrane (0.45 μm pore size). The collected product was Soxhlet extraction with water and MeOH for 

3 days each and freeze dried at -120 ˚C under reduced pressure for 3 days.  

 

4.5.2 Synthesis of fully-fused aromatic 2D-Flat network structure 

Triphenylene hexamine (1.5 g, 2.79 mmol) and dihydropyrene-4,5,9,10-tetraone (1.09 g, 4.18 mmol) 

were mixed in TFMSA (40 ml) at ice bath. Then the mixture could reach room temperature for 12 h. 

Next, the temperature raised slowly to 175 ˚C at once and stirred for 3 h. The mixture was then cooled 

to room temperature and precipitated in deionized water. After precipitation, the refining process is 

identical to 2D-Standing. 

 

4.5.3 Synthesis of 3D cage-like organic network (3D-CON)  

Triptycene hexamine hexahydrochloride (0.5 g, 0.88 mmol) and hexaketocyclohexane (HKH) 

octahydrate (0.277 g, 0.88 mmol) were charged into the 3 neck round bottom flask containing TFMSA 

at 0 ℃ under nitrogen condition. The mixture was stirred for 1 h at 0 ℃. Then the ice bath was replaced 

with oil bath and raised the temperature to 175 ℃ and stirred for 6 hours. The mixture was then cooled 

to room temperature and precipitated in deionized water. After precipitation, the refining process is 

identical to 2D-Standing. 

 

4.6 Instrumentations 

Powder X-ray diffraction (PXRD) studies were conducted with a High-Power X-Ray Diffractometer 

D/MAX2500V/PC (Cu-Kα radiation, 40 kV, 200 mA, λ = 1.54056 Å) (Rigaku Inc., Japan). Elemental 

analysis was studied by a Flash 2000 Analyzer (Thermo Scientific Inc., USA). N2 adsorption isotherms 

at 77 K were measured using a Micromeritics 3Flex surface characterization analyzer (Micromeritics 
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Instruments, Norcross, GA, USA) and surface areas of each samples were calculated using the 

Brunauer-Emmett-Teller (BET) method within the consistency criteria. The methane and nitrogen 

adsorption isotherms at 293 and 298 K were also measured with the 3Flex analyzer. Thermogravimetric 

analysis (TGA) was conducted in air and in nitrogen atmosphere at a ramping rate of 10 °C min-1 by 

using STA 8000 (PerkinElmer Inc., USA). X-ray photoelectron spectroscopy (XPS) was collected by 

an X-ray Photoelectron Spectrometer K-alpha (Thermo Fisher Inc., USA). High-resolution transmission 

electron microscopy (HR-TEM) was performed by using a JEM-2100F microscope (JEOL Inc., Japan) 

under an operating voltage of 200 keV. CP/MAS 13C NMR was measured by using VNMRS 600 

(Agilent Technologies Inc., USA) with 20 kHz spinning rate. 
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Ⅴ. Mechanochemically Induced Fe-Graphitic Nanoplatelets as Catalysts for 

the Oxidative Dehydrogenation 

 

5.1 Abstract 

Carbon-based catalysts have attracted much attention for the dehydrogenation (DH) of organic 

molecules, due to their rich active sites, high conversion efficiency and selectivity. However, because 

of their poor stability at high operation temperature (above 600 °C) and relatively high cost, their 

practical applications have been limited. Here, we report a simple ball-milling induced 

mechanochemical reaction which can introduce iron (Fe) and different functional groups (mostly stable 

aromatic C=O after heat-treatment) along the edges of graphene nanoplatelets. The resulting Fe-

graphene nanoplatelets (Fe-XGnPs, X = H, C, N, or V) provide active sites for the oxidative 

dehydrogenation (ODH) of ethylbenzene into styrene. Among them, Fe-NGnPs (X = N) displayed the 

highest performance for styrene production at low temperature (~11.13 mmol g−1 h−1, 450 °C) with high 

selectivity and durability.  

 

5.2 Introduction 

Dehydrogenation (DH) is an important reaction in the petroleum and polymer industries. For example, 

polystyrene (PS) is extensively produced by the DH of ethylbenzene (styrene, ST). In chemical 

industries, ethylbenzene (EB) DH is typically performed using metal-based catalysts such as potassium 

(K), molybdenum (Mo), and aluminum (Al) promoted iron oxide (Fe2O3).1-2 At the same time, non-

metallic catalysts based on nanostructured carbon-based materials such as heteroatom-doped carbon 

nanotubes (CNT), graphene, and ordered mesoporous carbon materials, have been intensively studied 

because they exhibit high conversion efficiency compared to metal oxides.3-5 However, because their 

operating temperature is relatively high, the stability of carbon-based catalysts remains an important 

issue. In addition, a cost-effective synthesis method has yet to be developed. 

Before they can be successfully employed for commercial uses, carbon-based catalysts need to be 

scalable at low-cost. One of the promising approaches, a mechanochemical reaction using ball-milling, 

has recently been shown to produce various types of edge-functionalized graphene nanoplatelets 

(EFGnPs).6-12 EFGnPs produced by the mechanochemical ball-milling of graphite in the presence of 

different reactants have exhibited outstanding performance in energy conversion and storage 

applications.13-19 The mechanochemical reaction has many advantages, including being an eco-friendly 

(less chemical waste), scalable, low-cost EFGnPs production method, which also allows selectivity of 

the functional groups at their edges.8  

In contrast, the direct-DH process using excess steam requires high temperature (600-700 °C) and 

the consumption of a large quantity of energy to reduce coking on the surface of the catalysts. Compared 
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to direct-DH, oxidative dehydrogenation (ODH) is an energy saving process. From a thermodynamic 

viewpoint, the ODH process can produce much higher yields than the direct-DH process for the DH of 

ethylbenzene into styrene.2 

The ODH reaction can be performed using several oxidizing agents, including oxygen, carbon 

dioxide, halogens, dinitrogen monoxide, and elemental sulfur. Among them, carbon dioxide (CO2) is 

the most promising agent, because it can be a soft oxidant as well as a diluent. The others have 

undesirable side reactions, including burning carbon-based catalysts (their use at industrial scale can 

cause a serious explosion).20 In addition, the reverse water-gas shift (RWGS) between CO2 and H2 is 

known to improve catalytic conversion via synergistic coupling reaction, as shown in Eq. (1).21 In this 

study, therefore, ODH was selected as an energy saving process, with CO2 as the oxidizing agent.2, 20  

𝐶𝑂2 + 𝐻2  𝐶𝑂←
→ +  𝐻2𝑂 (1) 

To investigate the catalytically active sites for ODH, the surface functionality of the EFGnPs was 

controlled by changing the milling conditions. GnP samples were produced by ball-milling graphite in 

the presence of hydrogen (H2), carbon dioxide (CO2), nitrogen (N2), or vacuum (V), to produce XGnPs 

(X = H, C, N, or V). Depending on the specific combination in the ball-mill reactor, the reaction between 

the Fe atoms and active carbon species formed Fe-graphene nanoplatelet (Fe-XGnPs) structures. The 

Fe-XGnPs demonstrated efficient catalytic activity for ODH at low temperature (below 450 °C) with 

high selectivity and durability. 

 

5.3 Results and Discussion 

For the oxidative dehydrogenation (ODH) of ethylbenzene into styrene, a series of iron (Fe)-doped 

graphene nanoplatelets (Fe-XGnPs, X = H, C, N, or V) were prepared using the mechanochemical 

reaction by ball-milling under hydrogen (H2), dry ice (solid state CO2), nitrogen (N2), or vacuum (V) 

(Figure 5.1). The stainless steel balls have two important roles: to induce the reaction between the 

active carbon species and chemical substances (H2, CO2, N2, or vacuum) to form XGnPs, and for the 

in-situ doping of XGnPs with Fe to produce Fe-XGnPs. In a ball-mill container the high speed traveling 

stainless steel balls collide with graphite. During this process, they deliver enough kinetic energy to the 

graphitic framework to cause dissociation of the graphitic C-C and Fe-Fe bonds, and generate active 

carbon and Fe species.7 This allows the formation of C-Fe bonds along the unzipped edges of the 

graphene nanoplatelets (GnPs) to produce Fe-GnPs. In addition, when the mechanochemical reaction 

is carried out in the presence of other chemical substance (e.g., H2, CO2, N2, or vacuum), the formation 

of C-X' bonds (X' = H, COOH, N, or V) can also occur at the graphitic edges, to yield Fe-XGnPs (X = 

H, C, N, or V). 

All of the catalysts were produced using stainless steel balls with 5 mm diameters. Low Fe-doped 

NGnPs (LFe-NGnPs) were also produced using smaller balls (diameter: 3 mm) (vide infra). Because 

the smaller balls had much lower kinetic energy, a smaller amount of Fe could be doped.  
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To maximize catalytic activity and to ensure stability, the samples were annealed above the catalytic 

reaction temperature. After heat-treatment, only stable functional groups (aromatic N and C=O) were 

expected to remain on the Fe-XGnP catalysts. It is known that stable aromatic N- and carbonyl (C=O) 

groups on carbon-based catalysts contribute to the ODH of organic substances.  

 

 

Figure 5.1. A schematic of the preparation of Fe-XGnP catalysts (X = H, C, N, or V) with in-situ Fe-

doping, and functionalization with different elements at the edges of the graphene nanoplatelets (GnPs). 

After heat-treatment, the higher Fe content (5 mm balls) are designated Fe-XGnPs and the lower Fe-

containing NGnPs (3 mm balls) are named LFe-NGnPs.  

 

 

Figure 5.2. Powder X-ray diffraction patterns of XGnPs (X = H, C, N or V). L is lower Fe containing 

XGnPs (milled with 3 mm of steel balls).  
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Figure 5.3. Structure analysis of heat-treated (L)Fe-XGnPs. a) Powder X-ray diffraction patterns; iron 

carbide (Fe3C, dark green bars), iron oxide (main peaks of Fe3O4, sky blue square diamond dots) and 

Fe (black dots). b) Full XPS survey spectra. High-resolution survey spectra are shown in Figure 5.4. c) 

TGA thermograms obtained with a ramping rate of 10 °C min−1 in air, providing quantitative Fe contents 

in the samples based on char yields at 800 °C. 

 

X-ray diffraction (XRD) patterns of the samples before and after annealing display a clear difference. 

While samples before heat-treatment show only broad (002) peaks associated with the d-spacing of 

graphitic layers (Figure 5.2), samples after heat-treatment at 700 °C in argon atmosphere display 

different diffraction patterns (Figure 5.3a) depending on the milling environment. For example, Fe-

NGnPs and Fe-VGnPs mainly present sharp Fe3C peaks, whereas Fe-HGnPs and Fe-CGnPs display bcc 

Fe and magnetite peaks (Figure 5.3a, ICDD no. 01-077-0255 (Fe3C), 00-006-0696 (Fe), 98-000-0294 

(Fe3O4)). The NGnPs (in nitrogen) and VGnPs (in vacuum) have plenty of binding sites to form Fe-N 

(NGnPs only) and Fe-C bonds. Atomically deposited Fe species along the broken edges of the NGnPs 

and VGnPs formed into Fe3C and Fe particles upon heat-treatment.  

In the Fe-NGnPs, the active carbon formed by the removal of nitrogen at high temperature can 

combine with oxygen to reduce Fe, and does not show oxidized Fe. However, since the VGnPs have no 

functional groups capable of reducing Fe, the Fe-VGnPs contain an oxide form (Fe3O4, magnetite).  

Unlike the Fe-NGnPs and Fe-VGnPs, the Fe-HGnPs (in hydrogen) and Fe-CGnPs (in carbon dioxide) 

have no specific chemical binding sites for active Fe species, but Fe species physically trapped in the 

graphitic structure were thermally transformed into Fe particles. Fe-HGnPs have strong Fe peaks 

because the HGnPs have abundant hydrogen that can reduce Fe, whereas the Fe-CGnPs shows strong 

magnetite peaks, because the CGnPs do not have enough reducing elements.8  

The heat-treated Fe-XGnPs (X = H, C, N, or V) catalysts were expected to have an enhanced graphitic 

structure and improved interaction between the C and Fe. The LFe-NGnPs, which were prepared from 

NGnPs using smaller steel balls (3 mm), had a broad XRD peak between 40-50 degrees because of the 

lower Fe content. 
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Figure 5.4. High-resolution XPS spectra of Fe-XGnPs: a) O 1s; b) C 1s and c) N 1s. Each intensity 

scale is shown in the graph. 

X-ray photoelectron spectroscopy (XPS) spectra show the introduced elements and their bonding 

natures in (L)Fe-XGnPs (Figure 5.3b). As expected, the O 1s peak in each sample can be attributed to 

aromatic carbonyl (C=O) groups, which are the only stable oxygenated groups at the edges of the GnPs 

after heat-treatment at 700 °C in argon atmosphere (Figure 5.4).22 Quantitative analysis of the elemental 

contents using XPS is not reliable, because XPS is more sensitive to the surface chemical composition 

(Table 5.1).23 Elemental analysis (EA) and thermogravimetric analysis (TGA) are more straightforward 

methods to determine element contents. Fe contents in particular can be determined by analyzing the 

char yield of TGA in air. 

The elemental analysis (EA) results show the difference between samples before and after heat-

treatment (Table 5.2). Unexpectedly, the Fe-CGnPs displayed the lowest ratio of oxygen (O) to carbon 

(C), although their precursors were prepared with the most oxygen-rich substance, CO2. This result 

supports the conclusion that CGnPs have abundant dangling oxygenated groups (e.g., -COOH and -

OH), which can be thermally stripped off during heat-treatment. Unlike the Fe-CGnPs, the Fe-NGnPs 

and Fe-VGnPs had higher O/C ratios, suggesting that they have the more stable aromatic C=O groups 

in their structures.  
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Thermogravimetric analysis (TGA) indicated that the Fe contents of Fe-NGnPs, Fe-VGnPs, Fe-

HGnPs, Fe-CGnPs and LFe-NGnPs were 20.88, 16.82, 4.37, 1.65 and 0.30 wt%, respectively, based on 

char yields at 800 °C (as calculated from the residual weights of Fe2O3) (Figure 5.3c). Among the 

(L)Fe-XGnPs samples, the Fe-NGnPs and Fe-VGnPs contained high Fe contents, implying that the 

active carbon species were generated from broken graphitic C-C bonds, which have enough energy to 

form metal-C bonds with semimetals or post-transition metals.10, 24  

In this work, active carbon species react with active Fe species in without (vacuum) or inactive 

reactant (nitrogen gas) to form C-Fe bonds. In contrast, the Fe-HGnPs and Fe-CGnPs have lower Fe 

contents, because active carbon species have a much greater chance of reacting with hydrogen (C-H) 

or carbon dioxide (C-COOH) than the active Fe species.  

Table 5.1. Atomic compositions of (L)Fe-XGnPs before (top) and after (bottom) heat-treatment 

determined by X-ray photoelectron spectroscopy 

Before heat-treatment 
Element (at%) 

C N O Fea) 

Fe-HGnPs 89.21 - 10.49 0.30 

Fe-CGnPs 83.40 - 16.38 0.21 

LFe-NGnPs 83.03 9.34 7.16 0.46 

Fe-NGnPs 69.17 15.18 14.08 1.57 

Fe-VGnPs 89.36 - 10.64 - 

After heat-treatment 
Element (at%) 

C N O Fe 

Fe-HGnPs 97.05 - 2.95 - 

Fe-CGnPs 97.36 - 2.64 - 

LFe-NGnPs 92.21 5.29 2.49 - 

Fe-NGnPs 92.31 3.59 3.92 0.18 

Fe-VGnPs 95.42 - 4.58 - 

a) XPS has limitation to detect metallic elements with valence electrons in d- and f-orbitals. 

 

The specific surface areas of samples before and after heat-treatment were determined using the 

Brunauer-Emmett-Teller (BET) method with nitrogen adsorption/desorption isotherms at 77 K (Table 

5.3). Both the specific surface areas and total pore volumes were increased in all samples after heat-

treatment, due to the removal of dangling edge-functional groups. This is expected to enhance the 

catalytic activity of (L)Fe-XGnPs via improved mass-transfer.  
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Table 5.2. Elemental analysis of (L)Fe-XGnPs before (top) and after (bottom) heat-treatments 

a) The ratios of oxygen (O) to carbon (C) in the samples. 

b) The standard deviation (σ). 

c) The numbers in parenthesis are estimated Fe content. 

 

 

Table 5.3. Brunauer-Emmett-Teller (BET) analysis of (L)Fe-XGnPs before (left) and after (right) heat-

treatments using nitrogen adsorption/desorption at 77 K 

 

Vtotal: total pore volume (cm3 g−1); Dmean: mean pore diameter (nm); SSA: specific surface area (m2 g−1).  

 

Before heat-

treatment 

Element (wt%) 

O/Ca) 

C N H O Total 

Fe-HGnPs 78.46b) - 2.35 15.76 96.57 0.20 

Fe-CGnPs 69.07 - 1.72 30.68 101.47 0.44 

LFe-NGnPs 71.60 8.88 1.55 14.55 96.58 0.20 

Fe-NGnPs 57.92 14.61 1.12 15.88 89.53 0.27 

Fe-VGnPs 74.70 0.46 0.54 9.35 85.05 0.13 

After heat-

treatment 

Element (wt%) 

O/C 

C N H O Total 

Fe-HGnPs 88.30 - 0.91 3.88 
93.09 

(6.91)c) 
0.04 

Fe-CGnPs 95.45 - 0.86 1.36 97.67 (2.33) 0.01 

LFe-NGnPs 83.55 8.70 0.87 8.04 101.16 (~0) 0.10 

Fe-NGnPs 75.61 9.22 0.90 6.59 92.32 (7.68) 0.09 

Fe-VGnPs 81.04 - - 1.84 
82.88 

(17.12) 
0.02 

Sample 

(X) 

Before heat treatment of (L)Fe-XGnPs After heat treatment of (L)Fe-XGnPs 

Vtotal Dmean SSA Vtotal Dmean SSA 

H 0.42 4.56 367.21 0.47 3.97 471.21 

C 0.61 3.99 790.60 0.79 3.56 886.34 

L-N 0.69 4.89 567.54 0.81 4.32 753.15 

N 0.28 8.57 130.93 0.37 6.50 227.85 

V 0.25 7.52 134.11 0.26 4.89 214.83 
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Following the structural analysis of the (L)Fe-XGnPs, their catalytic activity was evaluated in the 

temperature range of 350 to 500 °C at 50 °C intervals (Figure 5.6a, 5.5 and 5.7). Among the (L)Fe-

XGnPs samples, the Fe-NGnPs showed the highest rate of styrene (ST) formation. The conversion ratio 

of ethylbenzene (EB) to ST increased with increasing temperature (Figure 5.6b). More importantly, the 

catalytic activity of Fe-NGnPs did not decay, even after five uses at 450 °C (Figure 5.6c).  

 

Figure 5.5. Schematic of the experimental setup. The syringe pump was used for ethylbenzene (EB) 

injection, and the nitrogen and carbon dioxide gases were controlled by a mass flow controller (MFC). 

The final products passing through the quartz reactor are analyzed by gas chromatography (GC). 

The virtue of the Fe-NGnP catalyst is that is does not form by-products, such as benzene or toluene, 

up to 450 °C, while demonstrating ~99% selectivity. This is an important advantage for ST production 

because it removes the need for additional purification processes. Interestingly, when the reaction 

temperature approached 500 °C a side reaction occurred for all catalysts, and the rate of ST formation 

decreased (Figure 5.8). The catalytic performances of samples depended on their functional groups up 

to 450 °C, but at 500 °C they showed behaviors similar to those of commercially used iron oxide 

(FexOy)-based catalysts2, 25 indicating that Fe sites are the primary contributors to the catalytic reaction 

around 500 °C. Overall, the most suitable temperature condition for (L)Fe-XGnPs was 450 °C, where 

it demonstrated a high rate of ST production with low energy consumption compared to other reported 

carbon-based catalysts (Figure 5.6d, Table 5.4).  

To further investigate the factors affecting the ODH reaction, the active sites were divided into three 

parts: the metallic Fe, the defects of graphitic structure and the functional groups at the edges of GnPs. 

First, regarding the amount and activity of Fe, between 350-500 °C FexOy exists in the form of a 

magnetite (Fe3O4) structure (Figure 5.9). Magnetite has a lattice structure of Fe3+ (tetrahedral sites), 

Fe2+ (octahedral sites) and O2− anion. Since iron oxide provides an adsorption site for EB,26 catalysts 

containing large amounts of Fe typically have high conversion rates.27 If Fe provides active sites and 

acts as a major contributing factor, it is reasonable to predict that Fe content will tend to be proportional 

to EB conversion. Based on Figure 5.6a, however, the Fe-HGnPs with low Fe content (4.37 wt%) also 

had higher conversion than Fe-VGnPs (16.82 wt%). Therefore, although the presence of iron oxide 
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enhances catalytic activity, it is still believed that the quantity of Fe is not a major contributing factor 

by itself but may produce a synergistic effect with other factors. 

The defects in graphitic structure of the Fe-XGnPs’ possible active sites was also investigated. During 

ball-milling, many carbon bonds are unzipped by the high kinetic energy. At the same time, the active 

carbon species along the broken edges bond with oxygen or hydrogen atoms to form edge C-O or C-H 

bonds.  

The curvature of the carbon structure was checked using transmission electron microscopy (TEM) 

images (Figure 5.10). The formation of the open edge structure (the curvature of the edge), with its 

mixed sp2 and sp3 hybridization, leads to the partial delocalization of the electron density on its surface, 

which provides catalytic active sites.1, 8, 28-29  

 

Figure 5.6. Catalytic properties of (L)Fe-XGnPs (X = H, C, N, or V) with respect to reaction duration 

time for the ODH of an ethylbenzene (EB) stream. a) The rate of styrene (ST) formation for each 

catalyst according to the reaction temperature. b) Conversion ratio of EB to ST using the Fe-NGnP 

catalyst with respect to reaction time and temperature. c) Durability test of the Fe-NGnP catalyst. d) 

Comparison of the rate of ST formation with reported carbon-based catalysts as a function of their 

reaction temperature (star shapes in the yellow region). Reaction conditions: 300 mg of catalyst, 100 

μmol min−1 of EB/CO2 (EB/CO2 = 1) mixture, N2 is a balance gas, and total flow rate is 10 ml min−1.  
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Table 5.4. Styrene (ST) formation rate of various literature reported carbon-based ethylbenzene 

dehydrogenation catalysts 

Catalyst 
ST Production rate 

(mmol g-1 h-1) 

Reaction temperature (°C), 

(SSA, m2 g-1) 
Reference 

Fe-NGnP 11.13 450 (227.85) This work 

Fe-CGnP 7.96 450 (790.60) This work 

Fe-HGnP 9.62 450 (471.21) This work 

Fe-VGnP 8.75 450 (214.83) This work 

LFe-NGnP 8.72 450 (753.15) This work 

BCN-1000 1.66 500 (1449) 
Angew. Chem. Int. Ed. 

2017, 56, 8231-8235 

rPGO 9.27 400 (2613) 
Chem. Commun. 2015, 

51, 3423-3425 

Nanodiamond 3.09-4.33 550 (*300-420) 
Angew. Chem. Int. Ed. 

2010, 49, 8640-8644 

NT3 4.03 450 (271) 
Carbon 2004, 42, 2807-

2813 

CNF45 3.55 400 (52.1) 
Appl. Catal. A 2007, 

323, 135-146 

CNF(1h@620°C) 1.62 475 (58.8) 
Catal. Today 2012, 186, 

93-98 

Popcarbon-900 6.2 400 (1417) 
Chem. Mater. 2007, 19, 

2894-2897 

CNC/CFoam1500 7.0 440 (129) 
Carbon 2013, 60, 514-

522 

MCT 0.42 350 (5) 

J. Am. Chem. Soc. 

2009, 131, 11296-

11297 

ND@NMC-700 5.8 550 (305) 
Catal. Today 2018, 301, 

38-47 

G-M-CNT-750 4.34 550 (477) 
ChemCatChem 2015, 7, 

1135-1144 

HN-CNT 4.6 550 (349) 
RSC Adv. 2015, 5, 

53095-53099 

*From Beijing Grish Hitech Co. (China), SN20130806165324601. 

  



76 

 

 

Figure 5.7. Oxidative dehydrogenation reaction of Fe-XGnPs catalysts with time and temperature. In 

case of Fe-CGnPs and LFe-NGnPs, the conversion was unstable at 350 °C and the graph was not shown 

in the graph.  

 

Figure 5.8. The product ratio of each catalyst from oxidative dehydrogenation reaction at 500 °C. The 

data were collected after 10 h reaction. 
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Figure 5.9. Powder X-ray diffraction patterns: Fe-XGnPs after ODH reaction (Fe3O4 is marked as red 

bar, ICDD no. 98-000-0294). 

 

 

Figure 5.10. TEM images of Fe-NGnPs. a) Low magnification image. b) High magnification image. 

Red arrows indicate the structural curvatures.  

 

For the Fe-HGnPs milled in the hydrogen environment, the reaction between carboradicals and 

hydrogen molecules is relatively fast and results in many edge C-H defects.8 In the case of Fe-NGnPs 

and Fe-CGnPs, the strong kinetic energy creates many active carbon species along the cracked edge 

lines. When exposed to air, the active carbon species react with air moisture, resulting in oxygenated 

groups at their edges, causing edge delamination and producing a large interlayer distance than graphite 

(Figure 5.2).  

Unlike the case described above, Fe-VGnPs milled in a vacuum condition had a relatively small 

amount of remaining active carbon species due to the formation of iron-carbon (Fe-C) bonds at the 

edges, and the LFe-NGnPs milled with 3 mm stainless steel balls had a small number of defects, as 

compared with Fe-NGnPs, since the balls possess a much lower kinetic energy (only 21.6% of the 

energy of 5 mm stainless steel balls).  
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Figure 5.11. Fourier transform infrared (FT-IR) spectra of Fe-XGnPs. The peak ranges from 1400 to 

1750 cm-1 of the measured IR is indicated by an enlarged scale on the right graph. The ketone groups 

remaining in the heat-treated (700 °C) multilayers of graphene nanoplatelets are observed in the form 

of shoulders due to overlapping with the C=C peak. 

 

In terms of functionality, it is well known that stable aromatic carbonyl (C=O) groups on carbon-

based catalysts contribute to the oxidative dehydrogenation of organic substances.3, 30-38 The C=O bonds 

affect electron density at the edges of the GnPs, and they can activate saturated hydrocarbons as Lewis 

bases.1  

The presence of C=O bonds in the (L)Fe-XGnPs was confirmed from a Fourier transform infrared 

(FT-IR) spectrum (Figure 5.11), with a peak at 1658 cm−1.22 In the EA results (Table 5.2), the Fe-NGnPs 

exhibited the relatively larger oxygen content (O/C ratio = 0.0913), followed by Fe-HGnPs (0.0439), 

Fe-VGnPs (0.0227), and Fe-CGnPs (0.0142). Oxygen content after heat-treatment is mostly associated 

with stable aromatic C=O bonds,22 and hence the higher O/C ratio can mainly be associated with the 

higher presence of C=O bonds in the samples.  

As shown in Figure 5.6a, the rates for ST production follow a tendency similar to that of O content 

(C=O) (the LFe-NGnPs were not considered, to exclude the effect of Fe content). In the (L)Fe-NGnPs, 

the local electronic structure of the C-N bonds enhances the activation of hydrocarbon for ODH.30, 39-40  

Based on the experimental results, among all Fe-XGnPs samples, the Fe-NGnPs showed the highest 

catalytic activity, mainly due to the combination of three factors: the metallic sites, edge defects, and 

polar functionality (aromatic N and C=O groups) at the edges of the GnPs. In our experimental results, 

the amount of Fe and the ratio of O/C (aromatic C=O) tended to fit the ODH reaction performance.  
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5.4 Conclusions 

In summary, a series of (L)Fe-XGnPs were synthesized to evaluate their catalytic activity for 

oxidative dehydrogenation (ODH) of ethylbenzene (EB) into styrene (ST). (L)Fe-XGnPs were prepared 

by a simple mechanochemical reaction, which is an eco-friendly method for scalable production at low-

cost for industrial application. The compositions of the catalysts can also be controlled by the reaction 

conditions (e.g., H2, CO2, N2, or vacuum). The low temperature ODH catalytic activity of Fe-XGnPs 

provides economic benefits and avoids unnecessary energy consumption as well as side reactions.  

The experimental results can be interpreted to indicate that the ODH catalysts are affected not only 

by the amount of Fe, but also by the stable aromatic nitrogen and oxygen (C=O) functionalities and the 

ratio of edge defects on the carbon frameworks. The mechanochemical reaction used to prepare the 

catalysts are useful for controlling the milling environment and determining optimum conditions. 

Mechanochemically obtained Fe-XGnP materials can be cost-effective catalysts for ODH with high 

activity, selectivity and durability, and their performance suggests the design and synthesis of various 

other reaction catalysts. The results in this study also indicate that the simple ball-milling method can 

be useful for imparting various catalytic active sites and thus widening applications to various other 

organic reactions. 

 

5.5 Materials 

All solvents were purchased from Sigma-Aldrich Chemical Inc., unless otherwise stated. Edge-

functionalized GnPs (XGnPs) were synthesized by using a pristine graphite (Alfa Aesar, natural 

graphite powder, 100 mesh, 99.9995% metal basis, Lot#14735). 

 

5.6 Instrumentations 

Ball-milling was performed by Pulverisette 6 (Fritsch Inc, GER). Powder X-ray diffraction (PXRD) 

studies were conducted with a High-Power X-Ray Diffractometer D/MAX2500V/PC (Cu-Kα radiation, 

40 kV, 200 mA, λ = 1.54056 Å) (Rigaku Inc., Japan). Elemental analysis was studied by a Flash 2000 

Analyzer (Thermo Scientific Inc., USA), Nitrogen adsorption isotherms was done by using the 

Brunauer-Emmett-Teller (BET) method on BELSORP-max (BEL Japan Inc., Japan). 

Thermogravimetric analysis (TGA) was conducted in air and in nitrogen atmosphere at a ramping rate 

of 10 °C min-1 by using STA 8000 (PerkinElmer Inc., USA). X-ray photoelectron spectroscopy (XPS) 

was collected by an X-ray Photoelectron Spectrometer K-alpha (Thermo Fisher Inc., USA). High-

resolution transmission electron microscopy (HR-TEM) was performed by using a JEM-2100F 

microscope (JEOL Inc., Japan) under an operating voltage of 200 keV. The oxidative dehydrogenation 

performance was studied by Agilent 7890B gas chromatograph instrument (Agilent Technologies Inc., 

USA) with a DB-1 capillary column connected to a flame ionization detector (FID). Fourier transform 

infrared (FT-IR) was carried out by using Spectrum 100 (PerkinElmer Inc., USA). 
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5.7 Preparation of catalysts  

5.7.1 Preparation of (L)Fe-XGnPs 

XGnPs as precursor were prepared by ball-milling with the pristine graphite (5 g) and various 

reactants like as nitrogen gas (10 bar), carbon dioxide (dry ice, 100 g), hydrogen gas (10 bar) or vacuum 

condition. The container was sealed and charged after five charging-discharging cycles with Ar (10 bar) 

to remove air. The pristine graphite was placed into a stainless-steel container (500 mL) containing 

stainless steel balls (500.0 g, diameter 5 mm; LFe-NGnPs were milled by 3 mm ball with an increased 

loading of 15 g graphite for 10 h in the same condition) and then it was fixed in the planetary ball-mill 

machine and agitated at 500 rpm for 48 h. The resultant products were treated with 1 M aq. HCl solution 

to remove metallic impurities. Final product was freeze-dried at −120 °C under a reduced pressure (0.05 

mmHg) for 48 h to yield XGnPs (NGnPs: 5.62 g; CGnPs: 6.29g; HGnPs: 5.41 g; VGnPs: 5.71g; L-

NGnPs: 15.21 g). 

 

5.7.2 Heat-treatment process of (L)Fe-XGnPs 

Edge-functionalized graphene nanoplates (XGnPs, 2.0 g) was loaded on tube furnace. Those were 

treated in Ar atmosphere at 700 °C for 2 hours and then the resultant catalysts were collected and named 

as low iron containing edge-functionalized graphene nanoplatelets, Fe-XGnPs (Fe-NGnPs: 1.71 g; Fe-

CGnPs: 1.68 g; Fe-HGnPs: 1.72 g; Fe-VGnPs: 1.66 g; LFe-NGnPs: 1.74 g). 

 

5.8 Oxidative dehydrogenation reaction procedure 

Oxidative dehydrogenation reaction was carried out in a fixed bed quartz reactor. 300 mg of catalyst 

(Fe-NGnPs, Fe-HGnPs, Fe-CGnPs, Fe-VGnPs and LFe-NGnPs) was loaded and preheated to 500 °C 

in N2 flow. Ethylbenzene was injected with 0.1 mmol min-1 in N2 and CO2 gases flow (EB/CO2 = 1, 

total 10 ml min-1). The products were analyzed by Agilent 7890B gas chromatograph (GC) instrument 

with a DB-1capillary column connected to a flame ionization detector (FID). The GC calibration was 

done by micro liter scale syringe (Agilent gold standard, P05-G1717). The conversion (XEB), and 

selectivity of styrene (SST) were calculated by Eq. (2) and (3). 

 

𝑋𝐸𝐵 (𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛, %) = (1 −
𝐸𝐵𝑜𝑢𝑡

𝐸𝐵𝑖𝑛
) × 100 (2) 

𝑆𝑆𝑇 (𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, %) = (
𝑆𝑇𝑜𝑢𝑡

𝐸𝐵𝑖𝑛−𝐸𝐵𝑜𝑢𝑡
) × 100 (3) 

 

All the experiments were repeated, and Figure 5.6a of the main text shows the results of the triplicate 

experiment by calculating the mean and standard deviation. 
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