

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Energy-efficient Hardware Accelerator Design for

Convolutional Neural Network

Yesung Kang

Department of Electrical Engineering

Graduate School of UNIST

Energy-efficient Hardware Accelerator Design for

Convolutional Neural Network

A dissertation

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Yesung Kang

6 / 18 / 2019

Approved by

Advisor

Kyung Rok Kim

y

Energy-efficient Hardware Accelerator Design for

Convolutional Neural Network

Yesung Kang

This certifies that the dissertation of Yesung Kang is approved.

6 / 18 / 2019

signature

Advisor: Kyung Rok Kim

signature

Co-Advisor: Seokhyeong Kang

signature

Seong-Jin Kim

signature

Jongeun Lee

signature

Youngmin Kim

g

signature

signature

signature

i i

DEDICATION

• To my wife, Jisoo, without whose sacrifice, love and prayer I would not have finished my dissera-

tion.

• To my beloved two sons, Eunchan and Eungyeom, I would like to express my thanks for their

smiles and cheering.

Abstract

Convolutional neural network (CNN) is a class of deep neural networks, which shows a superior

performance in handling images. Due to its performance, CNN is widely used to classify an object or

detect the position of object from an image. CNN can be implemented on either edge devices or cloud

servers. Since the cloud servers have high computational capabilities, CNN on cloud can perform a large

number of tasks at once with a high throughput. However, CNN on the cloud requires a long round-trip

time. To infer an image picture, data from a sensor should be uploaded to the cloud server, and processed

information from CNN is transferred to the user. If an application requires a rapid response in a certain

situation, the long round-trip time of cloud is a critical issue. On the other hand, an edge device has a

very short latency, even though it has limited computing resources. In addition, since the edge device

does not require the transmission of images over network, its performance would not be affected by the

bandwidth of network. Because of these features, it is efficient to use the cloud for CNN computing

in most cases, but the edge device is preferred in some applications. For example, CNN algorithm

for autonomous car requires rapid responses. CNN on cloud requires transmission and reception of

images through network, and it cannot respond quickly to users. This problem becomes more serious

when a high-resolution input image is required. On the other hand, the edge device does not require

the data transmission, and it can response very quickly. Edge devices would be also suitable for CNN

applications involving privacy or security. However, the edge device has limited energy resource, the

energy efficiency of the CNN accelerator is a very important issue. Embedded CNN accelerator consists

of off-chip memory, host CPU and a hardware accelerator. The hardware accelerator consists of the

main controller, global buffer and arrays of processing elements (PE). It also has a separate compression

module and activation module. In this dissertation, we propose energy-efficient design in three different

parts.

First, we propose a time-multiplexing PE to increase the energy efficiency of multipliers. From

the fact the feature maps have small values which are defined as non-outliers, we increase the energy

efficiency for computing non-outliers. For further improving the energy effciency of PE, approximate

computing is also introduced. Method to optimize the trade-off between accuracy and energy is also

proposed.

Second, we investigate the energy-efficient accuracy recovery circuit. For the implementation of

CNN on edge, CNN loops are usually tiled. During tiling of CNN loops, accuracy can be degraded. We

analyze the accuracy reduction due to tiling and recover accuracy by extending et al. of partial sums

with very small energy overhead.

Third, we reduce energy consumption for DRAM accessing. CNN requires massive data transmis-

sion between on-chip and off-chip memory. The energy consumption of data transmission accounts

I

for a large portion of total energy consumption. We propose a spatial correlation-aware compression

algorithm to reduce the transmission of feature maps.

In each of these three levels, this dissertation proposes novel optimization and design flows which

increase the energy efficiency of CNN accelerator on edge.

– II –

Contents

I. Introduction 1
1.1 Developments of Artificial Neural Networks (ANNs) .. 1

1.1.1 Neural networks exploiting perceptron ... 1

1.1.2 Convolutional neural networks ... 3

1.2 Deploying CNN on Edge Devices .. 5

1.3 Energy-efficient CNN Accelerator ... 6

1.3.1 Circuit level approach .. 6

1.3.2 System level approach ... 6

1.3.3 Memory level approach ... 7

1.4 This Dissertation ... 7

II. Circuit Level Approach 9
2.1 Energy-efficient Processing Element .. 9

2.2 Motivation .. 11

2.2.1 Sparsity of CNN’s feature map ... 11

2.2.2 Time multiplexing multiplier ... 12

2.3 Evaluation of Energy Consumption .. 13

2.4 Approximate Computing ... 14

2.5 Related Works .. 17

2.5.1 Common subexpression elimination (CSE) ... 17

2.5.2 Circuit for approximate computing ... 18

2.6 Approximate Synthesis for FIR Filter ... 21

2.6.1 The proposed approximate adder/subtractor .. 21

2.6.2 Approximate synthesis flow ... 24

2.7 Experimental Setup and Results ... 26

2.7.1 Experimental setup .. 26

2.7.2 FIR filter implementation ... 26

2.7.3 Image FIR filter experiment ... 29

2.8 Conclusion ... 32

III. System Level Approach 33
3.1 Related Works .. 36

III

3.2 Loop Tiling on CNN ... 37

3.2.1 Role of loop tiling ... 37

3.2.2 Necessity of channel loop tiling ... 37

3.2.3 Channel loop tiling-errors .. 39

3.3 Channel Loop Tiling-aware Hardware Accelerator .. 43

3.4 Experimental Setup and Results ... 47

3.4.1 Experimental environment ... 47

3.4.2 Accuracy of channel loop tiled CNN .. 47

3.4.3 Evaluation of the proposed method ... 48

3.5 Conclusion ... 52

IV. Memory Level Approach 54
4.1 Grid-based Run-length Compression .. 56

4.1.1 Motivation .. 56

4.1.2 Proposed compression algorithm .. 57

4.2 Experimental Setup and Results ... 59

4.3 Conclusion ... 62

Bibliography 63

List of Figures

Figure 1.1: Schematic of the perceptron [9]. ... 2

Figure 1.2: Architecture of multilayer perceptron (MLP) [7]. .. 3

Figure 1.3: Accuracy vs. network size [1]. ... 4

Figure 1.4: Memory compression for reducing DRAM access. .. 6

Figure 1.5: Scope and organization of this dissertation. ... 8

Figure 2.1: Ratio of outlier, non-outlier and zero feature maps ... 11

Figure 2.2: Architecture of the proposed time-multiplexing CNN accelerator. 12

Figure 2.3: Proposed time-multiplexing multiplier. ... 13

Figure 2.4: Energy consumption of the proposed PE. .. 14

Figure 2.5: The structure of the conventional FIR filter and the proposed approximate FIR

filter. ... 15

Figure 2.6: The schematic of the FIR filter. The coefficients of the FIR filter are (105, 831,

621, 815), and FAS = 3. ... 18

Figure 2.7: (a) Proposed approximate adder/subtractor. (b) Structure of the approximate

part. (c) Schematic of the k-th carry generator and the sum generator in the

approximate part. ... 19

Figure 2.8: Proposed synthesis flow. .. 23

Figure 2.9: The proposed synthesis flow (red) and the exhaustive (black) are visualized in

terms of (a) accuracy vs. the delay domain, (b) accuracy vs. the power domain,

and (c) accuracy vs. the energy domain. ... 27

Figure 2.10: Filtered images using optimized FIR filters. .. 30

Figure 3.1: CNN implementations of a CNN accelerator. (a) Channel loop is not tiled. (b)

Channel loop is tiled by two; additional errors, channel loop tiling-errors, occur. 35

Figure 3.2: Pseudo code of convolution layer. ... 38

Figure 3.3: Two types of channel loop tiling-errors. The value of partial sums (y-axis) are

accumulated during three channel loops. If a value of partial sum stored to

memory is larger than maxquant , exceeding error occurs. The round of the partial

sum generates a rounding error. .. 40

Figure 3.4: (a) Top-1 and (b) Top-5 accuracy of quantized AlexNet of 50,000 ImageNet

dataset with different number of channel tile. To analyze the effect the bit width

of partial sum on CNN accuracy, we extend both the bit width of integer part

(IP) and fractional part (FP). If the number of channel tile is ‘1’, channel loops

are not tiled. .. 41

V– –

Figure 3.5: Channel loop tiling-aware hardware accelerator. .. 42

Figure 3.6: Distributions of output feature map and absolute output feature map. 44

Figure 3.7: Density of ’1’ in each bit position. The absolute values of MSBs are sparse, and

the sparse MSBs have an advantage in compression. .. 44

Figure 3.8: Compressing MSBs using the RLE (run-length encoding). 45

Figure 3.9: An example of the 16-bit RLE operation. .. 45

Figure 3.10: Channel loop tiling-error effects on accuracy of AlexNet. Each layer is tiled

without tiling channel loops of the other layers. Red lines: floating-point convo-

lution results, blue: 8-bit quantized convolution results. 46

Figure 3.11: The relationship between on-chip memory size (x-axis) and the accuracy (y-axis)

of different CNNs. If the available memory size is small, channel loops are splits

into much more small tiles. .. 49

Figure 3.12: Pre-trained CNN for image classification is implemented on PYNQ-Z1 (XC7Z020-

1CLG400C). ... 50

Figure 3.13: Restoration of Top-1 and Top-5 accuracy (y-axis) on different on-chip mem-

ory size (x-axis, unit : kB). Top-1 accuracy of (a) AlexNet, (c) DarkNet19, (e)

ResNet50, and (g) Extraction, and Top-5 accuracy of (b) AlexNet, (d) Dark-

Net19, (f) ResNet50, and (h) Extraction. ... 51

Figure 4.1: Feature map compression circuit of the typical CNN accelerator. 55

Figure 4.2: The feature maps of 12-th layer of VGG-16. The 8-bit feature maps are mapped

to grayscale image. ‘0’ and ‘255’ are converted to black and white pixel, respec-

tively. ... 56

Figure 4.3: Spatial correlation of output feature maps between different distances of VGG-

16. For the investigation, the feature maps of intermediate layers are gener-

ated during inferences of 1,000 images of ImageNet 2012 validation set. We

takes averages of horizontal, vertical, diagonal and anti-diagonal spatial auto-

correlation. ... 58

Figure 4.4: Grid-based run-length compression .. 59

Figure 4.5: The compression ratio (left y-axis) and the sparsity (left y-axis) of the output

feature map in each layer of VGG-16. ... 60

Figure 4.6: The compression ratio (left y-axis) and the sparsity (left y-axis) of the output

feature map in each layer of ResNet-18. .. 60

Figure 4.7: The reduced DRAM access by the three different compression algorithm: RLC,

ZVC and GRLC in VGG16. The DRAM access is normalized by DRAM access

of uncompressed feature maps. ... 61

Figure 4.8: The reduced DRAM access by the three different compression algorithm: RLC,

ZVC and GRLC in ResNet-18. The DRAM access is normalized by DRAM

access of uncompressed feature maps. .. 61

– VI –

List of Tables

Table 2.1: Approximation results in 4-tap FIR filter with FAS = 3. 26

Table 2.2: Approximation results in 25-tap filter with FAS = 4. .. 28

Table 2.3: Specifications of the FIR filters. ... 28

Table 2.4: Following the proposed synthesis flow ... 29

Table 3.1: Frequency and quantity of exceeding error and rounding error in BW0 of various

configurations (additional bits on integer and fractional parts) 42

Table 3.2: The average number of channel tiles in each layer of CNNs. 48

Table 3.3: Comparison of memory overhead due to bit extension. The memory overhead is

defined by (additional memory size) / (original memory size) × 100%. 53

Table 3.4: Area and power overhead of run-length encoder and decoder of different length

(eight, 16 and 32-bit). .. 53

Table 3.5: FPGA implementation results. ... 53

VII– –

ACKNOWLEDGMENT

Throughout the writing of this dissertation I have received a great deal of support and assistance.

First and foremost, I thank my academic advisor, Professor Seokhyeong Kang, for his patience, mo-

tivation and enthusiasm. He has provided insightful discussions about the research. He is someone

you will instantly love and never forget once you meet him. I could not have imagined having a better

mentor for my Ph.D course.

I would like to express my deepest gratitude to my advisor, Professor Kyung Rok Kim, for his guid-

ance and encouragement. I met him in my junior year. His guidance helped to broaden my understand-

ing of device physics.

I gave my sincere thanks to Professor Younmin Kim. He is my first mentor in digital circuit design. I

was encouraged by him to pursue a Ph.D. He taught me to perceive the philosophy.

I would like to express my very great appreciation to my dissertation committee member, Prof. Seong-

Jin Kim and Prof. Jongeun Lee for their encouragement and professional guidance. I am grateful for

their valuable feedback.

I would also like to thank colleagues in Professor Kang’s CAD & SoC Design Lab: Dr. Seungwon

Kim, Sunmean Kim, Daeyeon Kim, Yoonho Park, Sunghoon Kim, Sungyun Lee, Sunghye Park, Eunji

Kwon, Taeho Lim, Jaewoo Kim, Mingyu Woo, Sanggi Do and Jaemin Lee, for the stimulating discus-

sions, for the sleepless nights we were working together, and for all the memory we have had in the last

six years. Also I thank my friends: Dasom Jeong, Muyoung Lee, Moohyeon Nam, Byeongju Han and

Kiyoung Jo. I wish them the best in their future.

Last but not the least, I would like to thank my family: my parents, Wonjung Kang and Sunhyang

Park, parents-in-law, Youyoung Kim and Sunghyun Paik, and the rest of my families, Yewon Kang

and Yechan Kang, for their endless love, prayers and caring. I am very thankful to my wife, Jisoo

Kim, whose sacrifice, love and prayer allowed me to finish my Ph.D. course. To my beloved two sons,

Eunchan Kang and Eungyeom Kang, I would like to express my thanks for their smiles and cheering.

Finally I thank God. I will keep on trusting you for my future.

– VIII –

VITA

1991 Born, Busan, South Korea

2013 B.Sc., Electrical Engineering,

Ulsan National Institute of Science and Technology, Ulsan, South Korea

2019 Ph.D., Electrical Engineering,

Ulsan National Institute of Science and Technology, Ulsan, South Korea

• I. J. Chang, Yesung Kang, and Y. Kim, “Channel Length Biasing for Improving Read Margin of

the 8T SRAM at Near Threshold Operation”, Electronics, 8(6), (2019) pp.611.

• Yesung Kang, J. Kim, S. Kim, S. Shin, E. Jang, J. Jeong, K. Kim and S. Kang, “A Novel Ternary

Multiplier based on Ternary CMOS Compact Model”, Proc. ISMVL, 2017, pp.25-30.

• Yesung Kang, J. Kim and S. Kang, “A Novel Approximate Synthesis Flow for the Energy-

Efficient FIR filter”, Proc. ICCD, 2016, pp.96-102.

• S.-Y. Kim, K. Kim, Y. H. Hwang, J. Park, J. Jang, Y. Nam, Yesung Kang, H. J. Park, Z. Lee,

J. Choi, Y. Kim, S. Jeong, B.-S. Bae and J.-U. Park, “High-resolution Electrohydrodynamic

Inkjet Printing of Stretchable Metal Oxide Semiconductor Transistors with High Performance”,

Nanoscale, 8(39), (2016) pp.17113-17121.

• Yesung Kang, J. Choi and Y. Kim, “A Wide-Range On-Chip Leakage Sensor Using a Cur-

rent–Frequency Converting Technique in 65-nm Technology Node”, IEEE Trans. on CAS II,

62(9), (2015) pp. 846-850.

• J. Lee, Yesung Kang and Y. Kim, “Analysis of On Chip Decoupling Capacitor in the Double-gate

FinFETs with PEEC-based Power Delivery Network”, Proc. ISOCC, 2014, pp.290-291.

• Yesung Kang and Y. Kim, “Intra-gate Length Biasing for Leakage Optimization in 45nm Tech-

nology Node”, IEICE Trans. Fundamentals, 96(5), (2013) pp. 947-952.

• M. Ryu, Yesung Kang and Y. Kim, “Transistor Layout Optimization for Leakage Saving”, Proc.

ISOCC, 2013, pp.253-254.

• D. Kim, Yesung Kang, M. Ryu and Y. Kim, “Simple and Accurate Capacitance Modeling of

32nm Multi-fin FinFET”, Proc. ISOCC, 2013, pp.392-393.

– IX –

• D. Kim, Yesung Kang and Y. Kim, “Simple and Accurate Modeling of Double-Gate FinFET Fin

Body Variations”, Proc. SMACD, 2012, pp.265-268.

– X –

Chapter I

Introduction

1.1 Developments of Artificial Neural Networks (ANNs)

1.1.1 Neural networks exploiting perceptron

Artificial neural networks (ANNs) are statistical learning algorithms inspired by the brain of the

animal. ANN consists of a set of artificial neurons. Each artificial neuron is connected to each other

by synapses. Using this synapse, artificial neurons transmits the signal. The transmitted signals are

weighted by the neurons by adjustable weights. Adjustable weights mean the coupling strength between

neurons, which operate during training or forecasting. Artificial neural network is trained by changing

the weight of the synapses to have the ability to perform tasks.

McCulloch et al. first proposed a computational model for neural networks [3]. In the late 1940s,

psychologist Donald Hebb proposed “hebbian learning” [4]. Hebbian learning is a typical self-study,

and its variations become early models of long term enhancement. This idea began in 1948 with the

application of the computational model to Turing’s B-type machine. Pali et al. first used a computational

model to simulate a hebbian network at MIT [5]. Frank Rosenblatt created an algorithm for pattern

recognition based on the perceptron [6] which can perform simple computational functions like addition

and subtraction. The perceptron consists of neurons, weights, biases, and activation functions. The

neuron is the smallest element that constitutes an artificial neural network. If a net value is larger than

the threshold, ‘1’ is output while it is activated, and in the opposite case, ‘0’ is output. The weight is

a value that indicates the direction or shape of this linear boundary. The perceptron can classify into

two classes using the pre-trained weight. The bias represents the y-intercept of a linear boundary. The

activation function returns ‘1’ if the weighted sum is greater than the threshold value. Otherwise, it

– 1 –

returns ‘0’.

Figure 1.1: Schematic of the perceptron [9].

The schematic of the perceptron is shown in Figure 1.1. As shown in this figure, the inputs are

weighted and summed by the perceptron. The function of the perceptron can be described by the

following equation:

Zi = f (
M

∑
k=0

xkwk +b) (1.1)

, while xk and wk are input, weight from k-th input neuron. b and f are bias and activation function.

M. Marvin et al. published two problems of the perceptron. The first was that the computer didn’t

have enough computing resource to handle huge neural networks. As technology developed, computing

performance also improved, and this problem was solved naturally. The second problem was that the

single-layer neural network cannot handle exclusive-OR (XOR) problem.

To solve XOR problem, multilayer perceptron (MLP) was proposed. The previous single layer per-

ceptron has only an input layer and an output layer, while an MLP has one or more hidden layers. MLP

has the following characteristics. MLP has no connections within a layer. All input and output layers

are connected through the hidden layers and no direct connections between them. Two consecutive

layers are fully connected. The perceptrons of MLP is identical to that of a single layer. In 1975, the

training method for MLP is proposed by P. Werbos. He adjust the weights at each node by considering

the back-propagation of the error.

The accuracy of MLP is highly affected by the number of hidden layers. If the number of hidden

layers is small, the CNN will quickly converge on local optima, but it will show low accuracy. We can

increase the accuracy by increasing the number of hidden layers. However, the increase in the number

– 2 –

Figure 1.2: Architecture of multilayer perceptron (MLP) [7].

of hidden layers requires more operations and more time for training.

1.1.2 Convolutional neural networks

In 1989, Y. LeCun et al. first proposed the convolutional neural network (CNN), which can alleviate

the above problem by weight sharing [11, 12]. The CNN typically consists of convolution layers,

pooling layers, and fully connected layer. The parameters of the convolution layer consist of a series

of trainable weights and biases. Usually, the size of weights are less than 3× 3 because the output

feature maps of CNN are connected only to the local region of the input feature maps, while the output

feature maps of the MLP are connected to all input feature maps. This is why the CNN can reduce

the size of weights by sharing. During the forward propagation, each weight slides the horizontal

and vertical dimensions of the input volume and creates two-dimensional output feature maps. When

sliding the weights over the input, dot products are made between the filter and the elements of the

input. Intuitively, weights activates on a specific pattern at a specific location in the input feature maps.

– 3 –

The accumulation of this activation map along the depth dimension is the output feature maps. The size

of output feature maps is determined by three hyper-parameters: depth, stride, and zero-padding. The

width of the output volume, E, is calculated as a function of the width of the input feature maps (W),

the width of weights (R), stride (S) of the CONV layer, and the zero-padding size (P):

E = (W −R+2P)/S+1 (1.2)

If this value is not an integer, stride is incorrectly set. In this case, it is impossible for the neurons to be

symmetrical and neatly arranged. The following example will make this equation more intuitive: The

height of the output feature maps also can be calculated by similar method.

Recently, CNNs have shown great performance in various fields, such as computer vision, speech

recognition, natural language processing, and the autonomous car. In ImageNet 2012 challenge, a

CNN called AlexNet [40], has achieved a top-5 accuracy of 84.7% while the accuracy of second place,

which was not a CNN, was around 26.2%. From 2012, various CNN architectures have been proposed.

Although the accuracy of CNN has continued to improve, but the size of the network has also continued

to grow. Figure 1.3 shows the accuracy and the number of operations of state-of-the-art CNNs, which

is trained for ImageNet classification [75]. ResNet-101, which has the highest top-5 accuracy, 97.6%,

requires 19 billions of operations and 829 millions of parameters [2].

Figure 1.3: Accuracy vs. network size [1].

– 4 –

1.2 Deploying CNN on Edge Devices

CNNs can be implemented on either edge or cloud. Usually, the cloud has rich computing resource

and memory. Due to its rich computing resources, training CNN is much faster. It is easier to collect

data from sensor nodes. The inference on the cloud is also much faster than on the edge. Although cloud

computing has the aforementioned advantage, edge devices are preferred in some application where the

following features are emphasized.

(1) Latency and Bandwidth. For the inference of CNN with cloud computing, captured data from

sensors is required to be sent to a remote server. Transferred data is inferred by cloud computer and the

inferred results should be send back to the local device. The latency can be critical for the applications

which require rapid response. Take an autonomous car as an example. In case of emergency, the car

should immediately handle the situations, like braking car or avoiding obstacles. If the round trip time

(RTT) is long, the car cannot provide an immediate response. On the other hand, an edge device can

provide rapid response because it does not need to send or receive data over the network. For the

application which has limited bandwidth or numerous node devices, edge devices are preferred. If the

number of node device becomes larger, the effective bandwidth decreases which result in performance

reduction of CNN tasks. Edge devices can alleviate the problem.

(2) Security and Privacy. Compared to edge devices, the central server is more prone to attacks or

hacks. Edge devices are also effective for CNN tasks that deal with information that the user would not

want to disclose, such as medical privacy.

(3) Customization. If CNN task needs customization, an edge device is more effective, because

hosting multiple classifiers on the cloud would be expensive.

For the aforementioned applications, CNN on edge device has several advantages. However, CNN

on edge devices is always thirst for energy. The-state-of-the-art CNNs have been developed with the

primary goal of improving accuracy, so that network size becomes increasingly larger. As the network

size increases, CNN requires more energy consumption due to increased computations and memory

access.

– 5 –

1.3 Energy-efficient CNN Accelerator

1.3.1 Circuit level approach

CNNs contains a lot of multiplication and accumulation operations. Inference of state-of-the-art

CNNs require from few giga operations to few tens of giga operations. To accelerate the CNN on edge

devices with a limited power resource, the energy efficiency of massive operations is a very important

problem. The analysis on statics of feature maps and weights are helpful for designing energy-efficient

circuits. Feature maps and weights consist of outlier and non-outlier, of which magnitude is large and

small respectively. Most of feature maps and weights are non-outliers and only few of them are outliers.

Time-multiplexing multiplier can greatly reduce the energy consumption used for the computation of

non-outlier. Approximate computing can further reduce energy consumption. Due to CNN’s error-

resilient properties, appropriately configured approximate circuit can save a lot of energy consumption

without CNN accuracy degradation.

1.3.2 System level approach

The-state-of-the-art CNN requires a larger amount of memory than the on-chip memory that the

typical CNN accelerator has. To implement CNN on embedded CNN accelerator, CNN loops are ap-

propriately tiled. During the tiling of channel loop, CNN accuracy can be reduced. If we increase the bit

width for partial sums, accuracy would increase for additional memory access and power consumptions.

To minimize the energy overhead for accuracy recover, we propose an accuracy recovery method with

lower memory overhead and energy consumptions.

Figure 1.4: Memory compression for reducing DRAM access.

– 6 –

1.3.3 Memory level approach

CNN operations require massive traffic between on-chip and off-chip memory. Since accessing off-

chip memory requires about hundreds of times more energy than accessing local memory, energy con-

sumption for off-chip memory occupies a large part of the overall CNN energy consumption. Compress-

ing data before sending to off-chip memory can effectively save DRAM access as shown in Fig.1.4

1.4 This Dissertation

In this dissertation, several innovative techniques are proposed to improve the energy efficiency of

CNN accelerator for edge device in three different levels. The remainder of this thesis is organized as

follows.

• Chapter II proposes two circuit level method to increase energy efficiency of a CNN accelerator.

First, we propose a time-multiplexing multiply-and-accumulator (MAC) for which bit width is ad-

justable according to filter and feature map. The proposed MAC has relatively small bit width and

bit width is adjustable by time-multiplexing. If the both filter and feature map are non-outliers,

MAC computes the result in a cycle with small-bit width to increase the energy efficiency. If

either filter or feature map, or both are outliers, MAC computes in multiple cycles. The proposed

multipliers consume more energy for the computation of outliers. However, outliers occur very

rarely, the average energy consumption of CNNs reduces. Chapter II also proposes a method of

adjusting the accuracy of the subcircuit to improve energy efficiency while maintaining the accu-

racy of the circuit. By reducing design space effectively, the proposed method successfully find

the optimum results.

• Chapter III proposes an error analysis due to loop tiling. We describes the process of error gen-

eration by loop tiling. We also proposes a error recovery circuit which can be executed with very

lower energy overhead.

• Chapter IV proposes a memory compression algorithm for feature map to reduce energy con-

sumption for DRAM access. The proposed algorithm compress data by considering the spatial

correlation of feature maps with small circuit overhead.

– 7 –

Figure 1.5: Scope and organization of this dissertation.

– 8 –

Chapter II

Circuit Level Approach

2.1 Energy-efficient Processing Element

Convolutional neural networks (CNNs) contain a lot of multiplication and accumulation operations.

The computation of state-of-the-art CNNs require from few giga operations to few tens of giga oper-

ations. To accelerate the CNN on embedded devices with a limited power resource, energy efficiency

of massive operations is an important issue. The problem has been extensively studied and numerous

designs for hardware accelerator have been proposed. Reducing precision is one of solution to reduce

energy consumption.

According to our observations, most of feature maps and filters have small absolute values except a

few large absolute values, which are defined as ‘outliers’. The number of outliers is small but has a large

effect on the network quality [13]. Although the most of feature maps and weights can be computed by

small bit-width multiply-and-accumulators (MACs), the bit width of MACs is chosen by the considering

range of outliers, due to its effect on network accuracy. For most of cycles, large bit-width MACs is

wasting area and energy. To handle this problem, B. Moons et al. and H. Sharma et al. have proposed

precision scalable accelerators [14, 15].

However, these approaches demand decrease of accuracy and investigation of required precision of

each layer for a target accuracy. Additionally, adjusting bit width of MACs in a layer is impossible.

E. Park et al. have proposed outlier-aware CNN accelerator. They have proposed an accelerator which

have dedicate PEs and MACs to compute outliers [16]. Because the ratio of outliers is different for each

layer, the ratio of outlier PEs and outlier MACs must be carefully determined. Otherwise, MACs and

PEs would stall. We propose a novel energy-efficient accelerator, which fully exploiting MACs. Non-

outliers are computed in a cycle with reduced bit-width MACs. By reducing the bit-width of MACs, we

– 9 –

increase the energy efficiency of the computation of non-outliers. Outliers are computed in multi-cycles

by time-multiplexing. The contributions of this paper are as follows:

• We propose a novel time-multiplexing MAC which minimizes stall and maximizes energy effi-

ciency.

• We propose a CNN accelerator exploiting the proposed MACs.

• We evaluate the energy efficiency of the proposed CNN accelerator on different CNNs trained for

classification of ImageNet dataset.

– 10 –

2.2 Motivation

2.2.1 Sparsity of CNN’s feature map

To reduce the power consumption of CNN accelerator, floating point precision are quantized into

fixed-point precision. After the quantization of feature maps, the number of feature maps which have

large magnitude is small. The large-magnitude data is defined as ‘outlier’. In this paper, if a pixel of

feature map cannot be expressed with 4-bits, it is called as an ‘outlier’. In other words, outlier is greater

than 23−1 or smaller than −23. Figure 2.1 shows the ratio of outliers in ResNet. Although the number

of outliers is usually small except for first layer, we cannot ignore outliers. Since a few outliers have a

significant effect on the accuracy of image classification, the bit width of multipliers is determined by

the magnitude of outliers. To solve the problem, we propose the outlier-aware time-multiplexing MAC

which can compute non-outlier without waste of energy.

Figure 2.1: Ratio of outlier, non-outlier and zero feature maps

– 11 –

2.2.2 Time multiplexing multiplier

Figure 2.2 shows the architecture of the proposed CNN accelerator. The proposed CNN accelerator

consists of encoder, decoder, activation module (ReLU), on-chip global buffer, indicator module and PE

array. The encoder compresses the data before writing feature maps to off-chip memory and decoder

restore the feature map from compressed data. Indicator module generates 1-bit zero-indicators and

1-bit outlier-indicators for feature map and weight, respectively. Partial sums, input feature maps and

weights are transferred to PE by 8-bit bus. PE receives feature maps and weights with indicators from

indicator module. Transferred feature maps and weights are fetched to 256×8-b weight buffer and

256×8-b input feature map buffer, respectively. PE has time-multiplexing (TMx) multipliers which can

compute non-outlier in a cycle with reduced power consumption as shown in Figure 2.3. The operation

of non-outlier is completed in a cycle with relatively small-bit width multiplier, while operation of

outlier consumes two cycles.

Figure 2.2: Architecture of the proposed time-multiplexing CNN accelerator.

– 12 –

Figure 2.3: Proposed time-multiplexing multiplier.

2.3 Evaluation of Energy Consumption

PDP of the MAC module is used as an indicator for the energy efficiency of a newly proposed hard-

ware architecture. PDP is defined as the multiplication of average power and the worst delay. Lowering

PDP serves as the most important performance indicator for digital systems, as it means having benefits

in both terms of power and delay. An 8-bit×8-bit MAC was established as a baseline MAC. RTL design

of the proposed MAC and baseline MAC module is synthesized to measure energy efficiency. Compare

to baseline MAC, the proposed MAC consumes 37.3% less computation energy in a cycle. Since com-

putation cycles of the propose MAC are dependent on the ratio of outliers, the final energy consumption

is estimated by multiplying the total cycle to obtain PDP as shown in Figure 2.4. In this experiment, we

sweep the bit width of outliers from 4-bit to 7-bit. 7-bit TMx PE shows the lowest energy consumption

for the inference. Using 7-bit TMx PE, we can save 9% of energy cosumption. The proposed is com-

patible with zero-skipping technique. TMxZ denotes a time-multiplexing multiplier with zero-skipping

technique. Using 6-bit TMxZ PE, we can 34% energy consumption and

– 13 –

Figure 2.4: Energy consumption of the proposed PE.

2.4 Approximate Computing

As semiconductor technologies continue to develop, electronic devices are becoming smaller and

more portable. Consequently, as the battery size of Internet of Things (IoT) devices decreases and power

consumption increases, the urgent need for energy-efficient systems has generated research interests in

approximate computing techniques. Approximate computing can be applied to vision, search, and

image processing, which do not require a 100% of accurate results. In this paper, we apply approximate

computing to a digital filter for image processing. The digital filter can be implemented through an

infinite impulse response (IIR) filter and a finite impulse response (FIR) filter. The FIR filter shows

better phase linearity and stability than the IIR filter. However, it consumes more power because of

its complex design, and hence reduces the overall energy efficiency of the system. To improve the

energy efficiency of the FIR filter, several proposals have sought to reduce their design complexity

[18, 19, 20, 21, 22]. However, these approaches only focused on reducing the number of adder steps

[18, 19, 20], providing an accuracy estimation model [21], or developing an approximate adder [22],

separately.

Figure 2.5 shows the conventional multiply-and-accumulate (MAC) structure of the FIR filter. A

popular idea for complexity reduction here is a multiplier-less FIR filter [18], where multiplication is

implemented with shifters and adders rather than multipliers. Integer coefficients are transformed into

a proper one for shift and addition operations. In conventional FIR filters, all coefficients are expressed

in signed-power-of-two (SPT) space rather than signed binary, since SPT can reduce the number of

nonzero digits. In the SPT codes, a canonical signed digit (CSD) code is well known to effectively

reduce the complexity of FIR filters.

Another key idea in conventional FIR filters is a common subexpression elimination (CSE) algorithm.

– 14 –

Figure 2.5: The structure of the conventional FIR filter and the proposed approximate FIR filter.

Chia et al. [19] proposed a CSE algorithm to reduce redundancy among CSD coefficients. Choi et

al. [20] analyzed the criticality of each coefficient of an FIR filter and applied tighter constraints on

more critical coefficients during the CSE algorithm. Choi’s FIR filter yielded 25%-30% power saving at

low voltages with minor passband/stopband ripples. Kahng et al. [21] implemented an FIR filter using

an approximation at the synthesis level. They replaced certain modules with approximated ones based

on lookup tables in order to reduce power consumption with only a small degradation in the quality

of output. Gupta et al. [22] implemented an FIR filter using an approximated circuit. They proposed

mathematical models for error and the power consumption of the approximate adders.

Chia et al. [19] and Malcolm et al. [18] only focused on reducing the number of adder steps. Choi

– 15 –

et al. [20] considered voltage scaling to save power, but the errors incurred along the critical path were

observed to usually be more critical than those due to approximations. Kahng et al. [21] and Gupta et

al. [22] applied approximate computing to an FIR filter but did not provide any automated synthesis

flow for the approximation. If the size of the design of the FIR filter becomes larger, it becomes difficult

to find optimum configurations for the approximate adders.

In this dissertation, we propose a novel approximate synthesis technique that reduces energy con-

sumption by replacing conventional adders/subtractors in the FIR filter with approximated adders/subtractors

with automated synthesis flow, as shown in Figure 2.5. The following are the main contributions of our

paper:

• An accuracy-configurable adder/subtractor is proposed, which is energy efficient and has rela-

tively high accuracy.

• The maximum error due to the configurations of the proposed adder/subtractor is analyzed to

estimate output quality.

• A novel approximate synthesis flow for the FIR filter is proposed. Using the proposed approxi-

mate synthesis flow, we can save energy/power consumption and improve performance to yield a

reasonable level of accuracy.

– 16 –

2.5 Related Works

2.5.1 Common subexpression elimination (CSE)

As discussed in Section 1, the CSE algorithm can reduce the design complexity of the FIR filter. In

this section, we briefly introduce the CSE algorithm proposed in [19]. The following terms are used to

explain it.

• Adder Step (AS): the number of adders that are used to implement the coefficients of the FIR

filter.

• Filter Adder Step (FAS): the number of adders along the critical path of the FIR filter. FAS

is always greater than or equal to max(log2k) where k is the number of non-zero bits of the

coefficients.

At the beginning of the CSE algorithm, all coefficients are converted into canonical signed-digit codes

and their consecutive zeros are eliminated using a right-shift operation. Set CN is constructed from the

converted coefficients, and another set NC is constructed by decomposing CN . At the first iteration of

the CSE algorithm, each value in CN is checked to determine if it is decomposable by the other values

in CN ∪{1}. If the value is decomposable, it moves into a set CP. Otherwise, the algorithm checks if

the value is decomposable using values in CN ∪NC ∪{1}, and the decomposed value moves to CP. The

values in NC, which are used in the decomposition, are moved to CN . These procedures are repeated until

CN is empty. Following the CSE algorithm, the CSD values in CP are used to synthesize the multiplier

block in Figure 2.5 (b). For further explanation, we use an example. Let FAS = 4; the coefficients are

h0 = 105(10) = 10101001(2) h1 = 831(10) = 10101000001(2)

h2 = 621(10) = 1010010101(2) h3 = 815(10) = 10101010001(2)

For simplicity, the CSD coefficients are expressed in integer format. Prior to the first iteration,

CP = φ

CN = {105, 831, 621, 815}
NC = {3, 5, 7, 9, 13, 15, 17, 19, 23, 27, 31, 39, 47, 51, 63, 67, 97, 109, 113, 123, 125, 127, 129, 137,

155, 159, 193, 209, 257, 273, 493, 497, 509, 513, 625, 637, 641, 751, 767, 1007, 1023, 1071,

1087}

At the first iteration, 815 and 621 are decomposed by 831 and 105, respectively: 815 = 831−1×24,

621 = 831−105×21. At the next step, 105 and 831 are decomposed. The result of the decomposition is

– 17 –

105 = 15×23−15 and 831 = 15×26−129, respectively. At the last step, 15 and 129 are decomposed:

15 = 1×24−1 and 129 = 1×27 +1. Following the iteration,

CP = {105, 831, 621, 815, 15, 129}
CN = φ

NC = {3, 5, 7, 9, 13, 17, 19, 23, 27, 31, 39, 47, 51, 63, 67, 97, 109, 113, 123, 125, 127, 137, 155, 159,

193, 209, 257, 273, 493, 497, 509, 513, 625, 637, 641, 751, 767, 1007, 1023, 1071, 1087}

The iterations terminate when CN is empty. The synthesized FIR filter from the CSE algorithm is

shown in Figure 2.6.

Figure 2.6: The schematic of the FIR filter. The coefficients of the FIR filter are (105, 831, 621, 815),

and FAS = 3.

2.5.2 Circuit for approximate computing

Approximate computing generates sufficiently good results using low power rather than exact results.

It can be used for noise-tolerant applications. Various approximate arithmetic designs have been pro-

posed in past research. Lu et al. [24] introduced a fast adder with shorter carry chains that considers

only the previous k bits of input in computing a carry bit. Verma et al. [25] proposed a variable-latency

speculative adder (VLSA), which is a reliable version of the Lu adder [24] with error detection and cor-

rection. Shin et al. [26] also proposed a data path redesign technique for various adders that reduces the

lengths of critical paths in the carry chain. Zhu et al. [23] proposed three approximate adders—ETAI,

– 18 –

(a)

(b)

(c)

Figure 2.7: (a) Proposed approximate adder/subtractor. (b) Structure of the approximate part. (c)

Schematic of the k-th carry generator and the sum generator in the approximate part.

ETAII, and ETAIIM. ETAI is divided into an accurate part and an inaccurate part to achieve approx-

imate results. ETAII reduces carry propagation to speed up the adder, and ETAIIM modifies ETAII

by connecting carry chains in accurate MSB parts. Gupta et al. [22] conducted approximations at the

transistor level, and proposed approximate full adder cells to design multi-bit adders for video applica-

– 19 –

tions to save power and area. Kahng et al. [27] proposed an accuracy-configurable approximate (ACA)

adder. In an approximate mode, it carries out approximations by cutting carry chains. In an accurate

mode, it recovers accuracy by error detection and correction circuits. The ACA adder can save power

consumption in the approximate mode and provide precise results in the accurate mode. Venkatesan et

al. [28] proposed a systemic design methodology for approximation computing that eliminates certain

nodes from the original set of nodes, and analyzes how the eliminated nodes affect accuracy and power

consumption through approximation. Several studies have been devoted to approximate multipliers

[30, 31, 32, 33, 29, 34]. For DSP applications, fixed-width approximate multipliers have been proposed

in [30, 31, 32]. They eliminate (W-1) LSBs of (2W - 1) partial products obtained from a W×W multipli-

cation. Cho et al. [30] and Wand et al. [32] proposed carry approximation techniques in multiplication.

Lu et al. [33] proposed a broken-booth multiplier, but this has a low probability of yielding the cor-

rect result rate. Kulkarni et al. [29] introduced an approximate multiplier based on 2× 2 approximate

multiplication with an error probability of 1/16. The simplified 2× 2 approximate multiplier only has

five unit cells, whereas the accurate one has eight unit cells. Not only does the simplification reduce the

lengths of the critical paths of approximate multipliers, it also consumes less power and outperforms

accurate multipliers.

– 20 –

2.6 Approximate Synthesis for FIR Filter

2.6.1 The proposed approximate adder/subtractor

For the approximation of the FIR filter, we propose an accuracy-configurable adder/subtractor. The

basic principle of the proposed adder/subtractor is similar to that underlying Zhu’s adder [23]. This

adder detects carry generation conditions and generates ‘1’ in all lower-sum bits without carry propa-

gation to upper bits. To implement MAC circuits, both adders and subtractors are required. XOR gates

are added in front of the adder to switch between it and the subtractor. For exact subtract operations,

we should take 2’s complement of the subtrahend by adding ‘1’ to the 1’s complement. The proposed

approximate adder/subtractor, however, takes the 1’s complement of the subtrahend as input because a

carry in the approximate part is not propagated to the accurate part.

Our proposed adder is divided into two parts: an accurate part and an approximate part, as shown in

Figure 2.7 (a). The bit width of the adder is N and that of the approximate part is AP. The operating

principle of the accurate part is identical to that of conventional adders. The structure of the approximate

part is shown in Figure 2.7 (b). It consists of AP-bit carry generators and AP-bit sum generators. As

shown in Figure 2.7 (b), the carry in the approximate parts is propagated from the most significant bit

(MSB) of the approximate part to the least significant bit (LSB). The direction of carry propagation

is the reverse of that in conventional adders. Figure 2.7 (c) shows a schematic diagram of the carry

generator and the sum generator. If the carry is generated from previous carry generators, it passes

to the next one. Otherwise, two input operands are compared, and the carry is generated if both are

‘1.’ The sum generator receives a carry from the carry generator. If a carry exists, the sum generator

returns ‘1.’ Otherwise, it adds two input operands and returns the sum value. The accuracy of the

adder/subtractor is configurable by changing parameter AP, the bit width of the approximate part. AP

can be configured from 0 to N. If AP is 0, the result of the proposed adder/subtractor is identical to that

of the conventional adder/subtractor. If AP increases, the accuracy of the output is degraded, but power

consumption is reduced or performance is improved. However, if AP is larger than a certain value,

the propagation delay of the approximate part becomes that of the accurate part, and the benefits of

further approximation are diminished. Hence, the AP value should be appropriately configured during

approximate synthesis flow.

The maximum error in approximation occurs when all input bits in the approximate part are ‘1’. In

this case, the two input operands are 2AP−1. The outputs from the conventional adders are (2AP−1)×2,

whereas the approximate adder returns 2AP−1. In the results, the maximum error that can occur in the

approximate adder is 2AP−1. On the contrary, if the approximate part is truncated, the maximum error

– 21 –

Algorithm 1: Sensitivity-based approximate synthesis flow.

1: Classify adders according to AS
2: APi ← 0, where i = 1, ... ,FAS.

3: while SFbest > 0 do

4: for i := 1 to FAS do
5: APi ← APi +1

6: Synthesis {newAP0,newAP1, ...,newAPFAS}
7: Calculate delayi
8: Gate level simulation

9: Calculate accuracyi
10: Power analysis

11: Calculate poweri
12: Calculate SFi
13: Recover design APi ← APi−1
14: end for

15: SFbest = max(SF1,SF2, ...,SFFAS)

16: if SFbest > 0 then
17: Select {AP1,AP2, ...,APFAS}best
18: end if

19: end while

20: Return {AP1,AP2, ...,APFAS}

is (2AP− 1)× 2, which is twice that incurred by the proposed adder. For example, if N, AP, and the

two inputs are ‘8’, ‘4’, 01101111(2), and 00011111(2), respectively, four MSBs are computed in the

conventional part and four LSBs are added in the approximate part. The outputs from the accurate and

approximate parts are 0111(2)× 24 and 1111(2), respectively, and the result is 01111111(2), 127(10).

Since the golden result of this addition is 10001110(2), 142(10), the error is 15, which is equal to 24−1.

From the results, the amount of error can be reduced by using approximate adders when it compares to

the truncation of some input bits.

To verify the quality of the output obtained by approximate computing, we use the accuracy metric

proposed in [23], defined as follows:

accuracy = min
k=1,...,M

(1− |resultk− re fk|
|re fk|)×100% (2.1)

where M is the number of input patterns. The resultk is an approximate result generated from the k-th

input pattern, and re fk is the correct result.

– 22 –

Figure 2.8: Proposed synthesis flow.

– 23 –

2.6.2 Approximate synthesis flow

In this subsection, we describe the proposed approximate synthesis flow. The purpose of the synthesis

flow is to find the optimum AP configurations of approximate adders. Using these optimum configu-

rations, we can save energy/power consumption and improve performance while maintaining a higher

accuracy than a certain minimum constraint, accuracymin. However, finding the optimally configured

APs of the adders is difficult because the number of possible combinations of configurations is propor-

tional to Madder
N , where Madder is the number of adders and N is the bit width of the adders. For further

explanation, we use the example in Figure 2.6. The bit width of the input, the coefficients, and the

output in the example are 15, 12, and 28 bits, respectively. The coefficients are (105, 831, 621, 815),

synthesized from the CSE algorithm introduced in Section 2.1, with FAS = 3. Assuming that the Madder

is 6 and N is 28 bits, the number of possible combinations of the APs is approximately 6.14× 1021.

Since the size of the design of the example is small and the number of adders is conventionally greater

than six, the possible combinations of AP configurations in conventional FIR filters are considerably

more in number than in this example. Searching all combinations is time and resource consuming, and

is impossible in cases of larger designs.

To handle this problem, we make two assumptions. First, the delays in the adders are comparable to

those in the subtractors. Second, the actual arrival time of an adder/subtractor is comparable to that of

another adder/subtractor with the same AS. Hence, we can conclude that changing APs in only one path

is less effective than simultaneously changing the APs of adders. The number of possible combinations

is then proportional to FASM . Considering that the FAS of the FIR filter is much smaller than that of

Madder, we can significantly reduce design space. Assuming FAS is 3 and N is 28 bits, the number of

possible combinations of APs is 2.28×1013. During approximate synthesis flow, AP is usually less than

the half N, where the practical design space is approximately FASM/2 (4.7 million in this case), which

is a more reasonable value than the number of all possible combinations, 6.14×1021.

Algorithm 1 describes the procedure of our proposed approximate synthesis flow. The flow finds an

approximate design with the minimum delay and the required accuracy (i.e., higher than accuracymin).

In the first step, the baseline design is loaded and all adders are classified according to their AS (Line 2).

All APs of the AS are then set to 0 (Line 2). Following this, the AP in each AS is perturbed by adding 1

(Line 5). The perturbed Verilog design is synthesized, and the delay in the design is calculated (Lines

6-7). Using the synthesized design, a gate-level simulation and static timing analysis are performed to

calculate the power and accuracy (Lines 8-11). From the slack and accuracy, the sensitivity factor (SF)

– 24 –

is calculated (Lines 12). The SF is defined as

SF =

⎧⎪⎨
⎪⎩

accuracy−accuracymin
delay , if accuracy > accuracymin

0 ,else

(2.2)

where accuracy is defined in Equation 2.1. The calculated SFi is added to the SF list. Following

calculations, the perturbed design is reverted to the original one (Line 13). If all perturbations and SF

calculations are complete from the SF list, the design with the highest SF is selected (Line 15). The

selected design is used as a seed for the next iteration (Line 16). If the highest SF is zero or negative,

the flow returns a final solution, and ends. The proposed synthesis flow is summarized in Figure 2.8.

Low-power or highly energy-efficient design, which are our main concerns here, can be achieved by

re-synthesizing the final solution of the synthesis flow with an appropriate clock constraint, i.e., the

minimum available clock of the baseline design.

– 25 –

2.7 Experimental Setup and Results

2.7.1 Experimental setup

The proposed synthesis flow is written in Tcl and executed on a 2.6 GHz Intel Xeon E7-4860 Linux

workstation. The FIR filter is implemented using the worst corner library of the TSMC 65-nm technol-

ogy node and an RTL compiler [77]. A tight timing constraint2 is used to synthesize the approximate

design with minimum delay. Following the synthesis, the minimum delay in the FIR filters is calculated

by the summation of the worst negative slack and the clock period.

For accuracy simulations, Cadence NC Verilog is used [78]. We generate 10,000 random patterns

for RTL simulations and compare the output patterns with the correct ones. The accuracy value is

calculated according to Equation (2.1). We set accuracymin to 95%.

Power consumption is reported using Synopsys PrimeTime-PX [79]. We calculate total power con-

sumption, which includes static and dynamic power. The value change dump file generated from the

previous gate-level simulation is used to calculate the switching activity of each net and the minimum

clock period for each design is used to report the dynamic power.

Table 2.1: Approximation results in 4-tap FIR filter with FAS = 3.

Delay [ps] Power [uW] Energy [fJ]

Baseline 1199 2796 3352

Flow result 1076 1687 1815

Min. Energy design 1198 1379 1652

Improvement [%]

Delay Power Energy

Flow result 10.3 39.7 44.7

Min. Energy design 0.0 50.7 50.7

2.7.2 FIR filter implementation

We implement an FIR filter using our proposed approximate synthesis flow. We synthesize a four-

tap FIR filter with the coefficient set {105, 831, 621, 815}. Figure 2.6 shows the structure of the

implemented FIR filter. In this experiment, the bit width of the coefficients is set to 12. Since the largest

coefficient is 831 in the four-tap FIR filter, 12 bits are sufficient to represent four coefficients in SPT. The

2In this paper, 500 ps is used for the timing constraint.

– 26 –

(a)

(b)

(c)

Figure 2.9: The proposed synthesis flow (red) and the exhaustive (black) are visualized in terms of (a)

accuracy vs. the delay domain, (b) accuracy vs. the power domain, and (c) accuracy vs. the energy

domain.

– 27 –

Table 2.2: Approximation results in 25-tap filter with FAS = 4.

Delay [ps] Power [uW] Energy [fJ]

Baseline 1988 10.7 21.3

Flow result 1876 8.9 16.7

Min. Energy design 1983 8.2 16.3

Improvement [%]

Delay Power Energy

Flow result 5.6 16.8 21.6

Min. Energy design 0.0 23.3 23.5

bit widths of the input and output are set to 15 bits and 28 bits, respectively. For addition, 28-bit adders

are used. The four given coefficients are implemented using six adders according to the previously

introduced CSE algorithm. The AS of each coefficient is different. The ASs of {15, 129} are 1, those of

{105, 831} are 2, and the ASs of {621, 815} are 3. In the first iteration of the synthesis flow, the accuracy

configurations of the adders with the same AS are perturbed one by one. The perturbed designs ({1,0,0},
{0,1,0}, and {0,0,1}) are synthesized and simulated. {0,0,1}, which have the highest SF, is selected and

set as seed of the following iteration. After several iterations, the final output is {11,16,14}. Figure 2.9

(a), (b), and (c) show an implemented design space using the proposed synthesis flow. The black dots

are generated by randomly but separately configuring the AP of all adders. The red dots represent the

results from iterations of the approximate synthesis flow. The white space shows the reachable design

space with lower accuracy than accuracymin by configuring the APs of each adder. As shown in Figure

2.9 (a), the proposed synthesis flow can successfully follow the minimum delay design. Moreover, it

can be shown that the proposed synthesis flow can effectively reduce power and energy consumption.

Table 2.3: Specifications of the FIR filters.

FIR Filter Tap FAS
Delay

[ns]

Power

[mW]

Energy

[pJ]

[35] 15 3 0.98 5.68 5.5

[36] 15 4 1.27 4.06 5.1

[37] 28 4 1.15 11.6 13.4

[38] 34 3 1.17 13.4 15.7

[39] 49 3 1.20 18.4 22.1

Since the main concern of our work is obtaining high energy efficiency, we re-synthesize the design

– 28 –

Table 2.4: Following the proposed synthesis flow

FIR Filter
Accuracy

[%]

Delay

[ns]

Power

[mW]

Energy

[pJ]

Energy

Reduction

[%]

[35] 97.83 0.93 4.34 4.06 26.9

[36] 95.32 1.14 3.17 3.62 29.5

[37] 96.03 1.15 8.13 9.34 30.1

[38] 95.66 1.15 8.34 9.59 38.9

[39] 95.19 1.12 13.60 15.27 30.8

acquired from the synthesis flow and implement it using different timing constraints. We then select

the result with the lowest energy consumption with a delay not exceeding that of the baseline design.

In Figure 2.9 (a), due to EDA tool noise, one design with close to 97.5% accuracy shows slightly

lower delay and power consumption than the final solution design. Following re-synthesis, however, the

energy consumption of the point is greater than that of the final solution.

Table 2.1 summarizes the results of the approximate synthesis flow. Performance improves by 10.3%,

and power consumption is reduced by 39.7% over conventional FIR filter design. The energy is calcu-

lated by multiplying delay and power. Energy consumption per operation is reduced by 44.7%. To

achieve further energy reduction, we change the timing constraint and find the minimum energy design

for which delay is shorter than the baseline design. In this way, we achieve up to 50.7% reduction in

energy consumption. The runtime of the proposed synthesis flow is 84 minutes for the four-tap FIR

filter.

We apply the approximate synthesis flow to a 25-tap FIR filter, the coefficients of which are {-2423,

-113, 1564, 762, -1816, -1517, 2276, 3140, -2434, -6205, 2726, 20680, 30093, 20680, 2726, -6205,

-2434, 3140, 2276, -1517, -1816, 762, 1564, -113, -2423}. The results are shown in Table 2.2. In the

25-tap case, we can improve the performance by 5.6% with power and energy savings of up to 23.3%

and 23.5%, respectively. The runtime of the proposed synthesis flow is 407 minutes for the 25-tap FIR

filter.

2.7.3 Image FIR filter experiment

To verify our methodology, we apply the proposed synthesis flow to five different FIR filters [35,

36, 37, 38, 39]. The specifications of the FIR filters are summarized in Table 2.3. The delay, power,

and energy information of the baseline designs of the FIR filters are also summarized in Table 2.3.

– 29 –

Original

(a)

Baseline design

(b)

Proposed

PSNR = 46.3 dB

30.0 % Energy reduced

(c)

89.2 % Accuracy

PSNR = 40.6 dB

36.9 % Energy reduced

(d)

65.4 % Accuracy

PSNR = 14.7 dB

45.7 % Energy reduced

(e)

45.6 % Accuracy

PSNR = -9.5 dB

48.8 % Energy reduced

(f)

Figure 2.10: Filtered images using optimized FIR filters.

– 30 –

The FIR filter is synthesized using the proposed synthesis flow, whereas the bit width of the inputs,

the coefficients, and the output width are set to eight, 16, and 24 bits, respectively. The results of the

synthesis flow are shown in Table 2.4. The accuracies of the filters are higher than the threshold of 95%.

The energy consumptions of the FIR filters are reduced by up to 38.9% and 31.2% on average.

An FIR low-pass filter is implemented in [37] for blurred images. Since the image used is two-

dimensional, we apply the FIR filter first in the vertical direction, and divide the output by filter gain.

Following this, the FIR filter is applied in the horizontal direction, and the output is divided by filter gain

once again. Figure 6 (a) shows the original image and Figure 6 (b) shows the blurred image processed

by the baseline FIR filter. Figure 6 (c) shows the image processed by the proposed FIR filter. To verify

the output quality of the processed image, peak signal-to-noise-ratio (PSNR) is used. PSNR is defined

as

PSNR = 10× log(
2552

σ2
noise

) (2.3)

where σ2
noise is the variance of the difference between Figure 6 (b) and others. FIR filters with varying

accuracies are simulated. As accuracy decreases, the image becomes dark. This is because the proposed

adder approximates the previous carry and the approximation error renders the result lower in value than

the exact result. If the approximation error continues to increase, the results assume negative values,

which are expressed as white dots. We find that we are able to achieve 30.8% energy saving with 46.3

dB PSNR.

– 31 –

2.8 Conclusion

In this chapter, we propose the energy-efficient PE. We have investigate the ratio of outlier of feature

maps and weight in three different CNN. To reduce the energy consumption for computing non-outlier,

we reduce the bit width of MACs. With the proposed TMxPE, we can save 39 % of energy consump-

tion without any CNN accuracy loss. We also apply approximate computing to a FIR filter to enhance

efficient energy consumption. The FIR filter has a MAC structure, and multipliers are replaced by

shifters and adders/subtractors that are approximated. For the approximation, we propose an approx-

imate adder/subtractor in order that the accuracy of the approximate adder/subtractor is configurable

and switching between the adder and the subtractor is possible. The error in the proposed approximate

adder is analyzed. Moreover, we propose a novel approximate synthesis flow that can find the optimal

configurations of approximate adders. Using the proposed synthesis flow, we achieve up to 10.3% in

terms of performance improvement and 50.7% in terms of power and energy saving over conventional

FIR filter design. Our future research in the area will seek to reduce the runtime of the synthesis flow

by developing an accuracy and power estimation model. Moreover, we intend to modify the synthesis

flow to apply it to general computation blocks.

– 32 –

Chapter III

System Level Approach

Convolution neural networks (CNNs) are widely used in many AI applications, especially in image

recognition, detection and segmentation [40, 41, 42]. The accuracy of CNNs has been improved rapidly,

but this improvement has entailed increases in network size, number of computations, and memory us-

age [43]. Despite many attempts to reduce network size, state-of-the-art CNNs require tens to hundreds

of megabytes of memory. The on-chip memory capacity of hardware accelerators is increasing, is still

far too small for this purpose. Furthermore, many hardware accelerators use multiple buffering to re-

duce latency between memory and computing cores, and this process decreases that available on-chip

memory in a cycle.

Before implementation on a hardware platform, CNNs are quantized for the purpose of reducing their

size [48]. The precision of quantized CNNs is reduced from 32-bit single-float to 8-bit or 16-bit fixed-

point precision. Even after this quantization, CNNs remain large. Therefore, loop tiling is performed to

allow implementation of a CNN on a hardware accelerator.

Loop tiling divides a convolution layer into multiple blocks, which can be accommodated in on-chip

memory. Loop tiling allows relatively large CNNs to be implemented on hardware accelerators, but

it generates repetitive data movements between on-chip and off-chip memories. The data movements

are so huge that they have become a bottleneck to improvements in throughput and energy efficiency.

However, well-designed dataflow can maximize data reuse and reduce data movements between on-chip

and off-chip memory. Therefore, much research has been focused on finding optimal dataflow adjusting

loop tile size and loop order.

The procedures by which a hardware accelerator generates an output feature map depends on whether

the channel loop is not tiled (Figure 3.1a) and or tiled (Figure 3.1b). If the channel loop is not tiled,

the accelerator loads input feature maps and filters from external memory for convolution. To prevent

– 33 –

overflow of the accumulation, the bit width of accumulators is set to higher than the bit width of feature

maps. After the convolution, which consists of several multiplications and accumulations, the results are

rounded to the bit width. This rounding of output feature maps leads to a quantization error, which is

analyzed and controlled during the quantization procedure of CNNs. If the channel loop is tiled (Figure

3.1b), tiles of input feature maps and filters are loaded, and then computed partial sums are stored in

external memory. They are reloaded several times until the complete output feature maps are generated.

During the process of reading and writing the partial sum, it is rounded and this process generates an

additional error, named channel loop tiling-error. Because channel loop tiling-error deteriorates CNN

accuracy, it should be understood and controlled.

Output stationary dataflow can prevent the partial sums from being transferred to external memory,

but saving partial sums without rounding requires more than twice the on-chip memory. The increase

of bit width of partial sums comes with increase of data traffic between on-chip memory and processing

elements. In addition, the output stationary is not the optimal data flow for several convolutional layers

of CNNs [44]. Therefore, breaks of channel loops are almost inevitable; they degrade the accuracy,

and make another impediment to implementation of CNNs on hardware accelerators. To the best of our

knowledge, this is the first work that analyzes the effects of channel loop tiling on accuracy of CNNs.

The main contributions of our work are:

• We explain the mechanism by which channel loop tiling causes errors, and analyze the effect of

error on accuracy of CNNs.

• We propose a method which reduces channel loop tiling-error by using extended partial sums

while minimizing circuit and memory overhead by compressing the absolute values of most sig-

nificant bits (MSBs).

• We improve the accuracy under channel tiling, and quantify the circuit overhead.

– 34 –

Figure 3.1: CNN implementations of a CNN accelerator. (a) Channel loop is not tiled. (b) Channel loop

is tiled by two; additional errors, channel loop tiling-errors, occur.

– 35 –

3.1 Related Works

Data movement and precision of hardware accelerators significantly affect the accuracy and energy

efficiency of CNN computations. Row-stationary dataflow [44] have been proposed and implemented

on their hardware platform. The row-stationary data flow have increased energy efficiency by 2.5

times. Some dataflows consider FPGA hardware accelerators [45, 46, 47]; the authors have devel-

oped a roofline model that have considered CNN memory bandwidth and computational resources, and

optimized loop tile size and loop order. However, they have not analyzed the interference between loop

tiling and CNN quantization; this interaction causes additional degradation of CNN quality. In contrast

to these studies, we analyze the reason for this additional accuracy loss, and propose a solution.

Reduction of bit width of CNNs can increase energy efficiency, so several quantization methods have

been proposed [48, 49, 50]; the reduction of bit width is accompanied by reduction in CNN accuracy,

so the authors focused on minimizing it. However, they have focused reduction of bit width without

consideration of hardware.

A proposed hardware accelerator [51] coupling relatively low-energy-consuming processing ele-

ments (PEs) with a relatively high accurate outlier PE. Each PE has normal multiply-and-accumulators

(MACs) and an outlier MAC. Most of the feature maps and filters having small values, are computed

in normal MACs with low energy consumption. The outlier filters are computed in outlier MACs, and

the outlier feature maps are computed in outlier PEs. This approach can reduce energy consumption.

However, the process of indexing the outlier imposes design complexity and circuit overhead, so the

proposed accelerator shows a large energy consumption in logic. Furthermore, the approach needs ded-

icated CNN architecture. A fixed-point representation with error compensation has been proposed [52]

to reduce the length of computation bits. The authors also proposed a sparse compensation scheme to

minimize energy overhead that is required to compensate for quantization errors. However, compen-

sation frequency must be carefully managed by considering the tradeoff between accuracy and energy

consumption. Also, adjusting bit width to access memory is not easy. Complementary to these stud-

ies, our proposed method accesses the memory with a fixed bit width and can be applied in any CNN

architecture.

– 36 –

3.2 Loop Tiling on CNN

3.2.1 Role of loop tiling

In this subsection, we introduce procedures of implementing CNNs on a hardware accelerator. Gen-

erally, trained CNNs are too large to be implemented in an accelerator, so the networks are quantized

and tiled.

CNN quantization entails two procedures: (1) determining the bit width of feature maps and filters;

and (2) choosing the precision. Because each hardware accelerator has a different bit width for CNN

convolution, the bit width should be determined by considering the target accelerator. For example, if

the accelerator supports 8-bit multiplication, the bit width of input feature maps and filters, BWI and

BWF , should be quantized to 8-bit. Because the output feature maps are the input feature maps of the

following layer, the bit width of output feature maps, BWO, is usually equal to BWI .

Then we should choose the range and precision of each CNN and each layer. A fixed-point represen-

tation consists of sign, integer part and fractional part. sign is located on the MSB. The integer part

determines the range of numbers that the fixed-point number can represent. The fractional part deter-

mines the precision of the fixed-point representation. The range is more important than the precision

in most cases, so we determine the bit width of the integer part first, and use the remaining bit as the

fractional part. The range and precision are determined by investigating the feature maps and filters

during pre-inferences of each CNN.

If the required memory size of a CNN layer is still larger than on-chip memory size after quantization,

we must appropriately split each layer of CNNs by considering both the size of the quantized CNNs and

the memory capacity of the accelerators. The convolution layer consists of six for-loops. Each layer

takes C input feature maps of width W and height H. Input feature maps are convolved with M filters

which have a size of C×K×K, where K is the height and the width of a filter. As results of convolution,

M output feature maps are generated. Each design parameter of six loops can be tiled independently,

so the design space for loop tiling has six dimensions. Considering that the filter size of state-of-the-art

CNNs is small (usually three or five), design space can be reduced to four dimensions, Tm, Tc, Tw and

Th as shown in Figure 3.2. The four parameters are adjusted appropriately by considering target CNNs

and varying memory size.

3.2.2 Necessity of channel loop tiling

Before discussing effect of channel loop tiling-error, we address whether channel loop tiling-error is

inevitable. Our basic assumption is that the size of a CNN layer is bigger than on-chip memory size so

– 37 –

Figure 3.2: Pseudo code of convolution layer.

that loop tiling is mandatory. The CNN loops are tiled by considering both computational speed of the

CNN accelerator and bandwidth between off-chip and on-chip memory. In real implementation of large

CNN layers, channel loop tiling-error is avoidable in following three cases.

1) Exclusion of channel loop tiling.

In this case, other CNN loops (M, W , H) are tiled except for channel loops. When the number of

input channel is small as in first few CNN layers, the computational speed of CNN hardware will no be

degraded. On the other hand, when the channel is deep as in rear CNN layers, the computational speed

will be greatly reduced without the channel loop tiling. For further explanation, we provide a hardware

example with following conditions.

• Layer parameter: W = 16, H = 16, C = 1024, M = 256 (38-th layer in ResNet50)

• Variable : Tw,Th,Tc,Tm (number of tile of each loops)

• Constraints : on-chip memory size≤ 200 kB (usually scratch pad, local memory or global buffer)

• Goal: minimize the number of cycles.

– 38 –

• With a channel loop tiling, we can compute this layer in 18 cycles (Tw = 16, Th = 16, Tc =

114, Tm = 128).

In this tiling example, channel loop is split into nine pieces and the partial sums are extracted by eight

times. Excluding channel loop tiling, however, we need 63 cycles (Tw = 6, Th = 16, Tc = 1024, Tm =

22). We can avoid the accuracy reduction without the channel loop tiling, but more than three times of

cycles are required to compute layer. Therefore, channel loop tiling is essential for an efficient CNN

computation.

2) Extension of psum storage.

Another approach to eliminate channel loop tiling-error is to store full-bit psum without extraction.

This approach requires larger size of on-chip memory for psum tile so that relatively smaller size of on-

chip memory are assigned to save input feature map and filter so that the on-chip and off-chip memory

access would be increased. Output reuse pattern which updates input feature map and filter feature map

tile and reuses psum can avoid transferring psum between on-chip and off-chip memory. However, in

some CNN layers, output reuse pattern shows poor energy efficiency compared to input reuse pattern

and filter reuse pattern [53].

3) Mapping output feature map to PE.

If the number of psum in a tile is smaller than PEs, PEs can temporally hold psum in accumulators

without the extraction data. In this circumstance, the tiling of channel loop does not affect accuracy of

CNNs. However, this approach is forced to use data reuse pattern which is not optimum reuse pattern.

Moreover, the constraint that the tile size of the output feature map must be smaller than the number of

PEs greatly reduces the computational efficiency.

3.2.3 Channel loop tiling-errors

During the aforementioned procedures for the implementation of CNNs, the error can be occurred

because of the interaction between the quantization and channel tiling. In this paper, we focus the CNN

accuracy reduction from the channel loop tiling-error. In Figure 3.3, we suppose that the channel loop

is split into three tiles. maxaccum and minaccum are respectively the largest and smallest number that can

be represented with bit width of BWaccum, and maxquant and minquant are respectively the largest and

smallest number that can be represented with bit width of BWO. After the bias is loaded, the PE starts

convolution, and a partial sum is accumulated. When convolution of the first tile is completed, the PE

saves the partial sum in the output buffer after rounding. In the second tile and third tile, the stored

partial sum is loaded and then the remaining process is similar to the first tile. During the rounding and

– 39 –

reloading a partial sum, psum, two types of errors can occur: an (1) exceeding error and a (2) rounding

error.

Figure 3.3: Two types of channel loop tiling-errors. The value of partial sums (y-axis) are accumulated

during three channel loops. If a value of partial sum stored to memory is larger than maxquant , exceeding

error occurs. The round of the partial sum generates a rounding error.

The exceeding error occurs when psum is larger than maxquant . At the end of the first tile, psum

is rounded to maxquant , the process yields an exceeding error. Exceeding errors cannot be predicted

during the quantization procedure because the final output feature map can be in the range [minquant −
maxquant]. Although exceeding errors are rare, they are significant when they occur, so they can degrade

the accuracy of CNNs.

A rounding error is smaller than half of the minimum precision of BWO. Each rounding error is

relatively small, but they occur in almost all outputs and channel tiles. In addition, the accumulated

rounding error is much larger than the quantization error. We have counted the frequency and quantity

of exceeding errors and rounding errors and Table 3.1 shows the results for image classifications using

AlexNet.

The numbers of exceeding errors and rounding errors can be reduced by increasing the bit widths of

the integer and fractional parts (Table 3.1). For the analysis, we set the number of channel tile as the

number of input channels in each layer. Extending the bit width of the integer part reduced both the

1Freq is a frequency of errors, (# of error)/(# of total psum)×100%.
2Avg is an average error, (sum of error)/(# of error).
3Exp is an expected value of error, (sum of error)/(# of total psum)×1,000.

– 40 –

(a)

(b)

Figure 3.4: (a) Top-1 and (b) Top-5 accuracy of quantized AlexNet of 50,000 ImageNet dataset with

different number of channel tile. To analyze the effect the bit width of partial sum on CNN accuracy, we

extend both the bit width of integer part (IP) and fractional part (FP). If the number of channel tile is

‘1’, channel loops are not tiled.

– 41 –

Figure 3.5: Channel loop tiling-aware hardware accelerator.

Table 3.1: Frequency and quantity of exceeding error and rounding error in BW0 of various configura-

tions (additional bits on integer and fractional parts)

.

Extension Exceeding Error Rounding Error

IP FP Freq1 Avg2 Exp3 Freq Avg Exp
+0 +0 0.011 10.8 1.18 98.2 0.018 18.1

+1 +0 0.000 2.7 0.00 98.2 0.018 18.1

+0 +1 0.011 10.6 1.16 97.8 0.009 9.5

+0 +2 0.011 10.6 1.15 97.0 0.005 4.9

probability and the significance of exceeding errors. On the other hand, The extending bit width of the

fractional part can reduce both of the probability and the significance of rounding errors.

The channel loop tiling-error degrades the accuracy of a CNN. We have measured the classification

rates of 50,000 ImageNet validation dataset [75] using quantized AlexNet as shown in Figure 3.4. We

have changed the number of channel tiles from one to 127. If the number of channel tiles exceeds the

number of input channels of a certain convolution layer, the number of channel tiles of the corresponding

convolution layer is set to the number of input channels. For example, the number of input channels of

the first convolution layer is three and the number of channel tile is greater than three, the number of

channel tiles of the first layer is set to one. Then we have plotted the same graph by extending the bit

widths of the integer and fractional parts. As the number of channel tiles increases, the recognition rate

decreases; the trend is a result of the exceeding and rounding errors. Also, extending the bit width of

psum can improve the accuracy of the CNN.

– 42 –

3.3 Channel Loop Tiling-aware Hardware Accelerator

To minimize the overhead for bit extension, we propose a channel loop tiling-aware hardware ac-

celerator which is described in Figure 3.5. A host CPU properly tiles CNN loops and configures the

hardware accelerator. Tiles for an input feature map and filter are fetched to the hardware accelerator. If

a partial sum exists, the partial sum tile is also loaded. After accumulating bias or partial sum, process-

ing elements (PEs) bring the input feature map and filter that they need for convolution. The bit width

of input feature maps and filter are BWI and BWF , respectively. The PEs accumulate the multiplication

results, of which bit width is BWI +BWF . To avoid overflow, the accumulator usually has a larger bit

width; e.g., BWaccum > (BWI +BWF). After the partial sum is generated from PEs, it is quantized to

BWO before being saved in external memory. To reduce the error caused by the quantization of the

partial sum, we quantize the partial sum that has bit width BWI .

The increase in the bit width of partial sums requires additional memory space and bandwidth. More-

over, bus widths of memory interfaces are usually multiples of eight bits, so dynamically adjusting bit

width is a complex procedure, and circuit overhead is very large. To compress the partial sums, we add

a run-length encoding (RLE) compressing and decompressing circuit. RLE saves data and data count

as Run and Length, respectively. In a previous work [44], the RLE have been used to reduce external

memory access. They have supposed feature maps are sparse due to activation function of rectified

linear unit (ReLu). However, because the partial sums are not rectified using the ReLu, it is not that

sparse. Consecutive dense partial sums are less likely to have the same value, and this trait is critical for

RLE. If the expected value of Length is lower than a certain value, RLE has a difficulty in compressing

the partial sum, and can even extend it. To address this problem, we apply RLE at the bit level.

To compress the output feature map in bit level, we analyze a distribution of output feature map.

Figure 3.6 shows the distribution of output feature map and absolute value of output feature map in

the second layer of a trained AlexNet. The magnitudes of most of the output feature maps are small.

When the magnitude of a value is very small, the bits near the MSB are likely to have the same bit

value as sign. As shown in Figure 3.7, the probability of ‘1’ near MSB is close to 50%, because the

probability that the partial sum is positive is near 50%. If the sparsity of consecutive bits is near 50%,

it is mostly hard to compress using RLE. To reduce the probability that bits near MSBs will be ‘1’,

we take the absolute value of partial sums. The density of absolute values of output feature maps of

MSBs is almost zero. Therefore, if we encode the absolute value of MSBs using RLE, we can reduce

the memory overhead that is required to store of partial sums of which bit width is extended.

Figure 3.8 shows the procedure of compressing the output partial sums. As mentioned in the previous

section, a hardware accelerator rounds the partial sums before saving them. To improve the CNN

– 43 –

Figure 3.6: Distributions of output feature map and absolute output feature map.

Figure 3.7: Density of ’1’ in each bit position. The absolute values of MSBs are sparse, and the sparse

MSBs have an advantage in compression.

– 44 –

Figure 3.8: Compressing MSBs using the RLE (run-length encoding).

Figure 3.9: An example of the 16-bit RLE operation.

accuracy, we round partial sums to eight bits and some extra bits (one or two-bit extension in IP or FP).

To preserve sign of partial sums, seven LSBs and the sign of the rounded partial sums are concatenated.

Then the rounded partial sums are stored in an output buffer in the same way that a general hardware

accelerator saves an output feature map. Then, to increase the sparsity, we take the absolute values of

the remaining outputs. The absolute values are buffered in RLE circuit, which compresses partial sums.

The operation principle of the RLE circuit is shown in Figure 3.9. The RLE circuit records the value of

consecutive MSBs with a maximum length of 128 (=27), 32,768 (=215), or 2.1 billion (=231) for 8-bit,

16-bit and 32-bit compression, respectively. The compression ratio and circuit overhead of the RLE

circuit will be described in Section 3.4.

– 45 –

Figure 3.10: Channel loop tiling-error effects on accuracy of AlexNet. Each layer is tiled without tiling

channel loops of the other layers. Red lines: floating-point convolution results, blue: 8-bit quantized

convolution results.

– 46 –

3.4 Experimental Setup and Results

3.4.1 Experimental environment

Accuracy Evaluation. To evaluate accuracy loss of channel loop tiled CNNs, we implement CNNs

in C within darknet [76] and CUDA programming. To mimic channel loop tiling, we quantize partial

sums, input feature maps and filters for every channel tile convolution. CNNs are pre-trained using

the ImageNet training set and evaluated using 50,000 validation sets. To quantize pre-trained CNNs,

we investigate the range of feature maps and filters for all layers of four CNNs (AlexNet, DarkNet19,

ResNet50, Extraction) [76] during 50,000 inferences. Considering the investigated range, the feature

maps and filters are quantized to 8-bit signed integers.

Circuit Overhead. For the estimation of area and power overhead of the proposed methodology, we

design a CNN accelerator in RTL. The accelerator has a controller and six PEs which have eight MACs,

respectively. The designed RTLs are synthesized to a TSMC 65GP cell library at 1GHz clock frequency

using Synopsys Design Compiler [80]. The supply voltage is set to 0.9V . The total power consumption

is the sum of dynamic power and leakage power.

FPGA Implementation. For the verification of our methodology, we also demonstrates a CNN

accelerator by implementing on the PYNQ-Z1 (XC7Z020-1CLG400C), which consists of 13,300 logic

slices, 630 kB of BRAM and 220 DSP slices (Figure 3.12). The FPGA communicates with DDR3 at

8,400 Mbps.

3.4.2 Accuracy of channel loop tiled CNN

We have investigated how channel loop tiling-errors in each layer of CNNs affect the accuracy of

CNNs. Figure 3.10 shows the accuracy of AlexNet. We have tiled a channel loop of each channel

without tiling channel loops of the other layers. We have changed the number of channel tiles to all

divisors of channel size, C, for each layer (e.g., if C is eight, we breaks channel loops in one, two, four,

and eight tiles).

As the number of channel tiles increases, the accuracy of AlexNet decreases owing to channel loop

tiling-error.

We have also investigated the relationship between memory size of a hardware accelerator and ac-

curacy of CNNs. We have considered 20, 40, 60, 80, 100, 200, and 300kB as the memory size of a

hardware accelerator. By considering the on-chip memory size, each channel loop of each CNNs has

been tiled; the average numbers of channel tiles differ among the CNNs (Table 3.2).

Then we have measured the accuracy of CNNs for each condition, and Figure 3.11 shows the results.

– 47 –

Table 3.2: The average number of channel tiles in each layer of CNNs.

Memory

Size [kB]
AlexNet DarkNet19 ResNet50 Extraction

20 224.6 133.1 446.4 429.9

40 224.6 83.6 369.3 335.9

60 158.8 54.8 339.5 210.4

80 57.0 29.3 240.4 170.6

100 36.2 25.8 232.5 125.8

200 15.0 11.9 112.1 58.5

300 4.6 6.5 31.3 21.7

The limited on-chip memory size induces channel loop tiling-error, which degrades Top-1 and Top-5

accuracy. This degradation is relatively large in ResNet50 and Extraction, because these CNNs are very

large, so the number of channel tiles is high. When on-chip memory size is 100kB, Top-5 accuracy of

AlexNet, DarkNet19, ResNet50 and Extraction decrease by 8.0%, 1.2%, 15.7% and 36.2%, respectively.

We have considered three extension cases; one bit extension for integer part, and one bit and two bit

extension in fractional part. Figure 3.13 shows the accuracy results on different on-chip memory size

for each bit extension case. From the results, we can observe that the bit extension of fractional part is

more effective than that of integer part in most cases.

By extending one bit of fractional part, we can recover Top-5 accuracy of AlexNet by 5.7%, Dark-

Net19 by 1.2%, ResNet50 by 14.3%, and Extraction by 27.9% considering 100kB of on-chip memory

size. When the fractional part is extended to two bits, the accuracy of CNNs becomes the same level as

without channel tiling.

3.4.3 Evaluation of the proposed method

To minimize the memory overhead due to the bit extension, we have encoded partial sum with three

different Length (8-bit, 16-bit and 32-bit). Without compression, 12.5% of memory overhead per every

one bit extension occurs. Table 3.3 shows the average memory overhead of different CNNs. The

proposed method shows superior compression ratio. The average memory overheads of compressed

MSBs with 8-bit, 16-bit and 32-bit RLE are 0.136%, 0.012%, and 0.022%, respectively. Among three

Length, 16-bit compression shows the best compression ratio. In most cases, utilization of on-chip

memory is not 100%, so we can store 0.012% of additional data without increasing the on-chip memory

size.

We have also investigated circuit overhead of the 16-bit run-length encoder and decoder circuit (Ta-

– 48 –

Figure 3.11: The relationship between on-chip memory size (x-axis) and the accuracy (y-axis) of dif-

ferent CNNs. If the available memory size is small, channel loops are splits into much more small

tiles.

– 49 –

Figure 3.12: Pre-trained CNN for image classification is implemented on PYNQ-Z1 (XC7Z020-

1CLG400C).

ble 3.4). The area and power of the encoder and the decoder are very small compared to that of the

others. The proposed 16-bit encoder and decoder circuit only consumes 2.0% of additional power with

0.95% of circuit area overhead. Our design is also implemented on FPGA shown in Table 3.5. Com-

pared to CNN accelerator, the area and power overhead of run-length encoder and decoder is also small.

– 50 –

(a) Top-1 accuracy of AlexNet (b) Top-5 accuracy of AlexNet

(c) Top-1 accuracy of DarkNet19 (d) Top-5 accuracy of DarkNet19

(e) Top-1 accuracy of ResNet50 (f) Top-5 accuracy of ResNet50

(g) Top-1 accuracy of Extraction (h) Top-5 accuracy of Extraction

Figure 3.13: Restoration of Top-1 and Top-5 accuracy (y-axis) on different on-chip memory size (x-axis,

unit : kB). Top-1 accuracy of (a) AlexNet, (c) DarkNet19, (e) ResNet50, and (g) Extraction, and Top-5

accuracy of (b) AlexNet, (d) DarkNet19, (f) ResNet50, and (h) Extraction.

– 51 –

3.5 Conclusion

When pre-trained CNNs are implemented on an accelerator (e.g., FPGA or implemented ASIC),

accuracy of CNNs can be reduced. This paper has introduced channel loop tiling-error, which is a

reason for the accuracy reduction. We have partitioned this error into exceeding error and rounding error,

then analyzed separately how these errors affect the accuracy of four state-of-the-art CNNs (AlexNet,

DarkNet19, ResNet50, Extraction). Channel loop tiling caused 13.2% of Top-1 accuracy and 15.2% of

Top-5 accuracy loss on average. We also proposed a solution to recover accuracy loss caused by channel

loop tiling. By compressing the extended bits, we minimize memory and circuit overhead. On average,

12.0% of Top-1 accuracy and 12.3% of Top-5 accuracy can be recovered at the cost of only 0.012% of

additional memory and 1% of circuit area overhead.

– 52 –

Table 3.3: Comparison of memory overhead due to bit extension. The memory overhead is defined by

(additional memory size) / (original memory size) × 100%.

Compression with 8-bit run
Extension AlexNet DarkNet19 ResNet50 Extraction

(IP+1, FP) 0.0986 0.0988 0.1053 0.0986

(IP, FP+1) 0.0991 0.0998 0.1106 0.0993

(IP, FP+2) 0.1989 0.2063 0.2317 0.2035

Compression with 16-bit run
Extension AlexNet DarkNet19 ResNet50 Extraction

(IP+1, FP) 0.0011 0.0016 0.0151 0.0010

(IP, FP+1) 0.0022 0.0038 0.0262 0.0027

(IP, FP+2) 0.0058 0.0218 0.0756 0.0155

Compression with 32-bit run
Extension AlexNet DarkNet19 ResNet50 Extraction

(IP+1, FP) 0.0008 0.0017 0.0287 0.0006

(IP, FP+1) 0.0029 0.0062 0.0509 0.0039

(IP, FP+2) 0.0088 0.0407 0.1484 0.0283

Table 3.4: Area and power overhead of run-length encoder and decoder of different length (eight, 16

and 32-bit).

Component
Circuit Area

[μm2]

Total Power

[mW]

8-bit Run-length Encoder 471 0.26

16-bit Run-length Encoder 713 0.38

32-bit Run-length Encoder 1178 0.63

8-bit Run-length Decoder 471 0.26

16-bit Run-length Decoder 665 0.48

32-bit Run-length Decoder 1178 0.63

CNN Accelerator 145,731 43.1

Table 3.5: FPGA implementation results.

LUT slice Register DSP slice

8-bit Run-length Encoder 29 33 0

16-bit Run-length Encoder 44 49 0

32-bit Run-length Encoder 63 81 0

8-bit Run-length Decoder 32 41 0

16-bit Run-length Decoder 44 47 0

32-bit Run-length Decoder 65 89 0

CNN Accelerator 1627 2311 8

– 53 –

Chapter IV

Memory Level Approach

Convolutional neural networks (CNNs) are widely used in various applications, such as segmenta-

tion [54], classification [55] and detection[56]. Recently, accuracy of CNNs has continued to improve

at the cost of huge network size. At the result, the state-of-the CNNs require millions computations

and hundreds mega byte of parameters [57, 58, 59]. A number of operations and parameter movements

consume a lot of energy. According to a previous research [60], DRAM access accounts for most of

energy consumption of CNN accelerator. To reduce energy consumption of CNN accelerator, it is most

efficient way to minimize DRAM access.

To minimize DRAM access for feature maps, we can exploit statics of feature maps. The state-of-the-

art CNNs use rectified linear units (ReLU) [69] as an activation function because of low computational

complexity and ease of “vanishing gradient” problem. ReLU is a piece-wise linear function that returns

zero if the input is negative, otherwise, it returns the input directly. As a consequence, the feature maps

of CNN using ReLU have many zeros. By exploiting the inherent sparsity, output feature maps are

usually compressed in CNN accelerator.

Figure 4.1 shows the architecture of a typical CNN accelerator [61]. At first, an input image is loaded

to on-chip global buffer and the accelerator computes convolution operations using multiple processing

elements (PEs). The results of convolution operations, output feature maps, are saved to on-chip global

to buffer. Before output feature maps are transmitted to off-chip DRAM, they are compressed by the

compressor. Although, the compression of feature maps requires additional energy consumption, the

energy consumption for compressing feature maps is much smaller than that of accessing DRAM.

Chen et al. adopt run-length compression (RLC) to compress feature maps [61]. RLC compresses

consecutive zeros into a single run. The size of run should be precisely designed considering sparsity

of feature maps, because RLC shows very different compression ratio depending on the size of run.

– 54 –

Figure 4.1: Feature map compression circuit of the typical CNN accelerator.

However, the sparsity of features maps varies according to each layer, and it is not easy to find an

optimum size of run through all layers. For example, if a RLC is specialized for a certain layer of CNN,

which has extremely sparse feature maps, it would show a low compression ratio in the other layers

which have less sparse feature maps.

Ryu et al. have adopted a zero-value compression (ZVC) algorithm for the compression of feature

maps [62]. ZVC stores feature maps as mask bits and non-zero data. Although ZVC shows relatively

high compression ratio regardless of sparsity, it has fixed size of mask. When bit-width of feature

maps is long enough, such as 32-bit floating point or 32-bit fixed point precision, the overhead of mask

does not matter. However, when the CNN is quantized to 8-bit or less, the mask size is not negligible.

According to our observation, ZVC works poorly for the quantized CNN.

In this chapter, we propose a novel compression algorithm, grid-based run-length compression (GRLC),

which shows higher compression ratio regardless of sparsity. Furthermore, the proposed GRLC works

well for the quantized CNN. To improve the compression ratio, we exploit the spatially correlated prop-

erty of feature maps. The feature maps, which have non-zero values, are clustered in spatial domain. We

group the clustered non-zero feature maps to reduce the size of the mask, which is used for indicating

non-zero data. The followings are main contributions of our work.

• We investigate the spatial correlations of output feature maps with spatial auto-correlation.

• We propose a novel compression algorithm by exploiting spatial correlation of output feature

maps. For the evaluation, we have evaluated the compression ratio of our algorithm and compared

with ZVC and RLC.

• We also implement hardware for the compression of feature maps using Verilog. The area and

the power overhead of the proposed compression circuit are also evaluated.

– 55 –

Figure 4.2: The feature maps of 12-th layer of VGG-16. The 8-bit feature maps are mapped to grayscale

image. ‘0’ and ‘255’ are converted to black and white pixel, respectively.

4.1 Grid-based Run-length Compression

4.1.1 Motivation

Convolution layers consists of normalization, convolution and activation function. Activation func-

tion of CNNs is nonlinear and this nonlinear property allows CNNs to perform non trivial task such as

image classification, detection and segmentation. In early CNNs such as multi-layer perceptron, sig-

moid function was used for activation function. However, due to ”vanishing gradient” problems and

hardware complexity of sigmoid function, the-state-of-the-art CNNs use rectified linear unit (ReLU)

for activation function [57, 58, 59]. The ReLU is defined by

Oi =

⎧⎪⎨
⎪⎩

Ii if II ≥ 0

0 otherwise

(4.1)

while Ii and Oi are i-th weighted sum, generated by the convolution operation, and corresponding acti-

vation results, respectively. The output feature maps become sparse, because the negative convolution

results become ‘0’ after ReLU as shown in the above equation. If we compress the feature maps by

exploiting sparsity of the feature maps, we can significantly reduce energy consumption for DRAM

access.

To investigate the characteristics of the feature maps, we extract the feature maps from intermediate

layer (12-th layer) of VGG-16, which is trained for ImageNet 2012 classification challenge. The ex-

tracted feature maps are converted to 8-bit grayscale images, which is plotted in Figure 4.2. As shown

in Figure 4.2, the feature maps are almost dark and a few white pixels are exists, due to inherent sparse

property of CNNs. Another characteristic of the feature maps is that white or gray pixels, non-zero out-

put feature maps, are clustered. This means that the feature maps of CNN are “spatially correlated”. In

other words, if a feature map has non-zero values, its neighbor feature maps are likely to have non-zero

– 56 –

values, and vice versa.

To investigate quantitatively the the spatial correlation, the feature maps of intermediate layers are

generated during inferences of 1,000 images of ImageNet 2012 validation set. For the inference, we use

VGG-16, which is quantized to 8-bit. We define the spatial correlation in distance i as

ρi =
ρi,hor +ρi,ver +ρi,dia +ρi,adia

4
, (4.2)

where ρi,hor, ρi,ver, ρi,dia and ρi,adia are spatial autocorrelations between a feature map and copies of

itself, which are shifted in the horizontal, vertical, diagonal and anti-diagonal direction, respectively.

The correlation, ρi, is defined as

ρi =
E[(X −μX)(Y −μY)]

σ2
, (4.3)

where X and Y are the output feature maps and copies of itself, which are shifted in each direction by

distance ‘1’. Figure 4.3 shows the correlation of the output feature maps of different convolution layers.

As shown in this figure, the feature maps are spatially correlated. The graph also shows that the spatial

correlation decreases as the distance increases.

4.1.2 Proposed compression algorithm

Figure 4.4 shows the overview of the grid-based run-length compression algorithm (GRLC). First,

GRLC divides the feature maps into rectangular tiles, of which size is 2×3. The size of tile is heuristi-

cally determined. Then, we classify the tiles with at least one non-zero value as ‘non-zero tiles’ and the

other tiles as ‘zero tiles’. GRLC encodes the number of continuous non-activated tiles as 2-bit run. For

the non-zero tile, 6-bit mask is generated. ‘0’ in given position indicates that the corresponding value is

zero, while ‘1’ indicates that the corresponding value is non-zero. After 6-bit mask, non-zero elements

are appended. For entire feature maps, GRLC iterates these procedures.

– 57 –

Figure 4.3: Spatial correlation of output feature maps between different distances of VGG-16. For the

investigation, the feature maps of intermediate layers are generated during inferences of 1,000 images

of ImageNet 2012 validation set. We takes averages of horizontal, vertical, diagonal and anti-diagonal

spatial auto-correlation.

– 58 –

Figure 4.4: Grid-based run-length compression

4.2 Experimental Setup and Results

For the evaluation of compression ratio, RLC, ZVC and GRLC algorithm are implemented using C++.

We used VGG16, AlexNet and ResNet18 for the generation of output feature maps. The three CNNs

are trained for the classification of the ImageNet ILSVRC-2012 dataset [75]. We obtained intermediate

output feature maps using 1k validation examples in ImageNet ILSVRC-2012 dataset using a deep

learning framework, Darknet[76].

The compression ratio is defined as

Compression ratio =
Uncompressed Size

Compressed Size
. (4.4)

The higher the compression ratio, the higher the performance of the compression algorithm. The com-

pression ratio of uncompressed data equals to ‘1’. Figure 4.5 shows the compression ratio of the three

different compression algorithm using the feature maps of VGG-16. As the sparsity increases, the com-

pression ratio of three algorithms also increases. From the first to the seventh convolution layer, RLC

cannot compress the feature maps at all. The average compression ratio of RLC, ZVC and GRLC are

1.09×, 2.21× and 2.34×, respectively. We can improve 1.05× and 0.13× of the compression ratio

compared RLC and ZVC, respectively. We also evaluate the compression ratio of the feature maps

of ResNet-18 and results are shown in Figure 4.6. The average compression ratios of RLC, ZVC and

GRLC are 1.51×, 2.67× and 3.01×, accordingly. GRLC also shows the best compression ratio for

ResNet-18.

We also evaluate the performance of the algorithm for further quantized CNN and the results are

shown in Figure 4.7. DRAM access is estimated by the reciprocal of compression ratio and it is nor-

malized by the DRAM access of uncompressed data. As the bit-width decreases, DRAM access is

– 59 –

Figure 4.5: The compression ratio (left y-axis) and the sparsity (left y-axis) of the output feature map

in each layer of VGG-16.

Figure 4.6: The compression ratio (left y-axis) and the sparsity (left y-axis) of the output feature map

in each layer of ResNet-18.

also reduced virtue of the increased sparsity. DRAM access of RLC shows the greatest decline, while

DRAM accesses of ZVC decreases slightly. This is because ZVC algorithm has fixed size of mask

which is fixed regardless of the sparsity and the bit width. Among three algorithms, GRLC shows the

lowest DRAM access regardless of bit width. For 4-bit feature maps, GRLC can save 77% of DRAM

access, while RLC and ZVC can save 71% and 65% of DRAM access. We also investigate the DRAM

access for ResNet-18 in Figure 4.8. We can save maximum 75% of DRAM access (maximum 71% and

65% for RLC and ZVC, each).

– 60 –

Figure 4.7: The reduced DRAM access by the three different compression algorithm: RLC, ZVC and

GRLC in VGG16. The DRAM access is normalized by DRAM access of uncompressed feature maps.

Figure 4.8: The reduced DRAM access by the three different compression algorithm: RLC, ZVC and

GRLC in ResNet-18. The DRAM access is normalized by DRAM access of uncompressed feature maps.
– 61 –

4.3 Conclusion

The energy consumption for the DRAM access accounts for most of the energy consumption of the

deep learning hardware. To reduce energy consumption for the DRAM access, we propose a compres-

sion algorithm for the output feature maps. We investigate the spatial correlations of the output feature

maps of VGG-16 and ResNet-18. Our proposed algorithm, GRLC, compresses the feature maps by

exploiting the spatially correlated property. GRLC shows higher compression ratio compared to RLC

and ZVC both VGG-16 and ResNet-18. Finally, GRLC can save maximum 77% of DRAM access for

VGG-16.

– 62 –

Bibliography

[1] A. Canziani, E. Culurciello, and A. Paszke, “Evaluation of Neural Network Architectures for em-

bedded systems.”, Proc. ISCAS, 2017, pp.1-4.

[2] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and L. V. D.

Maaten “Exploring the Limits of Weakly Supervised Pretraining.”, Proc. ECCV, 2018, pp.181-196.

[3] McCulloch, S. Warren, and P. Walter, “A Logical Calculus of the Ideas Immanent in Nervous Ac-

tivity.”, The Bulletin of Mathematical Biophysics, 5(4), (1943) pp.115-133.

[4] D. O. Hebb, “The Organization of Behavior: A Neuropsychological Theory.”, John Wiley, New

York, 1964.

[5] B. W. A. C. Farley, and W. Clark, “Simulation of Self-organizing Systems by Digital Computer.”,

Transactions of the IRE Professional Group on Information Theory, 4(4), (1954) pp.76-84.

[6] F. Rosenblatt, “The Perceptron: a Probabilistic Model for Information Storage and Organization in

the Brain.”, Psychological Review, 65(6), (1958) pp.386.

[7] T. Isokawa, H. Nishimura, and N. Matsui, “Quaternionic Multilayer Perceptron with Local Analyt-

icity.”, Information, 3(4), (2012) pp.756-770.

[8] M. Minsky, and S. A. Papert, “An Introduction to Computational Geometry.”, MIT Press, 1969.

[9] F. Camillo, “Neural Representation of Logic Gates.”, Data Science, 2017.

[10] P. Werbors, “Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sci-

ences.”, Ph. D. dissertation, Harvard University, 1974.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition.”, Proceedings of the IEEE, 86(11), (1998) pp.2278-2324.

– 63 –

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning”, Nature, 521(7553), (2015) pp.436-444.

[13] E. Park, S. Yoo, and P. Vajda, “Value-aware Quantization for Training and Inference of Neural

Networks”, Proc. IJCV, 2018, pp.580-595.

[14] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envision: A 0.26-to-10TOPS/W

subword-parallel dynamic-voltage-accuracy-frequency-scalable Convolutional Neural Network

processor in 28nm FDSOI”, Proc. ISSCC, 2017, pp.246-247.

[15] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra, and H. Esmaeilzadeh, “Bit

Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Networks”,

Proc. ISCA, 2018, pp.764-775.

[16] E. Park, D. Kim, and S. Yoo, “Energy-Efficient Neural Network Accelerator Based on Outlier-

Aware Low-Precision Computation”, Proc. ISCA, 2018, pp.688-698.

[17] D. Kim, J. Ahn, and S. Yoo, “Zena: Zero-aware neural network accelerator”, IEEE Design & Test,

35(1), (2017) pp.39-46.

[18] D. M. Malcolm and G. D. Andrew, “Multiplierless FIR Filter Design Algorithms”, Proc. SPL,

2005, pp.186-189.

[19] C. Y. Yao, H. H. Chen, T. F. Lin, C. J. Chien and X. T. Hsu, “A Novel Common-Subexpresiion-

Elimination Method for Synthesizing Fixed-Point, FIR Filters”, IEEE Trans. CAS I, 51(11), (2004)

pp.2215-2221.

[20] J. H. Choi, N. Banerjee and K. Roy, “Variation-Aware Low-Power Synthesis Methodology for

Fixed-Point FIR Filters”, IEEE. Trans. CAD, 28(1) (2009) pp.87-97.

[21] A. B. Kahng, S. Kang, R. Kumar and J. Sartori, “Statistical Analysis and Modeling for Error

Composition in Approximate Computation Circuits”, Proc. ICCD, 2013, pp.47-53.

[22] V. Gupta, D. Mohapatra, P. P. Sang, A. Raghunathan and K. Roy, “IMPACT:IMPrecise Adders for

Low-Power Approximate Computing”, Proc. ISLPED, 2011, pp.409-414.

[23] N. Zhu, W. L. Goh and K. S. Yeo, “An Enhanced Low-Power High-Speed Adder for Error-Tolerant

Application”, Proc. ISIC, 2009, pp.69-72.

[24] S. L. Lu, “Speeding Up Processing with Approximation Circuits”, IEEE Computer, 37(3) (2004)

pp.67-73.

– 64 –

[25] A. K. Verma, P. Brisk and P. lenne, “Variable Latency Speculative Addition: A New Paradigm for

Arithmetic Circuit Design”, Proc. DATE, 2008, pp.1250-1255.

[26] D. Shin and S. K. Gupta, “A Re-design Technique for Datapath Modules in Error Tolerant Appli-

cations”, Proc. ATS, 2008, pp.431-437.

[27] A. B. Khang and S. H. Kang, “Accuracy-Configurable Adder for Approximate Arithmetic De-

signs”, Proc. DAC, 2012, pp.820-825.

[28] R. Venkatesan, A. Agarwal, K. Roy and A. Raghunathan, “MACACO: Modeling and Analysis of

Circuits for Approximate Computing”, Proc. ICCAD, 2011, pp.667-673.

[29] P. Kulkarni, P. Gupta and M. Ercegovac, “Trading Accuracy for Power with an Underdesigned

Multiplier Architecture”, Proc. VLSI Design, 2011, pp.346-351.

[30] K. J. Cho, K. C. Lee, J. G. Chung and K. K. Parhi, “Design of Low-Error Fixed-Width Modified

Booth Multiplier”, IEEE Trans. VLSI, 12(5) (2004) pp.522-531.

[31] C. H. Chang and R. K. Satzoda, “A Low Error and High Performance Multiplexer-Based Truncated

Multiplier”, IEEE Trans. VLSI, 18(12) (2010) pp.1767-1771.

[32] J. P. Wang, S. R. Kuang and S. C. Liang, “High-Accuracy Fixed-Width Modified Booth Multipliers

for Lossy Applications”, IEEE Trans. VLSI, 19(11) (2011) pp.52-60.

[33] C. Liu, J. Han and F. Lombardi, “A Low-Power, High-Performance Approximate Multiplier with

Configurable Partial Error Recovery”, Proc. DATE, 2014, pp.95.

[34] F. Farshchi, M. S. Abrishami and S. M. Fakhraie, “New Approximate Multiplier for Low Power

Digital Signal Processing”, Proc. CADS, 2013, pp.25-30.

[35] D. Goodman and M. Carey, “Nine Digital Filters for Decimation and Interpolation”, Proc. TASSP,

1977, pp.121-126.

[36] F. Xu , C. H. Chang and C. C. Jong, “Design of Low-Complexity FIR Filters based on Signed-

Powers-of-Two Coefficients with Reusable Common Subexpression”, Proc. TCAD, 2007, pp.1898-

1907.

[37] K. Johansson, “Low Power and Low Complexity Shift-and-Add Based Computations ”, Ph. D

dissertion, 2008.

– 65 –

[38] D. Shi and Y. J. Yu, “Design of Linear Phase FIR Filters With High Probability of Achieving

Minimum Number of Adders”, Proc. TCAS I, 2011, pp.126-136.

[39] S. Rosa, Vagner, E. Costa, J. C. Monteiro and S. Bampi, “An Improved Synthesis Method for Low

Power Hardwired FIR Filters”, proc. SBCCI, 2004, pp.237-241.

[40] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification with Deep Convolutional

Neural Networks”, Proc. NIPS, 2012, pp.1097-1105.

[41] J. Long, E. Shelhamer and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation”,

Proc. CVPR, 2015, pp.3431-3440.

[42] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look Once: Unified, Real-Time

Object Detection”, Proc. CVPR, 2016, pp.170-171.

[43] A. Canziani, A. Paszke and E. Culurciello, “An Analysis of Deep Neural Network Models for

Practical Applications”, arXiv preprint arXiv:1605.07678, 2016.

[44] Y.-H. Chen, T. Krishna, J. Emer and V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accel-

erator for Deep Convolutional Neural Networks”, IEEE JSSC, 52(1), (2017) pp.127-138.

[45] Y. Shen, M. Ferdman and P. Milder, “Maximizing CNN Accelerator Efficiency Through Resource

Partitioning”, Proc. ISCA, 2017, pp.535-547.

[46] A. Rahman, S. Oh, J. Lee and K. Choi, “Design Space Exploration of FPGA Accelerators for

Convolutional Neural Networks”, Proc. DATE, 2017, pp.1147-1152.

[47] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, “Optimizing Fpga-based Accelerator

Design for Deep Convolutional Neural Networks”, Proc. ISFPGA, 2015, pp.161-170.

[48] D. Lin, S. Talathi and V. Annapureddy, “Fixed Point Quantization of Deep Convolutional Net-

works”, Proc. ICML, 2016, pp.2849-2858.

[49] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen and Y. Zou, “DoReFa-Net: Training Low Bitwidth

Convolutional Neural Networks with Low Bitwidth Gradients”, arXiv preprint arXiv:1606.06160,

2016.

[50] A. Zhou, A. Yao, Y. Guo, L. Xu and Y. Chen, “Incremental Network Quantization: Towards

Lossless CNNs with Low-Precision Weights”, arXiv preprint arXiv:1702.03044, 2017.

– 66 –

[51] E. Park, D. Kim and S. Yoo, “Energy-efficient Neural Network Accelerator Based on Outlier-

aware Low-precision Computation”, Proc. ISCA, 2018, pp.688-698.

[52] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang and L. Chang, “Compensated-DNN:

Energy Efficient Low-Precision Deep Neural Networks by Compensating Quantization Errors”,

Proc. DAC, 2018, pp.1-6.

[53] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu and S. Wei, “Deep Convolutional Neural Network Archi-

tecture with Reconfigurable Computation Patterns”, IEEE Trans. on CAD 25(8) (2017), pp.2220-

2233.

[54] Y. Lyu, L. Bai and X. Huang, “Road Segmentation using CNN and Distributed LSTM”, Proc.

ISCAS, 2019, pp.1-5.

[55] A. Rattani, N. Reddy and R. Derakhshani, “Convolutional Neural Network for Age Classification

from Smart-Phone based Ocular Images”, Proc. IJCB, 2017, pp.756-761.

[56] A. Dimou, P. Medentzidou, F. A. Garcia and P. Daras, “Multi-target Detection in CCTV Footage

for Tracking Applications using Deep Learning Techniques”, Proc. ICIP, 2016, pp.928-932.

[57] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional

Neural Networks”, Proc. In Advances in NIPS, 2012, pp.1097-1105.

[58] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, Proc.

CVPR, 2016, pp.770-778.

[59] K. Simonyan, and Z. Andrew, “Very Deep Convolutional Networks for Large-Scale Image Recog-

nition.”, arXiv preprint :1409.1556, 2014.

[60] F. Tu, W. Wu, S. Yin, L. Liu and S. Wei, “RANA: Towards Efficient Neural Acceleration with

Refresh-Optimized Embedded DRAM”, Proc. ISCA, 2018, pp.340-352.

[61] Y. Chen, T. Krishna, J. Emer and V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelera-

tor for Deep Convolutional Neural Networks”, Proc. ISSCC, 2016, pp.262-263.

[62] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon and S. W. Keckler, “Compressing DMA

Engine: Leveraging Activation Sparsity for Training Deep Neural Networks”, Proc. International

Symposium on HPCA, 2018, pp.78-91.

– 67 –

[63] Q. Deng, L. Jiang, Y. Zhang, M. Zhang and J. Yang, “DrAcc: a DRAM based Accelerator for

Accurate CNN Inference”, Proc. DAC, 2018, pp.1-6.

[64] A. H. Robinson and C. Cherry, “Results of a Prototype Television Bandwidth Compression

Scheme”, Proceedings of the IEEE, 55(3), (1967) pp.356-364.

[65] S. Han, H. Mao and W.J. Dally, “Deep compression: Compressing Deep Neural Networks with

Pruning, trained Quantization and Huffman Coding”, preprint arXiv:1510.00149, 2015.

[66] “G. Shomron and U. Weiser, ”Spatial Correlation and Value Prediction in Convolutional Neural

Networks”, IEEE Computer Architecture Letters, 18(1), (2019) pp.10-13.

[67] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W. Kecler,

W. J. Dally, “SCNN: An Accelerator for Compressed-Sparse Convolutional Neural Networks” Proc.

ISCA, 2017, pp.27-40.

[68] Y. Wang, J. Lin and Z. Wang, “An Energy-Efficient Architecture for Binary Weight Convolutional

Neural Networks”, IEEE Trans. on VLSI, 26(2), (2018) pp.280-293.

[69] X. Glorot, A. Borders, Y. BENGIO, “Deep Sparse Rectifier Neural Networks”, Proc. International

Conference on AiStats, 2011, p.315-323.

[70] G. Georgiadis, “Accelerating Convolutional Neural Networks via Activation Map Compression”,

Proc. CVPR, 2019, pp.7085-7095.

[71] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of the H. 264/AVC video

coding standard”, IEEE Trans. on CSVT, 13(7), (2003) pp.560-576.

[72] G. J. Sullivan, J. Ohm, W. Han and T. Wiegand, “Overview of the High Efficiency Video Coding

(HEVC) Standard”, IEEE Trans. on CSVT, 22(12), (2012) pp.1649-1668.

[73] J. Teuhola, “A Compression Method for Clustered Bit-vectors”, Information Processing Letters,

7(6), (1978) pp.308-311

[74] J. Wen and J. D. Villasenor, “Reversible Variable Length Codes for Efficient and Robust Image

and Video Coding”, Proc. IEEE conference on DCC, 1998, pp.471-480.

[75] O. Russakovsky, J. Deng, H. Su, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M.

Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge”,

IJCV, 115(3), (2015) pp.211-252.

– 68 –

[76] J. Redmon, “Darknet: Open Source Neural Networks in C”,

http://pjreddie.com/darknet.

[77] Cadence RTL Compiler User Guide. http://www.cadence.com.

[78] Cadence NCVerilog User Guide. http://www.cadence.com.

[79] Synopsys PrimeTime User Guide. http://www.synopsys.com.

[80] Synopsys Design Compiler User’s Manual. http://www.synopsys.com.

– 69 –

	I. Introduction
	1.1 Developments of Artificial Neural Networks (ANNs)
	1.1.1 Neural networks exploiting perceptron
	1.1.2 Convolutional neural networks

	1.2 Deploying CNN on Edge Devices
	1.3 Energy-efficient CNN Accelerator
	1.3.1 Circuit level approach
	1.3.2 System level approach
	1.3.3 Memory level approach

	1.4 This Dissertation

	II. Circuit Level Approach
	2.1 Energy-efficient Processing Element
	2.2 Motivation
	2.2.1 Sparsity of CNN’s feature map
	2.2.2 Time multiplexing multiplier

	2.3 Evaluation of Energy Consumption
	2.4 Approximate Computing
	2.5 Related Works
	2.5.1 Common subexpression elimination (CSE)
	2.5.2 Circuit for approximate computing

	2.6 Approximate Synthesis for FIR Filter
	2.6.1 The proposed approximate adder/subtractor
	2.6.2 Approximate synthesis flow

	2.7 Experimental Setup and Results
	2.7.1 Experimental setup
	2.7.2 FIR filter implementation
	2.7.3 Image FIR filter experiment

	2.8 Conclusion

	III. System Level Approach
	3.1 Related Works
	3.2 Loop Tiling on CNN
	3.2.1 Role of loop tiling
	3.2.2 Necessity of channel loop tiling
	3.2.3 Channel loop tiling-errors

	3.3 Channel Loop Tiling-aware Hardware Accelerator
	3.4 Experimental Setup and Results
	3.4.1 Experimental environment
	3.4.2 Accuracy of channel loop tiled CNN
	3.4.3 Evaluation of the proposed method

	3.5 Conclusion

	IV. Memory Level Approach
	4.1 Grid-based Run-length Compression
	4.1.1 Motivation
	4.1.2 Proposed compression algorithm

	4.2 Experimental Setup and Results
	4.3 Conclusion

	Bibliography

<startpage>17
I. Introduction 1
 1.1 Developments of Artificial Neural Networks (ANNs) 1
 1.1.1 Neural networks exploiting perceptron 1
 1.1.2 Convolutional neural networks 3
 1.2 Deploying CNN on Edge Devices 5
 1.3 Energy-efficient CNN Accelerator 6
 1.3.1 Circuit level approach 6
 1.3.2 System level approach 6
 1.3.3 Memory level approach 7
 1.4 This Dissertation 7
II. Circuit Level Approach 9
 2.1 Energy-efficient Processing Element 9
 2.2 Motivation 11
 2.2.1 Sparsity of CNN’s feature map 11
 2.2.2 Time multiplexing multiplier 12
 2.3 Evaluation of Energy Consumption 13
 2.4 Approximate Computing 14
 2.5 Related Works 17
 2.5.1 Common subexpression elimination (CSE) 17
 2.5.2 Circuit for approximate computing 18
 2.6 Approximate Synthesis for FIR Filter 21
 2.6.1 The proposed approximate adder/subtractor 21
 2.6.2 Approximate synthesis flow 24
 2.7 Experimental Setup and Results 26
 2.7.1 Experimental setup 26
 2.7.2 FIR filter implementation 26
 2.7.3 Image FIR filter experiment 29
 2.8 Conclusion 32
III. System Level Approach 33
 3.1 Related Works 36
 3.2 Loop Tiling on CNN 37
 3.2.1 Role of loop tiling 37
 3.2.2 Necessity of channel loop tiling 37
 3.2.3 Channel loop tiling-errors 39
 3.3 Channel Loop Tiling-aware Hardware Accelerator 43
 3.4 Experimental Setup and Results 47
 3.4.1 Experimental environment 47
 3.4.2 Accuracy of channel loop tiled CNN 47
 3.4.3 Evaluation of the proposed method 48
 3.5 Conclusion 52
IV. Memory Level Approach 54
 4.1 Grid-based Run-length Compression 56
 4.1.1 Motivation 56
 4.1.2 Proposed compression algorithm 57
 4.2 Experimental Setup and Results 59
 4.3 Conclusion 62
Bibliography 63
</body>

