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Abstract

In recent years, many papers mentioned that use Deep learning to objects detec-

tion and robot grasping detection have improved accuracy with higher image res-

olutions. We use the Deep learning to describe robot grasp detection and image

supre-resolution related two papers.

0.0.1 Real-Time, Highly Accurate Robotic Grasp Detection using

Fully Convolutional Neural Networks with High-Resolution Images

Robotic grasp detection for novel objects is a challenging task, but for the last few

years, deep learning based approaches have achieved remarkable performance im-

provements, up to 96.1% accuracy, with RGB-D data. In this paper, we propose

fully convolutional neural network (FCNN) based methods for robotic grasp detec-

tion. Our methods also achieved state-of-the-art detection accuracy (up to 96.6%)

with state-of-the-art real-time computation time for high-resolution images (6-20ms

per 360×360 image) on Cornell dataset. Due to FCNN, our proposed method can

be applied to images with any size for detecting multigrasps on multiobjects. Pro-

posed methods were evaluated using 4-axis robot arm with small parallel gripper and

RGB-D camera for grasping challenging small, novel objects. With accurate vision-

robot coordinate calibration through our proposed learning-based, fully automatic

approach, our proposed method yielded 90% success rate.

0.0.2 Efficient Module Based Single Image Super Resolution for

Multiple Problems

Example based single image super resolution (SR) is a fundamental task in com-

puter vision. It is challenging, but recently, there have been significant performance

improvements using deep learning approaches. In this article, we propose efficient

module based single image SR networks (EMBSR) and tackle multiple SR problems



in NTIRE 2018 challenge by recycling trained networks. Our proposed EMBSR al-

lowed us to reduce training time with effectively deeper networks, to use modular

ensemble for improved performance, and to separate subproblems for better per-

formance. We also proposed EDSR-PP, an improved version of previous ESDR by

incorporating pyramid pooling so that global as well as local context information can

be utilized. Lastly, we proposed a novel denoising / deblurring residual convolutional

network (DnResNet) using residual block and batch normalization. Our proposed

EMBSR with DnResNet demonstrated that multiple SR problems can be tackled

efficiently and effectively by winning the 2nd place for Track 2 and the 3rd place

for Track 3. Our proposed method with EDSR-PP also achieved the ninth place for

Track 1 with the fastest run time among top nine teams.
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CHAPTER I

Introduction

In recent years, Deep learning has produced good results in computer vision. such as image

super-resolution, object detection, robot grasping and image denoising and so on. In robot

grasping, vision is essential because it recognizes objects and looks for grasping points. Robot

gripper and camera should be used at the same time. So, we have to think a lot about the

camera position. As shown in Figure 1 (a), when we install the camera on the robot gripper,

local areas can be seen in detail, but global areas are hard to see. Also, to install the camera

on the gripper, we should use a small size camera. For this reason, we use a low quality camera

with a low resolution. As shown in Figure 1 (b) and (c), when the camera is installed outside,

it is possible to see a global area, but there is a disadvantage that it can not be seen in detail

compared to (a). This problem can be solved by using Image super resolution. In recent years,

many papers mentioned that use Deep learning to objects detection and robot grasping detection

have improved accuracy with higher image resolutions. The goal of image super resolution (SR)

problem is to design an algorithm to map from low resolution(LR) images to a high resolution

(HR) image. Because of this, through Image SR, we can efficiently use low resolution camera in

robot grasping detection, and even if we install the camera outside, we can detect more detail.

So we did pre-research on robot grasp detection topic and image super-resolution topic.

In this paper, We have described two articles. The second paper describes the results of

FCNN based robot grasping according to image resolution and how to calibrate robot and

camera. The third article describes EMBSR that can be efficiently solved in multiple problems.
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Figure 1.1: Camera–robot configurations used in robot grasping detection: (a) monocular
eye–in–hand, (b) monocular stand–alone, (c) monocular stand–alone.

1.0.1 Real-Time, Highly Accurate Robotic Grasp Detection using Fully Con-

volutional Neural Networks with High-Resolution Images

Robot grasping of novel objects has been investigated extensively, but it is still a challenging,

open problem in robotics. Humans instantly identify multiple grasping areas of novel objects

(perception) and almost instantly plan how to pick them up (planning), and then actually grasp

it reliably (control). However, accurate robotic grasp detection, trajectory planning, and reliable

execution are quite challenging for robots. As the first step, detecting robotic grasps accurately

and quickly from imaging sensors (e.g., RGB-D camera) is an important task for successful

robotic grasping.

Robotic grasp detection or synthesis has been widely investigated for many years. Grasp

synthesis is divided into analytical and empirical (or data-driven) methods [6] for known, fa-

miliar objects and novel objects [7]. In particular, machine learning (non-deep learning) based

approaches for robotic grasp detection have utilized data to learn discriminative features for

a suitable grasp configuration and to yield excellent performance on generating grasp loca-

tions [8–10]. A typical approach for them is to use a sliding window to select local image

patches and to evaluate graspability so that the best image patch with the highest graspability

score is chosen for robotic grasp detection result. In 2011, one of the state-of-the-art graspability

prediction accuracies without deep learning was 60.5% and its computation time per image was

very slow due to sliding windows (50 sec per image) [10].

Deep learning has been successful in computer vision applications such as image classifi-

cation [11, 12] and object detection [13, 14]. Deep learning has also been utilized for robotic

grasp detection and has achieved significant improvements over conventional methods. Lenz et

al. proposed deep learning classifier based robotic grasp detection methods that achieved up to

73.9% (image-wise) and 75.6% (object-wise) prediction accuracy [15, 16]. However, its compu-

tation time per image was still slow (13.5 sec per image) due to sliding windows. Redmon et

2



Figure 1.2: (Left) an example of detecting multiple robotic grasps (5D grasp representations)
for multiple objects in one image using our proposed method. (Right) an example of our real
robotic grasp experiment picking up a toothbrush.

al. proposed deep learning regressor based grasp detection methods that yielded up to 88.0%

(image-wise) and 87.1% (object-wise) with remarkably fast computation time (76 ms per im-

age) [17]. Recently, Chu et al. proposed two-stage neural networks with grasp region proposal

network and robotic grasp detection networks and have achieved up to 96.0% (image-wise)

and 96.1% (object-wise) prediction accuracies [18]. However, its computation time has slightly

increased due to region proposal network (120 ms per image). Real-time robotic grasp detec-

tion can be critical for some applications with dynamic environment or dynamic objects. Thus,

reducing computation time while maintaining high prediction accuracy seems desirable.

In this paper, we proposed novel fully convolutional neural network (FCNN) based methods

for robotic grasp detection. Our proposed methods yielded state-of-the-art performance com-

parable to the work of Chu et al. [18] while their computation time is much faster for high

resolution image (360×360 image). Note that most deep learning based robotic grasp detection

works used 227×227 resized image including [18]. Our proposed methods can perform multiob-

ject, multigrasp detection as shown in Fig. 1.2 (Left). Our proposed methods were evaluated

with a 4-axis robot as shown in Fig. 1.2 (Right) and achieved 90% success rate for real grasping

tasks with novel objects. Since this small robot has a gripper with the maximum range of 27.5

mm, it was critical to accurately calibrate robotic grasp information and our vision system in-

formation. We proposed a simple learning-based vision-robot calibration method and achieved

accurate calibration and robot grasping performance. Here is the summary of the contributions

of this paper:
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1. Newly proposed real-time, single-stage FCNN based robotic grasp detection methods that

yielded state-of-the-art computation time for high resolution image (360×360 image) while

achieving comparable state-of-the-art prediction accuracies, especially for more strict per-

formance metrics. For example, our method achieved 96.6% image-wise, 95.1% object-wise

with 10 ms per high-resolution image while the work of Chu et al. [18] achieved 96.0%

image-wise, 96.1% object-wise with 120 ms per low-resolution image. In other words, our

method yielded comparable accuracies with 12× faster computation than Chu et al. [18].

Our FCNN based methods can be applied to multigrasp, multiobject detection.

2. Our proposed methods were evaluated for real grasping tasks and yielded 90.0% success

rate with challenging small, novel objects and with a small parallel gripper (max open

width 27.5 mm). This was possible due to our proposed simple, full automatic learning-

based approach for vision-robot calibration. Our method achieved less than 1.5 mm error

for calibration, which is close to vision resolution.

1.0.2 Efficient Module Based Single Image Super Resolution for Multiple

Problems

The goal of image super resolution (SR) problem is to design an algorithm to map from

low resolution (LR) image(s) to a high resolution (HR) image. Conventional SR was to yield

a HR image from a multiple of LR images (e.g., video) considering a number of LR image

degradation operators such as blurring and noise. This type of SR has been well studied [19]

and fundamental performance limit for it has been analyzed [20]. In medical imaging, generating

a high signal-to-noise ratio (SNR) image from a multiple of low SNR images has also been well

studied with similar model based approaches as conventional SR problems [21].

In contrast, a SR problem using a single LR image is challenging since high frequency

information in a HR image is lost or degraded due to aliasing during sampling process. Because

there was no effective way to extrapolate high frequency information, single image SR problem

was usually considered as an interpolation problem [19]. An example based SR method was

proposed based on Bayesian belief propagation [22] and a patch based SR method was proposed

by combining a conventional multiple image based SR and an example based SR [23].

Deep neural network has applied to many image processing and computer vision problems

and has shown significantly improved performance over conventional methods [24]. There have

been several works on single image SR problems and several deep neural networks were proposed

such as SRCNN [4], VDSR [5], SRResNet [3], and EDSR [1]. EDSR achieved state-of-the-art

performance for ×4 SR problem in terms of peak SNR (PSNR) and structural similarity index
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Figure 1.3: An example of given images for NTIRE 2018 challenge on image super-resolution.
The goal of challenge was to design algorithms to map from low resolution images (Classic
bicubic ×8, Mild adverse condition ×4 or Difficult adverse condition ×4) to a high resolution
image (HR).

(SSIM) and won the NTIRE 2017 challenge [25] for SR problems. NTIRE 2017 consisted of

two Tracks for known (bicubic) and unknown blurs and for each Track, there were three differ-

ent downsampling rates (×2, ×3, ×4). EDSR outperformed other previous networks including

SRResNet for all public dataset including DIV2K, NTIRE 2017’s new dataset [1].

NTIRE 2018 is more challenging than its previous challenge by having 4 Tracks: Track 1

with ×8 SR problem and with known blur (bicubic) and Tracks 2, 3, 4 with ×4 SR problems and

with mild to severe noise and/or unknown blur. Figure 1.3 shows examples of given images for

the ground truth and for Tracks 1, 2, 3 that our team participated in. Mild noise was observed

in given ×4 downsampled images for Track 2 and similar level of noise was observed in given

×4 downsampled images, but with relatively severe unknown blur for Track 3.

In this article, we propose an efficient module based approach for tackling multiple SR

problems in Tracks 1, 2, 3 of NTIRE 2018. We decomposed the original problems in Tracks 1,

2, 3 into subproblems as shown in Figures 1.4 (a) (Track 1) and 1.4 (b) (Tracks 2, 3), identified

state-of-the-art methods for subproblems as baselines, and efficiently recycled trained deep

5



Figure 1.4: (a) Module based approach for Track 1 SR problem. (b) Module based approach
for Tracks 2, 3 SR problems. The solution for module problem (B) can be efficiently recycled
among different SR problems in all Tracks.

neural networks for subproblems among all problems in different Tracks. Utilizing intermediate

goals for ×8 SR is not new [26] and solving multiple problems together for efficiency is not a

new concept [27]. This approach could also be sub-optimal in terms of the overall cost function

optimization. However, our proposed method is different from previous works in 1) module based

training scheme to save training time for entire networks for Tracks 1, 2, 3 by recycling and

to use effectively deeper convolutional networks with more feature map channels in the midst

of limited computation and memory resource, in 2) ensemble output of each module for each

subproblem to improve the performance further without increasing the complexity of networks,

and in 3) separating the problem of SR (increasing the resolution) from the problem of denoising

and deblurring (Tracks 2, 3).

We also proposed new deep neural networks to improve the performance for subproblems.

For SR problems in module problems (A) and (B) shown in Figures 1.4 and 1.4, EDSR [1]

was chosen as our baseline network. In this article, we proposed EDSR-PP by adding pyramid

pooling layers [28] to EDSR for further performance improvement with DIV2K dataset. For

denoising and deblurring problems in module problem (C, C′) as illustrated in Figure 1.4, we

adopt DnCNN [2], one of the state-of-the-art methods for denoising and deblurring problem, as

our baseline network. We proposed a novel denoising and deblurring network called DnResNet

based on residual block structure [29] and showed significant performance improvement over

the baseline DnCNN.

Our models were trained using DIV2K training dataset [25] and were evaluated with DVI2K
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validation and test dataset. In NTIRE 2018 challenge, our proposed methods won the 2nd place

(out of 18 teams) for Track 2 and the 3rd place (out of 18 teams) for Track 3 with our proposed

DnResNet and demonstrated that our proposed module based approach can efficiently and

effectively solve multiple problems. Our proposed method with our EDSR-PP also achieved the

ninth place (out of 24 teams) for Track 1 with the fastest run time among top nine teams. Here

is the summary of this article’s contributions:

• Modular approach for efficient training with effectively deeper network, improved perfor-

mance with modular ensemble, and novel problem decomposition.

• EDSR-PP: improved EDSR with pyramid pooling.

• DnResNet: novel architecture for denoising / deblurring based on residual block.
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CHAPTER II

Real-Time, Highly Accurate Robotic Grasp

Detection using Fully Convolutional Neural

Networks with High-Resolution Images

2.1 Background and Related Works

Pre-deep learning era. Data-driven robotic grasp detection for novel object has been

investigated extensively [7]. Saxena et al. proposed a machine learning based method to rank

the best graspable location for all candidate image patches from different locations [8]. Jiang

et al. proposed a 5D robotic grasp representation and further improved the work of Saxena

et al. by proposing a machine learning method to rank the best graspable image patch whose

representation includes orientation and gripper distance among all candidates [10]. The work

of Jiang et al. achieved the prediction accuracy of 60.5% (image-wise) and 58.3% (object-wise)

with computing time of 50 sec (50,000 ms) per image.

Two-stage, classification based approach. Lenz et al. proposed to use a sparse auto-

encoder (SAE), an early deep learning model, to rank the best graspable candidate image patch

from sliding window with multi-modal information (color, depth and surface norm) [15, 16].

Their methods achieved up to 73.9% (image-wise) and 75.6% (object-wise) prediction accuracy,

but its computation time per image was still slow (13.5 sec or 13,500 ms per image) due to

time-consuming sliding windows. Wang et al. proposed a real-time classification based grasp
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Figure 2.1: A typical multibox approach for robotic grasp detection. An input image is divided
into S×S grid and regression based robotic grasp detection is performed on each grid box. Then,
the output with the highest grasp probability is selected as the final result. This approach can
be applied to multiobject, multigrasp detection tasks.

detection method using a stacked SAE for classification, which is similar to the work of Lenz et

al., but with remarkably efficient grasp candidates generation [30]. This method utilized prior

information and pre-processing to reduce the search space of grasp candidates such as object

recognition result and the graspability of previously evaluated image patches. It also reduced the

number of grasp representation parameters such as height (h) for known gripper and orientation

(θ) that could be analytically obtained from surface norm. Mahler et al. proposed Dex-Net 2.0

for point clouds based on two-stage approach with GQ-CNN and reported that 93.0% (image-

wise) prediction accuracy was achieved [31]. Note that this approach is similar to those of

R-CNN [32] or fast R-CNN [33] in object detection.

Single-stage, regression based approach. Redmon et al. proposed a deep learning re-

gressor based robotic grasp detection method based on the AlexNet [11] that that yielded 84.4%

(image-wise) and 84.9% (object-wise) with fast computation time (76 ms per image) [17]. When

performing robotic grasp regression and object classification together, image-wise prediction ac-

curacy of 85.5% was able to be achieved without increasing computation time. Kumra et al. also

proposed a real-time regression based grasp detection method using ResNet [12] especially for

multimodal information (RGB-D). Their method yielded up to 89.2% (image-wise) and 88.9%

(object-wise) prediction accuracies with fast computation time (103 ms per image) [34].
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Multibox based approach. Redmon et al. also proposed a multibox based robotic grasp

detection method (called MultiGrasp) by dividing the whole input image into S×S grid and

applying regression based robotic grasp detection to each grid box [17]. This approach did

not increase computation time (76 ms per image), but did increase prediction accuracy up

to 88.0% (image-wise) and 87.1% (object-wise). The pipeline of multibox based approach is

illustrated in Fig. 2.1. Note that the last step (red arrow) is a simple selection on the highest

grasp probability. Simply modifying this last step to select more than one result could result in

multiobject, multigrasp detection. Guo et al. proposed a hybrid multibox based approach with

visual and tactile data based on ZF-net [35] by classifying graspability, orientations (θ), and by

regressing locations and graspable width (w), height (h) [36]. The work of Guo et al. achieved

93.2% (image-wise) and 89.1% (object-wise) prediction accuracies.

Note that MultiGrasp by Redmon et al. has influenced several object detection methods

such as YOLO [37], SSD [38], and recently YOLO9000 [14]. YOLO is based on AlexNet [11]

to estimate the location and class of multiple objects [37]. SSD further developed regression

based object detection by incorporating intermediate CNN features [38]. Recently, YOLO9000

extended the original YOLO significantly with fast computation and high accuracy [14]. Our

proposed robotic grasp detection methods are inspired by YOLO9000 [14].

Hybrid approach. Recently, Asif et al. proposed GraspNet that predicts graspability and

then estimates robotic grasp parameters based on high-resolution grasp probability map [39].

This approach achieved 90.6% (image-wise) and 90.2% (object-wise) with state-of-the-art com-

putation time (24 ms per image). Chu et al. proposed two-stage neural networks combining

grasp region proposal network and robotic grasp detection network [18] based on Faster R-CNN

for object detection tasks [13]. This approach has yielded state-of-the-art prediction accuracies,

96.0% (image-wise) and 96.1% (object-wise), with slightly increased computation time due to

region proposal network (120 ms per image).

2.2 PROPOSED METHODS FOR ROBOTIC GRASPS

2.2.1 Problem Description

The goal of the problem is to predict 5D robotic grasp representations [10, 16] for multi-

ple objects from a given color image (RGB) and possibly depth image (RGB-D) where a 5D

robotic grasp representation consists of location (x, y), orientation θ, gripper opening width

w, and parallel gripper plate size h, as illustrated in Fig. 2.2 (a). Then, the 5D robotic grasp

representation

{x, y, θ,w,h}
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Figure 2.2: (a) A 5D grasp representation with location (x, y), orientation θ, gripper opening
width w and plate size h. (b) For the (2, 2) grid cell, all parameters for 5D grasp representation
are illustrated including a pre-defined anchor box (black dotted box), a 5D grasp representation
(blue box).

in camera based vision coordinate system should be transformed into a new 5D grasp repre-

sentation {x̃, ỹ, θ̃, w̃, h̃} in actual robot coordinate system so that they can be used for actual

robot grasping task.

2.2.2 Reparametrization of 5D Grasp Representation and Grasp Probability

MultiGrasp estimates 5D grasp representation {x, y, θ,w,h} as well as grasp probability

(confidence) z for each grid cell by reparameterizing θ to be c = cos θ, s = sin θ [17]. In

other words, 7 parameters {x, y, c, s,w,h, z} are directly estimated using deep learning based

regressors in MultiGrasp. This approach has also been used in YOLO, object detection deep

network [37]. Inspired by YOLO9000, a better and faster deep network for object detection than

YOLO [14], we propose the following reparametrization of 5D grasp representation and grasp

probability for robotic grasp detection as follows:

{tx, ty, θ, tw, th, tz}

where x = σ(tx) + cx, y = σ(ty) + cy, w = pw exp(tw),h = ph exp(th), and z = σ(tz). Note

that σ(·) is a sigmoid function, exp(·) is an exponential function, ph, pw are the pre-defined

height and width of an anchor box, respectively, and (cx, cy) are the location of the top left

corner of each grid cell (known). Thus, deep neural network for robotic grasp detection of our
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proposed methods will estimate {tx, ty, θ, tw, th, tz} instead of {x, y, θ,w,h, z}. These parameters

are illustrated in Fig. 2.2 (b). Note that x, y,w,h are properly normalized so that the size of

each grid cell is 1 × 1. Lastly, the angle θ will be modeled as a discrete value instead of a

continuous value, which is different from MultiGrasp. This discretization of the angle in robotic

grasp detection was also used in [36].

(x, y) coordinates in each grid cell (offset). Instead of predicting (x, y) in the image

coordinate, our proposed methods will predicting the location of robotic grasp by estimating

the (x, y) offset from the top left corner of each grid cell (cx, cy). For S × S grid cells,

(cx, cy) ∈ {(cx, cy)|cx, cy ∈ {0, 1, . . . ,S − 1}}

Thus, for a given (cx, cy), the range of (x, y) will be

cx < x < cx + 1, cy < y < cy + 1

due to the re-parametrization using sigmoid functions.

w, h coordinates in each cell (anchor box). Anchor box approach has also been use-

ful for object detection [14], so we adopt it to our robotic grasp detection. Due to the re-

parametrization using anchor box, estimating w,h is converted into estimating tw, th, which are

related to the expected values of various sizes of w,h, and then classifying the best grasp rep-

resentation among all anchor box candidates. In other words, this re-parametrization changes

regression problems for w,h into regression + classification problems. We propose to use the

following 7 anchor boxes:

(pw, ph) ∈ {(0.76, 1.99), (0.76, 3.20),

(1.99, 0.76), (1.99, 1.99), (1.99, 3.20),

(3.20, 3.20), (3.20, 0.76)}.

2.2.3 Loss Function for Robotic Grasp Detection

We proposed a novel loss function for robotic grasp detection considering the following items.

Angle in each cell (discretization). MultiGrasp re-parameterized the angle θ with

c = cos θ and s = sin θ so that estimating c, s yields the estimated θ = arctan(s/c). Thus,

MultiGrasp took regression approach for θ. We proposed to convert this regression problem for

estimating θ into the classification problem for θ among finite number of angle candidates in
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[0,π]. Specifically, we model that θ ∈ {0,π/18, . . . ,π}. Along with data augmentation for differ-

ent angles every epoch, we were able to observe substantial performance improvement. Similar

angle discretization for robotic grasp detection was also used in [36].

Grasp probability (new ground truth). Predicting grasp probability is crucial for multi-

box approaches such as MultiGrasp. Conventional ground truth for grasp probability was 1

(graspable) or 0 (not graspable) as used in [17]. Inspired by YOLO9000, we proposed to use

IOU (Intersection Over Union, Jaccard index) as the ground truth for grasp probability: the

ground truth for grasp probability is

zg =
|P ∩G|
|P ∪G|

(II.1)

where P is the predicted grasp rectangle, G is the ground truth grasp rectangle, and | · | is the

area of the inner set.

Proposed loss function. We propose to use the follow cost function to train robotic grasp

detection networks that we will describe in the next subsection: For the output vector of the

deep neural network (tx, ty, θ, tw, th, tz) and the ground truth {xg, yg, θg,wg,hg, zg},

L(tx, ty, θ, tw, th, tz) =

λcoord

S2∑
i=1

A∑
j=1

mobj
ij [(xgi − xi)

2 + (ygi − yi)
2] +

λcoord

S2∑
i=1

A∑
j=1

mobj
ij [(wg

ij − wij)
2 + (hgij − hij)

2] +

λprob

S2∑
i=1

A∑
j=1

mobj
ij [(zgi − zi)

2] +

λclass

S2∑
i=1

A∑
j=1

mobj
ij CrossEntropy(θgi , θi)

where xi, yi,wij ,hij , zi are functions of (tx, ty, tw, th, tz), respectively, S2 is the number of grid

cells and A is the number of anchor boxes (7 in our case). We set λcoord = 1, λprob = 5 and

λclass = 1. We set mij = 1 if the ground truth (xg, yg) is in the ith cell and mij = 0 otherwise.

2.2.4 Proposed FCNN Architecture

We chose three well-known deep neural networks for image classification tasks Alexnet [11]

(base network for MultiGrasp [17]), Darknet-19 (similar to VGG-16 [40] that was used in [18],
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Figure 2.3: Proposed FCNN architecture based on Darknet-19.

but with much smaller memory requirement for similar performance) [14], and Resnet-50 [12]

(base network for [18, 36]). These pre-trained networks were modified to yield robotic grasp

parameters and their fully connected (FC) layers were replaced by 1 × 1 convolution layers

to make FCNN architecture so that images with any size (e.g., high resolution images) can

be processed. Most previous robotic grasp detection methods use 227 × 227 resized images as

input, but our proposed FCNN based methods can process higher resolution images. We chose

to process 360 × 360 images for grasp detection without resizing. Skin connection layer was

also added so that fine grain features can be used. For example, a passthrough layer was added

in between the final 3 × 3 × 512 layer and the second to last convolutional layer for Darknet-

19 as illustrated in Fig. 2.3 [14]. Similarly, we added similar skip connection for Resnet-50 in

between the convolutional layer right before the last max pooling layer and detection layer.

Unfortunately, we did not add skip connection for Alexnet since the pre-trained network did

not provide access to inner layers.

2.2.5 Learning-based Vision-Robot Calibration

For a successful robot grasping, accurately predicted 5D grasp representation {x, y, θ,w,h} in

vision coordinate system must be converted into 5D grasp representation {x̃, ỹ, θ̃, w̃, h̃} in actual

robot coordinate system considering gripper configuration. Thus, accurate calibration between

vision and robot coordinate systems is critical for robotic grasping. Our robot is equipped with

a gripper whose maximum open distance w is 27.5 mm. In order to grasp small objects whose

widths are 10-20 mm, the calibration error between vision and robot coordinates should be less

than or equal to 1-2 mm.
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We proposed a learning-based, fully automatic vision-robot calibration method as illustrated

in Fig. 2.4: (1) a small known object (round shape in our case) is placed in a known location,

(2) the robot moves the object to a random location, (3) the robot places the object, (4) the

robot is away from field of view, (5) vision system predicts 5D grasp representation, and (6)

the procedure is repeated to collect many samples. Then, 5D grasp representations in both

vision coordinate and robot coordinate can be mapped using linear or nonlinear regressions

or using simple nonlinear neural networks. For simplicity, we calibrated only x, y with affine

transformation using LASSO [41] assuming known w (maximum open width of the gripper),

known h (fixed gripper), and relatively good tolerance for θ. The ranges of x, y in our robot

coordinate are 150 to 326 mm, -150 to 150 mm, respectively, and the ranges of x, y in our vision

coordinate are 160 to 290 pixel, 50 to 315 pixel, respectively. One pixel corresponds to about

1.35×1.13 mm2.

Fig. 2.5 shows that calibration error (in mm) is in general decreasing as the number of

samples is increasing and the error is below 1.5 mm which is close to one pixel in vision if

there are more than 40 samples. Note that since there are 6 LASSO coefficients for mapping

x, y’s, theoretically only 3 points should be enough to determine all 6 coefficients. However,

in practice, much more samples are necessary to ensure good calibration accuracy. This result

Figure 2.4: Proposed learning-based vision-robot calibration.
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Figure 2.5: Calibration error (in mm) for x, y in robot coordinate system over increasing number
of learning samples.

implies that using high resolution images seem important for successful grasping due to potential

high accuracy of calibration.

2.3 EXPERIMENTS AND EVALUATION

2.3.1 Evaluation with Cornell Dataset

We performed benchmarks using the Cornell grasp detection dataset [15, 16] as shown in

Fig. 2.6. This dataset consists of 855 images (RGB color and depth) of 240 different objects

with the ground truth labels of a few graspable rectangles and a few not-graspable rectangles.

Note that we cropped images with 360×360, but did not resize it to 224×224. Five-fold cross

validation was performed and average prediction accuracy was reported for image-wise and

object-wise splits. When the difference between the output orientation θ and the ground truth

orientation θg is less than 30 degree, then IOU or Jaccard index in Eq. (II.1) that is larger than

a certain threshold (e.g., 0.25, 0.3) will be considered as a success grasp detection.

The same metric for accuracy has been used in other previous works [16,17,34].

All proposed methods were implemented using pyTorch and trained with 500 epochs and

data augmentation that took about 4 hours of training. For fair comparison, we implemented the

16



work of Lenz et al. [15, 16] and MultiGrasp [17] using MATLAB or Tenforflow. They achieved

similar performance and computation time that were reported in their original papers. All

algorithms were tested on the platform with a single GPU (NVIDIA GeForce GTX1080Ti), a

single CPU (Intel i7-7700K 4.20GHz) and 32GB memory.

2.3.2 Evaluation with 4-axis Robot Arm and RGB-D

We also evaluated our proposed methods with a small 4-axis robot arm (Dobot Magi-

cian, Shenzhen YueJiang Tech Co., Ltd, China, Fig. 1.2 (Right)) and a RGB-D camera (In-

tel RealSense D435, Intel, USA) attached to have the field-of-view including the robot and its

workspace from the top. The following 6 novel objects (toothbrush, candy, earphone cap, cable,

styrofoam bowl, L-wrench were used for real grasp tasks as shown in Fig. 2.7. After our learning-

based vision-robot calibration, for each object, 5 repetition were performed. If the robot arm is

holding an object for more than 3 sec, it is counted as a success grasp.

2.4 RESULTS

2.4.1 Evaluation Results on Cornell Dataset

Table 2.1 summarizes all evaluation results on the Cornell robotic grasp dataset for all our

proposed methods. Our proposed methods yielded state-of-the-art performance, up to 96.6%

prediction accuracy for image-wise split with any metric with state-of-the-art computation time

of 3-20 ms. For object-wise split, our proposed methods yielded comparable results for less

tolerant metrics (25%, 30%), but yielded state-of-the-art performance for more strict metrics

Figure 2.6: Images from Cornell grasp detection dataset.
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Figure 2.7: Novel objects for real robot grasping tasks.

Table 2.1: Performance summary on the Cornell dataset with IOU metric. Our proposed meth-
ods yielded state-of-the-art prediction accuracy in both image-wise and object-wise splits with
state-of-the-art computation time. Note that Resnet-50, Darknet-19, Alexnet require 82.6, 48.5,
and 6.0MB memory, respectively. Performance unit is in % unless specified.

Size Offset Deep network Data type
Image-wise Object-wise

25% 30% 35% 40% 25% 30% 35% 40%

360 O Resnet-50 RG-D 96.6 94.6 91.5 86.7 95.4 92.5 88.5 82.5
360 O Resnet-50 RGB 96.6 93.7 91.0 85.7 95.1 92.5 88.7 82.9
360 O Darknet-19 RG-D 96.6 95.4 92.4 87.4 94.7 92.0 89.0 83.2
360 O Darknet-19 RGB 96.4 93.6 90.7 86.5 94.0 91.3 86.5 80.3
360 - Darknet-19 RGB 89.8 87.6 84.9 80.1 87.7 85.4 81.6 72.5
224 O Darknet-19 RGB 93.5 89.7 85.4 77.7 91.5 88.0 81.9 75.6
360 O Alexnet RGB 93.6 90.3 86.5 80.2 91.1 86.8 81.0 73.5
224 - Alexnet RGB 89.1 79.5 69.0 57.3 86.7 76.6 64.6 51.1

227 Chu [18] 96.0 94.9 92.1 84.7 96.1 92.7 87.6 82.6
227 Guo [36]#a 93.2 91.0 85.3 - 82.8 79.3 74.1 -
227 Guo [36]#c 86.4 83.6 76.8 - 89.1 85.1 80.5 -
227 Kumra [34] 89.2 - - - 88.9 - - -
227 Redmon [17] 88.0 - - - 87.1 - - -
227 Lenz [15] 73.9 - - - 75.6 - - -
227 Jiang [10] 60.5 - - - 58.3 - - -

(35%, 40%), demonstrating that our methods yielded highly accurate grasp detection informa-

tion with true real-time computation. The results of Table 2.1 also indicate the importance of

good deep network (Darknet, Resnet over Alexnet), of using re-parametrization (Offset), and of

using high resolution images as input for better performance. Fig. 2.8 qualitatively illustrates

some of these points. Using low resolution image and/or simple network architecture seems to

result in missing small graspable candidates as indicated with missing small graspable areas

around shoe neck.

2.4.2 Evaluation Results with 4-Axis Robot Arm

Fig. 2.9 illustrates our robot grasp experiment with “candy” object. While previous methods

or our method with low image resolution tend to grasp candy part, our proposed method yielded

grasp areas around stick part of the candy and our robot actually grasped it as shown in the

figure. Table 2.2 summarizes our robot experiments showing that our proposed method with
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high resolution yielded 90% grasp success rate while other methods yielded 53% or less.

Figure 2.8: One grasp detection results with different image resolution, data type, and with
different deep network. All methods were able to detect large grasp areas, but the methods with
small deep network and/or low image resolution missed some small grasp areas.

Table 2.2: Performance summary of real robotic grasping for 6 novel, small objects with 5
repetitions. For Lenz and Redmon, our in-house implementations (modifications) were used
after validating their performance with the Cornell dataset. Darknet implementation was used
for Ours with resized image (224) and with high resolution image (360).

Object Lenz* Redmon* Ours(224) Ours(360)

toothbrush 80% 80% 60% 100%
candy 0% 60% 20% 100%

earphone cap 40% 20% 80% 80%
cable 0% 0% 40% 100%

styrofoam bowl 0% 20% 80% 60%
L-wrench 80% 100% 40% 100%

Average 33% 47% 53% 90%
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Figure 2.9: An illustration of our robot grasp experiment with “candy” (Left) and multigrasp
detection results for “candy” using 4 different methods. Ours (360) successfully detect stick part
of the candy.
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CHAPTER III

Efficient Module Based Single Image Super

Resolution for Multiple Problems

3.1 Background and Related Works

Deep learning based super resolution. Dong et al. used convolutional neural network (CNN)

for SR problem (SRCNN) and achieved significant improvement in performance over other

conventional non-deep leaning based methods [4]. An LR image is upscaled using bicubic in-

terpolation and then CNN was applied to restore HR details. Soon after, Kim et al. proposed

a deep neural network using residual learning (VDSR) and showed improved PSNR perfor-

mance over SRCNN [5]. In this method, CNN was trained not to yield a HR image, but a

residual image for the difference between an interpolated LR image and the ground truth HR

image. VDSR also used a deeper CNN network than SRCNN.

Lai et al. proposed a Laplacian pyramid super resolution network (LapSRN) that combines

multiple models and uses progressive reconstruction from ×8 to ×4 to ×2 to HR (×1) [26].

residual blocks [29] to significantly increase the size of the receptive field and to include local

context information so that state-of-the-art performance for ×4 SR problem can be obtained

in terms of PSNR and SSIM [3]. SRGAN was also proposed with the same network structure

as SRResNet, but with different training based on a discriminator network. SRGAN yielded
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visually pleasing outputs while PSNR of SRGAN was lower than that of SRResNet since

SRResNet yielded an average of many possible outputs while SRGAN yielded one of many

possible outputs.

Recently, Lim et al. won the NTIRE 2017 challenge [25] for SR problems using so-called EDSR

(Enhanced Deep Super-Resolution network) that enhanced SRResNet by eliminating batch

normalization and by stacking deeper layers (residual blocks from 16 to 32, filter channels

from 64 to 256) [1]. EDSR also used L1 loss instead of L2 loss for better PSNR. NTIRE 2017

consisted of two Tracks for known (bicubic) and unknown blurs and for each Track, there

were three different downsampling rates (×2, ×3, ×4). EDSR won the 1st place for NTIRE

2017 by outperforming SRResNet for all public dataset including DIV2K, NTIRE 2017’s new

dataset [1].

Deep learning based denoising and deblurring. Patch based denoising methods yielded

superior denoising results compared to conventional denoising techniques [42], but they are

usually slow in computation and have so called rare patch issue so that these are less effective

for unique patterns in an image. Recently, there have been several attempts to outperform

patch based denoisers such as BM3D using deep learning based approaches. Jain and Seung

demonstrated that denoising is possible using CNN [43]. Burger et al. proposed a multi layer

perceptron based denoiser and showed that it is challenging, but possible to obtain good

denoising performance over conventional state-of-the-art methods such as BM3D [44]. Xie et

al. proposed a deep network for denoising and inpaing [45]. Recently, Lefkimmiatis investigated

a combined method of conventional non-local patch based denoiser and deep learning based

denoiser [46]. Zhang et al. proposed a so-called DnCNN with multiple CNN blocks (similar

to VDSR) to yield a residual (Gaussian noise) and to yield superior performance to other

denoisers including BM3D [2].

In particular, DnCNN has greatly improved the performance of denoising and deblurring tasks

with a simple deep convolution layer and residual learning.

3.2 Method

3.2.1 Modular Approach

We decomposed the original problems in NTIRE 2018 Tracks 1, 2, 3 into subproblems as

illustrated in Figures 1.4 (a) (Track 1) and 1.4 (b) (Tracks 2, 3) and efficiently recycled trained

deep neural networks for a number of subproblems. Figure 3.1 illustrates our detailed network

architectures for all problems in Tracks 1, 2, 3, called efficient module based super resolution
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Figure 3.1: Modular approach for multiple SR problems. Among 9 modules, 5 modules required
long training while 4 modules can be recycled with short fine tuning.
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(EMBSR) network. This modular approach allows us to train networks module-by-module and

to efficiently recycle trained modules for multiple SR problems (see Figure 3.1 to see that

among 9 modules, only 5 modules require long training, while 4 modules can recycle already

trained networks with relatively short fine tuning). This modular architecture also yielded effec-

tively deeper networks with more feature map channels when limited computation and memory

resource are available. Each module can generate ensemble output for each subproblem to in-

crease the PSNR performance without increasing the complexity of networks. Lastly, modular

approach allowed us to separate SR subproblems from the problem of denoising and deblurring

for Tracks 2, 3. Due to this separation, significant performance improvement was achieved by

utilizing optimal deep networks for different problems (e.g., EDSR for SR problem and DnCNN

for denoising/deblurring problem) and by aligning an input image and an intermediate target

image (×4 bicubic downsampled image) for training denoiser/deblur networks.

Our EMBSR network for Track 1 (×8 bicubic) consists of three EDSR-PP networks as il-

lustrated in the top of Figure 3.1. For training each module network, we downsampled ground

truth images using bicubic downsampling to generate target images for each module (×2 bicu-

bic downsampled images, ×4 bicubic downsampled images). Then, all EDSR-PP modules were

trained with given input ×8 bicubic downsampled images and generated ×4 bicubic downsam-

pled images, input ×4 bicubic downsampled images and generated ×2 bicubic downsampled

images, and ×2 bicubic downsampled images and ground truth images. A solution for Track 1

(×8 single image SR) was created by concatenating three trained modules. Note that ensem-

ble output is possible by having 8 variants of an input image (4 rotations × 2 left-right flips)

for each neural network module. This procedure substantially improved performance. Further

fine tuning is also possible. Each module is trained with perfect bicubic downsampled input

images, but the ensemble output of each module contains errors from them. In EBMSR for

Track 1, the second EDSR-PP module can be re-trained using ensemble output images of the

first EDSR-PP module and then the third EDSR-PP module can be re-trained using ensem-

ble output images of the re-trained second EDSR-PP module, sequentially. In our simulations,

training each EDSR-PP module took about 3 days for 300 epochs and re-training each module

took about 1 day for 100 epochs. Our EMBSR network for Tracks 2, 3 is similar to the EMBSR

network for Track 1, but with replacing the first EDSR-PP module with DnResNet module, as

illustrated in the middle and bottom of Figure 3.1, respectively. The second and third “trained”

EDSR-PP modules for Track 1 can be recycled in Tracks 2, 3 as shown in Figure 3.1 (green ar-

rows). The first DnResNet module for tackling Track 2 can be trained using given input training

data and target ×4 bicubic downsampled images. Image registration between input and tar-

get images using a translation motion was critical to significantly improve the performance of
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Figure 3.2: An illustration of our proposed EDSR-PP. Upsampling lay of the original EDSR [1]
was replaced with pyramid pooling structure.

DnResNet as well as baseline DnCNN. For Track 3, similar approach can be applied. Then,

solutions for Tracks 2, 3 can be obtained by concatenating trained DnResNet and two other

trained EDSR-PP networks. Further improvement was achieved by sequentially re-training the

second EDSR-PP module using ensemble output images of the first DnResNet module, and

then fine tuning the third EDSR-PP module using ensemble output images of the re-trained

second ESDR-PP module for both Tracks 2 and 3.

3.2.2 SR Module: EDSR-PP (Pyramid Pooling)

We propose a new SR network, EDSR-PP, based on a state-of-the-art SR network, EDSR [1].

EDSR-PP incorporates pyramidal pooling [28] into the upsampling layer of the original EDSR

as illustrated in Figure 3.2.

The number of residual blocks in EDSR-PP was 32 and the same network architecture was

used for Typically, the receptive field size of deep learning based image processing corresponds

to how much context information is included. The deeper the CNN network is, the larger the

receptive field size is. However, in CNN based deep networks for image processing, this receptive

field size may not be large enough to receive global context information. Pyramid pooling [28]
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Figure 3.3: An illustration of our proposed DnResNet. Unlike DnCNN that uses CNN layers [2],
residual blocks (Resblock) were used as a basic building block.

is a recent method to resolve this issue so that both local and global context information can

be utilized for image segmentation problems. We incorporated it into EDSR for SR problem.

In contrast to the up-sampling layer of EDSR, pyramid pooling firstly executes average pooling

and performs convolution for each of the four pyramid scales. Then, these are concatenated in

the existing feature map. This process allows both local and global context information to be

utilized. Four pyramid scales were used in our EDSR-PP with 1× 1, 2× 2, 3× 3, and 4× 4 and

our proposed EDSR-PP yielded better performance than EDSR.

3.2.3 Denoising / Deblurring Module: DnResNet

We also propose a novel denoising / deblurring network, DnResNet, based on one of the

state-of-the-art methods, DnCNN [2] for denoising / deblurring problem. DnCNN uses residual

learning (skip connection between input and output) and multiple convolution blocks with con-
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Figure 3.4: Comparison of residual blocks for SRResNet [3], EDSR [1], and our DnResNet.

volution - batch normalization - ReLU layers. Our DnResNet simply replaces all convolution

blocks with our residual blocks as shown in Figure 3.3. Using residual blocks further increased

receptive fields efficiently without concatenating more deep convolution layers. DnCNN used 64

feature map channels while our DnResNet used 128 feature map channels. For residual blocks,

EDSR removed batch normalization layers from and added 0.1 scaling to the residual block of

SRResNet as shown in Figure 3.4 for improved performance and numerical stability of training

in SR problem. However, we found that it is advantageous to keep batch normalization layers

for denoising and deblurring problems. So, we modified the residual block of EDSR by adding

two batch normalization layers again. Note that our residual block is equivalent to the original

residual block of SRResNet except for 0.1 residual scaling. Note also that our proposed DnRes-

Net utilized similar residual blocks as SRResNet, but overall network architectures are quite

different. Our proposed DnResNet with residual blocks outperformed DnCNN with convolution

blocks for denoising and deblurring problems.
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3.3 Experiment

3.3.1 Dataset

The DIV2K dataset from the NTIRE 2018 challenge was used in all simulations of this article.

DIV2K is a high quality (2K resolution) image data set from the NTIRE 2017 challenge [25] .

For the same ground truth HR images, ×8 bicubic downsampled images were provided for Track

1, ×4 downsampled images with unknown blur kernels and mild noise were provided for Track

2, and ×4 downsampled images with unknown, difficult blur kernels and noise were provided

for Track 3. For each track, 800 training images, 100 validation images, and 100 test images

were given. In this article, we only use 10 images (801 to 810).

3.3.2 Training and Alignment

Training procedures are well described in Section ??. Mini batch size was 16 and patch size

was 48×48. For individual module training, 300 epochs were run with learning rates of 10−4

for 1 to 100 epochs and 10−5 for 101 to 300 epochs. It took about 3 days to run 300 epochs for

each module network. Re-training learning rate was set to 10−5 for 100 epochs.

We found that given input images of Tracks 2 and 3 and ×4 bicubic downsampled ground

truth images are not well aligned. In principle, these misalignment should be taken care of

by deep neural networks during training. However, aligning input and target images as much

as possible helped to achieve improved performance. Given input images of Tracks 2 / 3 and

×4 bicubic downsampled ground truth images were aligned using image intensity based image

registration tool in MATLAB with translation motion only. Bicubic interpolation was used for

sub-pixel accuracy.

3.3.3 DIV2K Validation Set Results

Table 3.1 shows performance results for DIV2K validation set, comparing various SR meth-

ods such as bicubic interpolation, SRCNN [4], VDSR [5], EDSR [1] and our proposed EMBSR.

Our EDSR-PP based EMBSR method yielded improved PSNR results for SR problems with dif-

ferent scales (×2, ×4, and ×8) over other methods. This result demonstrated that our proposed

SR module, EDSR-PP, yielded state-of-the-art SR performance.

Table 3.2 showed that our proposed DnResNet outperformed current state-of-the-art denois-

ing / deblurring method, DnCNN [2], with both misaligned and aligned data set. It seems that

aligning given input and target images was critical to achieve high performance in denoising

and deblurring. imized for train data (2k resolution), so it gets low results in other datasets.
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Table 3.1: PSNR (dB) results of different methods for DIV2K validation data set: SRCNN [4],
VDSR [5], EDSR [1], and our proposed EMBSR.

Bicubic SRCNN VDSR EDSR EMBSR

×2 31.01 33.05 33.66 35.12 35.87
×4 26.66 27.70 28.17 29.38 29.89
×8 24.51 - - 26.00 26.22

Table 3.2: Performance comparison between architectures on the DIV2K validation set (PSNR
in dB).

DnCNN [2] DnResNet
DnCNN [2]
(aligned)

DnResNet
(aligned)

21.005 25.359 29.439 30.281

Trained EDSR-PP modules and DnResNet modules can be used to tackle multiple SR

problems in the multiple tracks of NTIRE 2018 challenge.

3.3.4 Results of NTIRE 2018 Challenge

We have submitted enhanced images of DIV2K test data set to NTIRE 2018 challenge,

Tracks 1, 2, and 3. Table 3.3 shows PSNR, SSIM and run time results for the top nine teams

including our team using our proposed EMBSR method. Our team won the ninth place out of 24

teams with PSNR 25.331, SSIM 0.7026, and run time 2.52. Note that PSNR difference between

the 1st place and ours was 0.124 dB and SSIM difference was 0.0062, but we achieved these

results with the fastest run time among all top nine teams. Figure 3.5 shows qualitative results

for bicubic interpolation, EDSR, and our EMBSR. Both EDSR and EMBSR yielded similarly

good results, but EMBSR yielded higher PSNR than EDSR with slightly sharper images for

some examples (see 0820× 8 from DIV2K results).

Table 3.3: Preliminary results of NTIRE 2018 challenge, Track 1, ×8 bicubic downsampling
(PSNR in dB).

Method PSNR SSIM Run Time

1st method 25.455 0.7088 50
2nd method 25.433 0.7067 20
3rd method 25.428 0.7055 6.75
4th method 25.415 0.7068 11.65
5th method 25.360 0.7031 7.31
6th method 25.356 0.7037 6.99
7th method 25.347 0.7023 5.03
8th method 25.338 0.7037 14.52

Ours 25.331 0.7026 2.52
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0812 ×8 from DIV2K

HR
(PSNR)

EDSR [1]
(24.32dB)

Bicubic
(20.81dB)

EMBSR
(24.65dB)

0820 ×8 from DIV2K

HR
(PSNR)

EDSR [1]
(20.68dB)

Bicubic
(12.46dB)

EMBSR
(21.14dB)

Figure 3.5: SR results of Track 1 in NTIRE 2018 challenge (bicubic downsampling ×8). Our
EMBSR yielded better PSNR and slightly sharper images than EDSR.

Table 3.4: Preliminary results of NTIRE 2018 challenge, Track 2, ×4 unknown downsampling
with mild blur and noise (PSNR in dB).

Method PSNR SSIM

1st method 24.238 0.6186
Ours 24.106 0.6124

3rd method 24.028 0.6108

Our proposed EMBSR methods achieved excellent performance in Tracks 2 and 3. Table 3.4

shows PSNR and SSIM results for the top three teams including our team for Track 2, unknown

×4 downsampling with image degradation due to mild blur and noise. Our team won the 2nd

place out of 18 teams with PSNR 24.106 and SSIM 0.6124 in Track 2. Figure 3.6 shows qualita-

tive results for bicubic interpolation, EDSR, and our EMBSR. Our EMBSR yielded significantly

better image quality than EDSR quantitatively (Table 3.4) and qualitatively (Figure 3.6).

Table 3.5 shows PSNR and SSIM results for the top three teams including our team for

Track 3, unknown ×4 downsampling with image degradation due to difficult blur and noise.

Our team won the 3rd place out of 18 teams with PSNR 22.569 and SSIM 0.5420 in Track 3.

Figure 3.7 shows qualitative results for bicubic interpolation, EDSR, and our EMBSR. EDSR

does not seem to deal with multiple problems (SR, denoising, deblurring) well while our EMBSR

efficiently tacked SR problem with multiple sources of image degradations. It seems that modular

approach allows to use appropriate networks for different problems for improved performance.
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0805×4m from DIV2K

HR
(PSNR)

EDSR [1]
(18.91dB)

Bicubic
(19.16dB)

EMBSR
(23.33dB)

0813×4m from DIV2K

HR
(PSNR)

EDSR [1]
(20.41dB)

Bicubic
(20.71dB)

EMBSR
(26.24dB)

0802×4m from DIV2K

HR
(PSNR)

EDSR [1]
(25.94dB)

Bicubic
(26.68dB)

EMBSR
(28.10dB)

0811×4m from DIV2K

HR
(PSNR)

EDSR [1]
(24.23dB)

Bicubic
(24.43dB)

EMBSR
(25.33dB)

Figure 3.6: SR results of Track 2 in NTIRE 2018 challenge (unknown downsampling ×4 with
mild blur and noise). Our EMBSR yielded superior PSNR and image quality to EDSR and
efficiently tacked SR problem with mild image degradation.
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0816×4d from DIV2K

HR
(PSNR)

EDSR [1]
(19.58dB)

Bicubic
(19.71dB)

EMBSR
(24.77dB)

0818×4d from DIV2K

HR
(PSNR)

EDSR [1]
(17.07dB)

Bicubic
(17.28dB)

EMBSR
(21.05dB)

0819×4d from DIV2K

HR
(PSNR)

EDSR [1]
(18.60dB)

Bicubic
(18.80dB)

EMBSR
(20.90dB)

0815×4d from DIV2K

HR
(PSNR)

EDSR [1]
(21.09dB)

Bicubic
(21.22dB)

EMBSR
(23.75dB)

Figure 3.7: SR results of Track 3 in NTIRE 2018 challenge (unknown downsampling ×4 with
mild blur and noise). Our EMBSR yielded superior PSNR and image quality to EDSR. EDSR
does not seem to deal with multiple problems (SR, denoising, deblurring) well while our EMBSR
efficiently tacked SR problem with multiple sources of image degradation.
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Table 3.5: Preliminary results of NTIRE 2018 challenge, Track 3, ×4 unknown downsampling
with difficult blur and noise (PSNR in dB).

Method PSNR SSIM

1st method 22.887 0.5580
2nd method 22.690 0.5458

Ours 22.569 0.5420
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CHAPTER IV

Conclusion

In this study, We investigated Robot grasping detection and Image super-resolution using

Deep learning. Robot grasping detection has shown that image resolution is better when resizing

from 224 to 360. We also demonstrated that high accuracy of our proposed methods with our

proposed learning-based, fully automatic vision-robot calibration method yielded 90% success

rate in robotic grasping tasks with challenging small objects.

We proposed an efficient module based on single image super resolution network (EMBSR)

using SR module (EDSR-PP) and denoising module (DnResNet). Modular approach allowed

us to train our networks efficiently for multiple SR problems by recycling trained networks, to

use modular ensemble for improved performance, and to deal with multiple sources of image

degradation efficiently. We also proposed EDSR-PP, an improved version of previous ESDR by

incorporating pyramid pooling so that global as well as local context information can be utilized.

Lastly, we proposed a novel denoising / deblurring residual convolutional network (DnResNet)

using our residual blocks based on DnCNN. The effectiveness of our proposed methods for

multiple SR problems with mixed image degradation sources was demonstrated with NTIRE

2018 challenge by winning the 2nd place of Track 2, the 3rd place of Track 3, and the ninth

place of Track 1 with the fastest run time.

As a results, we investigated the importance of resolution in robot grasping detection and how

to efficiently use the network in Image Super-resolution. Through our pre-reaserch, we have

contributed to Robot grasping detection using Super-Resolution.
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