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Abstract

As machine learning grows, a heterogeneous computing system is actively used for a solution to increase
the efficiency of machine learning. Although there are the prior studies for improving the efficiency of
machine learning, the runtime support for heterogeneous computing system remains unexplored field.
Our paper presents CEML, which is a runtime system to enhance the efficiency of machine learning on
heterogeneous computing systems. CEML characterizes themachine-learning application in terms of the
performance and power consumption at runtime, builds accurate the estimation models that estimate the
performance and power consumption of the machine-learning application. CEML dynamically adapts
the heterogeneous computing system to the efficient system state estimated to enhance the efficiency
while satisfying constraints. We demonstrate the effectiveness of CEML by the evaluation in terms of
the accuracy of estimators, the energy efficiency, the re-adaptation functionality, and runtime overheads
on two full heterogeneous computing systems.



Chapter 1. Introduction

As machine learning grows, machine learning is actively used to solve complex problem like image
classification, object detection and language translation. Although many of these machine-learning
applications can be used in mobile and embedded devices, the large resource requirement including
computation power, memory footprint and power consumptionmakes difficult to apply machine-learning
to mobile and embedded devices. Heterogeneous computing systems are helpful to enhance the machine
learning efficiency on mobile and embedded devices [12]. The heterogeneous computing system
can execute the operations of machine-learning application concurrently using multiple heterogeneous
computing devices that have different characteristics.

Prior works for machine learning efficiency have studied the system software [4, 12, 14], architec-
tural support [8, 11, 15, 28]. The prior works are limited in that these works do not consider runtime
support that controls and coordinates all the devices including memory in the target heterogeneous
computing system [4, 12, 14], and/or OS kernel or GPU driver modification [5, 8, 9, 11, 15, 28]. These
limitations make these works hard to be applicable to existing commodity heterogeneous computing
systems [5, 8, 9, 11, 15, 28].

To tackle this problem, this paper presents CEML [13], a coordinated runtime system for efficient
machine learning on heterogeneous computing systems. CEML profiles the target machine-learning
application to analyze performance and power characteristics at runtime, and generates performance
and power consumption estimation models. Based on the estimation models, CEML finds the efficient
device frequencies to satisfy user-defined constraints and to maximize the metric using the exhaustive
search and local search algorithms.

In this paper, we make the following contributions:

• This paper proposes CEML [13], a coordinated runtime system for improving the efficiency of
machine-learning applications on heterogeneous computing systems. The performance and power
estimators of CEML predict the performance and power consumption when the target application
executes on the target heterogeneous computing system at given device frequencies. The runtime
manager of CEML finds the efficient device frequencies for target machine-learning application on
the target heterogeneous computing system based on the optimization metrics (e.g., performance
under the power budget and energy optimization).

• We design CEML as a runtime system that does not need modification to the underlying hard-
ware and system software including GPU driver or OS kernel. The exhaustive and local search
algorithms are employed in CEML to find efficient device frequencies.

• The paper evaluates the accuracy of estimators of CEML, improvement of the energy efficiency
with CEML versions, the re-adaptation functionality of CEML, and the utilization and perfor-
mance overheads using various machine learning applications on the commodity heterogeneous
computing systems. The results show that CEML effectively reduces energy consumption (i.e.,
30.8% less on Jetson TX2) than the baseline version that configures the heterogeneous computing
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devices to the maximum frequencies, which is a common environment in heterogeneous com-
puting systems. Although CEML does not require per-application offline profiling, the energy
efficiency improvements by CEML versions are similar to the improvement by the static best
version that requires the offline profiling.

The remainder of this paper is organized as follows. Section 2 gives the background knowledge
needed to understand this paper and the motivation for this work. Section 3 describes the experimental
environment. Section 4 presents the design and implementation of CEML. Section 5 explains the
experimental results of the proposed technique and its causes. Section 6 introduces related work and
explains the differences form this paper. Section 7 describes the conclusions of this paper.
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Chapter 2. Background and Motivation

2.1 Heterogeneous Computing

A heterogeneous computing system consists of more than two heterogeneous computing devices
that have different characteristics. There are two types of heterogeneities for a heterogeneous com-
puting system. Functional heterogeneity means that the heterogeneous computing devices differ in
instruction-set architectures (e.g., GPU and CPU). Performance and power heterogeneity mean that the
heterogeneous computing devices show different characteristics in terms of performance and power
consumption.

When a machine-learning application is executed on a heterogeneous computing system, the com-
puting devices execute the machine-learning operations concurrently. The heterogeneous computing
devices have dependency with execution order, and communicate data with other devices. In this work,
it is assumed that the target heterogeneous computing system comprises CPU, GPU and memory as a
single-chip processor. The communication between the heterogeneous computing devices is done with
the main memory. This configuration assumed in this paper is commonly employed in the commodity
heterogeneous computing systems involving mobile and embedded platforms [1, 2].

A heterogeneous computing device provides different voltage and frequency (V/F) levels. In this
work, it is assumed that the heterogeneous computing devices including CPU, GPU and memory of the
target system provides DVFS functionality and different V/F levels. CPU, GPU and memory provide
NfC , NfG , and NfM V/F levels, respectively. The target heterogeneous computing system provides the
interface to dynamically control V/F level of each device, and the V/F levels can be changed in small
transition time. In this work, a system state is defined as a tuple that consists of the frequency of each
device (i.e., ( fC , fG , fM )). We also define a system state space as the set including all the feasible system
states of the target heterogeneous computing system.

2.2 TensorFlow

TensorFlow is a representative machine-learning development and execution framework [4]. A
machine-learning algorithm is expressed as a dataflow graph using TensorFlow. A dataflow graph in
TensorFlow comprises of multiple tensors as edges of a graph and operations as vertex of a graph. A
tensor is a multidimensional array, which has elements that show one of the data types (e.g., float16,
float32 or int32). The operation in a dataflow graph takes more then zero tensors as input and creates
more than zero tensors as output [4].

The operations have dependencies according to dataflow graph. When all the input tensors are
created, the operation can be executed. The scheduler of TensorFlow allocates the operation on the
device based on the scheduling decision. The decisionmade by TensorFlow scheduler is based on various
factor such as the functional constraint of each computing device, the current device utilization, the
computational resource requirement of the operation, and programmer-specific scheduling decision [4].
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Figure 2.1: Performance of the machine-learning applications with the device frequencies change on
Jetson TX2
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Figure 2.2: Performance of the machine-learning applications with the device frequencies change on
Jetson Xavier

TensorFlow supports concurrent execution of independent operations across the available computing
devices to enhance the utilization of the devices in the target system.

CEML focuses the efficiency of the training stage of the applications. In each step, a batch of data
is consumed to train target machine-learning algorithm. The performance is defined as steps performed
per second. It is assumed that the target machine-learning applications in this works are implemented
as TensorFlow applications. While CEML is evaluated using TensorFlow applications, CEML can be
applied in other machine-learning frameworks such as Caffe or PyTorch [14].

2.3 Motivation Example of CEML

Each machine-learning application shows widely different characteristics in terms of the perfor-
mance and power consumption on heterogeneous computing systems. To motivate our work, we provide
motivation examples using seven machine-learning benchmarks on two heterogeneous computing sys-
tems (i.e., Jetson TX2 and Jetson Xavier). Figures 2.1 and 2.2 show the performance characteristics of
the evaluated machine-learning applications on Jetson TX2 and Jetson Xavier, respectively (see Sec-
tion 3 for details). Figure 2.3 shows the power characteristics of evaluated benchmarks on Jetson TX2
and Jetson Xavier. As shown in Figures 2.1 and 2.2, the performance change of the machine-learning
application with the device frequency while other device frequencies are fixed at maximum device fre-
quencies on Jetson TX2 and Jetson Xavier, respectively. Figure 2.3 shows that the power consumption
breakdown for each benchmark when all device frequencies are maximum frequencies. The data trends
are observed as follow:

First, each benchmark shows widely different performance characteristics. For example, the per-
formance sensitivity of CF on Jetson TX2 is relatively high to GPU frequency, and the performance
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Figure 2.3: Power consumption of each device normalized to total power consumption on Jetson TX2

sensitivity of WD on Jetson TX2 is relatively high to CPU frequency. However, the performance of CF
and WD are insensitive to CPU frequency and GPU frequency, respectively. We also observe that the
performance sensitivity of a benchmark differs depending on the heterogeneous computing systems. As
shown in Figures 2.1 and 2.2, The performance of MN is insensitive to CPU frequency on Jetson TX2.
On the contrary, the performance sensitivity of MN is relatively high to CPU frequency on Jetson Xavier.

Second, each benchmark shows widely different power consumption characteristics. For example,
the GPU consumes the most significant power among CPU, GPU and memory with CF on Jetson TX2,
whereas CPU consumes most significant power among the three devices with WD on Jetson TX2. We
also observe that the power characteristics of a benchmark on each heterogeneous computing system
is different. For example, in case of CF, GPU consumes more significant power on Jetson Xavier than
Jetson TX2. In contrast, in case of LR, CPU has more power proportion on Jetson Xavier than Jetson
TX2.

The observed data trends demonstrate that the software support for efficient machine learning on
heterogeneous computing systems needs to control the devices coordinately. The machine-learning
application shows different characteristics in terms of performance and power consumption, and same
machine-learning application shows different characteristics depending on the heterogeneous computing
system. Therefore, the static approaches that require extensive offline profiling are impractical for real-
world heterogeneous computing systems. Because the heterogeneous computing systems have large
system state space, and each benchmark has different characteristics in terms of performance and power
consumption.
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Chapter 3. Methodology

In this work, we employ two commodity heterogeneous computing systems that are NVIDIA Jetson
TX2 and NVIDIA Jetson Xavier [1] as full heterogeneous computing system. NVIDIA Jetson TX2
includes the ARMv8 architecture dual-core Denver processor, the Pascal architecture 256-core GPU,
and 8GB LPDDR4 memory. NVIDIA Jetson Xavier is equipped with the octa-core CPU based on
the ARMv8.2 architecture, the Volta architecture 512-core GPU, and 16GB LPDDR4 memory. The
evaluated V/F ranges of CPU, GPU and memory on Jetson TX2 are 0.81–2GHz, 0.42–1.3GHz, and
0.67–1.87GHz, respectively. The evaluated V/F ranges of CPU, GPU and memory on Jetson Xavier are
0.81–2.27GHz, 0.42–1.38GHz, 0.8–2.13GHz, respectively. Ubuntu 16.04 (kernel 4.4.38) and Ubuntu
18.04 (kernel 4.9.140) are installed in Jetson TX2 and Jetson Xavier, respectively.

The heterogeneous computing systems (i.e., Jetson TX2 and Jetson Xavier) evaluated in this paper
include the CPU, GPU, and memory power consumption sensors that provide the power consumption of
each device. CEML profiles the power consumption data and builds the power estimation models based
on these sensors. Jetson TX2 and Jetson Xavier also provide the utilization information of each device
through the Linux file system.

Seven machine-learning benchmarks provided in TensorFlow official repository are used in char-
acterization and evaluation in this paper. (i.e., CIFAR-10 (CF) with 4000 steps, ImageNet (IN) with
2000 steps, Learning to Remember Rare Events (LR) with 1000 steps, MNIST (MN) with 30000 steps,
REBAR (RB) with 10136 steps, Video Prediction (VP) with 1000 steps, and Wide & Deep (WD) with
32550 steps) [3].
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Chapter 4. Design and Implementation

CEML consists of the three main units; the performance estimator, the power estimator, and the
runtime manager. The performance and power estimators of CEML predict the performance and power
consumption of when the target machine-learning application executes on the target heterogeneous
computing device at given system state. The runtime manager profiles the data samples provided by
the application and the sensors. The runtime manager derives the coefficients of estimation models
including the performance and the device utilization estimation models, and configures the system to
the efficient system state for target machine learning application.

We design CEML while applying the following design principles. First, the V/F levels of the
devices in the target heterogeneous computing system are managed in a coordinated manner to enhance
the efficiency of target machine-learning application on the heterogeneous computing system. We
design CEML as a versatile system to support various optimization metrics and constraints (e.g., EDP,
performance optimization under the power limit and energy optimization). CEML does not requires
per-application offline profiling. To minimize potential overhead, we design and implement CEML as a
lightweight system.

4.1 Performance Estimator

The performance estimator predicts the performance of the machine-learning application based
on the performance estimation model for a target machine learning application on a heterogeneous
computing system at a systems state. We define the performance as the steps performed per unit time of
target machine-learning application.

To design the performance estimation model, we profile the performance characteristics of each
benchmark. First, we characterize the performance sensitivity to the frequency of each device. Fig-
ures 2.1 and 2.2 show the performance sensitivities to the frequency of each device on Jetson TX2 and
Jetson Xavier, respectively. In Figures 2.1 and 2.2, the other devices are configured to the maximum fre-
quency. We observe that the performance of a machine-learning benchmark shows linear proportionality
to the frequency of each device.

We also observe that the performance sensitivity to the device frequency depends on the frequen-
cies of other devices. For example, Figure 4.2 shows the performance sensitivities of GPU-sensitive
benchmarks to GPU frequency at maximum and minimum memory frequencies on Jetson TX2. We
omit the result on Jetson Xavier because they show similar behavior. As shown in Figure 4.2, the perfor-
mance sensitivities to GPU frequency decreases as memory frequency decreases. It is mainly because
as memory frequency decreases, the memory becomes the bottleneck of the overall performance. This
example demonstrates that the performance sensitivity to the frequency of each device depends on other
device frequencies.

The performance estimator provides Equation 4.1 to predict the performance of target machine-
learning application for given system state based on aforementioned observations. fC , fG and fM mean
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Figure 4.2: Performance sensitivity to GPU frequency at maximum and minimum memory frequencies

CPU, GPU and memory frequency, respectively. The system state is a tuple including CPU, GPU, and
memory frequency (i.e., ( fC , fG , fM )). Equation 4.1 consists of a linear term for each device frequency
and a quadratic term for each two devices. A linear term represents linear proportionality to frequency of
each device. A quadratic term represents each performance sensitivity dependency for each two devices.

Perf =αC · fC + αG · fG + αM · fM + αC,G · fC · fG+

αG,M · fG · fM + αM,C · fM · fC + β (4.1)

Equation 4.1 has seven coefficients. Therefore, CEML needs to profile seven performance data
samples that are collected with different system stats to derive the coefficients in Equation 4.1. CEML
profiles seven performance data samples at runtime. Wewill discuss howCEMLprofiles the performance
data at runtime in Section 4.3.

4.2 Power Estimator

The power estimator predicts the power consumption of each device when the target machine-
learning application is executing at the device frequencies. We assume that the power consumption of
each device shows linear proportionality to the utilization of each device. This assumption is used in
other works, and it is accurate and simple [25, 29].

CEML employs Equation 4.2 to predict the device power consumption (i.e., the device D power
consumption for given system state). D is the target device, and fD is the frequency of the device. εD, fD

and ζD, fD are experimentally determined based on offline profiling. We note that this offline profling is
performed only once in a heterogeneous computing system. To determine the coefficient of Eqaution 4.2,
we develop the stress benchmarks for each device to stress each device for target utilization, respectively.
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Figure 4.3: Device utilization with each device frequency on Jetson TX2
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Figure 4.4: Device utilization with each device frequency on Jetson Xavier

PD, fD = εD, fD ·UD + ζD, fD (4.2)

CEML needs to estimate the utilization of each device to estimate power consumption using
Equation 4.2 for target system state. To make device utilization estimation model, we investigate the
device utilization sensitivity of the benchmarks to the device or the other device frequency.

Figures 4.3 and 4.4 show that the device utilization sensitivity of the machine-learning application
to the device frequency on Jetson TX2 and Jetson Xavier, respectively. We observe that each device
utilization shows linear proportionality to each device frequency. It is because the device works shorter
time when the device frequency is higher.

We also observe that the device utilization is affected by the frequency of other devices. Figure 4.5
shows that the device utilization sensitivities to other device frequencies on Jetson TX2. We omit the
result on Jeston Xavier because of similar behavior. Figure 4.5 demonstrates that the device utilization of
each device has linear proportionality to other device frequencies. It is mainly because the device takes
more data per unit time when the other device is faster. It makes the device utilization higher. While
omitted, there is utilization sensitivity interaction between each device pair similar to the aforementioned
performance estimation model.

Based on observations, CEML employs Equation 4.3 to predict CPU utilization for target system
state. CEML also uses similar equation to estimate GPU and memory utilization. The utilization
estimation model employed in CEML consists of a first-order term for each device and a quadratic term
for each device pair. The first-order term represents the device utilization sensitivity to each device
frequency, and the quadratic term represents the device utilization sensitivity between each device pair.
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Figure 4.5: CPU (GPU) utilization sensitivity to GPU (CPU) frequency on Jetson TX2
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UC =γC,C · fC + γC,G · fG + γC,M · fM + γC,CG · fC · fG+

γC,GM · fG · fM + γC,MC · fM · fC + δC (4.3)

To estimate CPU utilization for target system state using Equation 4.3, CEML needs to determine
the coefficients of Equation 4.3. Because there are seven coefficients, CEML needs to collect seven
utilization data samples. CEML collects the device utilization samples without offline profiling. We will
discuss how CEML collects the device utilization samples at runtime in Section 4.3. The total power
consumption of the heterogeneous computing system is determined by Equation 4.4. PC , PG and PM

are the power consumption of CPU, GPU, and memory, respectively.

P = PC + PG + PM (4.4)

4.3 Runtime Manager

The runtime manager of CEML collects the data samples including performance data generated by
the application and the utilization data of each device. It then derives the coefficients of the performance
and device utilization estimation models. It also determines the efficient system state based on the local
or exhaustive search algorithms.

The runtime manger consists the three phases; profiling, exploration, and idle phases. Figure 4.6
exhibits the execution flow of the runtime manager of CEML.

During the profiling phase, the runtime manager collects the seven performance and device utiliza-
tion samples with different system state. The runtime manager configures the heterogeneous computing
system to sample system state. It then measures the execution time for small part of the training steps of
the total training steps. The runtime manager also collects the device utilization sample of each device
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Table 4.1: Seven system states profiled during profiling phase

System Profiled system states (GHz)
Jetson TX2 (2, 1.3, 1.87), (1.42, 0.83, 0.67), (1.42,

0.42, 1.33), (0.81, 0.83, 1.33), (0.81,
0.42, 1.06), (0.81, 0.62, 0.67), (1.11,
0.42, 0.67)

Jetson Xavier (2.27, 1.38, 2.13), (1.57, 0.91, 0.8),
(1.57, 0.42, 1.6), (0.81, 0.91, 1.6), (0.81,
0.42, 1.33), (0.81, 0.68, 0.8), (1.19, 0.42,
0.8)

Algorithm 1 The exhaustive search function
1: procedure exploreSystemStateSpaceWithExhaustiveSearch
2: bestSystemState← getInitialSystemState()
3: bestEfficiency← estimateEfficiencyOfSystemState(bestSystemState)
4: for fC ∈ FC do
5: for fG ∈ FG do
6: for fM ∈ FM do
7: cSystemState← ( fC , fG , fM )
8: cEfficiency← estimateEfficiencyOfSystemState(cSystemState)
9: if cEfficiency > bestEfficiency ∧ checkConstraint(cSystemState) then
10: bestSystemState← cSystemState
11: bestEfficiency← cEfficiency
12: configureSystemToSystemState(bestSystemState)

at the same time. This process repeats seven times to collect seven data samples with different system
states. Table 4.1 shows the sample system states for each evaluated heterogeneous computing system.
The sample system states are experimentally chosen to cover wide range of the device frequencies. Each
data sample is collected during 1% of total training steps.

During the exploration phase, the runtime manager builds the performance and power estimation
models based on collected data samples. Specifically, the runtime manager derives the coefficients of
Equations 4.1 and 4.3.

After constructing the estimation models, the runtime manger explores the system state space to
determine efficient system state using exhaustive search algorithm and local search algorithm. CEML is
able to optimize various optimization scenarios based on user-defined metric. The exhaustive and local
search algorithm that show different convergence system state and overheads employed in the runtime
manger are used to explore the system state space.

Algorithm 1 shows the pseudocode of the exhaustive search algorithm. It explores the system state
space in exhaustive manner. It keeps the best system state that is estimated to have best efficiency for
target machine learning application while satisfying user-specific constraints among the explored system
states. It starts with an initial system state (Line 2). The getInitialSystemState function returns
certain system state that satisfy user-specific constraints. It estimates the efficiency of target system
state, and if the target system state is more efficient than current state based on estimated efficiencies, it
keeps the current state as the best system state (Line 9). When all the system states in system state space
are explored, it ends the search algorithm. The time complexity of the exhaustive search algorithm is
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Algorithm 2 The local search function
1: procedure exploreSystemStateSpaceWithLocalSearch
2: bestSystemState← getInitialSystemState()
3: bestEfficiency← estimateEfficiency(bestSystemState)
4: while true do
5: cSystemState← getBestNeighborSystemState(bestSystemState)
6: cEfficiency← estimateEfficiency(cSystemState)
7: if cEfficiency > bestEfficiency then
8: bestSystemState← cSystemState
9: bestEfficiency← cEfficiency
10: else
11: break
12: configureSystemToSystemState(bestSystemState)

relatively high (i.e., O(NfC · NfG · NfM )). However, it is still useful for the commodity heterogeneous
computing system that has small system state space.

The runtime manager provides the local search algorithm that has relatively low time complexity.
The local search algorithm explores the system state space similar to the hill-climbing algorithm. The
local search algorithm is shown in Algorithm 2. It starts with the initial system state (Line 2). It
calculates the efficiencies of the neighbor system states, and chooses the best neighbor system state that
is expected to maximize the user-defined metric while satisfying the constraints among the neighbor
system state (Line 5). It compares the current best system state and the best neighbor system state, and
then chooses the system state to be more efficient (Line 7-9). If the best neighbor system state has higher
efficiency than current state, it repeats the process. Otherwise, it ends the search algorithm (Line 11).

When the search process is terminated, the runtime manager configures the heterogeneous comput-
ing system to the best system state that is estimated to maximize the efficiency for the target machine-
learning application (Line 12 in Algorithm 1 and Line 12 in Algorithm 2).

During the idle phase, CEML monitors the application and system to detect the program phase
changes such as training stage to evaluation phase. When the runtime manager detects the program
phase change, it triggers the adaptation process that restart with profiling phase to determine a new
efficient system state. The runtime manager also monitors the user-defined metric or constraints change.
If the runtime manager detects the metric or constraints change, it transitions into the exploration phase
to determine a new efficient system state based on new metric or new constraints.
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Chapter 5. Evaluation

We evaluate the effectiveness of CEML in terms of the accuracy of estimators, the energy efficiency,
the re-adaptation functionality of CEML, the runtime overheads.

First, we evaluate the estimation accuracy of CEML using sevenmachine-learning benchmarks. We
collect 25 test datasets including performance and overall power consumption data for each benchmark
with 25 different systems. The estimation error of each benchmark is the average estimation error of test
datasets. Figures 5.1 and 5.3 show the average estimation error of each benchmark on Jetson TX2 and
Jetson Xavier, respectively. CEML achieve high estimation accuracy across all evaluated benchmarks.
The average performance and power estimation error across the benchmarks are 5.4% and 8.8% on
Jetson TX2, and 6.3% and 9.9% on Jetson Xavier. This result demonstrates the performance and power
estimation models employed in estimators of CEML effectively predict the performance and power
consumption of the target machine-learning benchmarks. It is because the linear terms and quadratic
terms are effective to model sensitivity to each device frequency and sensitivity dependency between
devices in both the performance and power estimation models.

We evaluate the effectiveness of CEML in terms of energy consumption. We define the energy
consumption as the Joules per training step. Each benchmark is evaluated in four versions. The baseline
version works with the maximum CPU, GPU, and memory frequencies to execute each benchmark. The
static best version chooses the most efficient system state based on extensive offline profiling. Because
of experiment time issue, the offline profiling for the static best version collects data samples with 32
different system states. The CEML-L and CEML-E versions select the best system state with local and
exhaustive algorithms provided in CEML, respectively.

Figures 5.2 and 5.4 show the energy consumption of the evaluated benchmarks with each version
on Jetson TX2 and Jetson Xavier. We normalize the energy consumption of the versions to the baseline
version. The geometric mean of each version is also shown at the rightmost bar.

The CEML versions effectively improve the energy efficiencies of target heterogeneous computing
systems. For example, CEML-E reduces the energy consumption by 30.8% and 35.1% compared to
the baseline version on Jetson TX2 and Jetson Xavier, respectively. The baseline version configures the
system to the maximum device frequencies to execute the target machine-learning application without
regarding the performance and power characteristics of the target applications. CEML versions select
the best system state that is determined based on the search algorithms to enhance the energy efficiency
of the target machine learning application, and controls all devices in a coordinated manner.

CEMLversions consume relatively low energy comparablewith the static best version. For example,
CEML-E consumes 2.9% and 12.2% higher energy than the static best version. The static best version
finds more efficient system state than CEML versions. However, the static best version takes too long
time to get the efficient system state because it is based on extensive per-application offline profiling.
CEML versions execute small portion of training step at suboptimal system state during profiling phase,
it makes CEML version less efficient than the static best version even with same system state (e.g., RB
on Jetson TX2 and MN on Jetson Xavier). CEML versions may find less efficient systems state because
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Figure 5.1: Estimation errors of the estimators on
Jetson TX2
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Figure 5.2: Energy consumption on Jetson TX2
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Figure 5.3: Estimation errors on Jetson Xavier
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Figure 5.4: Energy consumption on Jetson Xavier

of estimation errors (IN and LR on Jetson TX2 and RB and VP on Jetson Xavier). Nevertheless, the
improvement of the energy efficiency with CEML versions shown in Figures 5.2 and 5.4 exhibits the
effectiveness of CEML without extensive offline profiling.

CEML-L achieves similar energy efficiency to CEML-E. For example, CEML-L consumes 2.6%
higher energy than CEML-E on Jetson TX2. Because CEML-L may converge local optimal system
state, sometimes CEML-L selects less efficient system state than CEML-E (e.g., MN on Jetson TX2 and
IN and MN on Jetson Xavier). Because of estimation error, CEML-L may find more efficient system state
than CEML-E (e.g., RB and VP on Jetson Xavier).

We also show an example scenario to demonstrate the effectiveness of the re-adaptation functionality
of CEML. In this example scenario, the power constraint of the target heterogeneous computing system
(i.e., Jetson TX2) changes while the execution of the benchmark (i.e., LR) with CEML. The metric in
this evaluation is performance (i.e., steps performed per second).

Figures 5.5a and 5.5b show the performance and power consumption changes in this example
scenario. The LR benchmark starts under the power constraint (i.e., 9W) which is high. Because this
power constraint is enough to execute the benchmark at the fastest system state (i.e., the maximum
device frequencies for CPU, GPU, and memory), CEML configures the target heterogeneous computing
system to this system state. As shown in Figures 5.5a and 5.5b the power constraint transitions to the
power constraint (i.e., 5W) which is low at t = 600.1. CEML effectively detects the constraint change, it
triggers that the runtime manger restarts exploration phase to fine a new efficient system state under the
power constraint, and adapts the target heterogeneous computing system to the new efficient system state
satisfying the constraint. The total budget recovers to the previous power constraint (i.e., 9W). CEML
detects this change, and adapts the target heterogeneous computing system at t = 760.1.

Finally, we evaluate the runtime overheads of CEML in terms of the CPU utilization and the
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Figure 5.5: Effectiveness of re-adaptation

performance. CEMLversions incur insignificant performance overheads. CEMLmakes small utilization
with all the evaluated benchmarks (i.e., 1.0% on average). The performance overheads of the CEML-L and
CEML-E versions are insignificant with all the evaluated benchmarks. Specially, the average exploration
time of each CEML version is 7.2 and 176.4 microseconds and 35.7 and 827.2 microseconds on Jetson
TX2 and Jetson Xavier, respectively.

15



Chapter 6. Related Work

Previous works have widely studied the system software and architectural supports to enhance the
efficiency of heterogeneous computing systems [10, 20, 22, 21, 25, 29]. The prior works are helpful,
however they only consider partial devices of heterogeneous computing devices (i.e., CPU [10, 20, 21,
29], CPU and GPU [22, 25], GPU and memory [27]), and do not consider machine-learning application
characteristics.

Prior works have studied the techniques to improve the energy efficiency of symmetric multipro-
cessor [18, 19, 23, 24]. Although these techniques can be apply to heterogeneous computing systems,
they lack the various heterogeneities of the heterogenous computing devices, and do not consider about
the characteristics of the machine-learning applications.

Previous works have studied the techniques to optimize GPU in terms of the utilization, the
performance, and the energy efficiency [6, 7, 16, 17, 26]. These techniques need the architectural
modification for theGPU [16, 17, 26] or does not consider all the heterogeneous computing devices [6, 7].

Our work characterizes machine-learning applications in terms of the performance and power
consumption, and coordinately controls all the devices in the target heterogeneous computing system.
CEML needs no modification of the existing hardwares. We demonstrate the effectiveness of our work
using two commodity heterogeneous computing systems (i.e., Jetson TX2 and Jetson Xavier).

Previousworks have investigated the software supports to improve efficiency ofmachine learning [4,
12, 14]. They focus on the system software support with task scheduling for distributed and parallel
systems to enhance the efficiency of machine learning [4, 12, 14]. We design and implement CEML as
a runtime system that does not require OS or GPU driver modification, and focus on the heterogeneous
computing systems.

There are previous works that designed and implemented hardware accelerators for efficient
machine-learning [5, 8, 9, 11, 15, 28]. Although they are helpful to improve efficiency of machine-
learning application, they cannot be applicable to existing systems without hardware modification. Be-
cause CEML is a runtime system that requires no hardware modification, CEML is directly applicable
to commodity heterogeneous computing systems.
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Chapter 7. Conclusions

In this work, we present CEML, a runtime system for efficient machine learning on heterogeneous
computing systems in a coordinated way. CEML analyzes the target machine-learning application to
characterize its performance and power consumption at runtime with small overheads. The runtime
manager of CEML builds accurate the performance and power estimation models, effectively finds the
efficient system state, and adapts the target heterogeneous computing system. We show experimental
result to demonstrate the effectiveness of CEML in terms of the accuracy of the estimators, energy
efficiency, the adaptation functionality, and runtime overheads. In the evaluation of CEML, CEML
versions show the energy efficiency comparable with the static best version that is based on per-
application offline profiling.
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