
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 
 

Master's Thesis  

 
 

 

Implementation and Verification of Three-
Dimensional MOC Transient Solver 

in Whole-core Transport code STREAM 

 

 

 

 

 

 

 

 

 

 

Khang Hoang Nhat Nguyen  

 

Department of Nuclear Engineering 

 

 

 

Graduate School of UNIST 

2019 

 



 
 

Implementation and Verification of Three-
Dimensional MOC Transient Solver 

in Whole-core Transport code STREAM  
 
 
 
 
 
 
 

 

 

 

 

 

Khang Hoang Nhat Nguyen  

 

 

 

 

 

 

 

Department of Nuclear Engineering 

 

 

 

Graduate School of UNIST 







 
 

Abstract 

In the state of the art of computer technology, the transient analysis in the nuclear reactor has 

become on demand of the nuclear engineering field. This thesis presents the development and the 

preliminary validation of the transient transport capability in STREAM code. The Theta method with 

the well-known Crank-Nicholsen scheme providing a second-order accurate is then applied to tackle 

the time integration in the right-hand side of the time-dependent neutron transport. Eventually, the 

Methods Of Characteristic (MOC) solver in the steady state with excellent performance and accuracy 

in STREAM is modified with the delayed neutron term to solve the transient cases. Additionally, a 

multi-group Coarse Mesh Finite Difference (CMFD) accelerator is introduced to alleviate the 

computational burden of the simulation. The transient problems, namely TD0, TD1, TD2, TD3, TD4 

and TD5 in the C5G7-TD benchmark suite are used for verification. The STREAM time-dependent 

MOC calculation results show good agreement with results of a deterministic transport analysis code, 

nTRACER with the maximum disparity of the total power level change is 1.22 % for the TD3-4 case. 

In the 3D cases, with a proposed decusping method, the maximum amplitude of the relative error is 

about 3.5% between the two deterministic codes. The disparities induced by decusping methods and 

whole-core transport method are obviously observed and thus are the primary source causing the 

discrepancies. With this high fidelity to replicate the solution in the time-dependent transport equation, 

the transient analysis capability of STREAM code has been proved. This work plays as a foundation 

for the later 3D whole core transient solver accompanied by TH1D feedbacks for practical transient 

problems.  
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I. Introduction 

From the nuclear engineering perspective in the design and licensing of the light water reactors, 

there are raising efforts have been introduced to the development of the numerical methods in transient 

simulation of a nuclear reactor, which involves solving the time-dependent (TD) Boltzmann equation 

including the delayed neutrons contribution. Over the last several decades, reactor transients have been 

modeled and simulated based on the diffusion approximation to the transport equation. Despite the 

enhance in the computational burden, the diffusion might not fulfill the growing interest in reactor 

designs and fuels in terms of accuracy and fidelity. Inevitably, the direct neutron transport methods have 

become superior for nuclear reactor kinetics calculation as a result of steady development in 

computational technologies. 

The in-house UNIST neutron transport code STREAM [1, 2] has been developed since 2013. 

It is developed on the pursuit to resolve issues in numerical reactor physics and to produce a high-

fidelity LWR core calculation and designing program. Previously, STREAM is used in reactor core 

analysis as the first approach in the conventional two-step approach with downstream nodal diffusion 

code RAST-K [3]. Until recently, steady- state direct whole core calculation based on 3D MOC/DD [4] 

has been adopted to STREAM. In this research, the development and the preliminary validation of the 

transient transport capability problem in STREAM code are presented. The Theta method with the well-

known Crank-Nicholsen scheme providing a second-order accurate is then applied to tackle the time 

integration in the right-hand side of the TD neutron transport. Eventually, the Methods Of Characteristic 

(MOC) solver in the steady state with excellent performance and accuracy in STREAM is modified 

with the delayed neutron term to solve the transient cases. As a result, the TD transport problem requires 

the calculation of a series of fixed source problems at discrete points in time coupled to previous time 

points through the update of state variables. Additionally, a multi-group CMFD accelerator is introduced 

to alleviate the computational burden of the simulation.  

1.1  Thesis Outline 

The remainder of this section is an outline of the following sections. This outline provides a 

brief summary of the content for each section.  

II. Overview of the Neutron Transport and the derivation of the Steady-State MOC  

 In section 2, the overview and the derivation of the deterministic neutron transport MOC 

method that is applied to the reactor steady state problems in STREAM are presented. The derivation 

of the CMFD accelerator coupled with the MOC transport solver, is also introduced.   

III.  Derivation of the transient MOC  

 In Section 3, a derivation of the TD MOC is presented with the approximation that the angular 

flux time derivative is isotropic, which is an efficient approximation and commonly used in the state-
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of-the-art nuclear lattice codes. The time integration based on the Theta method and the treatment and 

solution of the delayed precursor equations are also presented. The derivation includes the analytical 

solution for the precursor equations based on the time integration technique are presented in this section.  

IV.  C5G7 TD neutron transport benchmark and code-to-code verification  

 The overview of the C5G7 TD neutron transport benchmark is presented in Section 4. 

Accordingly, the numerical results in the total power level changes have been generated by STREAM. 

Moreover, a decusping method is proposed to overcome the control rod insertion/withdrawal issue in 

3D simulation. The verification is a code-to-code approach. In this research, to maintain the consistency, 

the source for verification is the whole-core neutron transport code nTRACER. 

V.  Summary, Conclusion and Future work  

 In the last Section, a summary of the research proposed in this thesis and the conclusions 

identified in the preceding sections are provided. 
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II. Overview of Neutron Transport and Derivation of the Steady State MOC  

This section will be started with a brief overview of the neutron transport equation, i.e., the 

Boltzmann equation, to understand the behavior of the neutrons in the nuclear reactors. The derivation 

of the MOC for the steady state in STREAM is presented after the discussion. Additionally, the 

derivation of the CMFD accelerator coupled with the MOC solver is also introduced in this section. 

2.1 The Boltzmann Transport Equation 

 The ultimate goal in the neutron transport codes is to solve the Boltzmann transport equation 
which can be given as in Eq. (2.1): 

𝛀∇𝜓(𝒓, 𝛀, 𝐸) + Σ௧(𝒓, 𝐸)𝜓(𝒓, 𝛀, 𝐸) = න 𝑑𝐸ᇱ න 𝑑𝛀ᇱΣ௦(𝒓, 𝛀ᇱ → 𝛀, 𝐸ᇱ → 𝐸)𝜓(𝒓, 𝛀′, 𝐸′)

ସగ

ஶ

଴

 
(2.1) 

 
                                                               +

𝜒(𝒓, 𝐸)

4𝜋𝑘௘௙௙
න 𝑑𝐸ᇱ𝜈Σ௙(𝒓, 𝐸ᇱ)

ஶ

଴

න 𝑑𝛀ᇱ𝜓(𝒓, 𝛀ᇱ, 𝐸ᇱ)

ସగ

 . 

where: 

- 𝒓: Spatial position vector, 

- 𝛀: Angular direction vector, 

- 𝐸: Neutron energy, 

- 𝜓: Angular neutron flux, 

- 𝑘௘௙௙: Effective neutron multiplication factor, 

- Σ௧: Neutron total cross-section, 

- Σ௔: Neutron absorption cross-section, 

- Σ௙: Neutron fission cross-section, 

- 𝜒: Fission neutron energy spectrum, 

- 𝜈: Average number of neutrons emitted per fission event. 

To simplify the equation, the right-hand side (RHS) terms are collected as the total neutron 

source 𝑄(𝒓, 𝛀, 𝐸): 

𝑄(𝒓, 𝛀, 𝐸) = න 𝑑𝐸ᇱ න 𝑑𝛀ᇱΣ௦(𝒓, 𝛀ᇱ → 𝛀, 𝐸ᇱ → 𝐸)𝜓(𝒓, 𝛀′, 𝐸′)

ସగ

ஶ

଴

 

(2.2) 

               +
𝜒(𝒓, 𝐸)

4𝜋𝑘௘௙௙
න 𝑑𝐸ᇱ𝜈Σ௙(𝒓, 𝐸ᇱ)

ஶ

଴

න 𝑑𝛀ᇱ𝜓(𝒓, 𝛀ᇱ, 𝐸ᇱ)

ସగ

 . 

Then the transport equation can be abbreviated as: 

𝛀∇𝜓(𝒓, 𝛀, 𝐸) + Σ௧(𝒓, 𝐸)𝜓(𝒓, 𝛀, 𝐸) = 𝑄(𝒓, 𝛀, 𝐸) . (2.3) 

Although the solution of the equation 2.1 is the angular flux, we are often interested in the 

neutron scalar flux 𝜙(𝒓, 𝐸), which is calculated as the integration of the angular flux over all angles: 
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𝜙(𝒓, 𝐸) = න 𝜓(𝒓, 𝛀, 𝐸)
ସగ

𝑑𝛀 . (2.4) 

Predicting the neutron flux distribution in a reactor is the major concerns of nuclear reactor 

physics because the neutron flux is essential for the nuclear reaction rates calculation. These reaction 

rates can illustrate essential characteristics of the nuclear reactor such as the fission source amplitude, 

the number of actinides is generated, the impact of the radiation on the materials of the reactor vessels. 

Techniques to solve the neutron transport equation are typically classified by the treatment of the 

angular and spatial variables. In the following section is the derivation of the MOC technique for solving 

the neutron transport equation.  

2.2 Derivation of the MOC for steady state  

 The MOC method treats the angular dependence of the neutron flux by introducing the discrete 

ordinates along the path which neutrons travel. Similar to the Collision Probability Method (CPM) [5], 

MOC can be applied for complex geometries with rays, which is coined as characteristics, along where 

the neutron flux is propagated. 

The characteristic form of the Eq. (2.3) can be found based on the use of the characteristic 

curves, namely: 

𝒓 = 𝒓𝟎 + 𝑠𝛀 . (2.5) 

For any location 𝒓 of interest, each angular direction vector 𝛀’ is matched to a corresponding 

reference location 𝒓𝟎
ᇱ  defined using Eq. (2.5) as 𝒓 = 𝒓𝟎

ᇱ + 𝑠𝛀′. This parametrization for the position 

can be inserted to the transport equation in Eq. (2.2) and Eq. (2.3) as: 

𝑄(𝒓𝟎 + 𝑠𝛀, 𝛀, 𝐸) = න 𝑑𝐸ᇱ න 𝑑𝛀ᇱΣ௦(𝒓𝟎
ᇱ + 𝑠𝛀ᇱ, 𝛀ᇱ → 𝛀, 𝐸ᇱ → 𝐸)𝜓(𝒓𝟎

ᇱ + 𝑠𝛀ᇱ, 𝛀ᇱ, 𝐸ᇱ)

ସగ

ஶ

଴

 

(2.6) 

                                     +
𝜒(𝒓𝟎

ᇱ + 𝑠𝛀′, 𝐸)

4𝜋𝑘௘௙௙
න 𝑑𝐸ᇱ𝜈Σ௙(𝒓𝟎

ᇱ + 𝑠𝛀′, 𝐸ᇱ)

ஶ

଴

න 𝑑𝛀ᇱ𝜓(𝒓𝟎
ᇱ + 𝑠𝛀′, 𝛀ᇱ, 𝐸ᇱ)

ସగ

 , 

𝛀∇𝜓(𝒓𝟎 + 𝑠𝛀, 𝛀, 𝐸) + Σ௧(𝒓𝟎 + 𝑠𝛀, 𝐸)𝜓(𝒓𝟎 + 𝑠𝛀, 𝛀, 𝐸) = 𝑄(𝒓𝟎 + 𝑠𝛀, 𝛀, 𝐸) . (2.7) 

Applying the differential operator to the angular flux in Eq. (2.7) yields: 

𝑑

𝑑𝑠
𝜓(𝒓𝟎 + 𝑠𝛀, 𝛀, 𝐸) + Σ௧(𝒓𝟎 + 𝑠𝛀, 𝐸)𝜓(𝒓𝟎 + 𝑠𝛀, 𝛀, 𝐸) = 𝑄(𝒓𝟎 + 𝑠𝛀, 𝛀, 𝐸) .  (2.8) 

The dependence of 𝑠 on the position vector and the angular flux 𝒓𝟎 + 𝑠𝛀  will be referred 

as 𝒔 such that the characteristic equation can be simply rewritten as: 

𝑑

𝑑𝑠
𝜓(𝒔, 𝛀, 𝐸) + Σ௧(𝒔, 𝐸)𝜓(𝒔, 𝛀, 𝐸) = 𝑄(𝒔, 𝛀, 𝐸) . (2.9) 

This first order differential equation can be solved by the method of Lagrange with the 

analytical solution given in Eq. (2.10): 
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𝜓(𝒔, 𝛀, 𝐸) = 𝜓(𝒔𝟎, 𝛀, 𝐸)𝑒ି ∫ ௗ𝒔ᇲஊ౪൫𝒔ᇲ,ா൯
𝒔

బ + න 𝑑𝒔ᇱᇱ𝑄(𝒔ᇱᇱ,

𝒔

଴

𝛀, 𝐸)𝑒ି ∫ ௗ𝒔ᇲஊ౪൫𝒔ᇲ,ா൯
𝒔

𝒔ᇲᇲ  .  (2.10) 

In Eq. (2.10), all the parameters are defined as functions of continuous neutron energy, which 

leads to the difficulty in achieving the solution directly. To overcome this obstacle, the multi-group 

approximation is introduced by discretizing the energy domain into distinct energy groups. By applying 

the same procedure mentioned above, the solution to the multi-group characteristic neutron transport 

equation for an energy group 𝑔 is given: 

𝜓௚(𝒔, 𝛀) = 𝜓௚(𝒔𝟎, 𝛀)𝑒ି ∫ ௗ𝒔ᇲஊ౪
೒

൫𝒔ᇲ൯
𝒔

బ + න 𝑑𝒔ᇱᇱ𝑄௚(𝒔ᇱᇱ,

𝒔

଴

𝛀)𝑒ି ∫ ௗ𝒔ᇲஊ౪
೒

൫𝒔ᇲ൯
𝒔

𝒔ᇲᇲ  , (2.11) 

where the neutron source is given as: 

𝑄௚(𝒔, 𝛀) = ෍ න 𝑑𝛀ᇱΣ௦
୥ᇲ→୥

(𝒔, 𝛀ᇱ → 𝛀)𝜓௚ᇲ
 (𝒔, 𝛀ᇱ)

ସగ

ீ

௚ᇱୀଵ

 

(2.12) 

               +
𝜒௚(𝒔)

4𝜋𝑘௘௙௙
෍ 𝜈Σ௙

୥ᇲ

(𝒔)

ீ

௚ᇲୀଵ

න 𝑑𝛀ᇱ𝜓௚ᇲ
(𝒔, 𝛀ᇱ)

ସగ

 .  

where the condensed cross-sections are achieved from the pin-wised slowing down method [1].  

The discrete ordinates approximation is then introduced to approximate the integral over the 

angular domain in the neutron source and in the angular flux. Further decomposition into polar and 

azimuthal angles is also made for the angular flux and the neutron source for each quadrature points. 

Another standard approximation for MOC is to assume that the source 𝑄௚ is constant across discrete 

spatial cells, termed flat source regions (FSRs) illustrated in Fig. 1. Utilizing above approximations and 

discretization methods, for a projected streaming track on the x-y plane shown in Fig. 2, the solution in 

Eq. (10) for the azimuthal angle 𝑖, polar angle 𝑗 in the FSR 𝑚 with the segment (track) 𝑘 can be 

given as: 

𝜓௜,௝,௞
௚ (𝑠) = 𝜓௜,௝,௞

௚ (0)𝑒
ି

ஊ೟ೝ,೘
೒

ୡ୭ୱ൫ఏഥೕ൯
௦

+
𝑄௜,௝,௠

௚

Σ௧௥,௠
௚ ቌ1 − 𝑒

ି
ஊ೟ೝ,೘

೒

ୡ୭ୱ൫ఏഥೕ൯
௦
ቍ .  (2.13) 

 

Figure 1 Discretization Scheme for a pin-cell problem 
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Figure 2 A streaming track projected on the x-y plane 

 
One can note that the neutron total cross-section is replaced with the transport corrected cross-

section because the contribution of the anti-isotropic source is assumed to be insignificant; therefore, 

the scattering source is isotropic. The neutron source in Eq. (2.12) is then given as: 

𝑄௜,௝,௠
௚

=
1

4𝜋
ቌ

𝜒௠
௚

𝑘௘௙௙
෍ 𝜈Σ௙,௠

௚ᇲ

𝜙௠
௚ᇲ

ீ

௚ᇲୀଵ

+ ෍ Σ௠,௦
௚ᇲ→௚

𝜙௠
௚ᇲ

ீ

௚ᇲୀଵ

ቍ .  (2.14) 

where the integrated angular flux 𝜙௠
௚  is termed the scalar flux for the FSR 𝑚.  

Let take a segment with a length of 𝑡௜,௝,௞
ᇱ  into consideration which is illustrated in Fig.3, the 

outgoing angular flux can be expressed as: 

𝜓௜,௝,௞
௚,௢௨௧

= 𝜓௜,௝,௞
௚,௜௡

𝑒ିஊ೟ೝ,೘
೒

௧೔,ೕ,ೖ
ᇲ

+
𝑄௜,௝,௠

௚

Σ௧௥,௠
௚ ቀ1 − 𝑒ିஊ೟ೝ,೘

೒
௧೔,ೕ,ೖ

ᇲ

ቁ .  (2.15) 

 

where 𝑡௜,௝,௞ is the length of the track projected on x-y plane and 𝑡௜,௝,௞
ᇱ =

௧೔,ೕ,ೖ

ୡ୭ୱ൫ఏണ
തതത൯

 

 

Figure 3 Outgoing angular flux for a segment length 𝑡ᇱ 

 
To identify the parameter remaining, the integral over the area for the FSR area-averaged scalar 

flux, the segments area approximation is introduced. Firstly, the segment-average angular flux is 

expressed in Eq. (2.16): 

𝜓ത௜,௝,௞
௚

=
∫ 𝜓௜,௝,௞

௚ (𝑠)𝑑𝑠
௧೔,ೕ,ೖ

ᇲ

଴

∫ 𝑑𝑠
௧೔,ೕ,ೖ

ᇲ

଴

=

∫ 𝜓௜,௝,௞
௚ (0)𝑒ିஊ೟ೝ,೘

೒
௦ +

𝑄௜,௝,௠
௚

Σ௧௥,௠
௚ ቀ1 − 𝑒ିஊ೟ೝ,೘

೒
௦ቁ 𝑑𝑠

௧೔,ೕ,ೖ
ᇲ

଴

𝑡௜,௝,௞
ᇱ   

(2.16) 

=
𝑄௜,௝,௠

௚

Σ௧௥,௠
௚ +

Δ௜,௝,௞
௚

Σ௧௥,௠
௚

𝑡௜,௝,௞
ᇱ

  ,         

with Δ௜,௝,௞
௚

= 𝜓௜,௝,௞
௚ (0) − 𝜓௜,௝,௞

௚
൫𝑡௜,௝,௞

ᇱ ൯ = 𝜓௜,௝,௞,௜௡ 
௚

− 𝜓௜,௝,௞,௢௨௧ 
௚  is the change in the angular flux along 

x

y

z

i

j

̂

s
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the segment. Then the integration for all of available segments in a FSR 𝑚 yields the region-averaged 

angular flux as:  

𝜓തത௜,௝,௠
௚

=
∑ 𝜓ത௜,௝,௞

௚
𝑡௜,௝,௞

ᇱ 𝑑௜௞∈௠

∑ 𝑡௜,௝,௞
ᇱ

௞∈௠ 𝑑௜
 , (2.17) 

where 𝑑௜ denotes for the ray distance of the MOC calculation.  

With the isotropic assumption in the flux, the neutron scalar flux can be given as in Eq. (2.18). 

The contributions of the azimuthal and polar angles to the scalar flux are denoted by 𝜔௜  and 𝜔௝  

respectively. 

𝜙௠
௚

= 4𝜋 ෍ ෍ 𝜓തത௜,௝,௠
௚

௜௝

𝜔௜𝜔௝                                                                           

(2.18) 

=
4𝜋

Σ௧௥,௠
௚ ቌ𝑄௜,௝,௠

௚
+

1

𝐴௠
෍ ෍ ෍ Δ௜,௝,௞

௚
𝑑௜𝜔௜𝜔௝ cos൫𝜃ఫ

ഥ ൯

௞∈௠௜௝

ቍ .          

 Although MOC proves itself with many advantages including treatment of complex 

geometries and amenability for parallelization, the slow convergence behavior is it drawback which 

necessitates the significant incentive to have an accelerator to alleviate the computational time is 

inevitable. Various acceleration schemes have been proposed for MOC with (Coarse Mesh Finite 

Difference) CMFD being the most widely adopted due to its simplicity and acceleration performance. 

In the following section, the formulation of the CMFD is introduced.  

2.3 The CMFD as an acceleration  

CMFD was first proposed by Smith [6] and has been widely used in accelerating neutron 

diffusion and transport problems. Particularly, it has been shown that CMFD acceleration gives the 

speedup factor to 100 times than using MOC standalone solver [7].  

By using the CMFD formulation, it is possible to construct a pin-cell based (coarse mesh) 

diffusion problem equivalent to the flat-source regions (fined mesh) transport problem. The obtained 

solution from the diffusion problem can accelerate the convergence of the transport problem. Fig. 4 is 

an example of the FSRs mesh layout, and the coarse mesh layout used for a 16 by 16 fuel assembly (FA) 

problem.  
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Figure 4 FSR (left) and CMFD (right) layout for a 16 x 16 FA 

For the derivation of the CMFD, the steady-state multi-group neutron diffusion equation is 

expressed in Eq. (2.19): 

−∇ ∙ 𝐷௚(𝑥, 𝑦, 𝑧)𝜙௚(𝑥, 𝑦, 𝑧) + Σ௔
௚(𝑥, 𝑦, 𝑧)𝜙௚(𝑥, 𝑦, 𝑧) + ෍ Σ௦

௚→௚ᇲ

(𝑥, 𝑦, 𝑧)𝜙௚(𝑥, 𝑦, 𝑧)

ீ

௚ᇲୀଵ

௚ᇲஷ௚

  

(2.19) 

=
𝜒௚(𝑥, 𝑦, 𝑧)

𝑘௘௙௙
 ෍ 𝜈Σ௙

௚ᇲ

(𝑥, 𝑦, 𝑧)𝜙௚ᇲ
(𝑥, 𝑦, 𝑧)

ீ

௚ᇲୀଵ

+ ෍ Σ௦
௚ᇲ→௚(𝑥, 𝑦, 𝑧)𝜙௚ᇲ

(𝑥, 𝑦, 𝑧)

ீ

௚ᇲୀଵ

௚ᇲஷ௚

 .          

where 

- 𝐷: Diffusion coefficient, 

- Σ௔
௚: Coarse mesh absorption cross-section for energy group 𝑔, 

- Σ௙
௚: Coarse mesh fission cross-section for energy group 𝑔, 

- Σ௦
௚→௚ᇲ

: Coarse mesh down-scattering cross-section for energy group 𝑔, 

- Σ௦
௚ᇲ→௚: Coarse mesh up-scattering cross-section for energy group 𝑔, 

- 𝜙: Scalar flux in the coarse mesh node, 

- 𝜒: Fission spectrum, 

- 𝑘௘௙௙: Neutron multiplication factor, 

- 𝜈: Average number of neutrons emitted per fission event, 

- 𝑥, 𝑦, 𝑧: Positional variables. For the sake of simplicity, these variables are now referred to a 

computational node 𝑚. 

In the formulation of the CMFD diffusion problem, cell homogenized constants and currents 

correction coefficients are required. Below section presents the homogenization and coefficient 
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calculation process.  

a) Cross section condensation  

The cross sections for the CMFD diffusion equation are generated by energy-condensation and 

area-averaging of the cross sections from the fine mesh as shown in below equations: 

Σ௔,௠
𝒈ഥ

=
∑ ∑ Σ௔,௥

௚
𝜙௥

௚
𝐴௥௥∈௠௚∈𝒈ഥ

∑ ∑ 𝜙௥
௚

𝐴௥௥∈௠௚∈𝒈ഥ

 , (2.20) 

Σ௧௥,௠
𝒈ഥ

=
∑ ∑ Σ௧௥,௥

௚
𝜙௥

௚
𝐴௥௥∈௠௚∈𝒈ഥ

∑ ∑ 𝜙௥
௚

𝐴௥௥∈௠௚∈𝒈ഥ

 , (2.21) 

Σ௦,௠
𝒈ഥ→𝒈ഥᇲ

=
∑ ∑ ∑ Σ௦,௥

௚→௚ᇲ

𝜙௥
௚

𝐴௥௥∈௠௚ᇲ∈𝒈ഥᇲ௚∈𝒈ഥ

∑ ∑ 𝜙௥
௚

𝐴௥௥∈௠௚∈𝒈ഥ

 , (2.22) 

νΣ௙,௠
𝒈ഥ

=
∑ ∑ νΣ௙,௥

௚
𝜙௥

௚
𝐴௥௥∈௠௚∈𝒈ഥ

∑ ∑ 𝜙௥
௚

𝐴௥௥∈௠௚∈𝒈ഥ

 , (2.23) 

𝜒௠
𝒈ഥ

=
∑ ∑ 𝜒௥

௚ ∑ νΣ௙,௥
௚ଵ

𝜙௥
௚ଵ

𝐴௥
ீ
௚భୀଵ௥∈௠௚∈𝒈ഥ

∑ ∑ ∑ 𝜒௥
௚ ∑ νΣ௙,௥

௚ଵ
𝜙௥

௚ଵ
𝐴௥

ீ
௚భୀଵ௥∈௠௚∈𝒈𝟐

𝑮ഥ
𝒈𝟐ୀଵ

 , (2.24) 

𝐷௠
𝒈ഥ

=

∑
1

3Σ௧௥,௠
௚ 𝜙௚,஼ெி஽

௜,௝
௚∈𝒈ഥ

∑ 𝜙௚,஼ெி஽
௠

௚∈𝒈ഥ

 , (2.25) 

𝜙௚,஼ெி஽
௠ =

∑ 𝜙௥
௚

𝐴௥௥∈௠

∑ 𝐴௥௥∈(௜,௝)

 , 

and 

(2.26) 

𝜙𝒈ഥ
௠ = ෍ 𝜙௚,஼ெி஽

௠

௚∈𝒈ഥ

 . (2.27) 

where  

- 𝒈ഥ: Index of CMFD neutron energy group structure with 𝑮ഥ groups in total, 

- 𝐴: Denotation for the area of the cell of interest. 

b) Solving the diffusion problem 

The Finite Difference Method (FDM) is then applied to solve the diffusion problem given in 

Eq. (2.19). To maintain the consistency, the superscript 𝑔 in Eq. (2.19) will be changed into 𝒈ഥ from 

now on. By expansion of the diffusion coefficient 𝐷 into the spatial direction and minor rearrangement, 

the spatially discretized diffusion equation Eq. (2.19) can be solved. Here we use a 1D expression for 

simplicity: 
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൫𝐽௠ା
𝒈ഥ

− 𝐽௠ି
𝒈ഥ

൯

Δ𝑚
+ Σ௥,௠

𝒈ഥ
𝜙௠

𝒈ഥ
=

𝜒௠
𝒈ഥ

𝑘௘௙௙
 ෍ 𝜈Σ௙,௠

𝒈ഥᇲ

𝜙௠
𝒈ഥᇲ

𝑮ഥ

𝒈ഥᇲୀଵ

+ ෍ Σ௦,௠
𝒈ഥᇲ→𝒈ഥ

𝜙௠
𝒈ഥᇲ

𝑮ഥ

𝒈ഥᇲୀଵ

𝒈ഥᇲஷ𝒈

 , (2.28) 

with the removal cross-section is defined as: 

Σ௥,௠
𝒈ഥ

= Σ௔,௠
𝒈ഥ

+ ෍ Σ௦,௠
𝒈ഥ→𝒈ഥᇲ

𝑮ഥ

𝒈ഥᇲୀଵ

𝒈ഥᇲஷ𝒈ഥ

 . (2.29) 

and Δ𝑚 is the width of the cell, 𝐽௠± 
𝒈ഥ is the neutron current at each cell surface. 

Please note that in the Eq. (2.29), the net current is the algebraic expression based on the finite 

difference approximation being applied across the surface of the two adjacent cells and not the actual 

net current in the MOC problem. The actual current from the MOC problem is computed by 

accumulating the current contribution from every segment that crosses a surface. To preserve the 

neutron current in the surface of the CMFD problem, a new correction factor 𝐷෡ is added as: 

𝐽௠±
𝒈ഥ

= −𝐷෡௠± 
𝒈ഥ

ቀ𝜙௠±ଵ
𝒈ഥ

+ 𝜙௜,௝
𝒈ഥ

ቁ ∓ 𝐷෩
௜ା

ଵ
ଶ

,௝

𝒈ഥ
ቀ𝜙௠±ଵ

𝒈ഥ
− 𝜙௜,௝

𝒈ഥ
ቁ , (2.30) 

where the current from the MOC given as: 

𝐽௠±
𝒈ഥ

=
4𝜋

Δ𝑚
෍ ෍ ෍ ෍ 𝜓௔௭,௣,௞,௠±

௚
𝑑௔௭𝜔௔௭𝜔௣ cos൫𝜃௣

തതത൯

௚∈𝒈ഥ௞∈௠௔௭௣

 . (2.31) 

Upon convergence of the CMFD diffusion problem, prolongation is then performed by 

multiplying each FSR’s scalar flux by the ratio of the converged coarse mesh scalar flux to the initial 

coarse mesh scalar flux in the acceleration step: 

𝜙ெை஼ ௡௢ௗ௘
௚

= 𝜙ெை஼ ௡௢ௗ௘
௚

×
𝜙𝒈ഥ,௨௣ௗ௔௧௘ௗ ௔௙௧௘௥ ஼ெி஽

௠

𝜙𝒈ഥ,௜௡௜௧௜௔௟ ௕௘௙௢௥௘ ஼ெி஽
௠  (𝑀𝑂𝐶 𝑛𝑜𝑑𝑒 ∈ 𝑚 𝑛𝑜𝑑𝑒 𝑖𝑛 𝐶𝑀𝐹𝐷) . (2.32) 

The convergence is evaluated based on several measures, including the convergence of the 

eigenvalue, the residual, the fission source. The calculation flow can be summarized in Fig. 5. 
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Figure 5 The iteration scheme to solve the transport problem using MOC with CMFD as an 

acceleration 

III. Derivation for MOC transient state calculation  

The typical approach to solve the time-dependent neutron transport equation is to discretize the 

equation in time and apply a time integration technique to treat the time derivative. Although there are 

many time integration methods available, they generally result in one or more equations of similar form 

to the steady-state transport equation but with a transient fixed source term resulting from a finite 

difference approximation of the time derivative and the delayed neutron source. The TD MOC based 

form of the transport problem is given as: 

1

𝑣௠
௚

 

𝑑𝜓௜,௝,௞
௚ (𝑠, 𝑡)

𝑑𝑡
 = −cos൫𝜃ఫ

ഥ ൯
𝑑𝜓௜,௝,௞

௚ (𝑠, 𝑡)

𝑑𝑠
− Σ௧௥,௠

୥
𝜓௜,௝,௞

௚ (𝑠, 𝑡) + 𝑄௜,௝,௠
௚ (𝑡) , (3.1) 

where the isotropic neutron source is given as: 

𝑄௜,௝,௠
௚ (𝑡) =

1

4𝜋
቎𝜒௣,௠

௚
× (1 − 𝛽) × 𝑆ி,௠(𝑡) + ෍ Σ௦,௠

௚ᇲ→௚
𝜙௠

௚ᇲ

(𝑡)

௚ᇲ

+ 𝜒ௗ,௠
௚

𝑆ௗ,௠(𝑡)቏ , (3.2) 

where 

- 𝜒ௗ,௠
௚  is the delayed neutron spectrum, 

- 𝑆ி,௠(𝑡) =
ଵ

௞೐೑೑
∑ 𝜈Σ௙,௠ 

௚ᇲ

𝜙௠
௚ᇲ

(𝑡)௚ᇱ  , 
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- 𝛽 is the total delayed neutron fraction, 

- 𝑣௠
௚  is the neutron velocity. 

The delayed neutron source for a flat source region 𝑆ௗ,௠ is the accumulated contribution of 

the delayed neutron precursors: 

𝑆ௗ,௠(𝑡) = ෍ 𝜆௟𝐶௟,௠(𝑡)

௟

 , (3.3) 

where 𝑙  is the delayed neutron precursors group index, and typically in nuclear reactor transient 

analysis, the number of delayed neutron precursor is six, and the delayed neutron precursors density for 

group 𝑙, 𝐶௟,௠(𝑡), can be described by Eq. (3.4);  

𝑑𝐶௟,௠(𝑡)

𝑑𝑡
= 𝛽௟𝑆ி,௠(𝑡) − 𝜆௟𝐶௟,௠(𝑡) , (3.4) 

where 

- 𝜆௟  is the delay constant for delayed neutron precursor group 𝑙 , 

- 𝐶௟,௠ is the delayed neutron precursor concentration of group 𝑙 , 

- 𝛽௟ is the group 𝑙 delayed neutron precursor yield and be assumed to be independent of time. 

Because storing the angular flux from one or more previous time steps to represent the angular 

flux time derivative for using in the time integration technique is massively memory-intensive for a 

typical nuclear reactor problem. Several pieces of research have been conducted and investigated for a 

proper approximation of the angular dependence of the angular flux time derivative to reduce the 

computational memory of the time-dependent neutron transport problem. In our research, the isotropic 

angular flux time derivative [8, 9, 10], which is a low-order angular approximation is used. The angular 

flux derivative can be expressed by the scalar flux as followed: 

1

𝑣௠
௚

 

𝑑𝜓௜,௝,௞
௚ (𝑠, 𝑡)

𝑑𝑡
 =

1

4𝜋𝑣௠
௚

Δ 

𝜙௠
௚

(𝑡)

𝑑𝑡
  .   (3.5) 

By storing the scalar flux instead of the angular flux, the computational memory requirement 

is productively reduced. This approximation is very efficient and attractive to the transient transport 

calculation [8, 9].  

In order to reuse the steady-state solver, a modification is necessary to introduce for the RHS 

of the Eq. (3.1) which is shown in the below section, including the time integration based on the Theta 

method and the delayed neutron precursor equation solution. 

3.1 Temporal discretization 

At a given time-step size Δ𝑡௡ for a time step 𝑡௡, Eq. (3.1) can be discretized using the Theta 

method as follow: 
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1

4𝜋𝑣௠
௚

Δ𝑡௡ 
൫𝜙௠

௡,௚
− 𝜙௠

௡ିଵ,௚
൯ = 𝜃𝑅௠

௡,௚
+ (1 − 𝜃)𝑅௠

௡ିଵ,௚
 , (3.6) 

where the expression 𝑅௠
௡,௚ denoting RHS terms in Eq. (3.1) at the time step 𝑡௡. With 𝜃 > 0, by diving 

𝜃 in both side of Eq. (3.6), it can be rewritten as: 

1

4𝜋𝑣௠
௚

Δ𝑡௡𝜃 
൫𝜙௠

௡,௚
− 𝜙௠

௡ିଵ,௚
൯ = 𝑅௠

௡,௚
+ ൬

1

𝜃
− 1൰ 𝑅௠

௡ିଵ,௚
 .  (3.7) 

For the Crank-Nicholsen scheme [9], 𝜃 = 0.5. The superscript 𝑛 − 1 indicates the known 

variables from the previous time step, so only the flux at the current time step is unknown and need to 

be achieved. 

3.2 Delayed neutron precursor time integration 

Since the 𝑅௠
௡,௚ term contains the delayed neutron source term which involves the unknown 

delayed neutron precursor concentrations at time step 𝑡௡, which is required time differencing to solve, 

it is impossible to solve Eq. (34) directly. To overcome this obstacle, the approximation to solve the 

delayed neutron precursor equation [11, 12] is performed as followed.  

Firstly, let multiply 𝐶௟,௠(𝑡) with 𝑒ఒ೗௧ then take the derivative and insert Eq. (3.4) yields: 

𝑑൫𝐶௟,௠(𝑡) × 𝑒ఒ೗௧൯ 

𝑑𝑡
= 𝑒ఒ೗௧

𝑑𝐶௟,௠(𝑡)

𝑑𝑡
+ 𝜆௟𝑒ఒ೗௧𝐶௟,௠(𝑡) = 𝑒ఒ೗௧𝛽௟𝑆ி,௠(𝑡) . (3.8) 

By using the second-order approximation for 𝑆ி,௠(𝑡) : 

𝛽௟𝑆ி,௠(𝑡) ≈ 𝛽௟
௡𝑆ி,௠

௡
𝑡̃ଶ + 𝑡̃𝛾𝛥𝑡௡

(1 + 𝛾)(𝛥𝑡௡)ଶ
+ 𝛽௟

௡ିଵ𝑆ி,௠
௡ିଵ ቆ1 −

(𝑡̃ଶ + (𝛾 − 1)𝛥𝑡௡ 𝑡̃)

𝛾(𝛥𝑡௡)ଶ ቇ 

(3.9) 

          +𝛽௟
௡ିଶ𝑆ி,௠

௡ିଶ
𝑡̃ଶ − 𝑡̃𝛥𝑡௡

(1 + 𝛾)𝛾(𝛥𝑡௡)ଶ
; 𝑡̃ = 𝑡 − 𝑡௡ିଵ; 𝛾 =

𝛥𝑡௡ିଵ

𝛥𝑡௡
     .      

with 𝑛 is the index of time-step. 

Take the integration of the Eq. (3.9) over time step 𝑡௡, the solution for the delayed neutron 

precursor concentration 𝐶௟,௠
௡  can be expressed through 𝑆ி,௠

௡   as: 

𝐶௟,௠
௡ = Ω௟

଴൫𝜆ሚ௟
௡൯𝐶௟,௠

௡ିଵ +
1

𝜆௟
௡  ෍ 𝛽௟

௡ି௧𝑆ி,௠
௡ି௧Ω௟

௡ି௧൫𝜆ሚ௟
௡൯

ଶ

௧ୀ଴

 , (3.10) 

where 

Ω௟
଴൫𝜆ሚ௟

௡൯ = 𝑒ିఒ೗
೙୼௧೙; 𝜆ሚ௟

௡ = 𝜆௟
௡Δ𝑡௡; 𝜅଴(𝑥) = 1 − 𝑒ି௫ , 

(3.11) 

𝜅ଵ(𝑥) = 1 −
𝜅଴(𝑥)

𝑥
; 𝜅ଶ(𝑥) = 1 −

2𝜅ଵ(𝑥)

𝑥
 , 
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Ω௟
௡൫𝜆ሚ௟

௡൯ =
ቀ𝜅ଶ൫𝜆ሚ௟

௡൯ + 𝛾𝜅ଵ൫𝜆ሚ௟
௡൯ቁ

1 + 𝛾
 , (3.12) 

Ω௟
௡ିଵ൫𝜆ሚ௟

௡൯ = 𝜅଴൫𝜆ሚ௟
௡൯ −

ቀ𝜅ଶ൫𝜆ሚ௟
௡൯ + (𝛾 − 1)𝜅ଵ൫𝜆ሚ௟

௡൯ቁ

𝛾
 , 

and 

(3.13) 

Ω௟
௡ିଶ൫𝜆ሚ௟

௡൯ =
ቀ𝜅ଶ൫𝜆ሚ௟

௡൯ − 𝜅ଵ൫𝜆ሚ௟
௡൯ቁ

(1 + 𝛾)𝛾
 . (3.14) 

By using the solution in Eq. (3.12), (3.13) and (3.14), the delayed neutron source can be 

expressed as: 

𝑆ௗ,௠
௡ = ෍ 𝜆௟𝐶௟,௠

௡

௟

= 𝜔௡𝑆ி,௠
௡ + 𝑆ሚௗ,௠

௡ିଵ , (3.15) 

where  

𝜔௡ = ෍ 𝛽௟
௡𝛺௟

௡൫𝜆ሚ௞
௡൯

௟

 , (3.16) 

𝑆ሚௗ,௠
௡ିଵ = ෍ 𝜆௟𝛺௟

଴൫𝜆ሚ௞
௡൯𝐶௟,௠

௡ିଵ

௟

+ ෍ 𝛽௟
௡ି௧𝑆ி,௠

௡ି௧Ω௟
௡ି௧൫𝜆ሚ௟

௡൯ 

ଶ

௧ୀ଴

.  (3.17) 

By inserting the delayed neutron source terms determined by the previous time step values, 

Eq. (3.17), into Eq. (3.9), the transient fixed source problem can be expressed as follow: 

cos൫𝜃ఫ
ഥ ൯

𝑑𝜓௜,௝,௞
௡,௚ (𝑠)

𝑑𝑠
= Σ௧,௠

୥
𝜓௜,௝,௞

௡,௚ (𝑠) + 𝑄௜,௝,௠
௡,௚

 , (3.18) 

where the modification source for the MOC transport solver at time step 𝑡௡, 𝑄௜,௝,௠
௡,௚ , is given as: 
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௡,௚

= ൬
1
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− 1൰ 𝑅௠
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−
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௡,௚
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൯                                       

 

(3.19) 
                     +

1

4𝜋
቎𝜒௣,௠

௚
× (1 − 𝛽) × 𝑆ி,௠

௡ + ෍ Σ௦,௠
௚ᇲ→௚

𝜙௠
௡,௚ᇲ

(𝑡)

௚ᇲ

+ 𝜒ௗ,௠
௚

൫𝜔௡𝑆ி,௠
௡ + 𝑆ሚௗ,௠

௡ିଵ൯቏ . 

By reusing the solver from the steady state with the modified source term, the transient 

problems can be solved as a series of fixed source problems at each time step. The source term consists 

of three terms: the previous flux term, the delayed neutron source term, and the residual term. The 

residual term representing the imbalance at the previous time should be evaluated to establish the fixed 

source problem. Since the cross sections and other constants must be updated at the beginning of each 

time step, it is better to calculate the residual at the end of the time step for use in the next time step. As 
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was the case using MOC algorithm, the CMFD accelerator for the steady-state and the time-dependent 

problems are similar. The main differences are the separation in the source with the fission source from 

prompt and delayed neutrons and the presence of the temporal flux derivative. The time-dependent 

CMFD can be used as the same procedure in the steady-state. The transient calculation process can be 

express through the flow chart in Fig. 6. 

 

Figure 6 The iteration scheme to solve the transient problem using MOC with CMFD as an 

acceleration 
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IV. Verification of the transient capability using the C5G7-TD transient benchmark 

4.1 Benchmark description 

This section provides a brief overview of the benchmark description and the transient exercises 

within the benchmark. The time-dependent benchmark is an extension from the C5G7-MOX 

benchmark [13]. The core in this benchmark is a simplified quarter-core configuration containing two 

MOX and two UO2 fuel assemblies. This benchmark is selected for this verification because it is a 

simple model and has a well-known reputation in the verification of the transient capability for a time-

dependent transport code. The water is used as reflector both in axial and radial side of the core with 

the control rod initially located in the top reflector area. The core configuration is illustrated in Fig.7. 

The fuel assemblies used in this benchmark are based on the Westinghouse 17x17 type, containing 264 

fuel pins, 24 guide tubes for control nodes and one instrument tube for a fission chamber in the center 

of the assembly as illustrated in Fig. 7. The dimension of all pin cells is 0.54 cm in the radius with a pin 

pitch of 1.26 cm. The cladding material in this benchmark is homogenized with the fuel material. Three 

enrichment levels are used for the MOX assemblies, namely 4.3 %, 7.0%, and 8.7%. For the UO2 fuel 

assembly, it is loaded uniformly with 3.7% enriched fuel.  

There are 6 transient exercises, namely TD0-TD5, with the brief description given in Table. I. 

Within each exercise, the control rods banks inserted for each assembly or the moderator density are 

varied. Except for the TD0 exercise using step insertion and removals of the control rods, the others use 

linear changing in the reactivity. 

Table. I Brief Description of C5G7-TD Benchmark exercises 

Exercise 2D/3D 
Number of 

sub-problems 
Description 

TD0 2D 5 
Step insertion of 10% of rod length, followed by step 

removal of 5%, another 5% later. 

TD1 2D 5 
Linear insertion of 1% of rod length, followed by linear 

removal of a full 1% of the rod. 

TD2 2D 3 
Linear insertion of 10% of rod length, followed by linear 

removal of a full 10% of the rod. 

TD3 2D 4 
Linear decrease of water density, followed by a linear 

increase to original density. 

TD4 3D 5 
Linear insertion of 33.33% of rod length, followed by linear 

removal of full 33.33% of the rod. 

TD5 3D 4 
A linear decrease in water density, varying by location, 

followed by returning to original density. 
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Figure 7 Planar and axial section configuration for the C5G7 benchmark problem  

4.2 Simulation result of 2-D problems in C5G7-TD transient benchmark 

The 2-D problems contain four distinct problems can be categorized into 2 types: Control rod 

insertion/withdrawal and the moderator density variation. Each of them contains their sub-problems. 

The control rod motion in problems TD0 through 2 is modeled by a time-dependent change in the 

absorption XS, which is either step or ramp change. The TD3 involves the ramp changes in moderator 

density. The result in the 𝑘௘௙௙ at the steady-state show excellent agreement with the reference as shown 

in Table II. This result indicates the fidelity of the initial simulation. 

Table II Steady-State 2D Model 𝒌𝒆𝒇𝒇 

Code 𝑘௘௙௙ Difference (pcm) 

MCNP [10] 1.18646 ±  0.008 (%) - 

DeCART 1.18660 14 

STREAM 1.18664 18 
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a) Exercise TD0  

In the TD0 problems, the control rod insertion and withdrawal movement are simulated by the 

assumption as a step change in the material composition, particularly an abrupt variation in XS for the 

guide-tube cell to control rod cell in fuel region shown in Fig. 8. The TD0 set consists of five sub-

problems shown below: 

- TD0-1: insertion/withdrawal of bank 1;  

- TD0-2: insertion/withdrawal of bank 3;  

- TD0-3: insertion/withdrawal of bank 4;  

- TD0-4: insertion/withdrawal of banks 1,3 and 4 simultaneously;  

- TD0-5: insertion/withdrawal of all banks 

The power level changes generated by STREAM for the TD0 set is given in Fig. 9. Due to the 

sudden change of cross-section of the control rod material, the fission rate varies dramatically result in 

the total power declines abruptly from 0 s to 1 s, then increases dramatically at 2 s. In such cases, the 

time step is required to be small enough to satisfy the accuracy criteria. In this problem, at the abrupt 

change in the cross-section of the material, the time step is 0.1 ms while other using 0.25 ms as suggested 

from the benchmark. As the concentration of the delayed neutron precursors decreases during the 

transient, the total power reaches a smaller level than the initial state. Theoretically, if the transient time 

goes to infinity, the power level would approach to the initial value. To illustrate the change in the 

precursor density, Fig. 10, and Fig. 11 display for the longest-lived precursor group and the shortest-

lived precursor group for case TD0-1, respectively. The behavior of the power level agrees very well 

with the result from nTRACER [14] with the maximum, average and the root mean square (RMS) of 

the relative error between the two codes for each sub-problem is given in Table III.   

 

Figure 8 Control rod movement in TD0 transient exercise 
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Figure 9 Power level change result from STREAM for TD0 transient exercise 

 

 
Figure 10 Density change of the longest-lived delayed neutron precursor group for case TD0-1 

 

 
Figure 11 Density change of the shortest-lived delayed neutron precursor group for case TD0-1 
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 For the longest-lived precursor, the declined slope mainly depends on the change of fission 

rate change due to the variation of the total absorption cross-section change. After the control rods are 

entirely removed, the density decreases based on the decaying process with the half-life approximately 

1 minute. In the case of the short-lived precursor, the decaying process happens very fast (~0.2 s), after 

the control is inserted, the production rate of this group decreases vastly. After the withdrawal of the 

control rod, the production rate increase leads to the increase in the density curves, as shown in Fig. 11. 

Physically, these changes are the dominant effect explaining the declining sloped after the control 

inserted and remained position, i.e., between 0 and 1 sec, and 1 and 2 seconds.  

 
Table III Comparison in the relative error (%) between STREAM and nTRACER for the TD0 

Case ID RMS Max Avg. 

TD0-1 0.33 0.93 0.32 

TD0-2 0.26 0.47 0.24 

TD0-3 0.23 0.51 0.20 

TD0-4 0.31 0.96 0.29 

TD0-5 0.31 0.96 0.28 

 

b) Exercise TD1 and TD2  

The process of control rod insertion and withdrawal is simulated by the linear variation of the 

cross-section of the material in these two problems. The control rods are simulated with the movement 

at constant speed resulted in a ramp reactivity insertion. At the beginning of the simulation, all control 

rods are withdrawn, and at the end of 1 s, the fraction of control depth in the core reaches a specific 

value, where it is 1 % for TD1 and 10% for TD2 which is illustrated in Fig. 12. The control rod 

withdrawal procedure is conducted with the same speed and return to the initial state at the end of 2 s. 

Similarly, as in TD0, the TD1 and TD2 includes five sub-problems for each exercise shown below: 

- TD1-1/TD2-1: insertion/withdrawal of bank 1;  

- TD1-2/TD2-2: insertion/withdrawal of bank 3;  

- TD1-3/TD2-3: insertion/withdrawal of bank 4;  

- TD1-4/TD2-4: insertion/withdrawal of banks 1,3 and 4 simultaneously;  

- TD1-5/TD2-5: insertion/withdrawal of all banks 

The solutions in the power level change generated by STREAM given in Fig. 13 and Fig. 14. 

As expected, one can observe the continuous decrease in the total power during the cross-section 

changing period. A symmetric trend is observed in the total power change because of the symmetricity 

in the variation function of the cross-section. The deeper insertion of the control rods in the exercise 



21 
 

TD2 induced more negative reactivity compared to the TD1. As in the Fig. 13 and Fig. 14, excellent 

agreement with nTRACER results is observed. Table IV and Table V illustrate the maximum, average, 

and RMS of the relative error between the two codes for each sub-problem of TD1 and TD2 exercise, 

respectively. 

 

Figure 12 Control rod movement in TD1 and TD2 transient exercise. 

 

 

Figure 13 Power level change result from STREAM for TD1 transient exercise 
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Figure 14 Power level change result from STREAM for TD2 transient exercise 

 
Table IV Comparison in the relative error (%) between STREAM and nTRACER for the TD1 

Case ID RMS Max Avg. 

TD1-1 0.26 0.38 0.25 

TD1-2 0.17 0.35 0.17 

TD1-3 0.16 0.34 0.15 

TD1-4 0.26 0.38 0.25 

TD1-5 0.26 0.37 0.25 

 

Table V Comparison in the relative error (%) between STREAM and nTRACER for the TD2 

Case ID RMS Max Avg. 

TD2-1 0.36 0.90 0.35 

TD2-2 0.23 0.44 0.23 

TD2-3 0.20 0.45 0.19 

TD2-4 0.32 1.10 0.30 

TD2-5 0.31 1.20 0.29 

 

c) Exercise TD3  

In the exercise TD3, the total moderator density in the cores is varied. It initially started with a 

normal condition density then reduces with a constant speed to the end of 1 s. After it reaches the 

minimum value, it returns to the initial with the same speed at the end of 2 s. This process is described 

in Fig. 15, which includes four sub-problems with their own variation factors. The result of this exercise 

is given in Fig. 16. Because of the linear change in the reactivity, the power level change shape shares 
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the similarity with exercise TD1 and TD2. Unquestionable, in the case of using changing factors 0.8, 

the power reaches the minimum value compared to the rest.  

 

Figure 15 Core average moderator density change in TD3 exercise  

 

Figure 16 Power level change result from STREAM for TD3 transient exercise 

 
As indicated in Table VI, good agreements between the two codes are observed. Moreover, as one may 

notice that the discrepancy in the case of the case TD3, the maximum value in relative error raise 

approximate 0.2 % for 5 % density reduced in the moderator. This error can be explained as the 

accumulated error from the difference between the nTRACER and STREAM code. As initially, with 

95 % of moderator density, the maximum error is 0.64 %, while the fraction of change becomes 0.8, the 

maximum error reaches 1.22 % which means 0.6 % is accumulated to the error.  

Table VI Comparison in the relative error (%) between STREAM and nTRACER for the TD3 

Case ID RMS Max Avg. 

TD3-1 0.32 0.64 0.29 
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TD3-2 0.38 0.81 0.35 

TD3-3 0.41 1.00 0.38 

TD3-4 0.44 1.22 0.39 

 

4.3 Decusping method and simulation result of 3D problems in C5G7-TD transient benchmark  

 In the analysis of 3D power reactors, the calculation with the control movement is a norm, and 

it requires the accurate modeling of the control rod inducing an immense perturbation on the reactivity 

lead to the change in power distribution. The substantial issue of this control rod modeling is usually 

involved with misalignment of the control rod tip and the axial mesh structure. It is necessary to resolve 

this problem appropriately because the movement of the control rod varies during the operation period 

and leads to the arbitrary axial position of the control rod tips. The below section presents the method 

to handle this issue.  

a) Decusping Method for control rod movement  

The most common and direct to solve this issue is to employ and introduce the adaptive mesh 

for regions where the control rod misaligned with the initial axial mesh. This approach is a 

straightforward one to handle the decusping; however, it requires intensive programming functions, 

including coding maintenance; thus, it is not so attractive to most of the reactor analysis tools. An 

alternative for this approach is the homogenization of the cross-section of inconsistent material in the 

axial mesh structures. The essential advantage of the homogenization is in the ease of implementation; 

however, it is necessary to determine a proper algorithm to calculate the homogenized cross-section. 

The strong neutron absorption of the control results in the harsh variation in the thermal flux in the 

neighbored regions with the control tips. Originally, the simple volume weighting scheme was 

introduced for homogenization, but it resulted in the over-prediction of the control rod effect, i.e., the 

cusping effect [15] illustrated in Fig. 17. Intricate researches on the homogenization schemes [16, 17] 

have been conducted and adopted to nodal analysis codes to mitigate the cusping effect. The principle 

of the decusping method is to use flux-volume weighting homogenization based on the generation of 

the axial flux for rodded and un-rodded regions by introducing a local 1D calculation. If the axial profile 

in the partially inserted control rod mesh with the height of ℎ shown in Fig. 18 is obtained, the cross-

section homogenization is introduced as in Eq. (4.1) below: 

Σ௥,௚
௛ =

Σ௥,௚
ோ 𝜙௔௫௜௔௟,௚

ோ ℎோ + Σ௥,௚
௎ோ𝜙௔௫௜௔௟,௚

௎ோ ℎ௎ோ

𝜙௔௫௜௔௟,௚
ோ ℎோ + 𝜙௔௫௜௔௟,௚

௎ோ ℎ௎ோ

  . (4.1) 

where the rodded and un-rodded are denoted by the super-script 𝑅  and 𝑈𝑅,  respectively;  𝑟 

indicates the type of cross-section. 
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Figure 17 Control rod cusping effect on the total power by volume weighting  

 

Figure 18 Illustration of partially inserted control rod axial mesh 

 
 The calculation of the axial flux profile can be achieved efficiently based on a local 1D solver 

because the control rod absorption appears and effects significantly to the thermal neutrons. While the 

mean free path of the thermal neutron in a typical PWRs is only few centimeters, thus the axial flux can 

be achieved in a local domain instead of the global whole core domain. In this research, the local domain 

contains 3 axial meshes of the interested fuel assembly where the misalignment of the control rod tips 

occurs with the boundary conditions are reflective for all directions. Initially, the boundary condition 

for the local 1D problem is taking the currents from neighboring fuel assemblies; however, the essential 

purpose of the local problem is to the axial flux in the control rod pin located several centimeters far 

from the interfaced surface. Thus the impact using the reflective boundary condition is insignificant. 

Furthermore, it also alleviates the complexity in implementation procedure. The local 1D solver is based 

on the nodal Finite Difference Method (FDM) with the local axial mesh height is equal to the control 

rod moving size over a time step. Because the local domain size is relatively small compared to the 
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global problem, this calculation is carried online with the transport calculation and thus cost an 

insignificant computational time contributed to the total time of the transient simulation. The group 

constant for the FDM solver is prepared from the global 3D transport calculation for fully rodded and 

un-rodded control rod configurations with the same mesh size as in the initial transport problem. Thus, 

similarly to the sub-plane scheme [18], in the fine mesh structure of the local FDM problem, it can be 

configured based on the achieved two sets of cross-section data. The cross-section data of the coarse 

plane is then assigned for its refined planes in the axial profile calculation with the corresponding 

control rod configuration. 

During the implementation of the decusping method, for a control pin, the spatial self-shielding 

for the radial direction shown in Fig. 19 is not considered; thus, only one axial flux profile is applied 

for all radial regions of the pin. This misconception has a significant impact on the effectiveness of the 

current decusping method. Therefore, to resolve this issue, the pin-based flux distribution for rodded 

and un-rodded configurations is added to Eq. 4.1 during the homogenization process, as shown below: 

Σ௜,௥,௚
௛ =

Σ௜,௥,௚
ோ 𝜙௔௫௜௔௟,௚

ோ 𝜙௥௔ௗ௜௔௟,௜,௚
ோ ℎோ + Σ௜,௥,௚

௎ோ 𝜙௔௫௜௔௟,௚
௎ோ 𝜙௥௔ௗ௜௔௟,௜,௚

௎ோ ℎ௎ோ

𝜙௔௫௜௔௟,௚
ோ 𝜙௥௔ௗ௜௔௟,௜,௚

ோ ℎோ + 𝜙௔௫௜௔௟,௚
௎ோ 𝜙௥௔ௗ௜௔௟,௜,௚

௎ோ ℎ௎ோ

  . (4.1) 

with 𝜙௥௔ௗ௜௔௟,௜,௚
ோ  and 𝜙௥௔ௗ௜௔௟,௜,௚

௎ோ  denotes for the radial flux distribution of the rodded and un-rodded 

regions for the radial region 𝑖 respectively. 

Notably, the flux used for the cross-section homogenization is a combination of both axial and 

radial flux profile. By applying this combination, the decusping method can resolve the spatial self-

shielding issue in the homogenization. The radial flux distribution is obtained at the same time with the 

cross-section preparation for the local FDM 1D problem process. Thus the additional computational 

time for this process is negligible during the whore-core calculation.  
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Figure 19 Illustration of the radial spatial self-shielding effect for the thermal flux of the partially 

rodded axial mesh  

 
In order to have a more specific explanation for the decusping method, it will be illustrated 

comprehensively for the TD4-1 problem in the TD4 exercise in below section.  

b) Exercise TD4  

Exercise TD4 is a 3D time-dependent benchmark involving the process of control insertion and 

withdrawal. At the beginning of the simulation, the control rods are modeled in the top reflector region. 

The control rod is simulated to be fully inserted in the active core high within 6 s. Depending on the 

selection of control rod banks in different fuel assemblies, there are 5 sub-problems in this exercise 

shown in Fig. 20. The decusping method applied for this exercise is explained in detail for the case 

TD4-1. For this simulation, the model uses 0.05 s as the time step, the radial region for fuel pin and 

control rod pin are 5 and 3, respectively, as illustrated in Fig. 21. In order to keep the consistency with 

the reference result from nTRACER, the number of azimuthal angles is set as 64, and the polar angles 

in solid octant angle are 4.  

 Fig. 22 displayed the total power level change for the case TD4-1 with several axial mesh size 

using volume-weighting instead of using the decusping method. Obviously, as expected, the prompt 

drop appears at the very beginning due to the overestimation of the control rod effect. The curves should 

have the shape similar to the explicit model, i.e., using the axial mesh that equal to one control rod 

length inserted per one-time step, which costs tremendous computational time. For that reason, the 

decusping method undoubtedly must be applied. The local 1D FDM problem used for the decusping 

treatment is obtained with a single assembly with 3 axial nodes configuration. In the model where the 

decusping correction is applied, 15 axial meshes is used.  
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Figure 20 Relative inserted and withdrawn depth of control rod banks  
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 For the sake of illustration of the local flux, the local flux profile for a single control rod pin 

partially inserted in one axial mesh shown in Fig. 23. As can be observed, the variation of the fast flux 

inside the interested axial mesh is smoother than that of the thermal flux. By using this axial flux profile 

combined with the radial flux for the control pin, the cusping effect is dramatically reduced, as shown 

in Fig. 24. The curve of the power level changes history simulated up to 8 sec. shows good agreement 

with the explicit model. Furthermore, the discrepancy with nTRACER reaches its maximum value at 

2.74 % when the average value is 1.52 %. The main source of error is induced by the differences in the 

decusping methods and the 2D/3D DD method compared with the 2D/1D method.  

  

Figure 21 Illustration of Fuel pin (Left) and Control rod pin (Right) with radial rings used in C5G7- 

TD benchmark 

 

 

Figure 22 Power level change for TD4-1 case using various axial mesh size. 
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Figure 23 Illustration the axial section (Left) 1D local problem and the local flux shape for one 

control rod pin with reflective boundary condition (Right) 

 

 

Figure 24 Power level change for TD4-1 case with control rod decusping correction. 

 

By applied the same simulation condition and the decusping method model, the results in the 

power level for remaining sub-problems for this exercise is given in Fig. 24. The maximum amplitude 

of the relative error is about 3.2% between the STREAM and nTRACER, as shown in Table. VII. 
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Table VII Comparison in the relative error (%) between STREAM and nTRACER for the TD4 

Case ID RMS Max Avg. 

TD4-1 1.75 2.74 1.52 

TD4-2 1.52 2.98 1.48 

TD4-3 1.30 2.80 1.32 

TD4-4 1.73 3.20 1.40 

TD4-5 0.89 2.43 1.03 

 

 
Figure 25 Power level change result from STREAM for TD4 exercise. 

 
 As observed in Fig. 24, the cusping effect has been mitigated properly by using the proposed 

decusping method for cases TD4-2,5. The STREAM result shares the similarity with the nTRACER’s 

result for the power changing curves. However, as mentioned above, the main source of discrepancy is 

originated from the differences in the whole core transport method and the decusping method between 

the two deterministic codes. This difference results in the fission source magnitude gradually diverged 

from each other.  

c) Exercise TD5  

Instead of the insertion and withdrawal of the control rods, exercise TD5 is based on the density 

variation of the moderators. All control rods in this exercise are located in the fully un-rodded 

configuration. There are 4 sub-problems differentiated by the magnitude of density change in moderator 
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in different fuel assemblies shown in Fig. 26 [13]. The power level changes for TD5 exercise are 

depicted in Fig. 27. The agreement is improved in this exercise than in TD4 results; however, the 

discrepancy is still observed after the variation is stopped. The maximum, average, and the RMS of the 

relative errors are given in Table. VIII.  

Figure 26 Relative moderator density in TD5 exercise  

 As expected, the effect on the moderator changes for assembly number 1st is dominant over 

the other assemblies. The least effective to the total fission rate is from assembly number 4th as it has a 

very small impact on power level change. For the sake of illustration of the impact on the power, the 

power distribution of TD5-4 case at 2 sec is given in Fig. 28. The symmetric trend is displayed similarly 

to the exercise TD3 due to the symmetric change of the moderator density.  
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Figure 27 Power level change result from STREAM for TD5 exercise. 

 
Table VIII Comparison in the relative error (%) between STREAM and nTRACER for the TD5 

Case ID RMS Max Avg. 

TD5-1 0.59 0.75 0.58 

TD5-2 0.41 0.67 0.40 

TD5-3 0.63 0.79 0.63 

TD5-4 0.85 1.37 0.84 

 

 

Figure 28 Power distribution at 2 sec for case TD5-4 
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V. Summary, Conclusion and Future work 

In this research, the transport transient solver has been adopted to STREAM code and was 

examined by solving the neutron time-dependent benchmark C5G7-TD. The summary of the 

computational time and memory required for these calculations is displayed in Table. IX. The 

preliminary verification with reference solution from nTRACER show good agreement. For the 2D 

results, the maximum relative errors between the two codes for the total power level change is 1.22 % 

for the case of TD3-4 with the corresponding RMS is 0.44 %. For the 3D problems, due to the 

misalignment of the control rod tip issue when performing the control insertion and withdrawal transient 

simulation, a decusping method has been proposed. The overestimation of the control rods is mitigated 

effectively by applying the proposed method. The fundamental idea of the decusping method is to 

predict the axial flux in partially inserted control rod axial mesh and radial self-shielding treatment to 

capture the radial effect within the control rod pins to use as weighting function during the cross-section 

homogenization. By using the decusping method for 3D cases, the range of discrepancy in the relative 

errors between STREAM and nTRACER is 3.5 %. This difference is originated and accumulated due 

to the difference in the whole-core transport method and the decusping method between two codes. In 

the nTRACER code, larger axial meshes are used, and they consider the transport leakage in the 2D/1D 

approach while in STREAM, the axial mesh is much finer (~ 3cm), and no transport leakage is 

considered. However, whether or not additional factors can contribute to the calculation remains to be 

studied. In general, the results show very good agreement with the reference solution. 

As shown in Table IX, the remaining issue for transient calculation in 3D geometry is that it 

required much more memory and longer computational time. Thus, the future work will concentrate on 

the improvement of the transient calculation performance by introducing different parallel algorithm 

and iteration scheme based on the CMFD instead of the MOC based scheme. Later on, the transient 

solver can be expanded to apply to realistic transient calculation and analysis coupled with TH1D 

feedbacks and multi-physic calculations. 
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Table IX Summary of the computational time and memory required to simulate the transient 

calculation up to 10 s 

Case 
Total memory 

(GB) 
# CPUs Time (h) Case 

Total memory 

(GB) 
# CPUs Time (h) 

TD0-1 0.5 9 1.97 TD2-5 0.5 9 1.63 

TD0-2 0.5 9 1.65 TD3-1 0.5 9 1.48 

TD0-3 0.5 9 1.68 TD3-2 0.5 9 1.60 

TD0-4 0.5 9 1.85 TD3-3 0.5 9 1.60 

TD0-5 0.5 9 1.87 TD3-4 0.5 9 1.59 

TD1-1 0.5 9 1.43 TD4-1 40.4 28 25.15 

TD1-2 0.5 9 1.31 TD4-2 40.4 28 24.45 

TD1-3 0.5 9 1.31 TD4-3 40.4 28 26.00 

TD1-4 0.5 9 1.41 TD4-4 40.4 28 23.40 

TD1-5 0.5 9 1.44 TD4-5 40.4 28 22.40 

TD2-1 0.5 9 1.60 TD5-1 40.4 28 18.15 

TD2-2 0.5 9 1.47 TD5-2 40.4 28 22.04 

TD2-3 0.5 9 1.42 TD5-3 40.4 28 17.60 

TD2-4 0.5 9 1.63 TD5-4 40.4 28 20.17 
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