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Abstract

Polymeric materials have a wide range of scientific and technological applications

especially in the field of nanoscience. For example, in the design of well-arranged

nanostructures, block copolymers are popular for the control of various material

properties because they can phase-separate and self-assemble into periodic structures

on nanoscale due to the connectivity and incompatibility of the blocks. In past

decades, the major principles of polymer physics have been established, and many

theoretical tools investigating the polymeric system have been developed. One of

the most successful theoretical tools to describe polymer behavior is self-consistent

field theory (SCFT). The theory calculates mean field solutions of polymer statistics

under self-consistently determined potential fields, and the phase diagram for self-

assembly of block copolymers has been successfully obtained by this tool.

In standard SCFT simulation, it is important to improve numerical algorithms for

exploring wide ranges of polymeric systems. When investigating some polymeric sys-

tems related with interesting physical problems, there remains the SCFT problems

waiting for development of numerical method to accurately solve the target system.

On the other hand, there are some cases when standard SCFT is inappropriate to

apply because of its fundamental assumption of polymer modeling. While a new

group of SCFT method with alternative polymer models has been introduced re-

cently, there are many numerical issues to be solved for practical implementation of

this SCFT method due to its limitation in applicability and speed. Regarding those

numerical challenges of SCFT, I conducted two independent studies of SCFT, and

this thesis consists of two parts.

The first part of this thesis is about two particle interaction in long homopolymer

melts [1]. It has been well known that efficient dispersion of the nanoparticles (NPs)

in polymer melts is an important factor in yielding high performance nanocompos-

ites. One of the strategies to achieve good dispersion of the NPs is grafting the

nanoparticle surface with stretched brush polymers which is chemically identical to

the matrix.

According to the scaling analysis made by Leibler, when the matrix homopoly-

mers are relatively short, the free homopolymers penetrate and wet the brush by

maximizing the translational entropy. This favorable interaction promotes stable



dispersion of NPs. In contrast, when the matrix chains are relatively long, there is

additional entropy loss associated with deep penetration of free homopolymers into

the brush. This effect results in aggregation of NPs, and it is well known as au-

tophobic dewetting behavior. Many experimental and theoretical studies confirmed

that the entropically driven wetting/dewetting transition is not only dependent on

α (the length ratio of free to grafted chains), but also on particle curvature. In ad-

dition, it has been reported that autophobic dewetting can be suppressed by using

polydisperse grafted chains, which means that higher value of α may be necessary

to observe autophobic dewetting phenomenon.

Most theoretical studies about the effect of polydisperse brush on the NP dispersion

are limited at a moderate length ratio α less than 4. It is usually hard for most

simulation methods to achieve high grafting density of brush and large α at the

same time because increase of simulation components results in high computational

demand. Because of the problem, no theoretical research has been conducted for the

direct comparison of monodisperse and polydisperse brush behaviors especially in

completely autophobic dewetting regime with α = 8 or beyond.

In order to theoretically investigate the autophobic dewetting phenomenon, I calcu-

late two particle interaction using SCFT with the newly developed numerical scheme,

adopting two-dimensional finite volume method (FVM) and multi-coordinate-system

(MCS) scheme which makes use of the reflection symmetry between the two NPs.

By calculating the polymer density profile and interparticle potential, I identify the

effects of parameters such as brush thickness, particle radius, α, brush chain polydis-

persity, and chain end mobility. It was found that increasing α is the most efficient

method for promoting autophobic dewetting phenomenon, and the attraction keeps

increasing up to α = 20. At small α values, high polydispersity in brush may com-

pletely nullify the autophobic dewetting, while at intermediate α values, its effect

is still significant in that the interparticle attractions are heavily reduced. The cal-

culation also revealed that the grafting type is not a significant factor affecting the

NP aggregation behavior.

The second part of this thesis concerns implementation of discrete chain SCFT for

low molecular weight polymers [2]. In recent nanoscience, block copolymers with low

molecular weight and high interaction parameter are known as promising material

for the creation of nanostructure with domain of sub-10 nm period. In the standard

SCFT, however, the most widely used polymer model is the Gaussian chain model

in which a long polymer is approximated as an infinitely flexible chain. In the for-

mulation of SCFT, the partition function of polymer chain is calculated by solving

a partial differential equation in the form of modified diffusion equation. One of the



limitations of Gaussian chain model is that it is only applicable to long enough poly-

mer chain, and it may produce unphysical results when applied to the calculation

of the mean field statistics of short polymer chains.

Recently, the discrete chain SCFT has been suggested as an alternative method. In

this formulation, discrete segment chain model is adopted, and the partition func-

tions are obtained through successive integrals calculating the probability distribu-

tion. However, the shape of the partition function integral makes the calculation

of this method much slower than the standard SCFT when calculated in the real

space. Even though the formulation of the discrete chain SCFT has been already

established, the numerical implementation of the method is still in the developing

stage.

In this study, I implement the pseudo-spectral method for the discrete chain SCFT

adopting bead-spring or freely-jointed chain (FJC) model, and a few issues such as

the accurate discretization of the FJC bond function are settled in this process. With

the adoption of the pseudo-spectral method, the calculation becomes as fast as that

of the standard SCFT. The integral equation introduces a new boundary condition,

the neutral boundary, which is not available in the standard SCFT solving the

differential equation. This interesting physical situation is combined with the finite-

range interaction model for the study of symmetric block copolymers within thin

films. I find that the surface-perpendicular block copolymer lamellar phase becomes

preferable to the surface-parallel one when both the top and bottom surfaces are

neutral.
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Part I

Interaction Between Brush-Grafted

Nanoparticles in Chemically

Identical Homopolymer Melts
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1

Introduction

The addition of nanoparticles (NPs) in polymer templates can create materials with significantly

improved mechanical, electrical or optical properties [3–8], and the composite materials have

various potential industrial applications such as display panels, photonic crystals, and memory

devices with magnetic nanocomposite multilayers [9–11]. Over the past few decades, many the-

oretical and experimental studies have revealed that microscopic morphology of the constituent

NPs strongly influences the macroscopic properties of polymer nanocomposites [12–16], and in

particular, efficient dispersion of NPs in polymer matrix has known to be an important factor

for the production of high-performance composites [17–21].

However, it is difficult to mix immiscible inorganic NPs in organic polymer melts. Various

strategies have been suggested for the control of spatial distribution of nanofillers. One popular

method is to functionalize the NP surface with ligands including anionic or cationic oligomeric

surfactants, homopolymers and selective copolymers [22–26]. When the NPs are surrounded by

homopolymer matrix and the aim is to achieve good dispersion of NPs, it is natural to graft

the surface with polymers chemically identical to the matrix.

Even though the chemical similarity between the grafted chains and the matrix makes one

to expect an improved miscibility of the fillers within the matrix, it is often observed that the

NPs self-assemble into clusters with various shapes [15, 17, 19, 20, 27–34]. For example, Akcora

et al. has explored the phase behavior of polystyrene-grafted silica NPs in polystyrene (PS)

matrix [17]. In their work, the grafting density (σ = 0.01 ∼ 0.1 chains/nm2) was low enough

that the core-core attraction of particles competes with the elasticity of the grafted layers,

leading to anisotropic structures such as spherical aggregates, sheets and strings. This behavior

was also confirmed by an analytical theory and Monte Carlo (MC) simulation.

Such anisotropic structures are formed because the particle cores and grafted polymers are

immiscible. Similarly to the case of block copolymer microphase separation, the chain connec-

tivity restricts their phase separation. As a consequence, the polymer chains redistribute on the

particle surface, resulting in various shapes of particle aggregates. This type of partial phase

separation usually occurs when the grafting density is too low and the grafted chains fail to

2



wet the surface completely due to insufficient attraction between them. This phenomenon is

called allophobic dewetting [35, 36], and in this regime, the incomplete screening between the

particle surfaces magnifies the core-core van der Waals attractions. For example, Green and

coworkers experimentally demonstrated that particles aggregate due to allophobic dewetting

when the matrix chain was longer than the grafted chain and the grafting density σ was below

0.1 chains/nm2 [37–39]. Increase of the grafted polymer density removes this partial wetting be-

havior, and allophobic dewetting disappears for thick layers of grafted polymers. In this wetting

regime, the core-core enthalpic attraction is shielded and the miscibility of NPs enhances. They

also observed reappearance of the aggregation at high grafting density, which I will explain

later.

In addition to the increase of the grafting density, use of the bimodal grafted chains is known

to be an effective strategy to suppress allophobic dewetting and achieve good dispersion of NPs.

In a series of experiments, Schadler, Benicewicz and coworkers [8,40,41] have shown that parti-

cles with monomodal grafted chains easily aggregate, but by mixing sparsely grafted long chains

with short grafted chains, the interparticle attraction is screened enough to achieve good dis-

persion of NPs, which greatly improves the thermomechanical property of the nanocomposites.

Shi et al. observed similar results using dissipative particle dynamics simulation [33]. In their

study, various anisotropic self-assembly structures of grafted NPs are found when the grafted

chain length and grafting density are moderate, and bimodal grafted chain layer produces better

wetting surface favoring enhanced dispersion of NPs in the matrix.

When the density of grafted chains is high enough (σN1/2 > 1), where σ is the dimensionless

grafting density and N is the degree of polymerization of the chain, the grafted polymers

stretch outwards and form a brush. In this regime, the brushes completely wet the particle

surface and the NP core-core interaction is strongly screened. As a consequence, the dispersion

characteristics of NPs mainly depend on the entropic effects of the polymers, and the system

experiences another well known wetting/dewetting transition which strongly depends on α, the

length ratio of free to grafted chains. When the melt homopolymers are shorter than the grafted

polymers, there exists a regime that the free homopolymers easily penetrate and wet the brush

in order to maximize the translational entropy. This effect creates attractive interaction between

the melt chains and the brush so that stable dispersion of NPs becomes favorable. On the other

hand, when the matrix chains are relatively long, deep penetration of free homopolymers into

the brush costs conformational entropy loss, and the free chains are expelled from the brush.

This behavior is well understood in many theoretical and experimental studies, and it is referred

to as autophobic dewetting [35,36,42–45]. This phenomenon creates an unfavorable interaction

between the brush and matrix, and it may be responsible for the aggregation of NPs observed

in many experiments, though the distinction between allophobic and autophobic dewetting is

not a trivial task.
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According to the scaling analysis by Leibler and coworkers [42], transition from wetting

to autophobic dewetting on stretched flat brushes (σN1/2 > 1) occurs when α > σ−1/2N−1/4.

Even though many theorists and experimentalists present this scaling relation as the guide of the

dewetting transition, quantitative calculation by Matsen and Gardiner [43] using self-consistent

field theory (SCFT) suggests that somewhat higher α is necessary to observe a meaningful level

of autophobic dewetting on a flat brush. For the practical parameters they tested, finite amount

of surface tension between the brush and homopolymers becomes observable only when α is 1

or above.

Note that these theoretical predictions are valid for flat brushes, and it is natural to ex-

pect some deviations when they are applied to curvilinear systems such as spherical NPs and

cylindrical nanofillars. Many experimental and theoretical studies confirmed that autophobic

dewetting is dependent on both the grafting density and particle curvature [46–48], and it has

been suggested that the onset α for the aggregation of spherical NPs is somewhat higher than

1 [29], especially when the NP size is small. For example, Kim and Green studied nanocompos-

ites of PS homopolymers and PS brush-coated spherical Au NPs with 2.4 nm of approximate

core radius [49]. In their work, the spatial distribution of NPs in thin film nanocomposites was

controllable by the variation of α. At α below 3, they found well-mixed nanocomposites, and

transition from miscibility to immiscibility occurred in the range 3 < α < 8. At high enough

α, preferential NP segregation to the interfaces initiated structural instability. A similar trend

was found in other researches using spherical NPs. The aggregation transition was observed at

α = 5 ∼ 6 in the experiment by Archer’s group with NPs of radius ∼ 5 nm [48], and slightly

different onset value, α = 4, was observed in an experiment by Chevigny et al. with NPs of

∼ 13.4 nm radius [50].

Similar experimental and theoretical researches using cylinder-shaped nanorods suggested

that the boundary between aggregated and dispersed states is around α = 1.5 ∼ 2, which is

somewhat below the onset of the spherical particle aggregation, but it is still above the prediction

using flat brushes [51–53]. In a theoretical research using density functional theory, Frischknecht

investigated the interaction between two aligned polymer-coated nanorods in melts of the same

polymers [51]. She found that weak attractive interaction due to autophobic dewetting becomes

visible at α = 1.5, and the depth of the attractive well becomes deeper at increasing α.

These observations can be explained by the fact that chains are more densely distributed on

flatter surfaces compared to the curvilinear surfaces. As the curvature of the surface increases,

the free ends of grafted chains acquire more space to explore, which promotes the interpenetra-

tion of matrix chains into the brush [48, 54, 55]. As a result, autophobic dewetting is lessened

at α & 1 and a high miscibility of the fillers can be found beyond the boundary predicted by

flat brush theories. In spite of such differences, all the aforementioned systems claim that as

long as brushes are well-stretched, the autophobic dewetting eventually becomes dominant and

nanofillers aggregate at high enough α values.
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I earlier explained the possible use of bimodal grafted chains for the suppression of allophobic

dewetting. Bidisperse brushes can also be adopted to suppress autophobic dewetting. In an

SCFT research by Matsen’s group [56], it was shown that highly bidisisperse flat brush can

significantly broaden the brush/homopolymer interface even at very large α, which results in

the reduction of the autophobic dewetting and effective surface tension. Applying this idea

to the curvilinear surfaces, it is expected that bidisperse brush on NP surface can suppress

autophobic dewetting, and the clumping of NPs are delayed at intermediate values of α where

monodisperse brush results in aggregated phase.

Note that large α value is not the sufficient condition to observe the autophobic dewetting.

The chains must also be densely grafted to avoid allophobic dewetting, and for most experiments

using bimodal brushes, the grafting density is too low (σN1/2 < 1) or at most at the borderline of

the allophobic dewetting so that the two types of brushes are just enough to screen the NP core-

core attraction. There exist a few theoretical studies conducted about the effect of polydispersity

on the NP dispersion, in which the brushes are grafted densely enough to observe entropically

driven wetting/dewetting transition and NP aggregation. Using Polymer Reference Interaction

Site Model-MC simulation, Jayaraman and coworkers confirmed that polydisperse brush is

more effective for NP dispersion compared to the monodisperse brush [57, 58]. They assumed

athermal interaction to mimic experimental systems with negligible core-core interaction, and

the effective interaction between two NPs was calculated as a function of brush polydispersity.

The simulation was conducted up to α = 4, and weak attractive well of ∼ 0.1kBT observed for

monodisperse system disappeared at polydispersity index (PDI) over 1.5, and purely repulsive

interaction remained.

Even though the above result indicates that the effect of the polydisperse brush is significant

enough to nullify the interparticle attraction due to autophobic dewetting at a moderate length

ratio α, the extent to which the polydispersity affects the nature of the interaction is poorly

understood for a wide range of α. Most simulation methods have trouble achieving high σ

and large α at the same time due to high computational demand associated with the increase

of simulation components; thus it remains as an open question if NP dispersion can always be

achieved by means of polydispersity under the condition that NPs would otherwise be aggregated

by autophobic dewetting. As far as I know, no systematic theoretical test has been conducted

for the direct comparison of polydisperse and monodisperse brush behaviors in completely

autophobic dewetting regime with α = 8 or beyond. As mentioned earlier, particles with high

curvature have a tendency to move the dewetting boundary towards larger α, which provides

another reason to make an intense study on this large α regime. This subject also has an

industrial importance because some functional hybrid materials require high molecular weight

matrix polymer for achieving sufficient mechanical integrity, while dispersion of NPs are still

preferable.
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My interest is especially on the investigation of the stabilization mechanism of NPs in the

long homopolymer matrix with α up to 20 where autophobic dewetting is supposed to be signif-

icant. In this part of thesis, the systems are limited to densely grafted brushes (σN1/2 > 1) to

ensure that the system is not in the allophobic regime and the interparticle interaction and phase

transition are determined purely by entropic effect. One major theoretical tool for this subject

is the SCFT which provides an accurate mean field solution of the polymer nanocomposite

system [22,46,47,54,59–61]. Increase of grafting density and grafted chain length is a relatively

easy task in SCFT, but achieving large α can still be an issue in the actual implementation of

the SCFT in a finite size of system.

For the numerical SCFT analysis of an isolated polymer-grafted particle, the spherical coor-

dinate system may be useful, but difficulties arise when focuses are on the interaction between

two polymer-grafted NPs. One possible choice is to use the cylindrical coordinate system with

its z axis on the line connecting the two particles and impose boundary conditions to make the

partition functions vanish inside the particles [46]. However, the cylindrical coordinate system

inevitably hosts cylinder-shaped grids which do not follow the surface of spherical NPs, and one

cannot avoid adopting variable distances from the grafting points to the particle surface. Con-

sidering that logarithm of this small distance influences the free energy of the system, [62] the

cylindrical coordinate system is not ideal for the accurate calculation of this type of problem,

especially when one wants to identify subtle free energy differences.

A more sophisticated approach is to use the bispherical coordinate system following the

geometry of two particles [47, 63]. Trombly and Ganesan investigated the interaction between

brush-grafted particles immersed in chemically identical homopolymer melts by solving SCFT

equations in bispherical coordinates [47]. The interpenetration width between the melt and

brush chains [64, 65] was one of their major subjects. They calculated it as a function of α to

determine the onset of wetting and dewetting transitions. In their study with α up to 4, the

attraction between two particles started to emerge with increasing α, and the depth of attractive

interparticle potential was quantitatively correlated with the interpenetration width.

The bispherical coordinate system allows one to use Neumann boundary on the particle

surfaces, and the grafting points can be positioned on spherically shaped grids. However, the

intrinsic complexity of the coordinate system makes it difficult to perform fast and accurate

numerical calculations. In addition, the prefactor of the delta function initial conditions required

for the control of the grafted polymer density now has subtle angular and interparticle distance

dependences, which adds difficulty in the free energy calculation with higher precision.

Due to the aforementioned problems, even though there exist experimental works on NPs

mixed with high molecular weight polymers, quantitative theoretical research for such long poly-

mer chains has not been available. Multi-coordinate-system (MCS) scheme using two spherical

coordinate systems each centered on one particle is one attractive suggestion to overcome these

problems and perform fast and accurate SCFT calculations [60]. In the previously developed
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MCS scheme, each polymer must be associated with one coordinate system, and thus it is not

applicable to the current problem with freely floating matrix chains. In the current work, by

upgrading the MCS scheme to handle the partition function calculation of the matrix chains, a

numerical method to solve the aforementioned problems has been successfully established. For

the spatial discretization, I adopt a finite volume method (FVM) for both numerical efficiency

and mass preservation [66]. Such a combination allows exploring a very wide range of parameters

while keeping high numerical accuracy.

In this part of thesis, I investigate the interaction between two polymer-grafted particles in

chemically identical homopolymer melts through SCFT theory. In chapter 2, I introduce the

theory and numerical method for analyzing the two particle system. The results obtained by

performing accurate SCFT calculation adopting MCS and FVM are provided in the following

chapter. Finally, I conclude with a brief summary in chapter 4.
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2

Theory and Numerical Method

2.1 SCFT for Two Particle System

Mirror Plane

R R
r r̄
θ θ̄

D1 2

Figure 2-1: Schematic diagram of two spherical nanoparticles of radius R covered with end-grafted
polymers (red color) in chemically identical homopolymer melts (orange color). The particles (gray
color) are separated by a distance D and the plane of reflection symmetry (mirror plane) is drawn by
dashed lines. For the implementation of the multi-coordinate-system (MCS) scheme, two spherical
coordinate systems, r = (r, θ, ϕ) and r̄ = (r̄, θ̄, ϕ̄), centered on particles 1 and 2, respectively, are
introduced. Since there is angular symmetry along the azimuthal directions, the third directions are
omitted.

I first concentrate on two particle problem because such an approach can provide a simple but

efficient analysis of the interparticle interaction. It is natural to assume that the three-body or

higher order interaction is important only when the particle density is very high. In this model,

I consider a system of two identical spherical particles each covered with ng/2 end-grafted

polymers of polymerization index N , and the interparticle distance is D as defined in figure 2-

1. The two particles are surrounded by nf homopolymers each with length αN , and they are

chemically identical to the grafted polymers. The polymers are in an incompressible melt state

so that the system volume is the total volume occupied by the polymers, V = (ng +αnf )N/ρ0,

where ρ−1
0 is the volume of each segment. Later Vg ≡ ngN/ρ0 and Vf ≡ αnfN/ρ0 will be used
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2.1 SCFT for Two Particle System

as the grafted and free chain volumes, respectively.

When describing one particle system, it is natural to use the spherical coordinate system.

However, for the case of the two particle system, there should be special considerations in

choosing an appropriate coordinate system describing both particles equally. Especially, for

the brush system with delta function initial condition at the grafting points, it is extremely

important to position the discretized grid points on the grafting surface at the system boundary

or at a constant distance away from it [60]. As mentioned in the introduction chapter 1, one

attractive choice is the bispherical coordinates [47, 63] whose spherically positioned grid points

can fit on the curved grafting surfaces of both particles. However, such a non-traditional choice

of the coordinate system is penalized by high computational demand, and thus simulations

in extreme conditions such as large particles, thick brushes, and long polymers are difficult to

perform. As explained in the introduction chapter, it is necessary to study such limiting cases for

the full understanding of the interparticle interaction, and it is especially important to perform

simulations at α > 10.

In this research, I upgrade the multi-coordinate-system (MCS) scheme which was introduced

by Kim and Matsen [22,60]. It has been successful in achieving both accuracy and speed for the

polymeric systems with multiple core parts. In this approach, two spherical coordinate systems,

r = (r, θ, ϕ) and r̄ = (r̄, θ̄, ϕ̄), whose origins locate at the center of each particle are used (see

figure 2-1). The angles are chosen such that θ = 0 line points towards the center of particle 2,

and θ̄ = 0 line points towards the center of particle 1. Since there is an angular symmetry along

the ϕ and ϕ̄ directions, the full analysis can be reduced to two-dimensional calculation, which

is very important for fast calculation.

In order to model impenetrability of particles, reflecting boundaries are used on the surfaces

of the two particles, r = R and r̄ = R. Because the particles are surrounded by homopolymer

melts, there is no officially accepted outer boundary. For accurate modeling, peanut-shaped

domain (see figure 2-1) is used which is large enough that physical properties at the outer

boundary converge to those of homopolymer melts at infinity, and reflecting boundary is imposed

there. From now on, the SCFT formalism for the polymer melts in this peanut-shaped region is

described. MCS in the peanut-shaped region surrounded by solvents has been reported earlier

[60], but the current system includes freely floating matrix polymers which do not belong to a

certain spherical coordinate system. In this and the next sections, I will explain how the MCS

is upgraded to properly calculate the free chain partition function.

All the polymers in the system are modeled as infinitely flexible Gaussian chains with sta-

tistical segment length a. The conformation of the i’th grafted polymer is described by a space

curve rg,i(s) with continuous parameter s ∈ [0, 1] increasing from the free end (s = 0) to the

grafted end (s = 1). Space curves rf,j(s) are used for the description of free homopolymer chains

with j from 1 to nf . Be careful that the length of each free chain is αN , making s ∈ [0, α] the

correct range for the free chains.
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2.1 SCFT for Two Particle System

For each grafted chain conformation, rg,i(s), an unnormalized probability function repre-

senting its internal entropy loss can be assigned as follows:

P [rg,i(s)] ≡ exp

(
− 3

2a2N

∫ 1

0
ds
∣∣r′g,i(s)

∣∣2
)

(2.1)

Similar functions can be assigned to the free polymer conformations, rf,j(s), just by modifying

the upper limit to α in the integration. Using these expressions, the canonical partition function

of the system can be formally written as the following equation,

Z ∝ 1

ng!nf !

∫ ng∏

i=1

Drg,iP [rg,i]

nf∏

j=1

Drf,jP [rf,j ]

× (δ(rg,i(1)−R) + δ(r̄g,i(1)−R)) δ[1− φ̂g(r)− φ̂f (r)] (2.2)

where factorial factors are introduced to represent indistinguishability of ng grafted chains and

nf free chains, and all possible conformations of the polymer chains are counted by the functional

integrals. The first two delta functions restrict the grafted chain ends on the surfaces of the two

particles with radius R. Note that the ends are in fact mobile on the two particle surfaces with

this formulation. Incompressibility condition for the polymer melts is represented by the last

delta function where φ̂g(r) and φ̂f (r) are the densities of grafted and free chains, respectively,

and they are given by

φ̂g(r) =
N

ρ0

ng∑

i=1

∫ 1

0
ds δ(r− rg,i(s)) (2.3)

φ̂f (r) =
N

ρ0

nf∑

j=1

∫ α

0
ds δ(r− rf,j(s)) (2.4)

Using Hubbard-Stratonovich transformation, segment-position-dependent terms can be re-

placed by fields, Wg, Wf and Φf , so that the original segment-position-based equation (2.2) is

now transformed into a field-based equation,

Z ∝
∫
DWgDWfDΦf exp

(
−F [Wg,Wf ,Φf ]

kBT

)
(2.5)

where kB is the Boltzmann factor and T is the system temperature. A detailed discussion of

F and its relation with each field term are provided in appendix A. In the standard SCFT

approach, after applying the saddle-point approximation, F becomes the mean field free energy,

F

kBT
=ng ln

(
Vg

Qg [wg]

)
+ nf ln

(
Vf

Qf [wf ]

)

− ρ0

N

∫
dr (wg(r)φg(r) + wf (r)φf (r)) (2.6)

where Qg and Qf are total partition functions which will be explained later, and wg(r) and
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2.1 SCFT for Two Particle System

wf (r) are interaction potentials acting on the segments of grafted and free chains positioned

at r, respectively. Also, φg =
〈
φ̂g

〉
and φf =

〈
φ̂f

〉
are the ensemble average segment densities

at the mean field solution. Note that there are some issues regarding the zero point of the

free energy. I choose this shape of free energy which converges to a certain finite number as

the system size diverges by adding infinitely many free chains. With this choice of free energy,

direct comparison of energies between systems with various interparticle distances becomes

meaningful.

Mean fields wg(r) and wf (r) become the same in the mean field theory, and thus subscripts

will be omitted from now on. For the calculation of the segment concentrations and free energy,

the single chain partition functions Qκ[w] for both grafted polymer (κ = g) and free polymer

(κ = f) subjected to the mean field potential w(r) are required. In the actual SCFT calculation,

it is obtained by

Qκ[w] =

∫
dr qκ(r, s)q†κ(r, s) (2.7)

where qg(r, s) is defined as the partial partition function of the sN segments of grafted chains

whose first segment is free and the last segment position is fixed at r. For the (1−s)N segments

starting from the grafted end, the conjugate partial partition function is defined as q†g(r, s).

Similar definitions are used for the partial partition functions of the free polymer except that

the total chain length is now changed to αN . Under the given mean field potential w(r), the

partial partition functions qκ(r, s) are known to satisfy the following modified diffusion equation,

∂

∂s
qκ(r, s) =

(
a2N

6
∇2 − w(r)

)
qκ(r, s) (2.8)

and q†κ(r, s) also satisfy similar modified diffusion equation obtained by multiplying the left-hand

side of Eq. (2.8) by −1. For the case of the grafted polymers, initial conditions corresponding

to the free ends (s = 0) and ends grafted on the two particle surfaces (s = 1) are,

qg(r, 0) = 1 (2.9)

q†g(r, 1) = δ(r −R)aN1/2 + δ(r̄ −R)aN1/2 (2.10)

respectively, while for the homopolymers,

qf (r, 0) = q†f (r, α) = 1 (2.11)

because both ends are free to move in the system. Note that one homopolymer end is at s = α,

not at s = 1. The numerical evaluation of the partition functions using MCS scheme will be

explained in the next section.

In order to obtain the complete mean field solution, the calculation of the segment densities,

φg(r) and φf (r), is required. In SCFT, minimizing the exponent in Eq. (2.5) with respect to field
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2.1 SCFT for Two Particle System

variables Wg and Wf by functional derivative leads to the following self-consistency equation,

φg(r) + φf (r) = 1 (2.12)

where φg and φf are obtained by (see appendix A for proof)

φg(r) =
Vg
Qg

∫ 1

0
ds qg(r, s) q

†
g(r, s) (2.13)

φf (r) =
Vf
αQf

∫ α

0
ds qf (r, s) q†f (r, s) (2.14)

Once the field w(r) is given, the partition functions are obtained by Eqs. (2.7) and (2.8),

and the segment densities can be calculated by Eqs. (2.13) and (2.14). However, there is no

guarantee that the self-consistency equation (2.12) is satisfied for the arbitrarily given w(r). The

mean field potential must be determined self-consistently to satisfy Eq. (2.12) which enforces

incompressibility for the polymer melt system.

In most SCFT calculations, the adjustment is performed by an iteration method. For each

iteration, output field is created by adding Λ (φg(r) + φf (r)− 1) to the trial input field, where

Λ is a constant. The input and output fields are mixed to create a new trial field, and the

iteration continues until the field converges. In this calculation, Λ = 5.0 is used and to speed

up the convergence, Anderson mixing [67–69] is often used when the field convergence error

defined by
(∫

dr(wout − win)
2
/
∫
dr(win)

2
)1/2

is about 0.05. The iteration stops when the field

convergence error is below 10−10.

After finding the self-consistent solution, I calculate F (D), the free energy of the two particle

system with interparticle distance D, using Eq. (2.6). The difference of the free energy with

respect to the case D =∞ is the effective interaction potential U(D) between the two particles,

U(D) = F (D)− F (∞) (2.15)
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2.2 Numerical Implementation of MCS

2.2 Numerical Implementation of MCS

By taking advantage of the reflection symmetry of the two particle system, the computational

demand for numerical calculations can be reduced using MCS scheme to be explained in this

section. Lets first consider the calculation of the grafted polymer density. Total grafted polymer

density is the sum of the contributions from the first particle, φg1(r), and the second particle,

φg2(r). The reflection symmetry makes it possible to obtain both functions in one calculation;

once φg1(r) is calculated for the entire space, φg2(r) can be simultaneously obtained by the

following equation,

φg2(r) = φg1(r̄) (2.16)

where the coordinate r̄ = (r̄, θ̄, ϕ̄) can be calculated from r by the following transformation

equation,

r̄ =

√
r2 + (2R+D)2 − 2r(2R+D) cos θ (2.17)

θ̄ = tan−1

(
r sin θ

2R+D − r cos θ

)
(2.18)

ϕ̄ = ϕ (2.19)

For the calculation of φg1(r), it is required to calculate the partial partition functions of the

grafted chains pertaining to particle one with the initial conditions qg1(r, 0) = 1 and q†g1(r, 1) =

δ(r −R)aN1/2. The segment density is calculated by

φg1(r) =
Vg1
Qg1

∫ 1

0
ds qg1(r, s) q†g1(r, s) (2.20)

where Vg1 = Vg/2, since only half of the grafted polymers belong to the first particle. The

partition function for the polymers grafted to particle one, Qg1, can be easily obtained by using

Eq. (2.7), and it is exactly half of the total partition function Qg defined for polymers grafted to

both particles. Because of this, Vg1 and Qg1 can replace Vg and Qg in most places, respectively,

considering that their ratio is usually used. After calculating φg1 for the entire space, the total

grafted polymer density φg can be easily calculated by just obtaining φg2 using Eqs. (2.16) and

φg = φg1 + φg2. Note that in principle the entire space must be considered, but φg1 far away

from the surface of particle one must vanish, and thus qg1 and q†g1 are calculated only in the

first spherical coordinate system.

On the other hand, the density of free polymers in the entire peanut-shaped space is obtained

in a slightly different way, because free polymers do not formally belong to a specific particle, and

this is the crucial difference from the earlier MCS scheme developed for brushes in solvents [60].

After simply setting qf (r, 0) = q†f (r, α) = 1, the diffusion equations are solved in the first

spherical coordinate system. Such a method will at least provide accurate partial partition

functions and free polymer density at the left-hand side of the mirror plane, and it is possible
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2.2 Numerical Implementation of MCS

to calculate the segment density in that region using Eq. (2.14). Note that the total partition

function for the free polymers, Qf , is calculated by performing the integration in Eq. (2.7) only

at the left-hand side of the mirror plane and multiplying the result by two, considering the

reflection symmetry. The free chain density at the right-hand side of the mirror plane is also

obtained by the reflection of the density profile.

In the actual implementation of MCS SCFT, I perform the numerical calculation using grid

points discretized within the spherical coordinate system. The SCFT calculation is conducted

by adopting a fine mesh as explained below. For the spherical coordinate system pertaining to

particle one, grids are regularly spaced by ∆θ = 0.01π from θ = 0 to π and ∆r = 0.04aN1/2

from r = R to r = Rmax. The outer boundary value, Rmax, is chosen to be 5R at small α, but

larger values of Rmax are necessary when the free polymers are long. At α = 10, I use Rmax = 7R

and sometimes Rmax = 9R is used at the highest α values. Equivalent meshes are used for the

coordinate system r̄ centered on particle two. When reflecting density or field between the two

coordinate systems, there are nontrivial issues regarding the coordinate transformation using

Eqs. (2.17)–(2.19), because the reflected points are usually located in between grid points of

the other coordinate system. I carefully handle this problem by using linear interpolation of the

function values at nearest neighbors as suggested in ref. [60].

In order to solve the diffusion equation (2.8), I apply Crank-Nicolson algorithm for dif-

ferentiation in the s direction with ∆s = 0.005. To reduce the computation time and im-

prove the stability of calculation, modified Douglas-Gunn alternating-direction implicit (ADI)

method [66,69–72] is adopted. For the approximation of the spatial differentiation in the spher-

ical coordinate system, finite difference method (FDM) is a simple choice. I instead adopt the

finite volume method (FVM) [66, 73] which is based on the idea of flux conservation, and it

provides an additional advantage of reducing the material conservation error especially when

curvilinear coordinate system is adopted. The implementation of FVM requires an additional

consideration for the determination of numerical coefficients, which is a one-time upgrade from

FDM after the required equations are derived [66]. As is customary for the FVM, volume in-

tegral is evaluated by weighting integrand with each cell volume, while for the integration over

cells divided by the mirror plane, each integrand is weighted with the cell volume cut off by the

mirror plane.

With the combination of FVM and ADI, I manage to make a fast and accurate SCFT

calculation. In one example, for the system with H = 2aN1/2, R = 2aN1/2, Rmax = 14aN1/2

and α = 10, I use a spatial grid of 300× 100 and ∆s = 0.005. The calculation usually takes less

than a second per iteration when using 12 cores of Xeon Gold 6132 CPUs and OpenMP library.

When α is large, thousands of iterations are necessary for the accurate solution even with the

adoption of Anderson mixing; for the given parameter set, it takes approximately 25 minutes

to finish the whole calculation.
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3

Result

For the preparation of the two-particle system analysis, I first perform various tests identifying

wetting and dewetting regimes of the single particle system, which is presented in section 3.1.

In the following sections, I study the interaction between two particles immersed in chemically

identical homopolymer melts, and I theoretically investigate the effects of parameters such as

particle radius, brush thickness, molecular weight ratio of free to grafted polymers, brush chain

polydispersity and brush grafting types.

3.1 Brush Morphology of Isolated Particle

For the preparation of the study of the two-particle interaction, I present the analysis of an

isolated particle system (i.e., D → ∞) in this section. When there is no chemical distinction

between the polymer chains, the interaction between two particles purely originates from en-

tropic contributions of the polymer chains. There are two main entropic contributions; one is

the conformational entropy of brush polymers and the other is the translational entropy of free

polymers. Competition between these two types of entropic effects determines the morphology

of the system. I begin the analysis by examining the segment density profile, and my focus is

on how parameters such as particle radius R, brush thickness Hbrush and chain length ratio α

affect the properties of the interface between the brush and the free chains.
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3.1 Brush Morphology of Isolated Particle

In figure 3-1 (a), I display density profiles of the grafted and free polymers on an isolated

particle of radius R = 2aN1/2 at various Hbrush values. The brush height, Hbrush, is defined as

the thickness of the brush layer in the absence of the free polymer penetration. Sparsely grafted

brush is represented by a small Hbrush, and its value increases as the grafting density increases.

In order to focus on the geometrical effect, I fix α = 1 for this and the next figure. As shown

in figure 3-1 (a), at increasing r, the brush-rich phase changes to the free polymer-rich phase,

and the interface locates around r = R+Hbrush as expected. In order to quantify the degree of

polymer interpenetration, I define the interfacial width as

wI = − φg(0)

φ′g(r1/2)
(3.1)

which is the brush density at the grafting surface, φg(0), divided by minus of the slope at r1/2

where the brush density is φg(0)/2 [64,65,74].

Interfacial widths corresponding to the cases of figure 3-1 (a) are shown in figure 3-1 (b). For

the thinnest brush case, at Hbrush/aN
1/2 = 1, the density profile of grafted polymers exhibits a

slow decay over a relatively long radial distance from the particle surface. As the brush becomes

thicker, the density slope becomes steeper and the interfacial width decreases. For the case of

the very thick brush (Hbrush/aN
1/2 = 10), the interpenetration region becomes considerably

narrow.

In general, it is advantageous for the free chains to penetrate into the brush to increase their

translational entropy, and such behaviors are observed for spherical wet brushes [60]. For the

case of polymer melt system, however, significant stretching entropy cost is imposed when the

free chain penetration depth is comparable to the brush thickness, and the balance between

these two effects determines the interfacial width. When the brush is sparsely grafted, and its

thickness is comparable to aN1/2, free polymers can penetrate into the sparsely grafted brush

in order to maximize the translational entropy of both types of polymers, and the resulting

interfacial width becomes large. On the other hand, for a thick brush with a high grafting

density, it is difficult for free polymers to penetrate into the highly stretched brush, and thus

free polymers are expelled to reduce the conformational entropy cost, which results in a narrow

interfacial width.
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3.1 Brush Morphology of Isolated Particle

(a)

(b)

Figure 3-1: (a) Segment density profiles of grafted polymers (φg, solid lines), and free polymers
(φf , dashed lines), and (b) corresponding interfacial width wI , for a particle with radius R = 2aN1/2

at various brush thicknesses Hbrush. The length of the two types of polymers are the same (α = 1).
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3.1 Brush Morphology of Isolated Particle

Figure 3-2 exhibits similar plots to those of figure 3-1, but for different particle radii at

fixed brush thickness Hbrush = 2aN1/2. It shows that unless the particle is extremely small,

the effect of the particle size, or curvature, is not significant, as shown from density profiles

and interfacial width. I expect that brushes on smaller particles behave as if the effective brush

thickness is smaller than its actual value because, at fixed brush thickness, systems with higher

curvature (or small particle size) provide extra space for grafted polymers to swell. It means

smaller particles have more rooms to reduce the stretching entropy cost of the grafted chains

when penetration of free chains occurs. As a consequence, the interfacial width must increase

as the particle size decreases. Even though figure 3-2 (b) exhibits such a trend, the particle size

must be extremely small (R < aN1/2) in order to observe a significant effect. At reasonable

R values, the difference is very difficult to observe, and the convergence to the flat brush case

(R =∞) is very rapid.
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3.1 Brush Morphology of Isolated Particle

(a)

(b)

Figure 3-2: (a) Density profiles of grafted (solid lines) and free (dashed lines) polymers for the
system of different particle radii R/aN1/2=1, 2, 4, and ∞ (flat brush) at fixed brush thickness
Hbrush = 2aN1/2 and α = 1. The colored lines are difficult to distinguish because the convergence
to the flat brush case is rapid. As seen in the inset, the lines are closely placed in the order of
R/aN1/2=1, 2, 4, and ∞. (b) Interfacial width wI plotted as a function of R. The converging value
corresponding to the flat brush case is denoted by a dashed arrow.
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3.1 Brush Morphology of Isolated Particle

The morphology of the brush is determined not only by the system geometry but also by

α, the molecular weight ratio of polymers. It is expected that for the mixture of grafted chains

of length N and free chains of length αN , α is the most dominant factor determining the

interpenetration of the polymer chains [43, 74, 75]. In order to examine this effect, radius R =

2aN1/2 and brush thickness Hbrush = 2aN1/2 are chosen as the standard geometric parameters

in this thesis, and the density profiles at various α values are plotted in figure 3-3 (a). Also, the

interfacial width is plotted as a function of α in figure 3-3 (b).

The extreme case, α = 0.2, is close to a brush in solvents, and the density profile of grafted

polymers exhibits a slow decay over a long radial distance from the particle surface. It implies

that at small α, the translational entropy of free polymers prevails conformational entropy of

brush polymers, and thus free polymers penetrate deep into the brush and essentially form a

brush in the wetting regime. As α increases, the translational entropy of free polymers reduces

and segregation of the brush and free chains becomes more prominent. At larger α, the brush

essentially goes into a dewetting brush regime, but the conformational entropy of the free chains

remains finite and interpenetration of free chains never vanishes. Rather, the density profile

approaches to a hyperbolic tangent like shape in the limit α goes to infinity. Convergence to the

dewetting brush regime is so fast that above α = 2, it almost converges to the limiting case of

infinitely long homopolymers. Lines are very closely spaced, and the α = 15 line is practically

within the line width of the limiting curve.

According to the interfacial width plot (figure 3-3 (b)), transition from wetting (e.g., α = 0.2)

to dewetting (e.g., α = 4) brush is accompanied by the decrease of the interfacial width as

expected. In experiments, molecular weight ratio α is more easily controllable than the geometry,

and it is notable that starting from the standard parameters of R = 2aN1/2, Hbrush = 2aN1/2

and α = 1, the change of parameter α induces most dramatic interfacial width change. At high

enough α, above 4, penetration of polymers seems less dependent on the α value, converging to

the infinite α case.
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3.1 Brush Morphology of Isolated Particle

(a)

(b)

Figure 3-3: (a) Density profiles of grafted polymers (φg, solid lines) and free polymers (φf , dashed
lines) for the standard system geometry with R = 2aN1/2 and Hbrush = 2aN1/2 at α values from 0.2
to infinity. (b) Interfacial width wI plotted as a function of α in a logarithmic scale. The converging
value for the α→∞ case is denoted by a dashed arrow.
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3.2 Interaction Between Two Particles

3.2 Interaction Between Two Particles

If two brush-coated particles stay close to each other, their brush structure will be deformed

and the interaction between the two particles can be significant. One may intuitively guess that

the interaction must be repulsive because the brushes are compressed as the particles approach.

However, as explained in the introduction chapter, due to the autophobic dewetting phenomenon

and the resulting effective surface tension, I expect that a transition towards attraction occurs

when α is large enough. In this section, I focus on the difference between wetting and dewetting

brushes and their effects on the attractive or repulsive nature of the interaction. I then examine

how parameters such as the polymer length ratio and particle geometry affect the interparticle

interaction.

Lets first examine how the brush shapes are deformed as the interparticle distance changes.

Figure 3-4 (a) shows the density profile change of typical brushes in the wetting regime formed

by particles of radius R = 2aN1/2 and brush thickness Hbrush = 2aN1/2, surrounded by short

homopolymers with α = 0.2. From the top to the bottom figures, the interparticle distance D

changes from 6aN1/2 to 3aN1/2. Figure 3-4 (b) shows the corresponding brush morphologies for

the typical monodisperse (PDI = 1.0) brush in the strong dewetting regime, α = 10. For both

cases, when D � 2Hbrush (upper figures), it can be regarded that two particles are separated far

apart and they do not affect each other. Homopolymer melts occupy the space between them

and the density contours are essentially spherical. As D decreases and two particles approach

to each other, homopolymers between them start to be expelled, but this does not significantly

change the brush structure until two brushes make contact at a distance just above 2Hbrush.

When brushes are compressed at smaller interparticle distances (D < 2Hbrush), it is interest-

ing that the deformation patterns are notably different for the two cases. For the monodisperse

dewetting brushes (α = 10 and PDI = 1.0), grafted polymers and free polymers are not well

mixed; there is an effective surface tension at the boundary between them. In order to reduce

this surface tension, two brush-homopolymer boundaries merge while most homopolymers are

expelled out. As a result, φf (r) nearly vanishes in the area between two particles facing each

other. On the other hand, in the wetting regime (α = 0.2 and PDI = 1.0), brushes and ho-

mopolymers mix well, and a wide region in which the two types of polymers coexist can be found.

Because of this, the spherical brush structures are less deformed compared to the brush in the

dewetting regime and this tendency is notable when two particles are very close (D = 3aN1/2).

The density profile of the polydisperse dewetting brushes (figure 3-4 (c), α = 10 and PDI =

1.4) is somewhat different from the monodisperse case, and it will be discussed in the next

section. When the interparticle distance is very short, two brushes have a large contact area.

It is notable that the density profile quickly recovers to the unperturbed state (D = ∞) at an

angle just outside the contact area. Beyond that point, the density profile seems to have little
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3.2 Interaction Between Two Particles

dependence on θ direction, and the brush shapes are almost spherical. This observation is valid

for the brushes in both regimes.

φg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D = 3aN1/2 D = 3aN1/2 D = 3aN1/2

D = 4aN1/2 D = 4aN1/2 D = 4aN1/2

D = 5aN1/2 D = 5aN1/2 D = 5aN1/2

D = 6aN1/2 D = 6aN1/2 D = 6aN1/2

a. α = 0.2, PDI=1.00 b. α = 10, PDI=1.00 c. α = 10, PDI=1.40

0 0 02 2 24 4 46 6 68 8 810 10 1012 12 1214 14 1416 16 1618 18 1820 20 2022 22 22
0

2

4

6

8

10

12

(aN1/2) (aN1/2) (aN1/2)

Figure 3-4: Contour plots of grafted polymer segment density, φg, of typical (a) wetting (α = 0.2)
and monodisperse (PDI = 1.00), (b) dewetting (α = 10) and monodisperse (PDI = 1.00), and (c)
dewetting (α = 10) and polydisperse (PDI = 1.40) brushes calculated for two identical particles
(gray circles) of radius R = 2aN1/2 and brush thickness Hbrush = 2aN1/2, separated by various
interparticle distances D. Ten curvilinear contour lines are drawn at each plot to represent grafted
polymer density from 0 (blue) to 0.9 (red).
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3.2 Interaction Between Two Particles

Now let me analyze the interaction between two standard particles of radius R = 2aN1/2

and brush thickness Hbrush = 2aN1/2, in terms of the interparticle potential energy defined

by Eq. (2.15). In figure 3-5, I show the interaction potential as a function of the interparticle

distance D normalized by the brush height Hbrush for different molecular weight ratios. In this

theoretical analysis, I choose a wide range of parameter from α = 0.2 to 20. Simulations with

such long homopolymers have not been available before the adoption of the upgraded MCS

scheme, and they are necessary to cover the two extreme cases, the wetting and dewetting

regimes.

When α is very small, only repulsive interaction exists over all interparticle distances. At

around α = 1, repulsive interaction is always observed. As α increases, the situation changes

and the free energy curve starts to develop an attractive well. Because the change is gradual, it

is unclear exactly when the attraction becomes notable, and considering the particle size and

grafting density dependence, it is practically impossible to present a single transition α value.

For the standard system, with R = 2aN1/2 and Hbrush = 2aN1/2, attractive interaction starts

to compete with the thermal energy, kBT , at around α = 2. Attractive well becomes deeper

at increasing α, and at above α = 4, attraction strength can be significantly larger than the

thermal energy. This observation confirms the idea that at large enough α, particles can form

stable aggregations, despite that all the polymers are of the same type. The attraction keeps

increasing at α above 10, but the potential becomes less dependent on α, and the potential

depth may approach a limit at α = 20 or above.

It is generally regarded that the sharpening of the interfacial width is the indicator of

the autophobic dewetting. For example, in an SCFT research using α up to 4, Trombly and

Ganesan reported quantitative correlation between the interfacial width and the interparticle

potential [47]. The calculation shown figure 3-3 confirms such a trend at small α, but it is notable

that the sharpening of interfacial width quickly converges at α above 2. It is interesting that the

potential depth keeps increasing by a few factors in the regime where the interfacial width is

practically invariant. Similar observations were reported earlier in simulations using molecular

dynamics (MD) and MC methods [44, 76]. In one such work, Meng et al. found that density

distributions of the brush and matrix chains around an isolated NP are very similar for two

systems with different α, even when the interparticle potential changes from purely repulsive

(α = 1) to attractive (α = 7) ones.
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Figure 3-5: Interaction potential of two monodisperse-brush-grafted particles with radius R =
2aN1/2 and brush thickness Hbrush = 2aN1/2 at various α values, as a function of the normalized
interparticle distance D/Hbrush. The cases of figure 3-4 (a) (α = 0.2) and figure 3-4 (b) (α = 10)
correspond to the black and red lines, respectively.
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3.2 Interaction Between Two Particles

I now present how the attraction between two particles in the dewetting brush regime is

affected by the change of geometry and α. Figure 3-5 suggests that for the standard system (R =

2aN1/2, Hbrush = 2aN1/2 and PDI = 1.0), matrix homopolymers with α = 4 are just enough to

initiate attraction between the particles, and thus let me first consider this case. Figure 3-6 (a)

shows the shape of the interaction potential at various brush thicknesses. Attractive interaction

is observed for stretched brushes, and the minimum of the interaction potential exists at a

distance just below the brush contact point, D = 2Hbrush. It is notable that for the brush with

Hbrush = 1.0aN1/2, the interaction starts noticeably earlier at about D = 2.5Hbrush and the

depth of the potential is difficult to identify in this graph. The brush is not well stretched in this

case, and the autophobic dewetting behavior discussed earlier is not strong enough to create

a clear attraction between the particles at α = 4. As Hbrush increases, autophobic dewetting

becomes dominant, and the contact area between the particles also increases. Because of these

effects, the depth of the attractive potential well keeps increasing. Figure 3-6 (b) shows the

case with α = 10. Compared to figure 3-6 (a), autophobic dewetting of the extremely long

homopolymers exhibits a clear attraction even when the brush is not well stretched (Hbrush =

1.0aN1/2). The general trends of the interaction potential at increasing Hbrush are similar except

that the potential depth is noticeably larger at α = 10. For the standard monodisperse brush

system, a potential well depth of approximately 8kBT and 13kBT are observed at α = 4 and

10, respectively.
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Figure 3-6: The interaction potential between two monodisperse-brush-coated particles at various
brush thicknesses at (a) α = 4 and (b) α = 10. The case with radius R = 2aN1/2 and brush thickness
Hbrush = 2aN1/2 at α = 10 is plotted with a thick red line on plot (b).
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Figure 3-7: The interaction potential between two monodisperse-brush-coated particles at various
particle radii at (a) α = 4 and (b) α = 10. The case with radius R = 2aN1/2 and brush thickness
Hbrush = 2aN1/2 at α = 10 is plotted with a thick red line on plot (b).

Figure 3-7 (a) exhibits interaction between particles with sizes of aN1/2, 2aN1/2, 4aN1/2,

6aN1/2 and 8aN1/2 at Hbrush = 2aN1/2, α = 4 and PDI = 1.0, and figure 3-7 (b) shows the

corresponding plot at α = 10. As the particle size increases, potential well becomes deeper,

and the largest particle, R = 8aN1/2, shows 28kBT (α = 4) and 44kBT (α = 10) of potential

well depth. The reduction of curvature provides one explanation to the increase of the potential

depth, but a more crucial factor is that larger particles have more brush contact area, and more

chains are affected by the approach of two spherical brushes.

28



3.3 Effect of Brush Polydispersity

3.3 Effect of Brush Polydispersity

The result of the previous section suggests that the autophobic dewetting effect is dominant

when i) the brushes become thicker and ii) the free homopolymer length increases. From the

former observation, one is tempted to reduce the brush grafting density to suppress dewetting of

homopolymers on brushes and make well-dispersed NPs. Reduction of grafting density, however,

is usually not a good strategy in the actual experiment because the system may easily fall into

the allophobic regime as explained in the introduction, and particle aggregation due to van

der Waals interaction between particle cores cannot be avoided [17, 19, 20, 77]. In this regard,

the control of the free homopolymer length is a more promising approach. However, for some

functional hybrid nanocomposites, long homopolymers with sufficient mechanical integrity are

required for the application, and this limits the range of the homopolymer length [24]. As

suggested earlier in this part of thesis, combination of short and long brush chains is expected to

suppress autophobic dewetting and stabilize NP dispersion in a polymer matrix when compared

to the monodisperse brush case.

Autophobic dewetting effect is related to the conformational entropy penalty of the same

types of polymers in the process of matrix polymer penetration into the brush. In this context, I

explore the effect of polydisperse brushes on autophobic dewetting in terms of their penetrating

behavior and free energy depth. Figure 3-8 (a) shows profiles of grafted polymer density, φg,

and free homopolymer density, φf , for different bidisperse brushes grafted on isolated particles

with R = 2aN1/2. The result of the monodisperse brush (PDI = 1.00) is included in the graph

as red lines. The grafting density is chosen so that the brush thickness Hbrush is fixed to 2aN1/2,

and the monodisperse free homopolymers are 2 times longer than the number average length of

grafted polymers, i.e., α = 2. All the bidisperse brushes are prepared to have the same number-

averaged molecular weight (Mn), and they consist of equal numbers of long and short chains.

Specifically, when the average segment number is 200, the segment numbers of short polymers

are 160, 143, 111 and 74 for polydispersity indices of 1.04, 1.08, 1.20 and 1.40, respectively. The

corresponding long polymer segment numbers are 240, 257, 289 and 326, respectively.

The short grafted polymers have a tendency to stay near the particle surface, and the

majority of the long grafted polymers naturally stretch beyond them. Because of this spreading

effect, the polydisperse brush must have broader interface compared to the monodisperse one,

and the penetration of free homopolymers occurs more easily as shown in figure 3-8 (a) in which

the slope of density profiles becomes gradual as PDI increases. This observation is consistent with

the idea that polydispersity suppresses the transition from wetting to autophobic dewetting [56].

In order to investigate the influence of polydispersity on the attractive interaction between two

particles, I present in figure 3-8 (b) the interaction potential at α = 2, which shows that the

depth of the potential well is about 3kBT for the monodisperse brush. As PDI increases, the
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Figure 3-8: (a) Density profiles of grafted polydisperse polymers (φg, solid lines) and free ho-
mopolymers (φf , dashed lines) for the system geometry with R = 2aN1/2, Hbrush = 2aN1/2 and
α = 2 at PDI values from 1.00 to 1.40. (b) The interaction potential between brush-coated particles
at PDI values corresponding to (a). (c) and (d) are corresponding plots at α = 10.

small attraction quickly diminishes. At above 1.08 of PDI, practically no attraction remains and

the particles are expected to be well-dispersed.

It is interesting that the corresponding density plot at α = 10 shown in figure 3-8 (c) is not

so different from the α = 2 case. Even though a much higher autophobic dewetting is expected,

the difference of the density slope is barely noticeable at PDI = 1.0. At higher PDI, a slightly

more pronounced slope difference is observed. However, the interparticle potential plotted in

figure 3-8 (d) is completely different from the α = 2 case. For the monodisperse brush, the depth

of the potential well is about 13kBT for the monodisperse brush which is more than fourfold

increase from the α = 2 case. The decrease of the potential depth at increasing PDI is not

negligible, but at a reasonable PDI value of 1.4, 8kBT of potential depth is still observed.
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Figure 3-9: The depth of the potential plotted as a function of PDI at various α values with the
system geometry of R = 2aN1/2 and Hbrush = 2aN1/2.

Figure 3-9 summarizes the reduction of the potential depth. The attraction at α = 2 quickly

disappears at small PDI. At α = 4, the starting point is 8kBT , but it halves at PDI 1.1. At

high PDI, the attractive force may end up competing with the thermal energy. In a situation

where particle aggregation is preferred, adoption of homopolymers longer than α = 4 is the safe

strategy, considering that maintaining low PDI for brush chains is usually a difficult task, and

the potential depth can be much lower than these values for smaller particles.

The density contours of the polydisperse brushes for the case of particle radius R = 2aN1/2,

brush thickness Hbrush = 2aN1/2, α = 10 and PDI = 1.4 are shown in figure 3-4 (c). Inter-

estingly, at a larger interparticle distance (D = 5aN1/2), the density profile is close to the

wetting brush case (figure 3-4 (a)), and at a small distance (D = 3aN1/2), it looks closer to the

monodisperse dewetting brush case (figure 3-4 (b)). At an intermediate distance (D = 4aN1/2),

the profile positions somewhere between the two cases. The corresponding density contours for

the case of α = 4 are shown in figure 3-10. Even though the reduction of potential depth due

to polydispersity is significant for α = 4, figure 3-4 (c) and figure 3-10 (b) are not easily dis-

tinguishable. Even though the autophobic dewetting is the direct consequence of the entropy

loss due to chain penetration, however, it is not easily predictable just from the density profile,

which can also be confirmed by the similarity of figures 3-8 (a) and 3-8 (c).
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Figure 3-10: Contour plots of grafted polymer segment density, φg, of (a) α = 4.0 and monodisperse
(PDI = 1.00), and (c) α = 4.0 and polydisperse (PDI = 1.40) brushes calculated for two identical
particles (gray circles) of radius R = 2aN1/2 and brush thickness Hbrush = 2aN1/2, separated by
various interparticle distances D. Ten curvilinear contour lines are drawn at each plot to represent
grafted polymer density from 0 (blue) to 0.9 (red).
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3.4 Effect of Chain End Mobility

In the description of SCFT, two delta functions in Eq. (2.2) restrict the position of grafted chain

ends on the spherical surfaces of the two particles. With the current formulation, however, the

grafted chain ends still have the mobility to float on the surface laterally. This formalism is

appropriate for the modeling of brushes formed by physically adsorbed chains because the

functionalized chain ends can diffuse significant distances along the particle surface via thermal

agitation in a realistic timescale [78]. Regardless of this degree of freedom, the grafting density

must be a constant for an isolated particle due to the spherical symmetry. When two particles

are close, however, high compression of brushes occurs and it is natural for the grafted chains to

move away from the crowded region between the particles and lower the interaction energy [60].

In SCFT, the distribution of the grafted chain ends can be calculated by

σ(θ)

σ0
=

4π
∫∞
R drr2qg(r, θ, 1)q†g(r, θ, 1)

∫
dr′qg(r′, θ′, 1)q†g(r′, θ′, 1)

(3.2)

where σ’s in this section have the dimension of length−2, and σ0 ≡ ng/8πR
2 is the average

number of grafting points per unit surface area of NP [22, 46, 60]. Figure 3-11 (a) shows the

equilibrium distribution of mobile chain ends at various interparticle distances for the case of

R = 2aN1/2, Hbrush = aN1/2 and α = 10, which corresponds to the black line in figure 3-6 (b).

When the particles are separated far enough (D/Hbrush = 4), they are essentially two isolated

particles and the grafted ends are uniformly distributed. As the interparticle distance decreases,

θ dependence starts to be observed, and it explains the result of figure 3-6 (b) in which the

interaction is noticeable at a little above D/Hbrush = 2 for this parameter set.

In näıve expectation, the grafting density at the approaching pole, σ(0), must decrease as

the two particles approach. However, it is interesting that at about D/Hbrush = 3, σ(0) starts

to exceed the average, σ0, and it keeps increasing until D/Hbrush = 2.2 at which σ(0) is about 2

percent higher than σ0. This phenomenon is a unique characteristic of dry brushes because it has

not been observed for brush-coated particles in solvent [60]. Autophobic dewetting phenomenon

provides one possible explanation for this observation. The effective surface tension prefers the

reduction of free homopolymers in the region between the NPs, and the increase of σ(0) helps

the system to achieve it by increasing the brush chains in that region. When the two particles are

closer, below D/Hbrush = 2, the two brushes are clearly compressed, and depletion of grafting

points is observed around the approaching pole (small θ). It is likely that the redistribution of

grafted chain ends reduces conformational entropy loss due to the crowding of brushes at the

compressed region. At larger θ, the grafting density reaches a plateau at a level slightly higher

than σ0.

If the particle surfaces are prepared with fixed initiators and the brush chains are polymer-

ized from the surface [29], the chains are chemically attached to specific sites on the spherical
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3.4 Effect of Chain End Mobility

surfaces. As shown in figure 3-11 (a), aforementioned modeling of brushes generates a non-

uniform distribution of chain ends over the surface especially when the two interacting particles

are very close, and it may be inappropriate for the study of the interaction between particles with

end-fixed brushes. Slight modification to the theory is required for the analysis of the end-fixed

brushes. Most SCFT equations introduced earlier are invariant. One exception is the initial con-

dition equation (2.10), which now changes to q†g1(r, 1) = (Vg1/4πR
2)δ(r−R)/qg1(r, 1) [22,60,79].

This new initial condition guarantees that σ(θ) is always equal to σ0. For the detailed free energy

expression of the end-fixed-brush SCFT and its derivation, see appendix B.

The interaction potential difference between the end-mobile and end-fixed brushes for a

few parameter sets are presented in figure 3-11 (b). It is notable that when the two particles

are close enough to produce high compression of polymer brushes, the interaction potentials

are much steeper for the end-fixed brushes and the repulsion is much stronger. This result is

natural because the redistribution of grafted ends has the effect of lowering the compression of

polymer brushes. However, one must be careful in the interpretation of this data. At reasonable

parameter values, with D just below the equilibrium distance, the repulsion between the two

particles increases rapidly for both cases, and the region with significant force difference is

practically inaccessible for real particles unless strong external forces are applied. It means that

the grafting types may not be the major factor for the stabilization of brush-coated particles

and the analysis of equilibrium morphologies. The contour plots of end-mobile and end-fixed

brushes are provided in appendix C.
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Figure 3-11: (a) Equilibrium grafting density at various interparticle distances, for the case of two
end-mobile brush-covered particles with R = 2aN1/2, Hbrush = aN1/2 and α = 10. The inset mag-
nifies the grafting density near θ = 0. (b) Interaction potential graph for various system geometries
and α values showing the difference of end-mobile (solid line) and end-fixed (dashed line) brushes.
The thick solid green line corresponds to the system discussed in (a).
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Conclusion

In this part of thesis, I investigated polymer-mediated interaction between brush-grafted spher-

ical particles immersed in chemically identical homopolymer melts. The autophobic dewetting

phenomenon was theoretically investigated by performing SCFT calculation of two particle

system with the newly developed numerical scheme using MCS and FVM. By analyzing the

interparticle interaction as functions of brush thickness Hbrush, particle radius R, the molecular

weight ratio of free to grafted polymers, α, and brush chain polydispersity, I found that the

surface tension resulting from autophobic dewetting is responsible for the attractive interaction

between NPs.

In order to quantify the degree of dewetting, the interfacial width was calculated from

the polymer density profile and it was observed that at large α, segregation of brush and

homopolymer chains is promoted. In this regime, conformational entropy of brush polymers

prevails translational entropy of free polymers, and the autophobic dewetting of chemically

identical polymers becomes prominent. In the analysis of the interaction potential between NPs,

the transition from pure repulsion at small α to attraction at large α was clearly identified. The

attraction kept increasing at α above 10, but it seemed to approach to a limit at α = 20 or

above.

The brush thickness Hbrush and particle radius R also have some influences on the attractive

nature of the particle interaction in that the depth of attractive potential well increases as Hbrush

or R increases. In addition, I investigated the effects of brush polydispersity and brush chain

end mobility on the attractive nature of the interaction. As suggested earlier [56], polydisperse

brush suppresses autophobic dewetting and the attractive interaction weakens compared to the

monodisperse case, but the effect of polydispersity is limited in that finite attraction remains for

highly polydisperse brushes. The introduction of chain end mobility induces significant brush

chain redistribution, but they do not have major influence on the equilibrium nanocomposite

structure experimentally attainable.

This work provides the fundamental understanding of the behavior of NPs within the poly-

mer matrix, which is very important in the rational design of well-defined nanocomposites.
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Furthermore, I anticipate that this research can be extended to more complex systems. One

possible example is to use NPs grafted with brush chains that are chemically different from

polymer matrix. Also, more than one type of polymers can be grafted to NPs within various

surrounding matrices such as block copolymers or other heterogeneous substrates. The precise

control on the dispersity and positioning of these NPs within functional materials will enable to

create nonconventional, high-performance nanocomposites that have the promising potentials

in various applications including electronic, optical, and magnetic devices.
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Introduction

Since polymers consist of a large number of monomers which are numerically intractable in a

deterministic way, in the theoretical study of polymers, equilibrium behavior of a polymeric

system is usually described by statistical approach, and coarse-graining procedure is required

in the modeling of real polymer chains. Many monomers are connected by chemical bonds in

a polymer chain, and one such example is shown in figure 5-1 where each monomer in a linear

polystyrene (PS) chain is represented by a small blue bead. In a mesoscopic description of a

polymer chain, modeling of each bead is not necessary due to the universality established by

earlier polymer theories [80]. In this regard, as shown in figure 5-1, a few beads are treated as

a statistical segment, and the property of the polymers is matched by controlling the property

of segments and bonds connecting them. Because of this, the theory of polymer physics has

been developed into a special direction. First-principles calculation [81–83], molecular dynamics

(MD) simulation [84–87], and Monte Carlo (MC) simulation [88, 89] are still useful theoretical

tools as in other fields, but a statistical mechanical tool known as the self-consistent field theory

(SCFT) [64,73,90–94] has been established as a powerful alternative approach.

The SCFT was developed to predict the statistical behavior of a polymer system by convert-

ing a particle-based statistical description of polymers into a field-based one. In this approach,

many body interactions between segments are replaced by the external potential field which is

determined by the polymer density distribution, and free energy can be calculated along with

the self-consistently determined potential field. This mean field approximation makes SCFT a

suitable tool to simulate a large-scale system which is computationally demanding in a particle-

based simulation, and the computational advantage makes it possible to successfully obtain the

block copolymer phase diagram [64,90,93,95,96].

Many SCFT frameworks have been developed so far, but the most widely used one is the

Gaussian chain model [64, 91, 93], which approximates a long polymer as a continuous elastic

chain represented by a smooth curve in space. One reason for the popularity of this model is

its simple formulation in the numerical calculation. In this formulation of SCFT, the partition

function calculation reduces to solving a differential equation in the form of a modified diffusion
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Figure 5-1: Example of polymer abstraction and segment modeling of a linear PS chain with n
styrene units. Each small blue bead represents one PS monomer. The collection of a few monomer
units forms a coarse-grained segment, and the linear polymer chain is modeled by many segments
connected by bonds. The coarse-grained segment and bond represent the microscopic degree of
freedom of the polymer chain.

equation. For the purpose of distinction, I will call this method the standard SCFT in this

thesis. Because Gaussian chain model assumes that polymers are infinitely flexible, the standard

SCFT is appropriate for the modeling of long polymers, and there is a limitation that it is only

applicable to high molecular weight polymers whose average end-to-end length is much shorter

than its contour length along the backbone.

Polymers with low molecular weights are one of the promising materials in recent nanoscience.

For example, for the creation of sub-10 nm nanostructure, diblock copolymers with high Flory-

Huggins interaction parameter χ and low polymerization index N have been widely stud-

ied [97–99]. However, the above discussion implies that when the standard SCFT is applied

to the calculation of the mean field statistics of short polymer chains, it may sometimes pro-

duce unphysical results.

There is another limitation of the Gaussian chain model. It fails to explain some physical

properties emerging from the discreteness of chains or physical phenomena originated from the

atomistic scales. For example, the statistical mechanics of ideal polymer chains next to a hard

wall and the effective surface tension due to entropic origin have been known to be difficult

to calculate by using the Gaussian chain model [100–102], because it is plagued by unphysical

effects such as the diverging entropy loss near the hard wall. These limitations require alternative

chain modeling which can be incorporated with the SCFT for the investigation of statistical

mechanics of discrete short polymer chains.

Alternative polymer models which may resolve these issues are indeed available. For example,

lattice SCFT adopting random walks with fixed direction and length has been available from the

earlier development of the SCFT [103–106], but due to its limitation in accuracy and speed, the

standard SCFT has become more popular and the lattice SCFT is now used in limited situations

only. An SCFT method accounting for the stiffness of chains by wormlike chain model has been

suggested and recently used to solve a few problems [102,107,108]. However, the dimensionality

of the differential equation increases when moving away from the Gaussian chain model, and
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the computational demands increase dramatically for the three-dimensional problems.

Recently, there have been some attempts to apply the SCFT to discrete polymer chains

consisting of a finite number of segments connected together by the freely-jointed or Hookian-

spring bonds. In this discrete chain formulation, the partition functions are calculated through

iterative integral equations rather than solving the diffusion equation as in the standard SCFT.

For its distinction from the standard SCFT, I will call this method discrete chain SCFT in this

thesis. The fundamental idea of the discrete chain SCFT is that the chain propagation is de-

scribed as a stochastic process, and the partition function of each segment is recursively built up

from an integral representation of the probability distribution known as Chapman-Kolmogorov

equation [109]. In some polymer physics textbooks [93,110,111], the integral equation approach

using the discrete chain model is often presented as an intermediate step for the introduction

of the continuous Gaussian chain model because the discrete chain is easier to visualize and its

convergence to the Gaussian chain is intuitive from the central limit theorem. In continuous

limit, the integral equations for calculating the discrete chain statistics can be reduced to a

linear partial differential equation which I will introduce later.

Even though the discrete chain formulation has been known from the early stage of polymer

field theory, numerical implementation of the integral equation approach to the analysis of

complex polymeric systems has become popular only in recent years. In 2009, Matsen, Kim,

and Likhtman published a paper performing the numerical calculation of the freely-jointed chain

(FJC) partition function near a neutral wall [101]. In this approach, the partition function

of the polymer segments is calculated by one-dimensional spatial integrals accounting for the

probability change from one segment to another. Later works extend this method for the analysis

of chain end distribution of short incompressible polymers next to a surface [112–114]. Romeis

et al. also adopted a similar methodology in the SCFT calculation of a brush system [115]. They

used the off-lattice model for FJC, and their results were compared with the MD simulation

data.

Even though the above papers successfully implemented the integral equation approach of

the partition function calculation, the formulations are limited to one-dimensional systems after

assuming translational invariance in the lateral direction. For a general problem with three-

dimensional complexity, however, accurate calculation of the partition function in real space

becomes extremely costly. As will be discussed in more detail in chapter 7, three-dimensional

calculation of the discrete chain SCFT is inevitably slower than the standard SCFT.

Recently, Matsen demonstrated that this issue can be resolved by using the spectral method

where all calculations are performed in Fourier space with symmetrized basis functions [116].

In his paper, the free energies of complex block copolymer morphologies are calculated using

efficient numerical implementation of the discrete chain SCFT adopting the FJC model. As a

result, the full phase diagram of diblock copolymers with low molecular weights is obtained, and

42



he found a noticeable upward shift of the order-disorder transition χN after assuming finite-

range interaction between segments. This study proves that the discrete chain SCFT can be

equally efficient to the standard SCFT adopting the Gaussian chain model when implement-

ing the full-spectral approach. This efficiency comes from the symmetry in ordered periodic

morphologies which reduces the number of required Fourier coefficients, but such a symmetry

may not be present in many polymer science problems. In addition, there is a disadvantage in

conducting some calculations in Fourier space. Simple scalar multiplications in real space would

become a matrix multiplication which is computationally costly to perform in Fourier space.

This complication can be avoided by using a pseudo-spectral strategy which allows flexible

switch between Fourier space and real space, and this numerical method is known to be less

restrictive and more versatile compared to the full spectral method. Adoption of the pseudo-

spectral method for solving the recursive integral equations of partial partition function has

been suggested earlier by Fredrickson [93], and Matsen also mentioned the possibility of the

pseudo-spectral method for the fast calculation of the discrete chain SCFT [116]. However, the

actual implementation of the pseudo-spectral method in the calculation of the discrete chain

SCFT has not been reported yet.

In the part II of this thesis, I present a generic theory of the discrete polymer chain SCFT in

a form ready for the optimal implementation of the pseudo-spectral method. There are some un-

expected issues one inevitably faces in the implementation of the pseudo-spectral algorithm, and

the details will be discussed later. After the successful implementation, I test various properties

of short polymer chains with the finite number of segments. In addition, to test the practicality

of the algorithm, the fundamental problem of block copolymer morphology confined between

two walls is investigated using this approach.
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6

Theory of Discrete Chain SCFT

6.1 Background

The most popular version of the SCFT nowadays is based on the Gaussian chain model. It

is typical to introduce the Gaussian chain model from discrete N segments as seen in figure

5-1, and by taking the long chain limit (N →∞), the chain becomes infinitely flexible. In this

standard SCFT formalism, the segment position along the backbone of the polymer is specified

by a continuous parameter s ∈ [0, 1] (see figure 6-1 (a)), and this model allows the use of

modified diffusion equation for the calculation of the partition function which is required for

the prediction of the statistical behavior of the polymer system.

s = 0 s = 1

rα(0)

rα(∆s)

rα(2∆s)

rα(3∆s) rα(1 − ∆s)

rα(1)

s = 0 s = 1

rα(0)

rα(∆s)

rα(2∆s)

rα(3∆s) rα(1 − ∆s)

rα(1)

s = 0 s = 1

(a)

(b)

(c)

Figure 6-1: The polymer chain parametrization of the (a) Gaussian chain model, (b) N bond model,
and (c) N −1 bond model. For the Gaussian chain model, the curve rα(s) is defined at all s in [0, 1],
but the function is defined only at discrete points with intervals ∆s ≡ 1/N and ∆s ≡ 1/(N − 1) for
the cases of N bond model and N − 1 bond model, respectively.
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6.1 Background

Partial partition function of sN segments starting from the s = 0 chain end can be written

as q(r, s), where r is the sNth segment position, and it satisfies the following modified diffusion

equation,
∂

∂s
q(r, s) =

(
a2N

6
∇2 − w(r)

)
q(r, s) , (6.1)

where a is the statistical segment length and w(r) is the self-consistently determined mean

potential field acting on the segment at position r [64,93]. The complementary partial partition

function of (1 − s)N segments starting from the s = 1 chain end, q†(r, s), satisfies the same

modified diffusion equation (6.1) with the left-hand side multiplied by −1. Using these two

partial partition functions, mean field quantities such as the total partition function of the

chain and the polymer density distribution can be calculated. The mean field free energy of the

system is found after the self-consistent solution is obtained.

It is obvious that a real polymer is not infinitely flexible, and the Gaussian chain model

inevitably fails at a small scale. As explained in the introduction chapter, this problem becomes

more significant for short polymer chains, and it is required to recheck the fundamentals of the

polymer statistics calculation to find a valid alternative method.

One suggestion is to directly solve the integral equations of partition functions which utilizes

the theory of Markovian stochastic process [109]. This approach retains the discreteness of

chain by assuming a finite number of segments, and as shown in figure 6-1 (c), the segment

positions along the polymer backbone are now specified by N discrete points of s = n∆s

(n ∈ {0, 1, . . . , N − 1}) where ∆s ≡ 1/(N − 1). Its fundamental idea is that the probability

density to observe the (s + ∆s)Nth segment at position r can be built up by means of a

Chapman-Kolmogorov equation when the probability density distribution of the sNth segment

is already known [93,101,110,111].

For a noninteracting chain, random step propagation of the chain suggests that the partial

partition function q (r, s+ ∆s) can be recursively obtained from the distribution of the sNth

partial partition function, q (r, s),

q(r, s+ ∆s) =

∫
dR g(R; r−R)q(r−R, s) , (6.2)

where the bond function g(R; r − R) represents the conditional probability density that the

bond vector from the sNth segment located at position r − R to the (s + ∆s)Nth segment

assumes a displacement vector of R. The partition function q (r, s) can be built up recursively

for all segment points s = n∆s starting from n = 0.

In the absence of external fields, the random walking nature of the chain shows Markov

process, and the probability distribution of the bond g(R; r −R) becomes independent of the

starting position which allows one variable function g(R). In the theory of statistical mechan-

ics, statistical weight of each segment is closely related with its probability density, and thus
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6.2 Chain Models

Eq. (6.2) corresponds to the Chapman–Kolmogorov equation in the theory of stochastic pro-

cess. Considering that Eq. (6.1) is the differential form of the Chapman–Kolmogorov equation,

the relation of the above equations becomes easier to understand. The solution of the partition

functions obtained by this integral method reduces to the solution of the modified diffusion

equations without field in the limit ∆s goes to 0.

However, considering that the integral approach retains the property of discrete chains, it

is an attractive idea to remain in the discrete chain model especially when investigating the

behavior of short polymer chains. Previous papers adopting this model have directly borrowed

the integral equations, but in the next section, I will rigorously derive the formalism of the

discrete chain SCFT in an integral form, starting from the fundamental definition of the partition

function and free energy. In doing so, whenever I have a choice, I will adopt a method which is

optimized for the numerical implementation and which can easily visualize its convergence to

the standard SCFT.

6.2 Chain Models

In this section, the basic methods of discrete polymer chain modelings are introduced. I first

present the coarse-grained chain model with the most intuitive choice, and then I will move onto

a different model. The discussion starts from the observation of the previously used discrete

chain modeling, taking a symmetric (f = 0.5) diblock copolymer as an example. As depicted in

figure 6-2 (a), the AB block copolymer chain consists of many A and B types of monomers.

: A monomer : B monomer

1 2

. . .

N/2 N/2 + 1

. . .

N

segment number = N , bond number = N − 1

0 1

. . .

N/2

. . .

segment number = N , bond number = N

N − 1 N

(a)

(b)

Figure 6-2: (a) Symmetric (f = 0.5) diblock copolymer with N beads and N − 1 bonds. (b)
Symmetric diblock copolymer with N beads and N bonds.

In the process of chain modeling, a few monomers are coarse-grained to form a segment; in

the figure, by combining four monomers in one segment, N/2 A segments and N/2 B segments

are constructed. The random walking nature of the polymer chain is embedded in the bond

connecting the neighboring segments, and the property of the bond depends on the actual
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6.2 Chain Models

architecture of the chain and the scale of coarse-graining. If the chain is long enough, the

central limit theorem guarantees that successive random walks produce Gaussian probability

distribution, and this is the reason why the Gaussian chain model must be successful in the

long chain limit.

The chain is represented by N segments in figure 6-2 (a), but the number of bonds is

actually N −1. In the absence of the field, the natural end-to-end distance of the chain becomes

R0 = a(N − 1)1/2, where a is the one bond length. It is slightly shorter than the well-known

expression aN1/2, and this difference is often ignored with the justification that it is negligible in

the long chain limit. However, it is not a small difference to ignore for the short and intermediate

length chains. There exists another finite length effect which is often overlooked. One usually uses

R2
g = a2N/6 as the square of the radius of gyration, but calculation with the assumption that the

mass is discretely concentrated at the segment position shows R2
g = a2N(N + 1)/6(N − 1). The

required correction term is O(1) and it does not vanish even in the limit N → ∞. Expressing

all the equations using N ′ ≡ N − 1 allows us to write R0 = aN ′1/2, but this policy does not

help one to reduce the error in the radius of gyration expression.

This observation leads me to consider another model which may look unnatural at first

glance for those who are not accustomed to it. When combining monomers to form segments,

the process starts by creating a half-segment as shown in figure 6-2 (b) and label it as the 0th

segment for convenience. All the subsequent segments are full-segments except the last (Nth)

one which is again a half-segment. The total number of points is now N + 1, but because

two of them are half-segments, I formally counts N segments. If the segment number is large,

both models converge to the standard Gaussian chain model, and they do not make a noticeable

difference in predicting the statistical behavior of polymers. For the case of low molecular weight

polymers, however, N is small and the difference can be significant. Because of the presence of

the two half-segments, now the number of bonds is N and the natural end-to-end distance is

R0 = aN1/2. In addition, calculation of Rg assuming that the mass is discretely concentrated

at the segment position results in a value R2
g = a2 (N/6 + 1/12N). It is much closer to a2N/6

compared to the old model, and the correction term is O(1/N).

For future distinction, I will use the term “N − 1 bond model” and “N bond model” for

figures 6-2 (a) and 6-2 (b), respectively. The statistical mechanical description of the two models

are very similar, and thus the next section starts from the discrete chain SCFT formalism of

the N bond model. Its application to the N − 1 bond model will be explained at the end of the

next section.
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6.3 Algebraic Formulation

6.3 Algebraic Formulation

This section presents the discrete chain SCFT formulation of a sample system with an incom-

pressible melt of AB block copolymers. The system is composed of np symmetric AB block

copolymer chains with A fraction f = 0.5 and total segment number N . Even though the N −1

bond model seems to be more natural, lets start the algebraic formulation from the N bond

model. It is partially because the equations become simpler in this model, and its modification

to the N−1 bond model is a trivial task as explained at the end of this section. For the recursive

equation of the N bond model, calculation of the partial partition function becomes multiple

applications of a single evolution step without any exception, because any chain fragment in

the intermediate step has two half-segment ends unlike the N − 1 bond model.

The segment positions of the αth polymer chain can be represented by the function rα(s)

as shown in figure 6-1 (b). In the standard SCFT, rα(s) is a continuous function, but for the

discrete chain, its values at N + 1 discrete points of s = n∆s (n ∈ {0, 1, . . . , N} and ∆s ≡ 1/N)

are only meaningful, and it is assumed that the polymer mass is concentrated at these positions.

Even though each segment has a volume ρ−1
0 , it can be treated as a point-like object for the

density calculation.

Considering that the 0th and Nth segments are half-segments, the spatial densities of A and

B type segments in the αth chain are given as

φ̂α,A(r) =
1

ρ0

∑′

s∈{0,··· ,f}

δ (r− rα(s)) , (6.3a)

φ̂α,B(r) =
1

ρ0

∑′

s∈{f,··· ,1}

δ (r− rα(s)) , (6.3b)

∑′

s∈{t,··· ,u}

f(s) ≡ f(t)

2
+ f(t+ ∆s) + · · ·+ f(u−∆s) +

f(u)

2
, (6.3c)

where it is assumed that the chain is properly discretized so that a half-A and half-B segment

shown in figure 6-2 (b) is present at the position f , and u − t is always an integer multiple of

∆s. The half contributions coming from both ends are represented by the primed summation.

The meaning and effect of the half-A and half-B segment will be discussed later.

For the time being, let us use the bead-spring (BS) model, which is a very common choice

in polymer physics. In the BS model, neighboring segments are connected by one spring bond

whose length a represents the root-mean-square (RMS) average of a random step. The free
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6.3 Algebraic Formulation

energy of the chain segments [s1, s2] in an external field w(r) is given as

∆rα(s) ≡ rα(s)− rα(s−∆s) , (6.4a)

E(rα; s1, s2)

kBT
=

1

N

∑

s∈{s1+∆s,··· ,s2}

3

2a2N

[
∆rα(s)

∆s

]2

+
1

N

∑′

s∈{s1,··· ,s2}

wκ(rα(s)) . (6.4b)

The prefactor 3/2a2N represents the strength of the spring, and it is properly chosen to make

the RMS end-to-end distance R0 of a non-interacting chain to be aN1/2. The field is defined

in a way that one κ-type of segment (κ = A or B) at position r experiences wκ(r)/N of

energy penalty. The subscript will be often omitted with the implicit understanding that w(r)

is properly chosen according to the s value. In the limit N →∞, this definition converges to the

field in the standard SCFT, where E[rα; s1, s2] is a functional depending on the function rα(s).

In the discrete chain SCFT, it becomes a multivariable function with N + 1 position variables

rα(s) (s ∈ {0,∆s, . . . , 1}).
For the full understanding of the partition functions in this SCFT formulation, let us start

from the two-point partial partition function for a chain segment of length sN starting from A

end whose s = 0 segment position is fixed at r0,

q(r, r0, s) =

(
2π

3N

)3/2 ∏

u∈{0,··· ,s}

(
3

2πa2

)3/2 ∫
drα(u)

× exp

(
−E(rα; 0, s)

kBT

)
(a2N)3

× δ (rα(0)− r0) δ (rα(s)− r) , (6.5)

and the complementary two-point partial partition function for a chain segment of length (1−
s)N starting from B end whose s = 1 segment position is fixed at r1,

q†(r, r1, s) =

(
2π

3N

)3/2 ∏

u∈{s,··· ,1}

(
3

2πa2

)3/2 ∫
drα(u)

× exp

(
−E(rα; s, 1)

kBT

)
(a2N)3

× δ (rα(s)− r) δ (rα(1)− r1) . (6.6)

In the standard SCFT, it is required to perform a path integral following all the possible paths

of a polymer chain [64, 93]. In the current SCFT formalism, however, the partition functions

are products of many normal integrals over the space. Such a change allows us to identify the

exact prefactors of the partition functions which are often ambiguously written in the functional

integral version. In a formal language, the continuous limit of this product of discrete integrals

corresponds to the functional integral of the standard SCFT.
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6.3 Algebraic Formulation

After some algebraic derivation found in appendix D, the recursive integral equation of the

partition function can be obtained as

g(r) ≡
(

3

2πa2

)3/2

exp

(
−3r2

2a2

)
, (6.7a)

q(r, r0, s+ ∆s) = exp

(
−w(r)

2N

)∫
dR g(R)

× exp

(
−w(r−R)

2N

)
q(r−R, r0, s) , (6.7b)

where the bond function g(r) naturally emerges to specify the one-step distribution. It is cur-

rently a simple Gaussian function because the BS model is adopted. The complementary function

q†(r, r1, s) satisfies essentially the same equation except that s + ∆s on the left-hand side is

replaced by s−∆s.

The two-point partial partition functions are rarely used in the actual SCFT calculation

[117], and it is customary to use the following one-point partial partition functions,

q(r, s) ≡ 1

(a2N)3/2

∫
dr0 q(r, r0, s) , (6.8a)

q†(r, s) ≡ 1

(a2N)3/2

∫
dr1 q

†(r, r1, s) , (6.8b)

with the naturally determined initial conditions q(r, 0) = q†(r, 1) = 1. One can directly con-

firm that these functions satisfy the same evolution equation as the two-point partial partition

functions. Here is a summary of the process of calculating the unknown q(r, s + ∆s) from the

known q(r, s),

q∗(r) = exp

(
−w(r)

2N

)
q(r, s) , (6.9a)

q∗∗(r) =

∫
dR g(R)q∗(r−R) , (6.9b)

q(r, s+ ∆s) = exp

(
−w(r)

2N

)
q∗∗(r) . (6.9c)

The evolution of q†(r, s) follows the same equations except that now s is decreasing.

Eq. (6.9) looks slightly different from the familiar form found in the discrete chain SCFT

literature [93,101,112,114,116], but it produces the same results because the physical description

is the same as explained below. As have been followed, the formal derivation of the integral

equation (6.9) requires some algebra, but once it is established, its physical meaning is not so

difficult to understand. Lets assume that the sNth segment is shown at the left end of the chain

in figure 6-3 (a) marked by the first purple line, and its unnormalized probability is given by

the partition function q(r, s). One half-segment is positioned at r, and the exponential function

in Eq. (6.9a) is the proper Boltzmann factor accounting for the probability increase or decrease

due to the half-segment. Then, the propagation of one random step is calculated by the integral

50



6.3 Algebraic Formulation

1 2 3 4

(a)

(b) (c) (d)

Figure 6-3: (a) Schematic description of the partition function calculation for the positions 1 → 2
→ 3 → 4. At position 3, s = f and the segment type switches from A(blue) to B(red). Description
of (b) A evolution and (c) B evolution required for the process of (a). (d) A possible alternative
choice, half-A and half-B evolution.

of Eq. (6.9b), where the step distribution is given by the function g(r). Now we are at the

(s + ∆s)Nth segment marked by the second purple line in figure 6-3 (a), and r represents its

current position. The Boltzmann factor for the new half-segment is multiplied in Eq. (6.9c). In

this way, the three equations calculate the partial partition function evolution from the midpoint

of sNth segment to the midpoint of (s+ ∆s)Nth segment.

In this process, by using wA(r) in both Eqs. (6.9a) and (6.9c), the “A evolution” shown in

figure 6-3 (b) is applied. After s crosses f , wB(r) must be used in both Eqs. (6.9a) and (6.9c)

which makes the “B evolution” shown in figure 6-3 (c). Later, when the N − 1 bond model

is adopted, there is no a half-A and half-B segment in the modeling process. In this case, one

bond inevitably connects an A segment to a B segment, and a special building block shown in

figure 6-3 (d) becomes necessary. For this step, wA(r) and wB(r) must be used alternatively in

Eqs. (6.9a) and (6.9c), depending on the s evolution direction.

In previous SCFT researches using the discrete chain mode [101,112,114,116], they calculate

the evolution of partial partition function from one full-segment to the next full-segment by

accounting Boltzmann weight for the field acting on a full-segment, and this causes the shape

difference of the recursive integral. In this algebraic formulation, the use of half-segments makes

the implementation of both real space and pseudo-spectral methods simpler and the resulting

equations are similar to the standard SCFT as shown later.

One of the primary advantages of the discrete chain SCFT is that after the derivation of

the three-step integral equations, various types of bonds can be implemented without repeating

all the algebraic derivations. As long as each step is independent of the previous step, the

entire properties of the bond are contained in the shape of g(r), and it is all needed to vary.

For example, when using the freely-jointed bond instead of the spring bond, the proper bond

function is

g(r) =
δ(|r| − a)

4πa2
. (6.10)
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6.3 Algebraic Formulation

After the calculation of the partial partition functions, the densities of A and B type segments

can be calculated, which are defined by the formal ensemble average of Eq. (6.3). Fortunately, it

does not required to perform the complicated multivariable integrals for the ensemble average,

because the following simple summations and integral provide efficient density calculation. The

A and B segment densities in the system are

φA(r) =
∑

α

〈
φ̂α,A(r)

〉
=

V

NQ

∑′

s∈{0,..,f}

q(r, s)q†(r, s) , (6.11a)

φB(r) =
∑

α

〈
φ̂α,B(r)

〉
=

V

NQ

∑′

s∈{f,..,1}

q(r, s)q†(r, s) , (6.11b)

where V = npNρ
−1
0 is the system volume, and the total partition function Q is evaluated from

the partial partition functions as follows:

Q[w] =

∫
dr q(r, s)q†(r, s) . (6.12)

For more detailed proof of Eqs. (6.11) and (6.12), see appendix E.

Regarding the SCFT formulation of the N − 1 bond model which is another major tool in

this study, it requires only a few modifications to the above equations. For simplicity, consider

the situation of figure 6-2 (a) with N segments and N − 1 bonds without any color split

segments by choosing an integer fN . Fortunately, switch between the models does not require

any complicated modification, and the idea of figure 6-3, calculating the evolution from the

midpoint of one segment to the midpoint of the next segment, can be still utilized regardless

of the chain model. When the N − 1 bond model is used, the main difference is the initial

conditions of the partial partition functions,

q(r, 0) = exp

(
−wA(r)

2N

)
, (6.13a)

q†(r, 1) = exp

(
−wB(r)

2N

)
. (6.13b)

With these initial conditions, Eq. (6.9) can be used for the evolution of q(r, s). Note that

at the moment s is crossing f , the evolution of figure 6-3 (d) must be applied which requires

an alternative use of wA(r) and wB(r) inside the exponential functions. After the partial parti-

tion functions are calculated, the A and B segment densities can be obtained by the following

equation in which non-primed summations are now adopted,

φA(r) =
V

NQ

∑

s∈{0,..,f−(1−f)∆s}

q(r, s)q†(r, s) , (6.14a)

φB(r) =
V

NQ

∑

s∈{f+f∆s,..,1}

q(r, s)q†(r, s) , (6.14b)
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s = 0

s = 1

s = f − (1 − f)∆s

s = f + f∆s

A
B

q(r, s)
Find partition function

wout(r)
Find output field

φ(r)
Find segment density

win(r)
Set input field

(initially random)

φA(r) = V
NQ[w]

∑

s∈{0,..,f−(1−f)∆s}
q(r, s)q†(r, s)

φB(r) = V
NQ[w]

∑

s∈{f+f∆s,...,1}
q(r, s)q†(r, s)

Q[w] =
∫
drq(r, s)q†(r, s)

φA(r) + φB(r) = 1

wA(r) = χNφB(r) + ξ(r)

wB(r) = χNφA(r) + ξ(r)win
new = λwin + (1 − λ)wout

Find self consistent

mean field solution

Integral equation

q(r, s+ ∆s) = exp
(
−w(r)

2N

)

×
∫
dRg(R) exp

(
−w(r−R)

2N

)
q(r−R, s)

Figure 6-4: Problem solving strategy of the discrete chain SCFT adopting N − 1 bond model.

where f − (1− f)∆s indicates the point of A segment just before the junction of the chain, and

the point f + f∆s corresponds to the B segment just after the junction.

Now all the partition function related equations of the discrete chain SCFT are presented,

and the remaining task is to find the self-consistently determined potential fields. By applying

the field transformation and the saddle point approximation which remains essentially the same

as those of the standard SCFT [64,93], the self-consistent fields are given as

wA(r) = χNφB(r) + ξ(r) , (6.15a)

wB(r) = χNφA(r) + ξ(r) , (6.15b)

where χ is the interaction parameter, and ξ(r) is the pressure field enforcing incompressibility

which acts equivalently on both A and B segments.

To find the self-consistent solution to these equations, it is common to use an iterative

method as summarized in figure 6-4 for the N − 1 bond model. Starting from the input fields

win
A (r) and win

B (r), iteration continues until the output fields essentially become the same as the

input fields. After the final self-consistent mean field solution is obtained, the free energy of the

system is calculated by the following equation,

F

npkBT
=− ln

(
Q

V

)
+

1

V

∫
dr
(
χNφA(r)φB(r)

− wA(r)φA(r)− wB(r)φB(r)
)
. (6.16)

The last subject of this section is the finite-range interaction between the nonbonded seg-

ments. The standard SCFT formulation assumes that a segment is point-like and the interaction

between A and B type segments is counted only when they make direct contact. One advantage

of the discrete chain SCFT is that it can naturally adopt an interaction potential which has a
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6.3 Algebraic Formulation

finite-range related to the bond length [116]. With this modification, the self-consistent field is

determined as

wA(r) = ξ(r) + χN

∫
dR u(R)φB(r−R) , (6.17a)

wB(r) = ξ(r) + χN

∫
dR u(R)φA(r−R) . (6.17b)

The function u(r) represents the strength of the interaction between A and B segments separated

by r, and it naturally emerges from the interaction energy adopting finite-ranged AB interaction

[118] as follows

U

npkBT
=
χN

V

∫
drdr′ u

(
r− r′

)
φA(r)φB(r′) , (6.18a)

∫
dr u(r) = 1 . (6.18b)

It is natural to assume that u(r) is a simple Gaussian function which only depends on

the magnitude of r. To recover the contact interaction model, all we need to do is to set

u(r) = δ(r). With the presence of the finite-range interaction, the free energy is now obtained

by simply replacing φA(r) in the first term inside the integration of Eq. (6.16) by φ′A(r) ≡
∫
dR u(R)φA(r−R).
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7

Pseudo-spectral Method

In this chapter, I will briefly introduce the pseudo-spectral method which is commonly used in

the research using the standard SCFT. Then, I will discuss applicability of the pseudo-spectral

method for the discrete chain SCFT calculation. More detailed issues concerning its numerical

implementation follow in the next chapter.

7.1 Introduction

In the standard SCFT, the solutions of most polymer problems are obtained by applying some

numerical approximations to the modified diffusion equation (6.1). The numerical methods

developed so far can be categorized into three groups: i) real space method [66,72,73,94,119–126],

ii) spectral method [64, 95], and iii) pseudo-spectral method [66, 72, 127–132]. Nowadays, real

space and pseudo-spectral methods are mainly used to find the nanoscale morphology of a given

polymeric system.

To obtain a numerical solution using the real space method, it is common to divide the system

volume with M1, M2, and M3 grids in each direction, and the Laplacian is approximated by

the finite difference method (FDM) or finite volume method (FVM) incorporated with Crank-

Nicolson method [66, 133] or its approximation, alternating direction implicit (ADI) method

[66, 72, 125, 133]. In the real space method, the unknown function q(r, s + ∆s) is calculated

from the known function q(r, s) where ∆s is the discretized step size in s direction. The Crank-

Nicolson method is known to be slow, but when the ADI method is adopted, a fast calculation

is possible with O(M) time where M = M1M2M3 is the spatial grid number.

In the pseudo-spectral method of the standard SCFT, the spatial discretization is essentially

the same as the above description. The one-step advance of the partial partition function q(r, s)

in s direction is now calculated by the following three-step operator splitting method [66, 127,
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128],

q∗(r) = exp

(
−∆s

2
w(r)

)
q(r, s) , (7.1a)

q∗∗(r) = exp

(
−∆s

6
∇2

)
q∗(r) , (7.1b)

q(r, s+ ∆s) = exp

(
−∆s

2
w(r)

)
q∗∗(r) . (7.1c)

Note that it is implicitly assumed that w(r) is properly chosen according to the s value. The

nontrivial step is Eq. (7.1b) where a rescaled Laplacian operator appears in the exponential

function.

Instead of calculating this in the real space, the pseudo-spectral method performs Fourier

and inverse Fourier transforms before and after this step, respectively. As a consequence, the

differentiation in the real space is converted to a simple multiplication in the Fourier space.

For the pseudo-spectral method, the most time-consuming operation is the Fourier and inverse

Fourier transforms, and the required time for the one-step advance in s direction is O (M logM)

when fast Fourier transform (FFT) is used. With the help of modern FFT packages such as

FFTW [134], the actual calculation speed of the pseudo-spectral method can be as fast as that

of the real space calculation adopting the ADI method.

7.2 Implementation in Discrete Chain SCFT

Before examining the applicability of the pseudo-spectral method in the discrete chain SCFT, it

is the proper time to discuss the speed of real space calculation of the recursive integral equation

(6.9b). The shape of the integral implies that one three-dimensional integral is necessary for

every point r, and the one-step evolution requires O(M2) operations where M is the spatial grid

number; thus, the real space calculation of discrete chain SCFT is inevitably slower than the

standard SCFT whose time complexity can reduce to O(M) or O(M logM) with the adoption

of the fastest algorithms. If an appropriate cutoff is applied to the bond function g(r), the

performance can be greatly enhanced because only a small part of the total volume for each

R integral is now used. Nevertheless, the real space calculation of discrete chain SCFT cannot

compete with the standard SCFT in terms of speed, and it is not a practical tool for the

simulation of three-dimensional polymeric systems.

One suggestion to overcome this problem is the use of pseudo-spectral method as verified in

the standard SCFT research. Even though it is natural to conceive the adoption of the pseudo-

spectral method for the evaluation of the recursive equations [93, 116], the practicality of the

algorithm has not been verified in that no known research has implemented this technique for

the study of real polymer systems. The idea of the pseudo-spectral calculation of the integral
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7.2 Implementation in Discrete Chain SCFT

seems to be straightforward, but there are some troublesome issues found in the implementation

of the pseudo-spectral method, and the details will be discussed in the next section.

The formulation developed so far is carefully designed for the future adoption of the numer-

ical algorithms; the evolution of the partition function calculated by the three steps displayed

in Eq. (6.9) has a very similar structure to that of the pseudo-spectral or the operator splitting

real space methods [66, 135] of the standard SCFT. The most time-consuming step of the real

space calculation is the integral of Eq. (6.9b), and because it has the shape of a convolution

integral, one natural suggestion is to perform this calculation in the Fourier space where the

convolution integral becomes a simple multiplication,

q̃∗∗(ξ) = g̃(ξ)q̃∗(ξ) . (7.2)

In this study, I use the notation that the tilde on a variable denotes its Fourier transform or

Fourier cosine transform. The Fourier transform is defined in the following way,

f̃(ξ) ≡
∫
dr f(r) exp(−2πiξ · r) . (7.3)

For the BS model, the Fourier transform of the Gaussian distribution function is another Gaus-

sian in the ξ space,

g̃(ξ) = exp

(
−2

3
π2a2|ξ|2

)
. (7.4)

In its numerical implementation using M spatial grids, I use the discrete Fourier transform

(DFT) which can be performed by O(M logM) operations, and this is essentially the time com-

plexity of the single evolution step. Considering that the Fourier and inverse Fourier transforms

are performed just before and after Eq. (6.9b), researchers accustomed to the standard SCFT

would recall the pseudo-spectral method of it. Indeed, with a special combination of the N bond

model and BS model, the discrete chain SCFT calculation becomes equivalent to the calculation

of the standard SCFT using the standard pseudo-spectral method with ∆s = 1/N .
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8

Numerical Implementation

8.1 Bond Function Discretization

Since space must be discretized in the numerical calculation, all the real space functions are rep-

resented by a set of discrete points. In this approach, Fourier transform must be replaced by its

discrete version, DFT. However, this conversion is not a trivial task because näıve discretization

of the bond function g(r) is prone to amplify errors in the calculation of the partition function,

and material conservation is known to be an important issue [66].

I start implementing the numerical scheme using a simple three-dimensional box of size Lx,

Ly, and Lz, and each direction is discretized by ∆x, ∆y, and ∆z so that an integer vector

i = (i, j, k) represents the grid point on the position ri ≡ (i∆x, j∆y, k∆z). The discretized

partition function value at each point is qi ≡ qi,j,k where each index starts from 0, and the

maximum values of i, j, and k are I ≡ Lx/∆x, J ≡ Ly/∆y, and K ≡ Lz/∆z, respectively,

when the periodic or Neumann boundary conditions are applied in all directions.

The spatial integral is now evaluated by a weighted summation,

∫
dr f(r)→

∑

ri

f(ri)∆Vi , (8.1)

where ∆Vi is the volume of the ith cell. For equally spaced Cartesian grids, most of ∆Vi are

∆V ≡ ∆x∆y∆z, but factors 1/2, 1/4, and 1/8 are multiplied when the point (i, j, k) is at the

planar, line, and vertex boundaries, respectively.

Lets make a careful thought about the discretization of the bond function g(r) using the one-

dimensional BS model as an example. For the one-dimensional problem, I will always consider a

system with z dependent functions, assuming symmetry in x and y directions. Now the required

job is to discretize the Gaussian distribution function g(z) = (3/2πa2)1/2 exp(−3z2/2a2). Be-

cause the space is discretized by ∆z, one is tempted to directly use gk ≡ g(k∆z) as the discrete

distribution function, and try to perform DFT of them. With this choice, however, the weighted

summation
∑
gk∆Vk is not exactly equal to 1, which means that the total probability of one

step is not equal to 1. Another issue is the tail of the distribution function. In principle, g(z)
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is defined at z ∈ (−∞,∞), but it is needed to set g(z) = 0 for large enough |z| to provide

appropriate cutoffs for the integral of Eq. (6.9b). Let us accept a very loose condition for the

time being, g(z) = 0 for |z| > Lz. For the three-dimensional distribution function, x and y

directional cutoffs are given accordingly.

Here is a simple solution to both issues, regardless of the dimensionality of the system. In

the previous report of Yong et al. [66], it was shown that the probability or material conserva-

tion and the constant RMS step size are two important rules one must keep in the numerical

SCFT calculation. Such a consideration suggests us to adopt a discrete distribution function gi

satisfying the following two equations,

∑
gi∆Vi = 1 , (8.2a)

∑
r2
i gi∆Vi = a2 . (8.2b)

The first equation guarantees the probability conservation, while the second equation is for

the fixation of the RMS step size in the discrete calculation. It is a relatively easy task to

slightly modify the height and width of the Gaussian function of the BS model to satisfy these

two equations, and it has been shown that such a slight deviation does not create any noticeably

undesirable side effect. Thus, I always use Eq. (8.2) regardless of the choice of the bond model

and the distribution function. After obtaining the discretized values of the modified distribution

function in real space, DFT is applied, and simple multiplication of Eq. (7.2) is performed in

the Fourier space without violating the mass conservation condition.

The implementation of the FJC model is a more challenging task because of the delta func-

tion shaped g(r). At least its one-dimensional version is easier to construct to satisfy Eq. (8.2)

because the bond function g(z) reduces to a step function [101],

g(z) =

{
1/2a if |z| ≤ a
0 otherwise

. (8.3)

Because of its finite range, this model is easier to implement compared to the one-dimensional

BS model, and relatively faster calculation of Eq. (6.9b) is possible by making cutoffs at z = ±a.

However, the probability conservation error may be significant if a näıve discretization of the

step function, gk ≡ g(k∆z), is chosen. As suggested earlier for the Gaussian function, by making

a slight modification to the step height and width, Eq. (8.2) can be easily matched, and this is

the recommendable way to implement the pseudo-spectral method in the discrete chain SCFT.

The true challenge is the full three-dimensional calculation of the FJC model. In this case,

the Dirac delta function in g(r) makes the spatial discretization in real space rather difficult.

Its direct implementation in real space is not recommendable, and this issue will be discussed

in the next section.
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8.2 Three-dimensional FJC Model

In the previous section, the implementation of the Dirac delta function shaped g(r) was a difficult

task for the three-dimensional spatial grid. At practically no grid point (i∆x, j∆y, k∆z), the

function value is nonzero, but it is required to assign some values on the grids to represent the

delta function while satisfying Eq. (8.2), and do not forget that its Fourier transform is needed

for the pseudo-spectral calculation. Fortunately, at least part of these issues disappear when

starting the discretization in the discrete Fourier space because the three-dimensional Fourier

transform of the FJC bond function is analytically calculated as [93,116]

g̃(ξ) = sinc (2|ξ|a) ≡ sin (2π|ξ|a)

2π|ξ|a , (8.4)

This is a smooth function in the Fourier space, and it can be easily discretized in the discrete

Fourier space. For example, when Neumann boundary condition is used, discrete cosine trans-

form (DCT) is naturally adopted, and the g̃i can be taken by sampling of g̃(i/2Lx, j/2Ly, k/2Lz),

which becomes

g̃i =
1

8∆V
sinc


a
√(

i

Lx

)2

+

(
j

Ly

)2

+

(
k

Lz

)2

 , (8.5)

where the range of each index is from 0 to its maximum value, I, J , or K. When the bound-

ary conditions are periodic, DFT is now adopted, and the g̃i can be obtained by sampling of

g̃(i/Lx, j/Ly, k/Lz), with the additional consideration on its periodic property. Thus,

g̃i =
1

∆V
sinc


2a

√(
i′

Lx

)2

+

(
j′

Ly

)2

+

(
k′

Lz

)2

 , (8.6)

where i′ = i if i < I/2, and i′ = i − I otherwise. j′ and k′ are defined similarly. In this paper,

we show our calculations using DCT adopting Neumann boundary conditions.

When the entire calculations are performed in the Fourier space, it is an attractive idea to

use this g̃i function. For example, in a low molecular weight diblock copolymer research using

spectral method, Matsen has used the sinc function for the evaluation of the convolution integral

in the Fourier space for the purpose of obtaining the phase diagram [116].

However, the real space function obtained by performing inverse DCT of Eq. (8.5) is some-

what unsatisfactory in terms of the reproducibility of the original function and non-negativity of

the probability. Figures 8-1 (a) and 8-1 (b) exhibit the reconstructed delta function distribution

of Eq. (6.10) on the two planes, z = 0 and z = 4a/5, for the case of ∆x = ∆y = ∆z = a/10.

As expected, figure 8-1 (a) shows that gi is highly peaked at the grid cells where the circle

x2 + y2 = a2 passes. The non-trivial feature is that the probability is also distributed to the

cells which do not contain the circle. What makes things worse is that cells far from the circle ex-

hibit finite amplitudes and sometimes gi even becomes slightly negative. The amplitude plot for

60



8.2 Three-dimensional FJC Model

the plane z = 4a/5 (figure 8-1 (b)) shows a similar behavior except that now x2 + y2 = (3a/5)2

is the circle of peak amplitudes. One may worry that the negative gi or negative probability

may cause a catastrophe when using the FJC model, but the aforementioned research suggests

that this local probability anomaly does not cause a serious problem [116]. The strong peak

averages out all the negative variables in the long run, and the final segment density always

becomes positive for reasonable choices of parameters.

(a) (b)

(c) (d)

(e) (f)

Figure 8-1: (a) gi,j,0 and (b) gi,j,8 of the FJC model obtained by Eq. (8.5) for the case of ∆x =
∆y = ∆z = a/10. (c) gi,j,0 and (d) gi,j,8 obtained by Eq. (8.8) after using only nx = ny = nz = 0.
(e) and (f) are the results with the summation up to nx = ny = nz = ±5.
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I may instead suggest an alternative method which is based on an intuitive idea. It is obvious

that g (i∆x, j∆y, k∆z) cannot be a good candidate of gi for the FJC model, but the average of

g(r) within the cell can be a valid candidate,

gi ≡
1

∆V

∫ ∆z/2

−∆z/2

∫ ∆y/2

−∆y/2

∫ ∆x/2

−∆x/2

× g
(
i∆x− x′, j∆y − y′, k∆z − z′

)
dx′dy′dz′. (8.7)

Applying this idea to Eq. (6.10), gi of Eq. (8.7) now becomes the surface area of a sphere of radius

a contained within the ith cell divided by 4πa2. Even though this definition is conceptually clear,

the actual calculation of the integral is not a trivial task.

Fortunately, the sampling theory of the discrete time Fourier transform (DTFT) provides

an efficient method to calculate the DCT of Eq. (8.7) (see appendix F for the detail). Using this

method, the g̃i of the FJC bond function becomes

g̃i =
1

8∆V

∑

nx,ny ,nz

sinc


a
√(

i− 2nxI

Lx

)2

+

(
j − 2nyJ

Ly

)2

+

(
k − 2nzK

Lz

)2



× sinc

(
i− 2nxI

2I

)
sinc

(
j − 2nyJ

2J

)
sinc

(
k − 2nzK

2K

)
, (8.8)

where each of the nx, ny, and nz summation range is from −∞ to ∞, and the inverse DCT of

this expression provides us a valid gi. The convergence of this summation is surprisingly good.

Figures 8-1 (c) and 8-1 (d) exhibit gi obtained only by using nx = ny = nz = 0 term, and

they already look better than figures 8-1 (a) and 8-1 (b). The results with the summation up to

nx = ny = nz = ±5 are shown in figures 8-1 (e) and 8-1 (f). Cells with negative gi practically

disappear, and the results are almost the same as the spherical surface fraction within the cell.

One last note is that the transformed gi in the real space does not exactly satisfy Eq. (8.2), and

thus slight adjustments are recommended for its practical implementation. The easy way is to

make a small modification to the function g̃i in Eq. (8.8) to satisfy Eq. (8.2).

Discretization of a quickly varying function results in a significant loss of high frequency

modes. Averaging within the cell using Eq. (8.7) can be viewed as a filtering process eliminating

high frequency mode of bond function, and it is the reason why the approach has been suc-

cessful for the FJC bond function. This filtering approach can be easily applied to other bond

functions whose analytic Fourier transforms are known, and it is expected that a better spatial

discretization is achievable especially when the bond function is a quickly varying function. All

we need to do is to replace the first sinc function of Eq. (8.8) with the known Fourier transform

of the bond function while leaving the last three sinc functions.

In the development stage of discrete chain SCFT, the real space method [101] was naturally

used, and the full spectral method [116] was adopted later for the purpose of creating the block

copolymer phase diagram. Slow speed was not a crucial issue in the development stage, but for a
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8.2 Three-dimensional FJC Model

new theoretical framework to be widely accepted, it is important to show that a fast calculation

is possible, and the pseudo-spectral method provides the perfect solution.

I perform a speed test of the three-dimensional discrete chain SCFT pseudo-spectral method

using a single core of Xeon Gold 6132 CPU, and the DCTs are performed with the FFTW

package [134]. For the test system, I take the diblock copolymers with parameters N = 50,

χN = 25, and f = 0.2, which is expected to create a body-centered-cubic phase. When the FJC

bond function and 32 × 32 × 32 grid box are used, it takes 0.2 seconds per 1 iteration, and 11

seconds is enough to obtain the final morphology. For a larger system with 256× 256× 256 grid

box, it takes 112 seconds per 1 iteration, and 93 minutes is required for the whole calculation.

In short, the pseudo-spectral method of discrete chain SCFT is as fast as any known real space

or pseudo-spectral method implementations of the standard SCFT.
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8.3 Boundary Condition Issues

For the actual implementation of the pseudo-spectral method in the discretized world, certain

boundary conditions must be chosen, and there are a few subtle physical and numerical issues

that must be cleared for their proper implementation. When the boundary condition of the

qi family is periodic with period Lx, Ly, and Lz in each direction, to apply the convolution

theorem, it can be assumed that the discrete bond function gi has the same periodicity even

though g(r) is in principle a non-periodic function. One can easily check that such a modification

does not do any harm for the integral of Eq. (6.9b), as long as one period of convolution integral

is performed in all directions. To make gi periodic and for the accuracy of the calculation, it

must slightly deviate from g(i∆x, j∆y, k∆z) while satisfying Eq. (8.2).

The case with the Neumann boundary is somewhat more complicated. Under the condition

that g(r) has the reflection symmetry with respect to x = 0, y = 0, and z = 0 planes, which is

usually true, the discrete version of Eq. (7.2), q̃∗∗i = g̃iq̃
∗
i , is valid with the interpretation that

the tilde on a variable now represents its DCT. In other words, all we need to do is to define gi

in the region 0 ≤ i ≤ I, 0 ≤ j ≤ J , and 0 ≤ k ≤ K, and perform its DCT.

One can easily imagine another common situation, the Dirichlet boundary condition, and

it is sometimes adopted in the standard SCFT calculation for the modeling of the polymer-air

or polymer-substrate interface. However, it is not a trivial task to model these boundaries in

the discrete chain SCFT calculation. When using a Dirichlet boundary condition in solving a

differential equation, it is expected that the function values are zero at the boundary. In the

pseudo-spectral method, the natural strategy is to use a discrete sine transform (DST) for the

q(r) family. Even though such a calculation is numerically possible, it is not a recommendable

strategy for the modeling of interfaces in the discrete chain SCFT as explained below.

Let us consider a situation that there exists a wall at z = 0 so that no polymers exist at z < 0.

When no additional interaction is imposed, it is naturally called as a neutral wall. However,

one must be careful that the presence of the wall reduces the entropy of polymer chains near

the wall, which creates an effective repulsion [100,101]. In the discrete chain model, the correct

way to represent the non-existence of segments beyond the wall is to let the partition function

vanish whenever a segment crosses the wall. It can be achieved by setting the function value to

be zero beyond the boundary wall after each integration of Eq. (6.9b). Earlier researches show

that when the field acting on the polymers vanishes, the polymer density at z = 0 is exactly

1/N of the bulk density [100,101], which means that only the N →∞ limit can be legitimately

called the Dirichlet boundary case. In this way, the discrete chain SCFT opens up possibility

of a new interesting boundary condition, the neutral boundary, which was not available for the

standard SCFT calculation with the Gaussian chain model.

When the neutral boundary condition is chosen, performing the integral of Eq. (6.9b) in the

real space is not a particularly complicated process. However, as explained in chapter 7, the
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8.3 Boundary Condition Issues

real space calculation in three dimension is very slow, and the pseudo-spectral method is the

preferable choice for the discrete chain SCFT. The fact that the DST is not applicable for this

problem is a slight disappointment, but the pseudo-spectral method is still a valid approach

because all we need to do is to perform the convolution integral after enforcing q(r) = 0 beyond

the neutral walls.

To achieve this, the system boundary can be extended beyond the wall by the practical range

of the bond function g(r), and q(r) is set to zero in the newly added space. Now the convolution

integral of the total system can be performed using DFT or DCT without a problem. After

the integral is finished, the extended region is removed and the original system size is restored.

Such an algorithm requires an additional computational resource for the extended space, but

the whole process of the one-step evolution is guaranteed to be finished in O(M logM) time,

and this is certainly the best strategy of discrete chain SCFT for the two- or three-dimensional

system when the neutral boundary condition is chosen. In section 9.2, I will use this method

for the analysis of the block copolymer thin film system.
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Result

9.1 Discrete Chain Behavior in Lamellar Morphology

In this section, I make a few tests of the discrete chain SCFT using lamellar forming symmetric

(f = 0.5) diblock copolymers adopting various chain models, and the results are compared with

those of the standard SCFT. It is important to note that R0 ≡ a(N − 1)1/2 is used for N − 1

bond model, and R0 ≡ aN1/2 for the N bond model.

In the standard SCFT, it is known that fine discretization in the s direction is important

at high χN , and similar behavior is found in this simulation. Figure 9-1 displays the block

copolymer period D and the interfacial width wI for various chain models [64] at χN = 50 and

100. For the calculation in this section, 2000 grid points are utilized for the simulation box.

The spatial discretization ∆z varies according to the box size, and it ranges from 0.0004R0

to 0.0008R0. Thus, for all the parameters utilized here, there exist enough grid numbers to

accurately analyze the behavior of the interfacial width. As expected, all curves converge to the

standard SCFT results in the limit N → ∞, but deviations are not negligible at intermediate

N values and there are a few noticeable differences between the models. For the FJC model at

χN = 50, N = 50 is enough for D and wI to reach to the standard SCFT results, but the BS

model seems to converge slower so that somewhat higher N is required to see the convergence.

The cases with χN = 100 exhibit similar trends. For the FJC and SB models, N = 100

and 400 are required to confirm the convergence, respectively. Comparing between the segment

models, the N bond model shows a slightly better convergence compared to the N − 1 bond

model, which has the mismatch of the bond number (N −1) and the segment number (N). The

observation that the convergence is faster for the FJC model might be a surprise for those who

think that the spring-like bond of the BS model makes it closer to the Gaussian chain model.
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Figure 9-1: (a) Lamellar period D and (b) interfacial width wI for the discrete chain SCFT of
symmetric (f=0.5) AB block copolymers with χN = 50 and 100, as functions of N . The dashed
lines are the standard SCFT results using the Gaussian chain model.
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9.1 Discrete Chain Behavior in Lamellar Morphology

This issue can be investigated further by analyzing figure 9-2 which extends Matsen’s analysis

on the N − 1 bond FJC model [116] to the other possible models. In this figure, D and wI for

the various chain models are plotted as functions of χN at fixed N . For the lamellar period of

N = 160 case, the N − 1 bond model and N bond model are nearly indistinguishable for both

BS and FJC models. The case with N = 160 shows that the lamellar period of the FJC models

follows the standard SCFT result (dashed line) for χN up to 300, while that of the BS models

deviates slightly from the standard SCFT result at such a large χN .

The interfacial width shown in figure 9-2 (b) provides an important hint to understand this

behavior. Due to the finite bond size and strong stretching near the AB interface, the A and

B segments are essentially segregated at very large χN , and they form a sharp interface. Near

this one-dimensional interface, one step of the bond has the Gaussian function shape in the BS

model. On the other hand, the step has the shape of Eq. (8.3) in the FJC model, and there

is a higher chance for an A segment near the interface to send its random-walking A neighbor

beyond the interface and increase the degree of mixing. This residual mixing effect makes the

FJC model behave more like the standard SCFT in which infinitely flexible chains easily mix.

Because the lamellar period increases at increasing χN to achieve better segregation between A

and B blocks, the decrease of the interfacial width works in the direction to shrink the period,

which can be confirmed by figure 9-2 (a).

The idea that decrease of the interfacial width for highly stretched chains leads to the period

reduction is consistent with the observation of figure 9-1. Surface energy plot in appendix G

confirms that the interfacial energy actually decreases with decreasing N at fixed χN , and thus

decrease of the interfacial width is the cause of the interfacial energy and the block copolymer

period reduction.

The stronger mixing effect of the FJC model also provides an explanation to the observation

of a slight overshoot of D and wI in figure 9-1 at intermediate values of N . In this regime, due

to the extra mixing of A and B segments near the interface, the interfacial width of the FJC

model (figure 9-1(b)) is slightly wider than the standard SCFT case, which in turn increases

the period D slightly to create the overshoot.

Figure 9-2 also shows that, for the shorter chains with N = 40, the general behaviors of the

models are similar to the N = 160 cases except that now D and wI deviate from the standard

SCFT results at a smaller χN . At this N value, let us compare the two choices, the N −1 bond

and N bond models. At large enough χN , the width wI is notably narrower for the N −1 bond

model. The shape of the segments displayed in figures 6-2 (a) and 6-2 (b) provides a convincing

argument explaining this behavior. Because of the presence of the half-A and half-B segment,

mixing of blocks are more significant in the N bond model. The lack of such a segment makes

a sharper boundary and a shorter period for the N − 1 bond model.
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Figure 9-2: Discrete chain SCFT (a) lamellar period D and (b) interfacial width wI as functions
of χN . The dashed lines are the standard SCFT results using the Gaussian chain model.
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9.2 Diblock Copolymers in Thin Film

When lamellar forming AB block copolymers are confined in a thin film morphology, the lamellar

domains may align parallel or perpendicular to the substrate. In general, when the polymer-

substrate or polymer-air surface interaction is preferential to a specific block, surface-parallel

lamellae are naturally chosen [136, 137]. For those who wish to create surface-perpendicular

lamellae, it is necessary to make a special tuning of the surface property. For example, the surface

tensions of PS and poly(methyl methacrylate) (PMMA) are very similar, and PS-b-PMMA block

copolymers are commonly used for the creation of surface-perpendicular lamellae [138,139]. The

substrate must also be neutralized for the effective control of the lamellar orientation. PS-r-

PMMA layer [140], self-assembled monolayer [141], and chemically modified graphene layer [142]

are often used for the neutralized substrate of PS-b-PMMA block copolymers.

There are a few issues concerning the theoretical treatment of the neutralized surface, es-

pecially when considering the boundary as a hard impenetrable wall. It is well known that a

polymer chain loses its conformational entropy near the wall, but the degree of entropy loss

strongly depends on the bond step size and shape [100, 101, 112, 143, 144]. Because of this, the

standard SCFT using infinitely flexible Gaussian chains can capture the physics near the hard

wall only after adding some extra features such as a gradual density variation [102,144–147]. An-

other interesting approach to this problem is the lattice SCFT [103,104] which has been a branch

of the SCFT family since its development stage. By introducing interaction potential which de-

pends on the density at the nearest lattice sites, the preference of the surface-perpendicular

morphology over the surface-parallel one has been successfully demonstrated using the lattice

SCFT [106,148].

In this section, I analyze the behavior of freely-jointed block copolymers confined by the

neutral walls using two-dimensional discrete chain SCFT adopting finite-range interaction. Let

us consider a symmetric (f = 0.5) AB block copolymers confined between two neutral walls at

z = 0 and z = Lz (see figure 9-3 (a)). For the calculation of the surface-perpendicular lamellar

morphology, at least two-dimensional calculation must be used. For the following calculation, the

x directional size Lx is chosen to be 1/2 times of the bulk period, and the Neumann boundary

conditions are adopted in the x direction. The shape of the finite-range interaction function

u(r) is chosen as a Gaussian function,

u(r) =

(
3

2πa2

)3/2

exp

(
−3r2

2a2

)
. (9.1)

This choice assumes that the effective interaction range is the bond size a, which is a rea-

sonable assumption. For the convenience of the pseudo-spectral method, the actual discrete

function has a cutoff at |r| = 2a, beyond which ui = 0, and it is normalized to satisfy Eq. (8.2)

with gi being replaced by ui. For the bond distribution function gi, two-dimensional Fourier

transform of the FJC bond function is required. I adopt the DCT expression, Eq. (8.8), after
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dropping the terms for y direction, and nx and nz summation is made from −5 to 5. Afterwards,

a slight modification is made to the normalization factor for the inverse DCT of this expression

to satisfy Eq. (8.2).

As suggested in section 8.3, the system boundary is extended beyond the neutral wall by 2a in

both +z and −z directions, and the pseudo-spectral method with DCT is used for the partition

function calculation through the convolution integral. With this method, it is possible to keep

the time complexity of the one-step evolution to be O(M logM). For the field calculation, it

is also required to perform a convolution integral given by Eq. (6.17), and the aforementioned

boundary extension technique is also applicable to this calculation.

Figure 9-3(b) exhibits the excess free energy comparison between the surface-perpendicular

and surface-parallel lamellar morphologies at N = 20 by using the N − 1 bond (solid lines)

and N bond (dashed lines) FJC models. The excess free energy per chain is normalized by the

dimensionless film thickness Lz/aN
1/2 so that the effective interfacial energy can be compared

[64, 149]. With the adoption of the finite-range interaction, the vertical lamellar morphology

can reduce the energy penalty of the A-B interaction near the polymer-air or polymer-substrate

interface, and thus a clear energy gap exists even when Lz is an integer multiple of L0/2 which

is the commensurate film thickness. The gap turns out to be independent of the layer number

nl, which is consistent with the idea that this gap corresponds to the surface tension difference

of the two morphologies.

The free energy behaviors of the two morphologies at N = 100 and N = 500 are also

plotted in figures 9-3 (c) and 9-3 (d), respectively. One can observe a clear reduction of the free

energy gap as N increases. It is because the difference between the discrete chain SCFT and

standard SCFT reduces as N increases, and they become identical at N →∞. In this limit, the

interaction model employed with range a reduces to the contact interaction model, and thus it

recover the result of the standard SCFT in which the free energy gap is known to vanish.

Some standard SCFT studies [144–146] reported finite size of free energy gaps and predicted

that the surface-perpendicular morphologies become favorable due to the surface-induced com-

patabilization. Those SCFT researches use incompressible block copolymer melts, and the hard

neutral walls are represented by gradually decreasing density profiles near the surfaces. Due

to the gradual reduction of the density in the surface region, the interaction between A and

B segments is reduced near the neutral wall. This energetic effect promotes the perpendicular

morphology in which more A-B contacts exist near the surface compared to the parallel one,

and this phenomenon is referred to as the negative line tension [144–146]. For the theory in this

study, a similar effect is found due to the finite-range interaction despite that a step function

shaped density profile is adopted.
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Figure 9-3: (a) Schematic diagram of freely jointed AB block copolymers confined by the two
neutral walls. (b) The free energy comparison between the surface-perpendicular (black lines, ⊥)
and surface-parallel (colored lines, ‖) morphologies with nl periods at χN = 20, f = 0.5, and
N = 20. Dashed lines are for the N bond model, and real lines are for the N − 1 bond model. (c)
and (d) are the free energy comparison plot at N = 100 and N = 500, respectively.
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Figure 9-4: (a) Schematic diagram of AB block copolymers with BS model. (b) The free energy
comparison between the surface-perpendicular (black lines, ⊥) and surface-parallel (colored lines, ‖)
morphologies with nl periods at χN = 20, f = 0.5, and N = 20. Dashed lines are for the N bond
model, and real lines are for the N − 1 bond model. (c) and (d) are the free energy comparison plot
at N = 100 and N = 500, respectively.
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For the value of the free energy, it must be carefully interpreted. One may think that as

N increases, the chain has more segments, and thus it has more entropy due to the increase

of flexibility. As observed in figures 9-3 (b)−(d), however, the absolute value of the excess free

energy increases as N increases. It is because the freely gyrating chain provides the reference

point of the entropy or free energy, and the loss of entropy is only measured with respect to

this state, which actually diverges as N → ∞. It does not create any problem because the

free energy difference is all that matters, and figure 9-3 clearly shows that the free energy gap

actually converges to 0 in this limit.

The aforementioned surface energy behavior is not a special feature of the FJC model. As

shown in figures 9-4 (b)−(d), the BS model exhibits similar behavior, and a minor difference is

observed at small N . Regarding the difference between the N − 1 bond and N bond models,

the absolute value of the excess free energy is higher for the N bond model because it has

one more bond and each bond contributes a certain amount of entropy loss by the neutral

wall. Even though the difference is not so noticeable, the size of the gap was also slightly

bigger for the N bond model, and this is more difficult to explain. I speculate that the N − 1

bond model’s tendency of the chain end density increase near the wall reported by Matsen and

coworkers [112,113] may provide a slight advantage to the surface parallel phase which naturally

accumulates more chain ends at both walls.

Before ending this section, I will briefly discuss the advantage of the pseudo-spectral method

over the full spectral method. Full spectral method was originally developed to obtain the phase

diagram of the inhomogeneous polymer system, and it is extremely powerful when the symme-

try of the morphology and the corresponding basis functions are well known. However, when

the domain or boundary shape is complicated, the basis functions are practically impossible

to predict, and the adoption of the pseudo-spectral method becomes necessary. Also, for the

extremely highly stretched systems I tested in the previous section, it is known that the full

spectral method eventually becomes inefficient because of the fast increase of required basis

functions.
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Conclusion

The discrete chain self-consistent field theory can be a useful tool for the study of the short

polymer systems. In this part of thesis, its full algebraic formulation is presented and the issues

of numerical implementation are discussed. Since the high computational demands of the real

space method limit its applicability to the higher dimensional system, I propose the efficient

numerical techniques utilizing the pseudo-spectral method for solving the recursive equations

of the partial partition function.

For the purpose of efficient adaptation of the pseudo-spectral method, I presented a new

algebraic description of the discrete chain SCFT adopting half-segment propagation in the

calculation of the partial partition function. The pseudo-spectral strategy is examined for the

three-dimensional FJC model whose discrete version has a limitation in representing the Dirac

delta shaped bond function. To overcome this troublesome issue, sampling theory of the DTFT

is employed which provides an efficient method to calculate DCT of cell-averaged FJC bond

function. The successful implementation of pseudo-spectral method for both FJC and BS models

was verified, and it was confirmed that the discrete chain SCFT can be an efficient numerical

tool performing calculations as fast as the standard SCFT.

As a model system, the discrete chain SCFT is applied to the analysis of symmetric block

copolymers, and the chain behavior in the lamellar morphology was investigated. By calculating

lamellar periods and interfacial widths for various chain models, it is found that FJC model

behaves more like the standard SCFT due to residual mixing effect resulting from step-shaped

bond function.

In the standard SCFT calculation, Dirichlet and Neumann boundary conditions are the

natural choices to model the physical boundary, but the discrete chain SCFT opens up a new

possibility of adopting the neutral boundary condition. Unlike the other boundary conditions,

neutral wall boundary requires a subtle consideration since DST is not applicable in its pseudo-

spectral implementation. For this special case, I proposed a very simple technique which extends

the system boundary beyond the neutral wall to allow the convolution integral calculation using

DCT. By combining the neutral boundary with the finite-range interaction model, I studied the
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block copolymer thin film system confined by hard walls and successfully demonstrated how the

surface-perpendicular block copolymer lamellar phase becomes preferable to the surface-parallel

one when both the top and bottom surfaces are neutralized.

One special advantage of the discrete chain SCFT is that infinitely many possible polymer

chain models can be adopted by replacing the bond function g(r). For example, lattice SCFT

[103,104] has been one branch of the SCFT, and the standard lattice SCFT can be reproduced in

the Cartesian coordinates by adopting N−1 bond model and using the following bond function,

g(0, 0,±a) = g(0,±a, 0) = g(±a, 0, 0) =
1

6
, (10.1a)

g(x, y, z) = 0 otherwise , (10.1b)

in a spatial grid discretized by a.

This versatility of discrete chain SCFT mentioned above comes from the fact that any

practical random step without directional memory can be implemented just by changing g(r).

The condition that the distribution of a polymer segment must be independent of the previous

segment distribution may become invalid for more realistic bond models such as the semi-flexible

worm like chain model. For such cases, the discrete chain SCFT formalism may be generalized

by introducing a two-point distribution function, g(R1,R2), where R1 is the vector for the

current step and R2 is the vector for the previous step. The partition function now becomes a

two-point function which can be calculated by

q(r, r−R1, s+ ∆s)

=

∫
dR2g(R1,R2)q(r−R1, r−R1 −R2, s) , (10.2)

where q(r,x, s) is the partition function of a segment with its sN ’th and (s−∆s)N ’th segments

are positioned at r and x, respectively, and I omitted the field term which can be added according

the the physical situation. For model systems of surfactants or lipid molecules, semi-flexible

discrete polymer chain model is more realistic than the standard Gaussian chain model without

any stiffness. For example, hydrocarbon tails in phospholipids of biological membrane can be

modeled by short discrete chains with bending energy. The use of semi-flexible worm like chain

requires additional dimension for the SCFT calculation and the pseudo-spectral method can be

a good choice for reducing the computational cost.

It is well known that mean-field theory becomes inaccurate for systems of polymers with low

molecular weight, and thus the discrete chain SCFT has its limitation for the analysis of short

polymer candidates for high χ material. However, it at least incorporates the effect of finite

segment size and number in the mean field theory, which is difficult to distinguish from the

pure fluctuation effect. This approach is also useful when comparing results of SCFT to other

particle-based simulations which include the full fluctuation effect. A recently emerging polymer
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simulation method is the single chain in mean field (SCMF) simulation [150–152] which attempts

to incorporate the fluctuation effect in the field theoretical calculation by performing explicit

MC simulation of polymer chains under the quasi-instantaneously updated self-consistent field.

Because of this, the SCMF simulation is usually considered as an intermediate approach be-

tween the field-based simulation and particle-based simulation. The SCMF simulation inevitably

employs polymer chains with a finite number of segments, and its density calculation method

using discrete grids is reminiscent of the finite-range interaction of the discrete chain SCFT.

These facts imply that the discrete chain SCFT is an intermediate theoretical tool residing in

between the standard SCFT and SCMF simulation. i.e. in the limit of infinitely many chains,

the fluctuation effect becomes negligible, and the SCMF simulation result should converge to

that of the discrete chain SCFT with the same chain model. If N → ∞ limit is additionally

taken, the discrete chain SCFT finally converges to the standard SCFT. This relation implies

that discrete chain SCFT can provide insight to distinguish the effect of finite segment from the

effect of fluctuation.

In addition, there is the potential pedagogical advantage of the discrete chain SCFT. The

formulation of the standard SCFT involves functional integrals over all the possible polymer

paths. Proportionality constants are often floating in the functional integral, and many students

and researchers who first learn this theoretical tool have trouble following all the algebraic steps.

On the other hand, the discrete chain SCFT formalism is very clear and neat, and it does not

involve any functional integrals over the chain paths. Because of this, it is conceptually easier and

all the partition function calculations can be done rigorously without any hidden proportionality

constants. In summary, the discrete chain SCFT can provide a good starting point for those

who are eager to learn the statistical mechanical method in polymer physics, and the use of the

pseudo-spectral method makes it a promising tool for the research of various polymeric systems.
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Appendix A

Mean Field Density and Free Energy

of the Two Particle System

In this appendix, I discuss the detailed derivation of the mean field segment density and the

free energy expression for the homopolymers and brush chains grafted to two particles. I begin

with the expression of the formal partition function of the system, shown as Eq. (2.2). A

functional integral
∫
DΦf δ[Φf − φ̂f ] is inserted to replace the chain conformation dependent

density function φ̂f with the ordinary function Φf [64],

Z ∝ 1

ng!nf !

∫
DΦf

ng∏

i=1

Drg,iP [rg,i]

nf∏

j=1

Drf,jP [rf,j ]

× (δ(rg,i(1)−R) + δ(r̄g,i(1)−R)) δ[1− φ̂g − Φf ]δ[Φf − φ̂f ] (A.1)

The two delta functionals are now replaced with integral representations by using

δ[f ] ∝
∫
DW exp

(
ρ0

N

∫
drW (r)f(r)

)
(A.2)

where Wg and Wf are used for the first and second delta functions, respectively, and the W

integrations are along the imaginary axis. The density functions φ̂g and φ̂f are substituted with

their definitions in Eqs. (2.3) and (2.4), respectively, and the result of the algebraic transform

is

Z ∝ 1

ng!nf !

∫
DΦf

ng∏

i=1

Drg,iP [rg,i]

nf∏

j=1

Drf,jP [rf,j ] (δ(rg,i(1)−R) + δ(r̄g,i(1)−R))

×
∫
DWg exp

[
ρ0

N

∫
drWg(1− Φf )

]
exp

[
−

ng∑

i=1

∫ 1

0
dsWg(rg,i(s))

]

×
∫
DWf exp

[
ρ0

N

∫
drWfΦf

]
exp


−

nf∑

j=1

∫ α

0
dsWf (rf,j(s))


 (A.3)
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The above equation can be rewritten as

Z ∝ 1

ng!nf !

∫
DWgDWfDΦf

(ρ0

N
Qg[Wg]

)ng
( ρ0

αN
Qf [Wf ]

)nf

× exp

(
ρ0

N

∫
drWg(1− Φf ) +

ρ0

N

∫
drWfΦf

)
(A.4)

where Qκ[Wκ] are the single chain partition functions for both grafted chain (κ = g) and free

chain (κ = f) subjected to the external fields, Wκ(r), as follows:

Qg[Wg] ∝
∫
Dr (δ(r(1)−R) + δ(r̄(1)−R))

× exp

[
− 3

2a2N

∫ 1

0
ds
∣∣r′(s)

∣∣2 −
∫ 1

0
dsWg(r(s))

]
(A.5)

Qf [Wf ] ∝
∫
Dr exp

[
− 3

2a2N

∫ α

0
ds
∣∣r′(s)

∣∣2 −
∫ α

0
dsWf (r(s))

]
(A.6)

It is customary to extract factors (ρ0/N)ng and (ρ0/αN)nf from the unspecified proportion-

ality constant in eq (A.4) for future simplification [64]. After applying Stirling approximation

(ln(nκ!) ≈ nκ lnnκ−nκ) on the factorials, the partition function of the system can be reexpressed

as

Z ∝
∫
DWgDWfDΦf exp

(
−F [Wg,Wf ,Φf ]

kBT

)
(A.7)

F

kBT
=ng

(
ln

(
Vg

Qg [Wg]

)
− 1

)
+ nf

(
ln

(
Vf

Qf [Wf ]

)
− 1

)

− ρ0

N

∫
dr [Wg(1− Φf )]− ρ0

N

∫
dr [WfΦf ] (A.8)

where Vg ≡ ngN/ρ0 and Vf ≡ αnfN/ρ0.

In the standard self-consistent field theory (SCFT) formulation, mean field solutions are

obtained by applying the saddle point approximation which is asymptotically exact in the limit

of very long chains. In this approach, the exponent in eq (A.7) is minimized by functional

derivative with respect to the three field variables, Wg, Wf and Φf as follows:

DF (Wg,Wf ,Φf )

DWf
= 0 (A.9)

DF (Wg,Wf ,Φf )

DWg
= 0 (A.10)

DF (Wg,Wf ,Φf )

DΦf
= 0 (A.11)

From now on, I will use lowercase functions wg, wf and φf for the saddle point solution of the

above equations. The first functional derivative, eq (A.9), reduces to

φf (r) = −Vf
α

D ln (Qf [wf ])

Dwf (r)
=
〈
φ̂f (r)

〉
(A.12)
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which identifies the mean field function φf (r) as the ensemble average segment density of φ̂f (r)

at the mean field wf (r). The second functional derivative, eq (A.10), leads to

1− φf (r) = −Vg
D ln (Qg [wg])

Dwg(r)
=
〈
φ̂g(r)

〉
(A.13)

which implies the incompressibility condition

φg(r) + φf (r) = 1 (A.14)

where φg is the ensemble average segment density of φ̂g(r) at the mean field wg(r). The third

functional derivative, eq (A.11), produces

wg(r) = wf (r) (A.15)

This relation is not as trivial as one might think at first glance. It is true only when the

continuous parameter s of the free chain goes from 0 to α. There is another approach of using

the parameter range [0,1], which results in wf (r) larger than wg(r) by a factor α.

After all the segment densities and mean potential fields are obtained, the mean field free

energy for the system is,

F

kBT
= ng

(
ln

(
Vg

Qg [w]

)
− 1

)
+nf

(
ln

(
Vf

Qf [w]

)
− 1

)
− ρ0

N

∫
drw(r) (φg(r) + φf (r)) (A.16)

where the subscripts for the fields are omitted. With the current expression, when I take larger

system size by adding more free homopolymer chains, the free energy varies due to the increase

of the free chain numbers as implied by the term −1 in the second parenthesis. When considering

effective interaction between two particles, the system size varies with the interparticle distance

D, and the system size dependent free energy expression is inappropriate. For this reason, I

adopt the following free energy expression which is independent of the system size,

F

kBT
= ng ln

(
Vg

Qg [w]

)
+ nf ln

(
Vf

Qf [w]

)
− ρ0

N

∫
drw(r) (φg(r) + φf (r)) (A.17)

With this form, the free energy value converges to a finite value as the system size diverges by

adding infinitely many free chains, thus this excess free energy expression provides the proper

interparticle interaction potential in the homopolymer background.
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Appendix B

SCFT of End-fixed Brushes

The SCFT formulation in appendix A assumes that the grafted chain ends can float on the

particle surface. Even when the chain ends are attached to the particle surface with strong

chemical bonds, most procedures for deriving SCFT equations remain the same and only a few

modifications to the SCFT equations are required [22,60].

The segment density of chains grafted to particle one, φg1(r), is still obtained by calculating

Eq. (2.20), but there exists one exception that the initial condition of q†g1 is modified to

q†g1(r, 1) =
Vg1δ(r −R)

4πR2qg1(r, 1)
(B.1)

With this initial condition, brush chains are now uniformly grafted over the particle surface with

surface density σ0 ≡ ng/8πR
2. After obtaining all the segment densities and mean potential

fields, the free energy for the end-fixed brush case becomes

F

kBT
= nf ln

(
Vf

Qf [w]

)
− 2σ0

∫
drδ(r −R) ln (qg(r, 1))− ρ0

N

∫
drw(r) (φg(r) + φf (r)) (B.2)
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Appendix C

Contour Plots for Chain End Types
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Figure A.1: Contour plots of grafted polymer segment density, φg, of (a) end-mobile and (b)
end-fixed brushes at various interparticle distances D with the system geometry R = 2aN1/2,
Hbrush = aN1/2 and α = 10 which corresponds to the green line in figure 3-11 (b).
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Appendix D

Recursive Integral Equation of

Partition Function

The two-point partial partition function q(r, r0, s) can be expressed in terms of the partition

functions of two shorter fragments as follows,

q(r, r0, s+ t) =
1

(a2N)3/2

∫
dR q(r, r−R, t)q(r−R, r0, s) . (D.1)

This recurrence relation is equivalent to that of the standard self-consistent field theory (SCFT).

For the discrete chain SCFT, it can be proven directly from the partition function definition,

Eq. (6.5), and the property of the Dirac delta function. From Eqs. (6.4) and (6.5), the distribu-

tion function of a small segment in the bead-spring (BS) model is obtained as

q(r, r0,∆s) =

(
3N

2π

)3/2

exp

(
−3(r− r0)2

2a2
− w(r0) + w(r)

2N

)
, (D.2)

where ∆s = 1/N . By setting t = ∆s in Eq. (D.1), we can directly use Eq. (D.2) for the

evaluation of the recursive integral. The resulting evolution equation of the partition function

is

g(r) ≡
(

3

2πa2

)3/2

exp

(
−3r2

2a2

)
, (D.3a)

q(r, r0, s+ ∆s) = exp

(
−w(r)

2N

)∫
dR g(R) exp

(
−w(r−R)

2N

)
q(r−R, r0, s) . (D.3b)
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Appendix E

Total Partition Function and

Segment Density in Discrete Chain

SCFT

The densities of A and B type segments are defined by the formal ensemble averages of Eq. (6.3).

For example, the A segment density is

φα,A(r) =
1

ρ0Q[w]

(
2πa2

3

)3/2 ∏

u={0,··· ,1}

(
3

2πa2

)3/2

×
∫
drα(u)

∑′

s∈{0,..,f}

δ(r− rα(s)) exp

(
−E(rα; 0, 1)

kBT

)
, (E.1)

where the total partition function of the diblock copolymer is defined as

Q[w] ≡
(

2πa2

3

)3/2 ∏

u={0,··· ,1}

(
3

2πa2

)3/2 ∫
drα(u) exp

(
−E(rα; 0, 1)

kBT

)
. (E.2)

Here follows a short proof that the total partition function can be written in terms of the

one-point partial partition functions as follows,

Q[w] =

∫
dr q(r, s)q†(r, s) , (E.3)

where one-point partial partition functions are expressed as

q(r, s) =

(
2π

3N

)3/2 ∏

u∈{0,··· ,s}

(
3

2πa2

)3/2 ∫
drα(u) exp

(
−E(rα; 0, s)

kBT

)
(a2N)3/2δ (rα(s)− r) ,

(E.4a)

q†(r, s) =

(
2π

3N

)3/2 ∏

u∈{s,··· ,1}

(
3

2πa2

)3/2 ∫
drα(u) exp

(
−E(rα; s, 1)

kBT

)
(a2N)3/2δ (rα(s)− r) ,

(E.4b)
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from Eqs. (6.5), (6.6), and (6.8).

By substituting Eq. (E.4) into Eq. (E.3), the total partition function becomes multiple

integrals of the position variables rα(u) (u ∈ {0,∆s, . . . , 1}) where the variable rα(s) appears

twice, because the point s exists in both one-point partial partition functions. By integrating

one of the overlapping variable rα(s), one of the delta functions is removed, and integration

of the position variables r in Eq. (E.3) removes the remaining delta function. As a result, the

direct evaluation of the right hand side of Eq. (E.3) becomes equivalent to the definition given

in Eq. (E.2).

The ensemble average densities of A and B type segments can also be evaluated by using

the one-point partial partition functions as follows,

φA(r) =
V

NQ

∑′

s∈{0,..,f}

q(r, s)q†(r, s) , (E.5a)

φB(r) =
V

NQ

∑′

s∈{f,..,1}

q(r, s)q†(r, s) . (E.5b)

These relations can be proven in a way similar to the total partition function case by substituting

Eq. (E.4) into the right hand side of Eq.(E.5). After simple integration, the resulting expression

becomes exactly the same as the ensemble average definition of the segment density, Eq. (E.1).
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Appendix F

Calculation of FJC g̃i using

Sampling Theory of DTFT

In this appendix, I explain how the cell-averaged gi of the FJC model defined by Eq. (8.7) can

be calculated using a few equations in the DTFT and the sampling theory. For simplicity, I

demonstrate the one-dimensional version of the calculation in which the aim is to calculate

gk ≡
1

∆z

∫ ∆z/2

−∆z/2
g
(
k∆z − z′

)
dz′ . (F.1)

I start by defining a continuous average function,

ḡ(z) ≡ 1

∆z

∫ ∆z/2

−∆z/2
g
(
z − z′

)
dz′ , (F.2)

which makes ḡ(k∆z) as the target array gk. Because ḡ(z) is a convolution of g(z) and a rectan-

gular function which is defined as Π(x) ≡ 1 only when |x| ≤ 1/2,

ḡ(z) =
1

∆z

∫ ∞

−∞
g
(
z − z′

)
Π

(
z′

∆z

)
dz′ . (F.3)

Using the convolution theorem, the Fourier transform of ḡ(z) is calculated as

˜̄g(ξ) = g̃(ξ)sinc(ξ∆z) = sinc(2ξa)sinc(ξ∆z) , (F.4)

where the last equation uses the Fourier transform of the one-dimensional FJC bond function.

The DTFT of a generic function f(z) sampled at interval ∆z is

F (ξ) ≡ ∆z
∞∑

n=−∞
f(n∆z)e−i2πξ∆zn , (F.5)
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and it is a periodic summation of f̃(ξ) which is a Fourier transform of f(z) [153],

F (ξ) =

∞∑

n=−∞
f̃
(
ξ − n

∆z

)
. (F.6)

When an even function f(z) is defined at −Lz < z < Lz and zero outside this region, I can

relate the DTFT with the DCT by setting ξ = k/2Lz where Lz = K∆z,

1

2∆z
F

(
k

2K∆z

)
=

1

2

∞∑

n=−∞
f(n∆z)e−iπnk/K

=

K∑′

n=0

f(n∆z) cos

(
πnk

K

)
= f̃k . (F.7)

Applying this relation to ḡ(z), and using Eqs. (F.4) and (F.6),

g̃k =
1

2∆z
Ḡ

(
k

2Lz

)
=

1

2∆z

∞∑

n=−∞

˜̄g

(
k

2Lz
− n

∆z

)

=
1

2∆z

∞∑

n=−∞
sinc

(
a
k − 2nzK

Lz

)
sinc

(
k − 2nzK

2K

)
. (F.8)

It is straightforward to extend this result to the three-dimensional system to obtain Eq. (8.8).
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Appendix G

Interfacial Energy Analysis

γtotal ≡
(F − F disorder)/kBT

Area/a2
=

(
F − F disorder

nkBT

)(
Lz

aN1/2

)
ρ0a

3N−1/2 (G.1)
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Figure A.2: Interfacial energy plot as a function of segment number N with N − 1 bond freely-
jointed chain (FJC) model at χN = 50 (blue solid line in figure 9-1). For a fair comparison between
systems with different N , dimensionless interfacial energies per unit area a2 are plotted. The black
line shows the total interfacial tension γtotal. The blue line represents γstret coming from the stretch-
ing free energy, and the red line represents γint coming from the interaction free energy.
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Polymer-Grafted-Nanoparticles Nanocomposites: Dispersion, Grafted Chain Conformation,

and Rheological Behavior, Macromolecules 2011, 44, 122-133. 4

[51] Amalie L. Frischknecht, Forces between nanorods with end-adsorbed chains in a homopoly-

mer melt, J. Chem. Phys. 2008, 128, 224902. 4

[52] M. J. A. Hore, A. L. Frischknecht, and R. J. Composto, Nanorod Assemblies in Polymer

Films and Their Dispersion-Dependent Optical Properties, ACS Macro Lett. 2012, 1, 115-

121. 4

[53] A. L. Frischknecht, M. J. A. Hore, J. Ford, and R. J. Composto, Dispersion of Polymer-

Grafted Nanorods in Homopolymer Films: Theory and Experiment, Macromolecules 2013,

46, 2856-2869. 4

[54] S. E. Harton and S. K. Kumar, Mean-Field Theoretical Analysis of Brush-Coated Nanopar-

ticle Dispersion in Polymer Matrices, J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 351-

358. 4, 6

[55] T. V. M. Ndoro, E. Voyiatzis, A. Ghanbari, D. N. Theodorou, M. C. Böhm, and F. Müller-
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