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Abstract

Synchronous oscillations in neuronal ensembles have been proposed to provide a neural basis for

the information processes in the brain. In this work, we present a reservoir computing(RC), a

highly efficient bio-inspired architecture, based on oscillator synchronization in a critical regime.

The algorithm uses the high-dimensional transient dynamics perturbed by an input and trans-

lates it into proper output stream. One of the benefits of adopting coupled phase oscillators as

neuromorphic elements is that the synchrony among oscillators can be finely tuned at artificial

state. Especially near a critical state, the marginally synchronized oscillators operate with high

efficiency and maintain better computing performances. We also show that explosive synchro-

nization that is induced from specific neuronal connectivity produces more improved and stable

outputs. This work provides a systematic way to encode computing in a large size coupled

oscillator, which may be useful in designing neuromorphic devices.

Furthermore we develop RC based on “explosive death” of chaos. The proposed reservoir

utilizes transient dynamics of coupled chaotic oscillators in a critical regime where sudden am-

plitude death occurs. Explosive death not only brings the system a large criticality which

provides a variety of orbits for computing, but also stabilizes them which otherwise diverge soon

in chaotic units. The proposed framework shows better results in tasks for signal reconstructions

than RC based on explosive synchronization of regular phase oscillators. We also show that the

information capacity of the reservoirs at a critical point can be used as a predictive measure for

computational capability of a reservoir.
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I Introduction

Recently, reservoir computing has emerged as a promising computational framework for utilizing

a dynamical system for computation. While an input stream perturbs the transient intrinsic

dynamics of a medium(the ”reservoir”), a readout layer is trained to extract features out of such

perturbations to reconstruct a target output. Due to its complex high-dimensional dynamics,

the reservoir serves as a vast repertoire of nonlinear transformations that can be exploited by

the readout. The major advantage of reservoir computing is their simplicity in training process

compared to other neural networks. Another advantage is their universality in that they can be

realized using physical systems, substrates, and devices. [1]

There is the hypothesis that a system can exhibit maximal computational power at a phase

transition between ordered and chaotic behavioral regimes [2, 3]. It has been observed that the

brain operates near a critical state in order to adapt to a great variety of inputs and maximize

information capacity [4–6]. Perturbations occurring in a critical regime neither spread nor die

out too quickly, providing the most flexibility to the system [7,8]. This concept of “computation

at the edge of chaos” may also have an implication to material computation, whereby a material

has the most exploitable properties [9]. More extensive review on this subject can be found

in [10].

In RC, designing a reservoir which has a “large criticality” is important to perform complex

tasks. In case of a reservoir based on continuous dynamical systems, one can create criticality

by tuning intrinsic parameters so that the reservoir operates at a bifurcation point across which

the dimension of the attractor abruptly declines. A system of coupled oscillator exhibits a first

order transition from incoherent state to synchronized state that occurs under a specific relation

between the coupling strength and connectivity, which is called explosive synchronization. In

the second section, we show that a reservoir of coupled Kuramoto oscillators performs excellent

computations in a critical regime near explosive synchronization.

Amplitude death is another way to create a criticality in coupled oscillatory units. It indicates

complete cessation of oscillations induced from change in intrinsic parameters of the system. The

occurrence of AD has been found in the case of chemical reactions [11, 12], neuronal systems

[13, 14] and coupled laser systems [15, 16]. Several underlying mechanisms for AD have been

identified so far, including de-tuning of oscillators under strong coupling, conjugate coupling,

dynamic coupling, and delay in coupling [17]. Recently, it has been reported that AD can occur

abruptly in systems of coupled nonlinear oscillators [18–21]. This first-order transition to AD is

called “explosive death”.

There have been numerous researches on using chaotic systems for computation [22, 23],

even in the context of RC [24–26]; Chaos computing takes advantage of an infinite number of

orbits/patterns inherent in the attractor to be used for particular computational tasks. It also

utilizes the sensitivity to initial conditions of chaotic systems to perform rapid switching between

computational modes. However, chaos computing has a control problem to stabilize particular
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orbit.

In the third section, we develop RC based on explosive death of chaos. We construct a

chaotic based reservoir with a large criticality and identify the effect of chaotic properties.

The proposed reservoir utilizes transient dynamics of a coupled chaotic oscillators in a critical

regime where sudden amplitude death occurs. Explosive death not only brings the system a

large criticality which provides a variety of orbits for computing, but also stabilizes them which

otherwise diverge soon in chaotic units. Another goal of the study is to find a predictive measure

for computational capability of a reservoir. So in the last section, we introduce the total capacity

proposed in [27]. We compared proposed the tendency between capacity and errors for several

tasks. And we checked that it can be a reliable measure for reservoir computing based on

dynamical oscillators.
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II Reservoir Computing based on Explosive Synchronization

2.1 Model : Kuramoto Oscillators

A. Reservoir of oscillatory networks

The reservoir of oscillatory networks uses a phase-locked state as the ground state for computa-

tions. Once perturbed by inputs, the deviation of the oscillators from the synchronized state is

closely observed until they return to the original state. The basic idea underlying the oscillatory

reservoir computing is that, if network is large enough, all the information necessary to construct

proper computational results can be found in the transient trajectories aroused by inputs.

We consider a network of N oscillators, being the dynamics of each of them described by a

phase θi(t) ∈ [0, 2π):

θ′i = ωi +
λi
ki

N∑
j=1

Aij sin(θj − θi), i = 1, · · · , N, (1)

where ωi is the natural frequency, λi > 0 is the coupling strength, and ki :=
∑N

j=1Aij is the

degree of the node i. Here Aij is the entry of the adjacency matrix of the network which is

equal to 1 if nodes i and j are connected, and zero if they are not. The classical Kuramoto

model is defined on the complete graph with an identical coupling strength, that is, λi = λ and

Aij = 1 for all i and j. It is commonly observed that a modest coupling strength λi > λC in

(1) drives the oscillators into a phase-locked state in which they maintain a frozen formation

at the same frequency. For given network topology and frequency distribution, one usually is

interested in assessment of the critical coupling strength λC at which a phase transition occurs

from incoherency to a phase-locked state.

We can use a measure of synchrony to capture an appropriate coupling strength that leads

to the phase-locked states. One measure of synchrony is the Kuramoto order parameter:

reiθ =
1

N

N∑
j=1

eiθj .

The order parameter r achieves its maximum 1 when the phase of all oscillators are identical

in complete phase synchronization. It becomes close to 0 when the phases are scattered around

the circle in dynamical incoherence. The graph(black rectangles) in Figure 1(a) shows how the

magnitude of the order parameter r rises with the coupling strength λ in the classical Kuramoto

model. The order parameter attains non-zero value for couplings stronger than the critical value

λC ≈ 1.6, indicating the onset of synchronization.

Increasing the coupling strength in oscillator networks brings the individual frequencies of os-

cillators one by one to the average frequency of the system until full synchronization is achieved.

Recently, in a certain type of oscillator networks [21, 28], discontinuous transitions from in-

coherent states to phase-locked states have been reported. In those systems, all the effective
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frequencies persist right up to the synchronization transition and then they suddenly jump to

the average frequency simultaneously at the critical point. This phenomenon, called explosive

synchronization(ES), was proved to be originated from a positive correlation between the nat-

ural frequencies and the coupling strengths of oscillators [29]. More specifically, if the coupling

strength is proportional to the natural frequency

λi = λ|ωi|, λ > 0, (2)

the phase dynamics in (1) induces explosive synchronization.

The explosive synchronization occurs with hysteresis: besides the forward transition from

the incoherent state to the phase-locked states, there is also an abrupt desynchronization with

decrease of the coupling strength, which does not overlap with the forward transition. However,

we only focus on the forward bifurcation in neuromorphic computing, as we need to keep the

system out of the hysteresis loop, avoiding the risk of permanent desynchrony. The plot(red

circles) in Figure 1(a) shows that forward discontinuous phase transition occurs at a critical

coupling strength λ ≈ 2.9, making striking difference from the continuous phase transition at

λ ≈ 1.6.

In this work, we compare the two computing reservoirs based on the Kuramoto model (1)

which use the different settings for the coupling strength and the network topology:

1) Regular synchronization model(RS)

coupling strength: λi = λ > 0,

network topology: Aij = 1 if i 6= j, otherwise 0.

2) Explosive synchronization model(ES)

coupling strength: λi = λ|ωi| λ > 0,

network topology: a Erdős-Rényi graph with 1 ≤ 〈ki〉 < N

RS is nothing but the classical Kuramoto model. ES adopts a Erdős-Rényi graph, which is

chosen uniformly at random from the collection of all graphs which have N nodes with a specific

mean degree 〈ki〉. From here on, we will use networks that consist of N = 500 oscillators for both

models. The natural frequencies ωi of oscillators are assumed to follow the normal distribution

N(0, 1).

B. Choice of coupling strength

In Kuramoto-based models, a higher coupling strength makes the oscillators synchronized in a

tighter phase-locked state. If the synchronization is overly persistent, the transient dynamics

induced from the inputs vanish so quickly that it cannot properly handle lengthy computations.

On the other hand, under a weak coupling strength, the system may fail to erase the past infor-

mation which is no more necessary and interferes the current computation as noise. Moreover,
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the oscillators may not be able to recover the ground state even after the computation is carried

out.

For balanced computations, it is reasonable to set the coupling strength at which the phase

of the oscillators are marginally locked and can react rapidly to external stimuli. The Kuramoto

order parameter r can be used as an indicator for a critical value of the coupling strength λ.

For ES illustrated in Figure 1(a), one may fix the value of λ at near 2.9 where r drops quickly

in the backward direction. However, for RS, the phase transition in r gradually arises with

λ and therefore does not provide a sharp criterion. Moreover, it is not the edge of chaos but

the edge of order where the efficient computations occur, in that the system should maintain

synchronization as a ground state. Since the conventional Kuramoto order parameter r only

yields the continuous phase transition, it is not a good indicator for computational capacity.

In order to overcome this drawback of r, we introduce the variance order parameter rvar as

rvar =
1

N

N∑
j=1

exp(−c varj), c > 0 (3)

where varj is the temporal variance of the frequency θ′j(t). This is a measure for desynchrony

that sensitively shows a degree of deviation of oscillators from a steady frequency. For reliable

computations, the temporal variance of the frequency should be kept low in the ground state.

Note that, for each oscillator, the temporal variance of the frequency becomes 0 if oscillators are

in a phase-locked state, keeping their common frequency steady. The variance order parameter

indicates a critical point more clearly than the Kuramoto order parameter and is also easier to

compute, since it is evaluated from temporal evolution of individual oscillators. The factor c

stands for a sensitivity to deviation from the ground state. In case of ES, the acceptable range

for c is 102 ≤ c ≤ 108„ regardless of the network topology of coupled oscillators. A value of c

smaller or larger than this range tends to fix rvar to 1 or 0, respectively, making it impractical

as an order parameter.

Figure 1(b) plots rvar for the same formations of the oscillators dealt in 1(a). While rvar

almost coincides with r for ES at the critical strength(λ ≈ 3), it clearly reveals a discontinuous

phase transition for RS which is not observed in r. Although rvar does not explicitly show

difference between explosive and nonexplosive synchronizations, it provides clear information

on a level of the coupling strength for which oscillators are arranged for reliable computations.

From here on, we will use the variance order parameter rvar to investigate the relation between

the states of the system and its computing performances.

C. Readout and training

The oscillator networks are applied to supervised tasks to learn a model that produces a target

output v(t) = (v1(t), · · · , vq(t)) ∈ Rq from an input signal u(t) = (u1(t), · · · , up(t)) ∈ Rp.
In practice the dataset can be either discrete or continuous in time, and also can be multi

dimensional signals, but this does not change the principles. We set p oscillators to the input
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Figure 1: Kuramoto and variance order parameters according to the coupling strength: RS

and ES use the complete network and a Erdős-Rényi graph with the mean degree 〈ki〉 = 6,

respectively. In ES, only forward transitions are plotted. The parameter c = 107 is used for the

variance order parameter.

nodes of the reservoir. The standard training starts with running the network until it reaches

a phase locked state. Once oscillators are synchronized, we feed the network the input stream

u(t), by completely synchronizing p oscillators(input nodes) in the network with u(t). That is,

the way to deliver an input signal u(t) to the reservoir is making the input nodes follow the

same dynamics of u(t) while it is given. All evolutionary activities of the oscillators are collected

through the frequency values θ′i(t) and mapped to the desired output by a output function

fout = (f1out, · · · , f
q
out) ∈ Rq.

In the readout process, it is better to use not only the past values of the nodes as well

as the current ones, to exploit the rich dynamics of the chaotic reservoirs. Here we use a

output function that takes past s sampled states of the system at discrete times t − ∆t, t −
2∆t, · · · , t− s∆t and maps them to the desired output at time t. We define the output function

fout = (f1out, . . . , f
q
out) ∈ Rq of (s,∆t)-type as

f lout(t) =

N∑
i=1

s∑
j=1

wli,jθ
′
i(t− (j − 1)∆t), l = 1, · · · , q (4)

The weights wli,j are determined so that fout(t) matches v(t) as close as possible, minimizing

an error measure. For example, if the available output data is a time series of total length M ,

v(t1), v(t2), · · · , v(tM ), a typical mean-square error is

1

M

M∑
i=1

‖v(ti)− fout(ti)‖2. (5)

And relative mean-square error is ∑M
i=1‖v(ti)− fout(ti)‖2∑M

i=1‖v(ti)‖2
. (6)
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Mean-square error and relative mean-square error are applied for section2 and 3, respectively.

2.2 Numerical Tests

In the following numerical examples to test the learning ability of the oscillator networks, we

use the (10, 0.1)-type readout function: The output fout(t) at t is obtained from 10 previous

sampled values of the oscillator frequencies θ′i(t− 0.1), · · · , θ′i(t− 1) through the equation (4).

We set up two tasks, filtering and forecasting, both of which require the presence of long-term

memory for proper execution. Task 1 is to learn the scalar output

v(t) =
1

m

m∑
k=1

(
au(t− k) + bu(t− k)2 + cu(t− k)3

)
(7)

which is determined from the past m values of an input stream u(t). Here a, b and c are some

nonzero parameters. We use the input u(t) generated from the Lorenz system which provides

standard benchmark task for chaotic series handling [30]. Note that, if m = 1, the task is simply

to implement a polynomial function of the current value of the input. The task becomes more

challenging as m increases, requiring long-term memory to evaluate averaged values.

Task 2 is the time series prediction. Based on a previous input stream of u(t), the network

is required to predict m steps ahead, that is, the next m values, u(t + 1), · · · , u(t + m). This

implies that the desired output vector v(t) = (v1(t), · · · , vm(t)) ∈ Rm at time t satisfies vl(t) =

u(t + k), k = 0, · · · ,m − 1. We take the input u(t) from Mackey-Glass equation which is a

chaotic time-delayed differential equation.

In each task, the continuous input signal u(t) and the target signal v(t) are generated for

t ∈ [0, 5000]. The training process is applied to match fout(t) to y(t) over the first 4,000 discrete

time steps, t = 1, 2, · · · , 4000. That is, the readout weights wlij in (4) are determined to minimize

the averaged error (4) with respect to M = 4000. Then we measure the performance using the

remaining part of the signal for t ∈ (4000, 5000]: the averaged error (5) between fout(t) to v(t)

is evaluated over 1,000 discrete sampled time steps.

A. Computing performance at the critical point

We first illustrate the computational performance of RS on complete networks. Figures 2 (a)

and (b) respectively reports the averaged errors in task 1 and 2. We measure the errors brought

by the change of the coupling strength λ. It is observed that, in the both tasks, the errors

is minimized at the common point which coincides with the critical point in rvar in Figure

2(c). Note that λ = 3 indicates where the desynchronization begins. One can confirm that

the computational capability of RS attains its maximum at the edge of the synchronization,

regardless of the task length(m = 5, 10 and 15) and types(filtering and predictions).
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Figure 2: Test error according to the coupling strength in RS. The sudden changes in error in

(a) and (b) coincides with the criticality in the variance order parameter in (c).
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(a) and (b) coincides with the criticality in the variance order parameter in (c).

B. Computing with explosive synchronizations

Having observed the optimized computing ability of RS at criticality, we now turn to the case

where the critical transition occurs with the explosive synchronization. We apply ES on a Erdős-

Rényi graph with the mean degree 〈ki〉 = 6. Figure 3 shows that the test errors in the both tasks

drop at the common coupling strength, likewise in the case of RS. However, one can see that

the accuracy has improved significantly by 10 to 1000 times, compared to those of RS. Another

observation is that the error level maintains even for stronger coupling forces beyond the critical

point, while it slowly increases in RS in Figure 2.

It is assumed that the computing ability to deal with various input signals in different tasks is

closely related to the spectral properties of the system reacting to perturbations. Since individual

oscillators in ES hold their own effective frequencies until they turn to have the same effective

frequency at the onset of synchronization [28], frequencies of various modes undergo the same

criticality. This implies that the system is well prepared for different tasks which involve a wide

range of wavelengths. Figure 4 compares the errors of RS and ES according to the task length.

While the error of RS sharply increases with the task length, the performance of ES maintains

a descent accuracy level in both tasks.
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Figure 4: Test error according to the task length for RS and ES

In order to investigate the spectral sensitivity of the systems, we additionally test with an

input signal of various frequency modes,

u(t) =
1

m

m∑
i=1

(ai sin(bit+ ci) + di), ai, bi, ci, di ∈ R, i = 1, · · · ,m. (8)

In Figure 5, the errors of ES grow relatively slower than those of RS as the number of frequency

modes m increases.

C. Clear reset in sparse networks

The explosive synchronization can occur on networks with a variety of topological structures,

as long as the frequency-coupling relation (2) holds [29]. In this section, we investigate ES

in the random networks with various levels of connectivity. Figure 6 illustrates the change of

the test errors with respect to the mean degree of Erdős-Rényi graphs. One can see that the

performances in two tasks are minimized when the mean degree is at about 6 to 24. If the

networks are too sparse, say 〈ki〉 ≤ 3, they are likely to form separate sub-networks, making

close cooperation of oscillators impossible. On the contrary, it is noted in Figure 6 that the

densely connected oscillators do not work well either. The errors slowly increase with the mean

degree as viewed.

These phenomena can be understood in terms of the reset mechanism in computations. Once

outputs are generated from transient dynamics induced by inputs, the system should bring its

elements to normal condition or the initial state. This is necessary for the system to prepare for

next inputs and produce reliable results. In oscillatory networks, a phase-locked state plays a role

of this ground state. If the oscillators are densely connected, there are likely excessive ensembles

of such ground state. A large number of possible initial states can weaken the capability to

10



0 5 10 15
10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4
(a) Task 1

 regular
 explosive

er
ro
r

number of modes m
0 5 10 15

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2
(b) Task 2

 regular
 explosive

number of modes m

Figure 5: Test error according to the number of modes of frequency in the input stream (8) for

RS and ES

3 6 12 24 48 96 192 384

10-8

10-7

m=10m=10

(a) Task 1

er
ro
r

mean degree <ki>
3 6 12 24 48 96 192 384

10-7

10-6

10-5
(b) Task 2

mean degree <ki>

Figure 6: Test error according to the mean degree in ES

11



2 3 4
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

m=5

m=10

m=15

m=5

m=10

m=15

 train
 test

 train
 test

(a) Task 1

er
ro
r

coupling 
2 3 4

10-5

10-4

10-3

10-2

10-1
(b) Task 2

coupling 

Figure 7: Training and test error according to the coupling strength in RS. The sudden changes

at λ ≈ 3 coincide with the criticality in the variance order parameter.

reproduce consistent results.

D. Phase transition in training error

The order parameter needs to be evaluated first for tuning the systems at the critical regime.

However, evaluation of the order parameter could be expensive, even impossible, if access to

all oscillators are not feasible. A practical alternative is to measure the training error from the

outputs instead of evaluating the order parameters. Figure 7 shows that the training error of

RS sharply drops at the same critical point as in Figure 2. That is, one can detect a critical

coupling strength from a sudden change in the training error. Note that the training error is

kept as high as the test error until the coupling strength reaches a certain level, which implies

that RS hardly learns from the training set in a weak coupling regime.

Interestingly, in Figure 8, the more dramatic and exactly opposite situation occurs with

ES: the training error keeps low and makes a sharp rise at the critical point. The coupling

strength less than the critical value seems to make the reservoir simply reproduce the training

data, but fail to process the new data. In other words, the trained model is overfitted with the

training data. The reservoir achieves the ability to find the true pattern of the tasks only when

the coupling strength is in the regime of the first order criticality. This is notable in that, in

reservoir computing, the problem of overfitting is directly related to a property of reservoirs,

rather than a way of training them. In contrast to RS, a sudden rise in the training error in ES

indicates that the coupling strength reaches a critical level for synchronization.
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Figure 8: Training and test error according to the coupling strength in ES. The sudden changes

at λ ≈ 3 coincide with the criticality in the variance order parameter.

III Reservoir Computing based on Quenched Chaos

My third section starts.

3.1 Model : Coupled Lorenz Oscillators

A. Reservoir of nonidentical chaotic elements

We consider the reservoir that consists of coupled chaotic oscillators. The reservoir is supposed

to suppress chaotic oscillations in its ground state ready for external signals. Recently, the

occurrence of an explosive death transition has been found in chaotic oscillator coupled via

mean–field diffusion [20]. To extend this result to nonidentical oscillators, we consider a reservoir

that consists of N Lorenz systems coupled via a mean–field diffusion as,

1

wi

dxi
dt

= 10(yi − xi) +K(Qx̄− xi)

1

wi

dyi
dt

= −xizi + ρxi − yi

1

wi

dzi
dt

= xiyi −
8

3
zi

(9)

where, i = 1, · · · , N is the index of the oscillators. x̄ = 1
N

∑N
i=1 xi is the mean field of the state

variable x. The parameter K is the strength of coupling and Q with 0 ≤ Q ≤ 1, is the intensity

of the mean field. Each single system exactly coincides with the conventional Lorenz system if

K = 0 with wi = 1. Here we use Q = 0.7, following [20]. If the frequencies of nodes are identical,

then the systems reverts to the one in [20]. When running the system in (9) as a reservoir, we

set the parameters so that the system is posed in a critical regime where the phase transition

13
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Figure 9: Order parameters according to the coupling strength K and lorenz parameter ρ:

cross-line at ρ = 28 for (b) and K = 2.2 for (c), respectively.

occurs. The adjustment of the parameters according to an order parameter will be discussed in

Section 3.

B. Creating a criticality by the explosive death

Benefit of using the coupled chaotic systems in (9) as a reservoir is that one can easily create

a large criticality by first order phase transition in the system. Across a critical point of the

coupling force, the compound oscillatory motions of the system, collapse into an equilibrium

point. This fixed equilibrium state near a critical point is used as the ground state for reservoir

computing, where the system always returns to after every computation, erasing unnecessary

information from previous evaluations and preparing for the next inputs.

To look for a possible phase transition in (9), we take order parameter rvar in terms of the

variation of amplitudes, as defined in the previous section (3).

If the frequencies of nodes in (9) are identical, then the system exhibits explosive death,

the discontinuous transition from the oscillatory state to the completely quenched state [20].

Indeed, (9) with nonidentical natural frequencies still exhibits the same phenomena. Figure

9(a) is the graph of the order parameter rvar in the ρ-K parameter space. N=100 of Lorenz

systems are coupled via mean-field diffusion with Q=0.7. The natural frequencies follow the

uniform distribution in [1, 1.3]. And the dynamical states of system was obtained by backward

continuation starting at large enough K and then lowering gradually [20]. The order parameter

rvar was averaged between t=[3900, 4000]. The dotted line separates non-chaotic part(left) and

chaotic part(right),where we are interested in, when coupling K is 0.

To be more certain, we propose the widely used order parameter for chaotic oscillators A(K),

which is the normalized average amplitude [20].

A(K) =
a(K)

a(0)
, a(K) =

∑N
i=1(〈xi,max〉t − 〈xi,min〉t)

N
(10)

The graph in Figure 9.(b) and (c) indicate cross-sectional figures in K and ρ directions,

respectively. It is shown that both of the order parameters exhibit extremely abrupt jump at
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Figure 10: Test error according to the lorenz system parameter ρ and coupling K.

(a): rossler y-data reconstruction, (b): chua y-data reconstruction and (c): mackey-glass past

20 input summation.

the same transition line across the plane. The line clearly separates the region of the amplitude

death from incoherent states, indicating where the first order transition occurs with respect to

K.

3.2 Numerical Tests

In the following numerical examples to test the learning ability of the oscillator networks, we use

the (10, 0.1)−type readout : The output function fout at t is obtained from 10 previous sampled

values of the oscillator frequencies x′i(t), · · · , x′i(t− 0.9) through the (4).

We set up two types of tasks, inferring missing variables and deriving past inputs (7), both

of which require the presence of long-term memory for proper execution. The first two tasks are

to reconstruct values of hidden variables of the systems from observation of a single variable.

For example, suppose a temporal data (x(t), y(t), z(t)) is generated from an unknown system.

The reservoir is trained to infer y(t) and z(t) as the output from the input x(t). This implies

that RC implicitly learns a structure of the system that generates the corresponding data. We

use two chaotic systems to generate the data, Rossler system, and Chua’s circuit.

In each task, the continuous input signal u(t) and the target signal v(t) are generated for

t ∈ [0, 6000]. To sure that the system is positioned in the reliable ground state, skipped first

1000 time steps. The training process is applied to match fout to v(t) over the 4,000 discrete

time steps, t = 1001, 1002, · · · , 5000. That is, the readout weights wli,j in (4) are determined to

minimize the relative error (6). Then we measure the performance using the remaining part of

the signal for t ∈ (5000, 6000] : the relative error (6) between fout to v(t) is evaluated over 1,000

discrete sampled time steps.

Figure 10 depicts the errors in task 1 to 3 with respect the parameters ρ and K. In all

the tasks, minimum error occurs along the same line below left. One can see that the line

forms a clear border across which the error jumps from the low error regime (red) to high error

regime (yellow). It should be noted that the line is indeed the aligned critical points as in

Figure 10 where the explosive death of the nodes occurs. This assures that the computational
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performance of the reservoirs is maximized near the first order phase transition. The dotted line

quite obviously separates(or seems to separate) the tendency of errors as Figure 10.
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IV Comparison : information processing capacity

In the previous section [31], a reservoir that consists of regular phase oscillators(ES) was pre-

sented as

θ′i = ωi +
λ|wi|
ki

N∑
j=1

Aij sin(θj − θi), i = 1, · · · , N, (11)

where λ is the coupling strength of oscillators and Aij the entry of the adjacency matrix of the

network. Here we take Aij = 1 if i 6= j, otherwise 0. The reservoir shows great performance

improvement across a critical point for synchronization. Effect of criticality is larger when the

corresponding criticality is of the first order (discontinuous) phase transition, rather than the

second order (continuous) one. In Section 3, we observed that the reservoir of coupled chaotic

elements(QC) also achieves best performance at the first order phase transition(explosive death).

This section tries to compare the performance of the above two critical reservoirs, regular and

chaotic ones, when both are being poised at the first order phase transition.
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Figure 11: Test errors of QC and ES with respect to number of nodes.

Figure 11 depicts the errors of QC and ES with task 1 to 3, respectively. In all of three tasks,

QC works much better than ES. Moreover, as the number of nodes increases, the difference

becomes clearer. It seems that the computaion ability of QC continuouly increases continuosly

while ES only increases till about 40 nodes. One of possible explanations on superiority of

the chaotic reservoir is that the computing capability of critical reservoirs may depend on the

collapsed dimension of attractors of reservoirs across the critical point. That is, the effect

of criticality on computing performance may be related to how much reduction occurs in the

dimension of the synchronization manifold at the phase transition. One can guess that the

collapsed dimension of (9) at the explosive death is much greater than that of (11), from the

fact that an attractor of a single Lorenz system has a greater Hausedorff dimension(∼2.06),
compared to one dimensional attractor of a phase oscillator. However, unfortunately, computing

the dimension of an attractor of a large coupled chaotic system is extremely time-consuming

and not practical.

For more practical caparison, we adopt the information processing capacity which has been

introduced in [27] to compute the capacity of input driven dynamical systems. We especially
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compare the total capacity CTOT , the summation of CT [X, yl] ∀yl ∈ YL for some dynamical

system X, where YL tends towards a complete orthogonal set of functions in the fading memory

Hilbert space. The capacity, equation (5) in [27], CT [X, z] measures how successful the dynamical

system X is at computing z. Here, we use the dynamical system QC and ES for X. The most

principal advantage of CTOT is the property, bounded by the size of readout, which provide

convenient way to compare given systems. To avoid numerical problems, CεT (X, {di}) in (12)

is substituted for CT [X, di]. We refer the reader to [27] for more details on the information

capacity of dynamical system.

CTOT [C] =
∑
{di}

CεT (X, {di}) (12)
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number of nodes

102

103

T
o

ta
l 
c
a

p
a

c
it
y

QC

ES

Figure 12: Total information capacity CTOT with respect to number of oscillators. Capacity is

bounded by 10 times to the number of nodes for our RC. We took input from unifrom distribution

over the interval [-1,1] and finite products of normalized Legendre polynomials for yl. The total

measured capacity was derived according to the degree
∑5

i=1 di.

Figure 4 compares CTOT of regular and chaotic reservoirs. We can check that the capacity of

QC continuouly increases, but the capacity of ES doesn’t increases after about 30 nodes which

agrees with the results of the numerical tasks in Figure 11. So we expect that CTOT can be an

reliable measure for the capacity of coupled oscillators for computation.
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V Conclusion

With a low coupling strength, oscillators are not able to form a consistent initial state from

where valid computation can start. On the contrary, an excessive coupling strength suppresses

dynamics perturbed by external stimuli too quickly, preventing it from working for efficient

computation. Simulations showed that networks of phase oscillators maximize their dynamic

range of information processing when configured on the edge of the synchronization. They can

provide a general framework for neuromorphic computing in that their synchronoy can be easily

controlled by the coupling strength. Especially in the explosive synchronization, in a critical

parameter regime where every mode of frequencies undergoes simultaneous synchronization, the

computing performance is greatly improved compared to that of the regular synchronization.

To find the critical coupling strength, we used the variance order parameter that clearly

indicates the onset of phase-locking by discontinuous jump in either regular or explosive syn-

chronization. However, since evaluation of the variance order parameter needs a long-time access

to the entire network, measuring it can be impractical, if not impossible. We showed that track-

ing the training error can replace the order parameter: one can increase the coupling strength

until there appears a sudden change (up/down) in the training error. Since evaluating the train-

ing error is a part of every learning process, we can locate the critical coupling strength without

additional cost.

In section 3 and 4, we showed that the coupled chaotic systems in the regime of quenched

chaos(amplitude death) can be used for efficient reservoir computing. As the reservoir of the

coupled phase oscillators at explosive synchronization, the chaotic reservoirs utilize a criticality

at the first order (discontinuous) phase transition to create a ground state for computation. It

notices in several computing tasks that the chaotic reservoirs excel the regular reservoirs, which

is also confirmed from comparing their information capacity.

The results imply that using chaotic nodes is more beneficial in constructing reservoirs. This

finding is important in several aspects. First of all, chaos is widely observed in neuronal systems,

both experimentally and theoretically [32]. We confirmed that such ubiquity of chaos can be

justified from the perspective of computing. That is, as long as it is properly quenched in the

critical regime, chaos is an goal worth pursuing rather than an undesirable state to be avoided.

Chaos computing is the paradigm that exploits the controlled richness of nonlinear dynamics

to do flexible computations. This work shows another theoretical direction of chaos computing

different from the approach using chaotic elements to emulate different logic gates [33,34]. Basic

understanding of a role of criticality in regular and chaotic reservoirs can be expected to shed

light on how information is processed in quenched coupled nonlinear systems, potentially leading

to proposition of a broad range of reservoirs.
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