Effects of Mycorrhizae on Struvite Dissolution

Can plant-fungus mutualism increase the viability of a sustainable phosphorus fertilizer?

Fertilizer)

Will less of

the struvite

solubilize in

there is little

assistance

from AMF?

rmc pots.

because

to no

rmc

Isako Battista Di Tomassi,¹ Neha Chatterjee,² Erinn Dady,³ and Andrew Margenot²

¹Community College of Philadelphia, Philadelphia, Pennsylvania

²Department of Crop Sciences, College of ACES, University of Illinois at Urbana-Champaign ³Parkland College, Champaign, Illinois

Project Goal

To determine effect of arbuscular mycorrhizal fungi (AMF) on struvite dissolution, as well as the effect of struvite, and its placement, on mycorrhizal colonization and plant phosphorus uptake

Background

- · Phosphorus (P) is essential for all organisms
- In agriculture, P, nitrogen (N) and potassium (K) are applied in large amounts as fertilizer
- Monoammonium phosphate (MAP), a conventional fertilizer, is highly water soluble, causing high P and N concentrations in agricultural runoff, harming aquatic life

- Struvite (NH₄MgPO₄·6H₂O), a waste-water derived product with potential for use as a P fertilizer: has low water solubility¹
- Phosphorus in struvite is not as accessible to plants as it is in MAP
- Arbuscular mycorrhizal fungi (AMF) form mutualisms in which they receive carbon from plants in exchange for other nutrients
- AMF assist in P uptake by more thorough soil exploration, a higher P affinity than that of plant roots, modification of the rhizosphere through exudates, and hyphal storage of absorbed P²

AMF exude organic acids³ which have been shown to significantly increase solubilization of struvite¹, which is needed to make P accessible to plants

Experiment Design

- Two Solanum lycopersicum (tomato plant) genotypes used, the wild-type, Myc, and a reduced mycorrhizal colonization mutant-type (referred to as rmc), which has very low rates of AMF association (<1%)⁵
- Pouch of fertilizer has close placement, or further placement, where the plant can not 'find' it as easily

Fertilizer)

MAP v struvite for the additional guestion of whether struvite will increase mycorrhizal colonization

Hypotheses

PARKLAND COLLEGE ILLINOIS **PRECS** Phenotypic Plasticity Research Experience

- More struvite will have solubilized in pots with the Mvc genotype
- Myc roots will show higher rates of AMF association in pots with struvite treatment than in MAP pots
- · The Myc struvite deep placement pots will have higher rates of AMF association as well

AMF

Current Progress · Plants are growing, with destructive harvest scheduled for the first week of August **Anticipated Outcome**

- Significant impact of AMF on struvite dissolution could increase sustainability of nutrient management systems
- Integrating AMF inoculation into use of struvite
- as fertilizer could mean reduced agricultural P runoff, reduced fertilizer applications,
 - recycling waste product, and reduced
- dependence on diminishing phosphate rock

reserves

References

- 1. Talboys et al (2016), Plant and Soil, 401: 109-123
- 2. Bolan et al (1991), Plant and Soil 134: 189-207
- 3. Bucking et al (2012), Plant Science, IntechOpen, DOI: 10.5772/52570
- 4. McGonigle et al (1990), New Phytologist 15:490-501
- 5. Ruzicka et al (2010), BMC Plant Biology, 10: 75

Acknowledgments

Financial support was provided by the National Science Foundation under grant #NSF REU 1559308/1559929, as part of the Phenotypic Plasticity Research Experience for Community College Students, through the University of Illinois at Urbana-Champaign Institute for Genomic Biology and Parkland College. http://precs.iqb.illinois.edu/_Considerable support was provided by project PIs Nathan Schroeder and C. Britt Carlson; thanks to Felipe Barrios-Masias from UC Davis Montgomery W. Flack, and technical and support staff at the Institute for Genomic Biology.

Metrics for Characterizing Struvite-AMF Interactions

We will dry, grind, and acid digest the biomass, and use colorimetry to determine the P uptake of the plants.

Ascertaining Plant P Uptake

Quantifying Struvite Dissolution

The 5x3" mesh pouches will be retrieved, and the remaining struvite dried and weighed to compare to the mass that was originally placed.

Calculating AMF Root Colonization

- De-pigment, and stain roots with trypan blue to make visible the arbuscules, hyphae, and vesicles (all parts of the AMF) that are present in the root⁴
 - Under a microscope, AMF presence quantified by counting the number of roots with visible AMF structures, and making a percent