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Abstract

We consider an overlapping generations model where continuous cultural traits are transmitted from an 
adult generation to the children. A weighted social network describes how children are influenced not only 
by their parents but also by other role models within the society. Parents can invest into the purposeful 
socialization of their children by strategically displaying a cultural trait (which need not coincide with their 
true cultural trait). We observe a cultural substitution effect when parents choose their behavior optimally. 
Based on Nash equilibrium behavior, we then study the dynamics of cultural traits throughout generations. 
These converge if parent’s influence on their children is large enough compared to the social environment’s 
influence. Under convergent dynamics, closed subgroups fully assimilate, while heterogeneous traits prevail 
in the other groups. Speed of convergence is low when parents’ incentives to socialize their children to the 
own trait are high.
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1. Introduction

Economic behavior and outcomes are fundamentally shaped by individual value systems such 
as culturally transmitted preferences, attitudes, opinions, beliefs, etc. For instance, risk pref-
erences and patience are classical determinants of economic decisions. It is even shown that 
inherited trust is a major factor in determining economic growth (Algan and Cahuc [3], Tabellini 
[40]). The question of how these traits are formed and evolve is hence of central interest.

In this paper, we provide a theory of the evolution of cultural traits. In contrast to most of 
the literature (see Bisin and Verdier [9], for a comprehensive survey), we model cultural traits as 
a continuous variable rather than a discrete variable. This modeling approach better reflects the 
continuous nature of cultural traits such as risk preferences, patience, and trust. That these traits 
are rather modeled by a continuous variable becomes evident when considering e.g. Arrow–Pratt 
measures of risk aversion, or discount factors in [0, 1] as measures of patience.1 To model the 
evolution of these traits across generations, we employ an overlapping generations (OLG) soci-
ety. Parents care about their children’s adopted cultural trait and have a desire that this adopted 
trait is close to their own trait, an assumption called imperfect empathy in the literature.2 Follow-
ing empirical evidence (e.g. Dohmen et al. [18]), children are assumed to learn from observable 
cultural traits of their parents and of their social environment, represented by a social network. 
Surprisingly, this local aspect of trait formation has largely been ignored in the literature on for-
mation of cultural traits even though empirical evidence suggests that the social network plays a 
crucial role: first, Dohmen et al. [18] show that the degree of risk aversion and trust can not only 
be explained by the parent’s risk preferences and trust attitudes, but also by the level of these 
traits in the local social environment; second, the fact that cultural traits often differ across geo-
graphic regions, e.g. cities (Guiso et al. [26], Voigtländer and Voth [42]), or countries (Algan and 
Cahuc [3]),3 is difficult to explain without modeling a local structure. Finally, social connections 
also seem crucial for questions of persistence of cultural traits and of assimilation as we discuss 
below.

Emphasizing the social network and the socialization incentives, or in other words, the degree 
of imperfect empathy, we use our model to study (i) how cultural traits evolve, (ii) under which 
conditions heterogeneous or homogeneous societies emerge, and (iii) how long this process takes 
before settling down.

These questions are motivated by empirical studies that provide substantial evidence that some 
cultural traits are persistent throughout many generations. For the example of trust, Guiso et al. 
[26] report persistence of trust levels in various Italian cities, Nunn and Wantchekon [35] show 
that (mis-)trust attitudes in African families are prevailing throughout many generations resulting 
from slave trade history, and Voigtländer and Voth [42] find that (mis-)trust attitudes towards the 
Jewish population persisted over many centuries in German cities dating back to the 14th cen-
tury.4 Moreover, immigrant families in the United States are shown to retain their trust attitudes 

1 Also trust attitudes can be measured on a continuous scale representing different intensities of trust ranging from 
attitudes such as “you can’t be too careful” to attitudes like “most people can be trusted”.

2 Imperfect empathy means that parents care about their children, but evaluate their (the children’s) actions through the 
own (the parental) utility function (Bisin and Verdier [7]). This will imply that parents want their children to become as 
they (the parents) are.

3 Note that also within regions strong correlations of cultural traits are observed (Dohmen et al. [18]).
4 Persistence is also documented for other cultural traits such as attitudes towards female labor force participation 

(Fernandez et al. [20], Alesina et al. [2]), fertility (Fernandez and Fogli [19], Cygan-Rehm [14]), and a preference for 
education (Botticini and Eckstein [10]).
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throughout many generations (Algan and Cahuc [3]) if connections to their country of origin 
are kept. Importantly, not only the formation of cultural traits (Dohmen et al. [18]), but also the 
evolution of cultural traits and the question of persistence seem to be highly dependent on social 
connections.5

A theoretical explanation for the phenomenon of global persistence of cultural traits is pro-
vided in the seminal paper by Bisin and Verdier [8] and the following literature (see Bisin and 
Verdier [9]). They show in a population dynamics framework of dichotomous cultural traits that 
the imperfect empathy assumption is sufficient to generate long-run heterogeneity of cultural 
traits. This is due to the cultural substitution effect, i.e. that parents exert more effort to increase 
the probability that the child adopts the same cultural trait when the frequency of the own trait in 
the population is lower.

Although the model of Bisin and Verdier [8] can be generalized to a discrete number of traits 
(Bisin et al. [6]), we will see that as soon as the cultural trait under consideration is modeled as 
a continuous variable, the observed long-term persistence of heterogeneous traits does not carry 
over (Remark 1). Thus, imperfect empathy alone cannot account for long-term persistence of 
heterogeneous cultural traits. Moreover, due to the discrete nature of traits, (partial) assimila-
tion cannot be explained by this model. In addition, this standard model does not include local 
interaction.

To bridge these gaps, we complement and extend the ideas of Bisin and Verdier [8] by (a) mod-
eling cultural traits as a continuous variable, and (b) by assuming that children learn from parents 
and their friends through local interaction represented by a social network and not necessarily 
from the whole population. In our model, we adopt the assumption of imperfect empathy of Bisin 
and Verdier [8] which leads parents to use costly controls to influence their children’s traits. We 
consider a particular socialization instrument which is derived from social learning theory (Ban-
dura [4]): since children learn primarily from the observed behavior of parents (and other social 
contacts), we assume that the parent’s primary socialization instrument is their behavior, or their 
socio-economic actions taken. When solving for optimal behavior of parents, we show that each 
adult deviates from its true trait into the opposite direction of the aggregate behavior of the en-
vironment (relative to own true trait), in order to countervail the subjectively negative influence 
of the environment on its child (Proposition 1). The extent of deviation is increasing with the 
“cultural distance” between the parent and its social environment.6

Assuming Nash equilibrium play in every generation, we then study the dynamics of cultural 
traits. First, we illustrate by a simple two-dynasty example (Section 3) how the cultural traits 
evolve. We show that cultural traits converge in the long-run to a homogeneous trait such that 
relative positions are persistent if children are primarily influenced by their parents. By persis-
tence of relative positions of cultural traits, we mean that one family has the lower trait than the 
other at any point in time, e.g. one family is always more risk averse than the other family, al-
though in the very long run traits become more and more homogeneous. If, however, each child 
is more influenced by the other family than the own, then relative positions of traits switch from 
one generation to the next. For strong enough incentives to socialize the children, this even leads 
to divergent dynamics.

5 For instance, Voigtländer and Voth [42] argue that few interactions between German cities (due to lower mobility 
before World War I. compared to today) are one of the main factors for persistence of different attitudes towards Jews in 
different cities. For cities that were “well-connected” (e.g. German Hanse-cities) such persistence cannot be observed.

6 Analogous effects of cultural substitution are crucial in providing a theoretical explanation for heterogeneous cultures 
in the framework of dichotomous traits (Bisin and Verdier [8]).
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When allowing for more than two dynasties (Section 4), additional steady states are possi-
ble also admitting heterogeneous cultural traits. Conditions that the dynamics reach a steady 
state generalize nicely from 2 to n dynasties: convergence is guaranteed if (i) the network is 
positive definite (Proposition 4) or if (ii) the degree of imperfect empathy is sufficiently low 
(Proposition 5).7 Positive definiteness is implied if parents have sufficiently high influence on 
their children. This rather natural assumption is also empirically well supported (Dohmen et al. 
[18]). While these large socialization weights foster convergence to a steady state, incentives 
to socialize (high degree of imperfect empathy) are detrimental for convergence in two ways. 
First, if the socialization incentives are small enough, then convergence always obtains for any 
given network. Second, even if convergence is guaranteed for arbitrary socialization incentives 
(e.g. because of large enough socialization weights), then speed of convergence is reduced by 
the parents’ socialization efforts (Proposition 6). This yields an explanation for the persistence 
of cultural traits: the higher the degree of imperfect empathy, the longer cultural traits persist 
(a complementary conclusion as in Bisin and Verdier [8]).

Convergence to a steady state does not necessarily mean that we observe complete assimi-
lation or a melting pot society. Rather, heterogeneity of cultural traits is observed even in the 
long run when connections to more than one cultural group are given. Thus, persistence of immi-
grants’ cultural traits (e.g. trust attitudes, Algan and Cahuc [3]) may be explained by connections 
into both the country of origin (relatives, friends, . . . ) and the immigrant country (as we will 
see in Example 2). This view is also shared by Aleksynska [1] where a particular focus is on 
ties to the country of origin. In a similar way, we find a theoretical explanation for the finding 
that relatively disconnected cities in Germany experienced persistence of (positive or negative) 
attitudes towards the Jewish population, while well connected cities (e.g. Hanse-cities) rather are 
observed to display alternating attitudes over time (Voigtländer and Voth [42]).

Related literature. Besides the well-established literature on the transmission of discrete traits, 
the literature on continuous traits is still small,8 despite its importance for empirical applications 
(Bisin and Topa [5]). Important early treatments of the topic are Cavalli-Sforza and Feldman 
[13] in a theoretical, and Otto et al. [37] in an empirical context. Cavalli-Sforza and Feldman 
[13] propose a model where a child’s continuous trait is formed as the linear combination of 
its parents’ trait and the average trait in the society. Several models follow this approach and 
endogenize the trait formation process (for recent approaches, see Doepke and Zilibotti [17], 
Vaughan [41], Pichler [39], Panebianco [38]).

While in Vaughan [41] and Panebianco [38] the parent’s choice variable (socialization instru-
ment) is the time spent with children, Pichler [39] introduces behavioral choices of parents. The 
first modeling choice is fully analogous to Bisin and Verdier [8], the latter rather reflects social 
learning theory (Bandura [4]). Additionally, Vaughan [41] models strategic interaction between 
children and their peers. In our paper, we instead consider strategic interaction in the adult gener-
ation and explicitly model the social network. Panebianco [38] studies cultural groups and their 
attitudes towards each other. Since the only variable of choice is the time spent with children, 
the dynamics in the model of Panebianco [38] are given by a Markov process where conver-
gence is easily established without restrictions on the network. Introducing behavioral choices, 
our model yields more complex dynamics such that the law of motion may also contain negative 

7 If both conditions are not satisfied, convergence is still possible, but also diverging dynamics as outlined above for 
two dynasties may arise.

8 See Bisin and Verdier [9], for a comprehensive overview of both branches of literature.
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inter-dependencies. We also extend the approach by Pichler [39] from global interaction to local 
interaction.

Doepke and Zilibotti [17] present a model on the inter-generational transmission of continuous 
traits (patience and work ethos), which is used to explain the industrial revolution. In particular, 
they show how a generation of patient and hard working industrialists could outperform the for-
merly leading class of aristocrats who failed to socialize their children to these values. In contrast 
to other models of transmission of traits, including ours, this model includes feedback of eco-
nomic conditions on the formation of traits. As a consequence it does not predict convergence 
of traits (to a homogeneous or heterogeneous state), but rather some kind of cycle or fluctua-
tion since economic prosperity reduces the propensity to transmit values that are the basis of 
prosperity.

Another branch of literature related to our work is the literature on opinion dynamics (in social 
networks) introduced, among others, by DeGroot [15] (see e.g. Jackson [28], for a discussion). In 
the basic DeGroot model, individuals exchange opinions by reporting their opinions and update 
them according to a weighted average of other individuals’ opinions. Convergence of opinions 
is then obtained under mild conditions on the interaction structure (strong connectedness and 
aperiodicity). Our work presents also a generalization of the DeGroot model such that strategic 
interaction in expressed opinions is introduced. In our model, strategic interaction leads to over-
statement of opinions (Proposition 1), a similar, but less extreme behavior as in Kalai and Kalai 
[29], where polarization of opinions is obtained. As a consequence, convergence cannot be as 
easily obtained as in the DeGroot model. Moreover, for the case of convergence, we show that 
the speed of which is reduced by introducing this kind of strategic interaction. This contrasts 
with a related model on opinion formation (Buechel et al. [11]) and shows that socialization 
investments contribute to prolong cultural heterogeneity.

2. Formation of cultural traits

2.1. Model

Consider an overlapping generations society which is populated by the adults of a finite set of 
dynasties N = {1, . . . , n}. At the beginning of any given period t ∈ N, adults reproduce asexually 
and have exactly one offspring. This standard simplification keeps the population size constant. 
The traits that we consider (e.g. trust, risk preferences, and patience) are of continuous nature 
(e.g. different intensities of trust, Arrow–Pratt measures of risk aversion, and discount factors). 
We restrict the analysis to the transmission of one such continuous trait. Hence, let I ⊆ R be 
a convex compact set that contains all possible intensities/degrees of a trait. For instance, if 
patience is represented by a discount factor, then I = [0, 1]. Each adult is characterized by a 
variable φi(t) ∈ I , which we call its trait. Taking trust as an example, low values of φi(t) could 
then be interpreted as the t -th generation of dynasty i having low levels of trust, e.g. not trusting 
strangers. In a similar way, risk preferences (low values of φi(t) correspond to low degrees of 
risk aversion), patience (low values of φi(t) correspond to low discount factors), and other types 
of cultural traits find an interpretation in our model.

We assume that the true cultural trait is not observable. However, any adult has to make 
socio-economic choices. We assume that distinct cultural traits are associated with distinct socio-
economic choices. Therefore, by observing the socio-economic choices of an adult, a child 
perceives the associated trait, which may not coincide with the adult’s true trait. For instance, 
a parent who is very careful when interacting with strangers is displaying a low level of trust. 
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Similarly, a parent who refuses many gambles, takes few chances and challenges in life, etc. will 
be perceived to be risk averse. Instead of modeling socio-economic choices explicitly, we sim-
ply assume that each adult chooses an observable cultural trait representing its socio-economic 
actions.9 We call an adult’s choice its displayed trait and denote it by φd

i (t) ∈ I . Let the vec-
tor Φd(t) := (φd

1 (t), . . . , φd
n(t))′ ∈ In collect the displayed traits of the adults. Importantly, the 

displayed trait φd
i (t) is the choice variable of each adult and may be different from its true trait 

φi(t). Naturally, we will assume that deviating from the true trait is costly, see the assumption on 
parental utility Eq. (3).

Children are assumed to form their traits by learning from the adults’ observable behavior 
(see also Bandura [4]). In particular, we consider direct socialization from the parent’s displayed 
trait φd

i (t) as well as so-called oblique socialization from the child’s social environment φd
Ni

(t), 
i.e. representative trait of other dynasties. Let σii denote the weight of the parental socialization 
part which determines how much the child learns from its parents (in relative terms) compared to 
the social environment. Factors that determine this parental socialization weight could include 
the social interaction time of the parent with its child, as well as the effort and devotion that the 
parent spends to socialize its child.10 Then the trait formation process is given by

φi(t + 1) = σiiφ
d
i (t) + (1 − σii)φ

d
Ni

(t). (1)

Before further specifying the model, it is worth noticing the relation of Eq. (1) to the trait 
formation processes in the literature.

Remark 1. The classical model of transmission of continuous traits by Cavalli-Sforza and Feld-
man [12] implies a trait formation process which can be rewritten similarly to Eq. (1) (when 
abstracting from a noise term): φi(t + 1) = σiiφi(t) + (1 − σii)φN(t), i.e. a child’s continuous 
trait is formed as a combination of its parent’s trait φi(t) and the average trait of the whole so-
ciety φN(t). For discrete traits, Bisin and Verdier [8] assume that parents have costly controls 
to influence σii . In a similar way, Vaughan [41] and Panebianco [38] endogenize the parental 
socialization weight σii for continuous traits. However, even with the assumption of imperfect 
empathy (Bisin and Verdier [7]), convergence to a homogeneous society is inevitable when traits 
are continuous which is shown in Appendix A (see also Panebianco [38]). Hence, the major re-
sult that under imperfect empathy persistence of discrete cultural traits holds does not generalize 
to continuous traits.

Observe that our model (cf. Eq. (1)) differs from the standard Cavalli-Sforza and Feldman 
[12] equation above with respect to two features: First, we relax the assumption that every child 
is socialized by exactly the same social environment, i.e. instead of the societal average (φd

N ), 
we consider individual averages (e.g. φd

Ni
). Second, we distinguish between true traits φi(t) and 

displayed traits φd
i (t). The latter is somewhat analogous to the costly controls considered in Bisin 

and Verdier [8], see also Remark 2.

As mentioned in Remark 1, we do not assume that every child is socialized by exactly the same 
social environment, but allow them to have different socialization weights on different members 
of the society. Consider an n ×n-matrix Σ , which describes a weighted, possibly directed, social 

9 A microeconomic foundation for this modeling assumption is given by the framework of Pichler [39], which we 
employ here without explicitly modeling socio-economic choices and their relation to traits.
10 See e.g. Grusec [25] for an introductory overview of theories on determinants of parental socialization success.
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network between the dynasties. In order to account for relative influences, we assume that Σ is 
a row stochastic matrix, that is σij ≥ 0 ∀i, j ∈ N , and 

∑
j∈N σij = 1 ∀i ∈ N . An entry σij repre-

sents the relative importance of adult j as a role model for child i. The social interaction matrix 
is assumed to be exogenous and its entries σij can be interpreted as resulting from the relative 
cognitive impact (of the socialization interactions), which can be based on interaction time or on 
differing pre-dispositions of the children for the social learning from others. A diagonal element 
of Σ is the parent’s weight σii on the own child’s socialization process. The elements off the 
diagonal σij are used to average over the neighbors’ displayed traits such that the representative 
displayed trait of child i’s social environment is given by: φd

Ni
(t) := ∑

j∈N\{i}
σij

1−σii
φd

j (t). These 

definitions allow us to restate the trait formation process Eq. (1) by φi(t + 1) = ∑
j∈N σijφ

d
j (t)

for all i ∈ N which can be written in the following concise form for the whole society:

Φ(t + 1) = ΣΦd(t). (2)

We assume that all individuals carry over the trait that has been formed in their child period 
into their adult period. In the adult period then, this adopted trait φi(t) guides socio-economic 
choices. Formally, an adult has to choose a displayed trait φd

i (t) ∈ I . We assume that this choice 
is evaluated with respect to two utility components: own utility and inter-generational utility, 
reflecting the fact that parents care about their own socio-economic choices as well as their chil-
dren’s adopted cultural traits. Let ui : I �→ R represent an adult’s own utility from the displayed 
trait φd

i (t) and let vi : I �→R represent the utility of an adult derived from its child’s adopted trait 
φi(t + 1), i.e. the inter-generational utility component. The following specifies the assumptions 
on each adult’s utility.

Assumption (Parental utility function). The utility for an adult i ∈ N , at time t ∈ N is given by

ui

(
φd

i (t)
∣∣φi(t)

) + vi

(
φi(t + 1)

∣∣φi(t)
)

(3)

with

1. ui(·|φi(t)) being single-peaked with peak φi(t), i.e. strictly increasing/decreasing ∀φd
i (t) ∈

I such that φd
i (t) < / > φi(t),

2. vi(·|φi(t)) being single-peaked with peak φi(t), i.e. strictly increasing/decreasing at all 
φi(t + 1) ∈ I such that φi(t + 1) < / > φi(t),

3. ui(·|φi(t)) and vi(·|φi(t)) being continuous, twice continuously differentiable, and strictly 
concave.

In part A1 we assume that own utility ui is decreasing in the difference of the displayed 
cultural trait from the actual or true cultural trait. This reflects the idea that it comes with utility 
loss when an adult’s socio-economic actions are not in line with the own (true) trait. Moreover, 
these dis-utilities are strictly increasing in the ‘extent of the deviation’.

Part A2 postulates that inter-generational utility vi is decreasing in the difference between the 
parent’s trait and the trait that its child forms. There are two basic motivations to consider this 
case. The first one is that parents simply have an intrinsic desire that their children develop a 
“personality” (trait) that is as similar as possible to their own personality. The second motivation 
is based on a special form of parental altruism, called imperfect empathy (Bisin and Verdier [7]). 
Parents care about the well-being of their children, but can only evaluate their child’s utility 
under their own (not the child’s) utility function – which attains its maximum at the trait of 
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the parent.11 Part A3 and the additive separability of the two utility components are technical 
assumptions which significantly reduce analytical complexity.

Remark 2. In Bisin and Verdier [8] parents have a general set of costly controls to influence the 
probability that the child learns their trait instead of learning the trait of a random individual. 
This “parental socialization success share” is fixed and exogenous in our baseline model and 
hence the socialization technology of parents is not targeted at the influence weight σii .12 Rather, 
parents can directly influence their children’s trait by choice of their displayed trait (e.g. behavior 
or socio-economic actions) in Eq. (1). While the interpretations are different, there is a natural 
analogy between both models: the costly choice of displayed traits in our model could well 
be one of the costly controls in Bisin and Verdier [8]; deviation of displayed traits in the right 
direction (cf. Proposition 1) influences the child’s adopted continuous trait, while increasing 
investments into the costly controls in Bisin and Verdier [8] influence the probabilistic analog, 
i.e. the probability to adopt the parents’ (discrete) trait. However, in our model there is a direct 
externality which is not present in Bisin and Verdier [8]: by choosing a displayed trait not only 
the own offspring is influenced, but also other connected dynasties.

2.2. The adults’ decisions

Summarizing the model developed in the previous section, the optimization problem of each 
adult i ∈ N becomes

max
φd

i (t)∈I
ui

(
φd

i (t)
∣∣φi(t)

) + vi

(
φi(t + 1)

∣∣φi(t)
)

s.t. φi(t + 1) = σiiφ
d
i (t) + (1 − σii)φ

d
Ni

(t), (4)

in any period t ∈ N. The optimization problem Eq. (4) embodies the trade-off between own 
utility losses, resulting from choices of displayed traits that do not coincide with the true trait, 
and eventual improvements in the location of the child’s adopted trait.

Solutions to the optimization problem are displayed traits, which are best replies to the rep-
resentative environment’s displayed trait φd

Ni
(t) subject to the own trait φi(t). Proposition 1

provides a characterization of the best replies, which we denote by φd∗
i (φi(t), φd

Ni
(t)), and later 

abbreviate as φd∗
i (t). Further, let ∂I be the boundary and I̊ the interior of interval I .

Proposition 1 (Characterization of best replies). For any adult i ∈ N , any trait φi(t) and any 
representative trait φd

Ni
(t), there is a unique best reply displayed trait φd∗

i (φi(t), φd
Ni

(t)) which 
satisfies the following properties:

11 There is a form of myopia in this line of interpretation: parents do not anticipate that their children might also 
behaviorally deviate from their trait. Another interpretation of our model is that not only adults but also children make 
socio-economic choices, while parents only consider the childhood choices of their children. Young individuals (without 
own children) simply make socio-economic choices to maximize only the own utility part u. These choices are evaluated 
by their parent’s inter-generational utility which is the equivalent as evaluating the associated trait. When children become 
adults and have their own children, the inter-generational utility component appears and to maximize their utility they 
will adjust their behavior since they care about their children. However, since their parents do not witness these adulthood 
choices anymore, this aspect does not enter their utility.
12 In Section 5.1 we discuss an extension of our model, where the extend of influence σii is determined as a choice 
variable of parents.
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(a) φd∗
i (φi(t), φd

Ni
(t)) = φi(t), if one of the following conditions is satisfied: σii ∈ {0, 1}, 

φd
Ni

(t) = φi(t), or φi(t) ∈ ∂I .

(b) Let σii ∈ (0, 1). Then φd∗
i (φi(t), φd

Ni
(t)) < φi(t) if and only if φd

Ni
(t) > φi(t) and φi(t) ∈ I̊ . 

(Analogously for φd
Ni

(t) < φi(t).)

(c) Let σii ∈ (0, 1) and consider two representative traits φd
Ni

(t), φ̃d
Ni

(t) such that one of the best 

replies φd∗
i (φi(t), φd

Ni
(t)) or φd∗

i (φi(t), φ̃d
Ni

(t)) is interior. Then

φd∗
i

(
φi(t), φ̃

d
Ni

(t)
)
> φd∗

i

(
φi(t), φ

d
Ni

(t)
)

if and only if φ̃d
Ni

(t) < φd
Ni

(t).

Proposition 1 qualitatively characterizes best reply displayed traits φd∗
i (t) in terms of their 

deviation from the adopted cultural trait φi(t), as well as the dependence of the former on the 
location of the representative displayed trait in the social environment φd

Ni
(t). Part (a) is imme-

diate. In the polar cases where either a parent has no influence on its child, i.e. σii = 0, or where 
the environment has no influence on the child, i.e. σii = 1, a parent will not deviate from its true 
trait, i.e. φd∗

i (t) = φi(t). Similarly, there is no incentive to deviate from the own trait, which is 
the target trait for the child, when the representative social environment φd

Ni
(t) coincides with 

it. In these cases we thus have φd∗
i (t) = φi(t). The third case of (a) occurs when φi(t) is at the 

boundary of the interval. Then any deviation of i would reduce both own and inter-generational 
utility, hence the individuals will also choose φd∗

i (t) = φi(t).
Proposition 1 part (b) shows that in the other, more generic cases, parents countervail the 

respective socialization influence on their children by choosing a displayed trait that deviates 
from their true trait. This deviation is always into the opposite direction as the deviation of 
the representative displayed trait from the target trait. As an example, consider parents who 
attach higher importance to religion than their local environment does. In order to avoid that 
their children’s value of religion is being diluted, they will behave even more religiously, e.g. go 
more often to church, than they would without having children. The opposite effect would obtain 
for secular parents in a traditional environment.

Part (c) of Proposition 1 implies that for two displayed traits in the social environment 
φ̃d

Ni
(t) < φd

Ni
(t) < φi(t), we have φd∗

i (t)(φi(t), φ̃d
Ni

(t)) > φd∗
i (t)(φi(t), φd

Ni
(t)). In other words, 

a parent’s deviation, i.e. the distance of displayed trait from true trait, is increasing in the distance 
between its trait and the representative environment’s trait. To give an interpretation, we note that 
the distance of the chosen displayed trait from the true trait measures socialization investments 
since it corresponds to the own disutility a parent accepts in order to generate inter-generational 
utility. Thus, part (c) of Proposition 1 establishes a property of cultural substitution between di-
rect and oblique socialization, showing that socialization investments are higher, the more distant 
(in terms of weighted average) the displayed trait in the local environment is.13

Part (b) and part (c) of Proposition 1 are illustrated in Fig. 1, where two best reply choices are 
depicted. Part (b) concerns the direction of the deviation of displayed trait φd∗

i (t), respectively 
φ̃d∗

i (t), from true trait φi(t). Part (c) concerns the degree of deviation, which is larger in response 
to φ̃d

Ni
(t) (on the right) than in response to φd

Ni
(t) (on the left).

13 This corresponds to the Bisin and Verdier [8] condition of cultural substitution in a setting of dichotomous traits. That 
condition states that a parent’s investment into costly controls is higher the larger the share of adults in the population 
which have a different cultural trait. Here, we can measure the distance between own (true) trait and the weighted average 
displayed traits of neighbors and find that investments into behavioral deviations are higher the larger this distance.
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Fig. 1. Characterization of best replies.

We have characterized a parent’s best reply to the representative displayed trait of its social 
environment. To study the dynamics of cultural transmission of continuous traits, we will assume 
that every adult plays a best reply to the displayed trait choices of its neighbors. Hence, we 
assume that a Nash equilibrium is played in every period. Our previous assumptions guarantee 
existence of Nash equilibrium which is shown using standard techniques.

Proposition 2 (Nash equilibrium existence). For every t ∈ N, a Nash equilibrium in displayed 
trait choices exists. Denote this Φd∗

(t) := (φd∗
1 (t), . . . , φd∗

n (t))′.

Proof. In Appendix B.2. �
3. Two dynasties

To point out how the dynamics of cultural traits unfold and how the dynasties interact, we first 
discuss the case when there are only two such dynasties, N = {1, 2}. Consider the optimization 
problem given by Eq. (4) such that Assumptions A1–A3 hold. Even with this rather general 
functional form, the main intuition of the dynamics and the differences to the discrete traits case 
of Bisin and Verdier [8] can be observed.

Let φ1(t) < φ2(t) at some point in time t ∈ N. If the degree of risk aversion is the considered 
trait, then this has the interpretation that the parent in family 1 is less risk averse than the parent in 
family 2. By Eq. (1) the children’s adopted traits φ1(t + 1) and φ2(t + 1) depend on parents’ best 
replies of displayed traits in equilibrium such that φ1(t + 1) = σ11φ

d∗
1 (t) + (1 − σ11)φ

d∗
2 (t) and 

φ2(t + 1) = (1 − σ22)φ
d∗
1 (t) + σ22φ

d∗
2 (t). From Proposition 1 we have that the displayed traits 

given by the best replies are more “extreme” than the true traits, i.e. φd∗
1 (t) ≤ φ1(t) < φ2(t) ≤

φd∗
2 (t), since the parents of generation t are investing to countervail the other family’s influence 

on their own child. In the context of risk, this would mean that the parent in family 1 observes 
that its child is also influenced by family 2 who behaves more risk averse. Hence, the parent 
in family 1 would take socio-economic actions which display a low degree of risk aversion (by 
taking gambles, etc.) since the parent wants the child to take chances in life and not to be hesitant. 
In a similar way, the parent of family 2 would choose even less risky actions to countervail family 
1’s influence.
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Fig. 2. Dynamics of traits φ1(t) (solid black) and φ2(t) (solid red) and of displayed traits φd∗
1 (t) (dashed black) and 

φd∗
2 (t) (dashed red) for different values of parental socialization weight σ11 and σ22. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.)

These observations, which are based on Eq. (1) and Proposition 1, immediately yield the 
condition for child 2 to have a stronger trait intensity than child 1 such as it is the case for their 
parents:

φ1(t + 1) ≤ (<)φ2(t + 1) ⇔ 1 ≤ (<)σ11 + σ22. (5)

Thus, the relative positions of the adopted traits of the two dynasties will stay the same if and only 
if σ11 + σ22 ≥ 1. This condition is always satisfied if children are more influenced by their own 
parents than by the other dynasty, i.e. σii ≥ 1

2 for i = 1, 2. In an extreme example, both children 
are only influenced by their own parents, i.e. σii = 1 for i = 1, 2; then dynamics are trivial since 
each child becomes a copy of its parent whose displayed trait equals the true trait. Otherwise, it 
always holds that φ1(t + 1) ∈ (φ1(t), φd∗

2 (t)) and φ2(t + 1) ∈ (φd∗
1 (t), φ2(t)), yielding dynamics 

such that the traits of the two families converge towards each other if σ11 + σ22 > 1. In that case 
we speak of smooth convergence since relative positions are maintained throughout the process. 
In the context of risk aversion this means that family 1 is less risk averse than family 2 at any point 
in time if children are more influenced by their own parents than by the other family. However, at 
each time step the families become more and more similar. Examples of smooth convergence are 
depicted in Figs. 2a and 2b where the dynamics of true and displayed traits are shown. Hence in 
this two-player case we observe assimilation and convergence to a homogeneous society although 
relative positions (e.g. lower degree of risk aversion of family 1) are persistent.

If instead σ11 + σ22 = 1 then by Eq. (5) both families’ cultural traits coincide in t + 1 and 
hence by Proposition 1 will coincide in all following periods. Thus, after one period the dynamics 
of cultural traits converge, which we call one-step convergence. This is presented in Fig. 2c. 
Essentially, this means that the children of both families take the same weighted average over 
both families’ displayed trait.

Finally, if σ11 + σ22 < 1 then by Eq. (5), relative positions of traits switch in each period 
t ∈ N, i.e. sign(φ2(t + 1) − φ1(t + 1)) = − sign(φ2(t) − φ1(t)) yielding alternating dynamics. 
These dynamics may still converge, as long as σ11 + σ22 is large enough, but they may also 
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diverge. Figs. 2d–2f display these dynamics for decreasing values of σ11 + σ22. While the dy-
namics of Figs. 2d and 2e converge, divergence is obtained in Fig. 2f. Taking again risk aversion 
as an example, this means that the children (or: at least one of them) are more influenced by the 
other family than by the own family. Since both families exercise more extreme risk attitudes, 
this fact may actually lead to divergence. In our framework it may be counterintuitive to observe 
dynamics of cultural traits where relative positions switch each generation. However, these dy-
namics are induced by the hypothetical assumption that parental socialization weights are very 
low. In the two-dynasty case low parental socialization weights means that at least one child is 
more influenced by parents of the other family than by the own parents. Dohmen et al. [18], 
however, present evidence that a child’s cultural trait is more influenced by own parents than 
the social environment. Thus, the counterintuitive dynamics are induced by rather unrealistic 
assumptions.

To summarize, note that in the two-dynasty case for σ11 + σ22 ≥ 1, we always obtain conver-
gence to a melting pot society, i.e. to a homogeneous cultural trait (if σ11+σ22 < 2). Convergence 
to one cultural trait seems to be a common feature when modeling continuous traits, see also 
Vaughan [41] and Panebianco [38]. Instead, in the models of discrete traits, children adopt either 
one of two traits even though there may be influences from the other trait. Thus, discrete models 
of transmission of cultural traits are more prone to result in persistence of heterogeneous traits. 
Although this empirical feature is harder to obtain when modeling cultural traits by a continu-
ous variable, this modeling approach allows us for predictions about which cultural traits will 
emerge; e.g. with the conditions above (large parental influence, σ11 + σ22 ≥ 1) it can be already 
observed that relative positions are persistent and that the society will converge to a convex com-
bination of initial cultural traits. There is, however, an alternative explanation for the persistence 
of cultural traits: relative positions are persistent and convergence may be very slow.14

4. Dynamics of cultural traits

We now turn to the n-dynasty case, where we first characterize steady states, then derive 
conditions for the convergence of traits, and finally discuss persistence.

4.1. The social network and steady states

When allowing for more than two families, it is not only the parental socialization weights 
that matter, but the distinct relationships σij between all dynasties i, j ∈ N play a role.15 Thus, 
the structure of interaction, or expressed differently, the whole network Σ is needed to iden-
tify convergence conditions of cultural traits and determine which groups form homogeneous 
traits.

It will be helpful to introduce some network specific notation. We say that there exists a con-
nection from i to j in Σ , denoted by i → j , if there exists a k ∈ {1, ..., n} such that (Σij )

k > 0. 
Two dynasties communicate, denoted by i ∼ j , if i → j and j → i. A dynasty i is self-

14 This explanation is also evident since there seems to be a discontinuity when σ11 = σ22 = 1 where persistent hetero-
geneous traits emerge. To see that this is not really a discontinuity, we may decrease one σii slightly by ε which yields 
convergence to homogeneous traits, but this convergence becomes “infinitely” slow if ε → 0.
15 The two-dynasty case can also be considered as a social network where all distinct relationships matter. This network, 
however, is fully determined by the diagonal entries of the corresponding matrix, i.e. the parents’ socialization weights, 
since σij = 1 − σii , i = j .
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Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8 0.2 0 0 0 0 0

0.3 0.7 0 0 0 0 0

0 0 1 0 0 0 0

0.3 0 0 0.7 0 0 0

0 0.1 0 0.2 0.4 0 0.3

0 0 0 0.1 0.1 0.5 0.3

0 0 0.3 0 0.2 0.1 0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3. The network Σ in matrix notation and the associated graph.

communicating if i → i which is implied by σii > 0. We will assume throughout this section that 
every child is at least to some extent influenced by its parent, i.e. σii > 0 for all i ∈ N . Trivially, 
∼ defines an equivalence relation on the set N which can, hence, be partitioned into equiva-
lence classes P(Σ) = {L1, ..., Lp}, called self-communicating classes such that we have i ∼ j

if and only if there exists an L ∈ P(Σ) such that i, j ∈ L. A communication class L ∈ P(Σ) is 
called essential if for all i ∈ L there does not exist a j /∈ L such that i → j . A communication 
class is called inessential if it is not essential.16 We will also refer to members of inessential 
communication classes as rest of the world.

Before presenting analytical results, we consider the following example to illustrate main 
differences to the two-dynasty case and to clarify the network specific notions introduced above.

Example 1. Suppose there are seven dynasties N = {1, 2, 3, 4, 5, 6, 7} such that the relative in-
fluences σij are given by the weighted network Σ defined and presented in Fig. 3. In the depicted 
graph, a directed arc from i to j means that i is directly influenced by j , i.e. σij > 0.

The dynasties 1 and 2 are only influenced by one another, family 3 is somewhat isolated since 
there is no influence from other families. Family 4 is only influenced by family 1 and itself. There 
is a connection between all other dynasties 5, 6, and 7 and some of them are also influenced by 
the families 1, 2, and 3. Thus, the set of dynasties in this example can be partitioned into four 
communication classes P(Σ) = {L1, L2, L3, L4} such that L1 = {1, 2}, L2 = {3}, L3 = {4}, and 
L4 = {5, 6, 7}. L1 and L2 are essential since they are not influenced by any other dynasty. The 
remaining communication classes are inessential, which we also call the rest of the world.

An example for the dynamics in this society is presented in Fig. 4, where initial trait inten-
sities are Φ(0) = (110, 90, 0, 130, 20, 120, 0)′. The dynamics of cultural traits within essential 
communication classes, in this case L1 = {1, 2} and L2 = {3}, are independent of the dynamics 
of other cultural traits since those families are not influenced by any other family. In particular, 
smooth convergence of the cultural traits in L1 = {1, 2} can be observed since σ11 + σ22 > 1 (cf. 
Section 3). Since dynasty 3 forms a singleton essential communication class, it will keep its cul-
tural trait φ3(t) = 0 forever (cf. Proposition 1). Although this dynasty is isolated in some sense, 
it is influential for other dynasties. Within the rest of the world, i.e. L3 and L4, convergence to 
heterogeneous traits can be observed. Note that in the long run, the cultural traits of dynasties in 
the rest of the world, L3 and L4, are in the convex hull of the long-run cultural traits of the essen-
tial communication classes, L1 and L2, although in period 0 this is not the case. Since dynasty 
4 forms the singleton inessential communication class L3 which is only influenced by family 1, 

16 In network theory essential communication classes are called strongly connected and closed groups.
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Fig. 4. Dynamics of cultural traits φ1(t) (black), φ2(t) (black), φ3(t) (red), φ4(t) (blue), φ5(t) (green), φ6(t) (yellow) 
and φ7(t) (purple). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

its cultural trait converges to the trait of the essential communication class L1 = {1, 2}. All other 
families’ cultural traits converge to traits which are a true and heterogeneous “mixture” of the 
long-run traits in the essential communication classes L1 and L2.

Several differences to the two-dynasty case can hence be observed in Example 1: (a) the 
interaction structure induces a partition of the society into certain communication classes and 
(b) heterogeneous traits may coexist in the long run across these groups and within the rest of 
the world although within essential communication classes convergence to homogeneous traits 
is obtained.17 These observations can be generalized to any steady state of the dynamics.

Proposition 3 (Steady states). Define a steady state as a profile of traits Φ(t) ∈ In such that 
Φ(t + 1) = Φ(t). Then the following holds in any steady state Φ(t):

(a) Φ(t) = Φd∗
(t), i.e. parents choose displayed traits equal to their traits.

(b) The cultural traits of the dynasties in an essential communication class L ∈P(Σ) coincide, 
i.e. φi(t) = φj (t) ∀i, j ∈ L.

(c) The cultural traits of the dynasties in an inessential communication class L′ ∈ P(Σ) are 
convex combinations of the cultural traits of the communication classes L ∈P(Σ) such that 
L′ → L.

Proof. In Appendix B.3. �
17 These features are well-known in the standard DeGroot model. The notable observation here is the extension of the 
result to our more general model and its interpretation for cultural traits.
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To see that part (a) must hold, note that per definition, in any steady state, the children adopt 
the same cultural traits as their parents have. By Eq. (1) this implies that each parent’s displayed 
trait must coincide with the environment’s displayed trait (for σii ∈ (0, 1)) or that parents have 
either full or no influence on their child (σii ∈ {0, 1}). In each of these cases, parents behave as 
they are (see Proposition 1, part (a)). Hence, if two families are connected, they must share the 
same cultural trait in a steady state, which implies (b). Thus, (c) also holds since the inessential 
communication classes are influenced by the essential communication classes but not vice versa.

4.2. Convergence

Given this steady state description, it now remains to derive conditions under which the se-
quence of cultural traits actually converges to such a rest point. Even though in Example 1 the 
cultural traits converge, this is not always the case as shown in Section 3. To determine conditions 
for long-run convergence and to disentangle the effects of the social network and the effects of 
increasing importance of the inter-generational utility component, we will assume that both ui

and vi are quadratic loss functions. We show in Appendix C that similar convergence conditions 
are required when utility is more general such that only Assumptions A1–A3 hold. Thus, let the 
own utility component be given by

ui

(
φd

i (t)
∣∣φi(t)

) := −αi

(
φd

i (t) − φi(t)
)2 (6)

and the inter-generational utility component be given by

vi

(
φi(t + 1)

∣∣φi(t)
) = −βi

(
φi(t + 1) − φi(t)

)2 (7)

with αi, βi > 0 for all i ∈ N . These functional forms obviously satisfy Assumptions A1–A3. 
The parameter αi captures the costs of deviating from true trait. The parameter βi measures the 
strength of socialization incentives, i.e. the degree of imperfect empathy (because the larger βi , 
the more an adult i ∈ N wants to raise its child according to its values). These parameters are 
implicitly captured in the more general form of the objective function in Eq. (3). Without loss 
of generality, we normalize αi ≡ 1 such that βi represents the importance of inter-generational 
utility relative to own utility. For simplicity, we additionally assume that the space of the possible 
trait intensities is unbounded, i.e. I =R.

Then, the parents i ∈ N face the unrestricted optimization problems in every period t ∈ N,

min
φd

i (t)∈R
(
φd

i (t) − φi(t)
)2 + βi

(
φi(t + 1) − φi(t)

)2 (8)

such that φi(t + 1) is given by Eq. (2). With quadratic utilities, the displayed traits given by 
parents’ best replies φd∗

i (t) are linear and can be calculated in the unique Nash equilibrium to be 
Φd∗

(t) = (I + BΣ)−1(I + B)Φ(t) where I is the n × n identity matrix and B is the diagonal 
matrix with entry βiσii in its i-th row.18 Since by Eq. (2) we have Φ(t + 1) = ΣΦd∗

(t), the law 
of motion of the dynamics is also linear with Φ(t +1) = MΦ(t) where the matrix M is given by,

18 Solving the first order conditions implies 0 = ∂ui

∂φd
i

+ ∂vi

∂φd
i

= (φd∗
i

(t) − φi(t)) − σiiβi (φi (t) − φ∗
i
(t + 1)) for all 

i ∈ N . Since in equilibrium all parents choose best replies, we have (I + B)Φ(t) = BΦ(t + 1) + Φd∗
(t). That I + BΣ

is invertible can be ensured by assuming e.g. that Σ is symmetric positive definite. To see this note that I + BΣ and 
I + B

1
2 ΣB

1
2 have the same eigenvalues. Now if Σ is symmetric, B

1
2 ΣB

1
2 is also symmetric and if Σ is positive 

semidefinite and B ≥ 0, B
1
2 ΣB

1
2 is positive semidefinite. Thus, BΣ has non-negative and real eigenvalues which 

implies that all eigenvalues of I + BΣ are non-zero, thus I + BΣ is invertible. Substituting Φ(t + 1) = ΣΦd∗
(t)

implies the result.
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M := Σ(I + BΣ)−1(I + B), (9)

and finally

Φ(t) = MtΦ(0).

Thus, in the quadratic utility case, the dynamics can be fully explained by the sequence Mt . 
Since conditions for convergence of such a dynamic process are well known, we can trace those 
back to the exogenous determinants of the matrix M . These are the social network Σ and the 
socialization incentives βi . Thus, by focusing on the quadratic utility case, we are in a position 
to study the effects of these two parameters on the dynamics of cultural trait intensities.

In the two-dynasty case we observed that the influence weight of own parents, i.e. the diagonal 
of the matrix Σ , needs to be large enough in order to ensure convergence to a steady state. This 
fact generalizes to the n-dynasty case as Proposition 4 shows.

Proposition 4 (Convergence I). Let the parental optimization problems given by Eq. (8). Then, 
the following holds.

(a) If Σ is symmetric positive definite, then for every β ∈ R
n+, limt→∞ MtΦ(0) exists and is a 

steady state (for Φ(0) arbitrary).
(b) If for some eigenvalue λ of a non-singular Σ we have Re(λ) < |λ|2,19 then there is a β ∈

R
n+ such that the spectral radius of M is strictly larger than 1. Thus, for generic Φ(0) the 

sequence {Φ∗(t) = MtΦ(0)}t→∞ does not converge.

Proof. In Appendix B.4. �
Proposition 4 (a) shows that symmetric positive definiteness of the social network is sufficient 

for convergence. As the proof reveals, this condition guarantees that all eigenvalues of M are real 
and located in the interval (0, 1], which implies a kind of smooth convergence (cf. Section 3). 
In particular, the interval formed by the convex hull of trait intensities of the current period is 
contained in that of the former period which drives the convergence result of Proposition 4. 
Therefore, all long term traits are contained in the convex hull of the initial traits Φ(0). For a 
symmetric matrix Σ , a sufficient condition for positive definiteness is that it is strictly diagonally 
dominant, i.e. ∀i ∈ N : σii > 1

2 . Hence, we get a direct generalization of the two-dynasty result: 
if parents’ influence on their children is larger than the environment’s (together with symmetric 
interaction weights), then the dynamics converges to a steady state. In other words, the dynamics 
of cultural traits converge as long as the parental socialization weights σii are large enough. 
Instances of non-convergence, as seen in Section 3, always go along with alternating dynamics, 
a fact that requires (when socialization weights are symmetric) low influence of own parents, an 
unrealistic assumption.

The idea that high parental influence and symmetric interaction weights ensure convergence 
can also be generalized to more generic functional forms of utility such that our Assump-
tions A1–A3 hold. However, one additional condition on the social network is required: no 
individual dynasty should have excessive influence on others (see Appendix C, Definition 1(iii)). 
This robustness result is presented in Appendix C.

19 Re(λ) means the real part of eigenvalue λ.
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Part (b) of Proposition 4 addresses matrices that are not symmetric positive definite and states 
the following necessary condition for convergence (subject to any β): Re(λ) ≥ |λ|2 for any eigen-
value λ of the matrix Σ , i.e. the real part of each eigenvalue is larger than the squared absolute 
value of this eigenvalue. To see how both conditions (necessary and sufficient) relate, let Σ be 
symmetric. Then, the property Re(λ) ≥ |λ|2 simplifies to λ ≥ λ2 and thus to λ ∈ [0, 1] since 
symmetric matrices only have real eigenvalues. Thus, for symmetric and non-singular social 
networks Σ both conditions coincide. Therefore, we get the following corollary for symmetric 
and non-singular interaction structures Σ : Cultural traits converge if and only if Σ is positive 
definite.

In the proof of the necessity part of Proposition 4 it is used that large degrees of imperfect 
empathy βi will lead to divergence if the eigenvalue condition is not satisfied. Hence, if the inter-
generational utility part receives high weight βi in the utility function, then this is detrimental 
for convergence. As has been mentioned above, the present special case of quadratic utilities is 
basically a transformation of the DeGroot model. Given that convergence is satisfied in the latter 
for all aperiodic Σ , it is intuitive that we also obtain convergence if the transformation to M (as 
induced by the parental socialization incentives, which are embodied in the βi’s) is small enough. 
This is confirmed as follows.

Proposition 5 (Convergence II). Let the parental optimization problems be as in Eq. (8). Then, 
for every irreducible Σ with strictly positive diagonal, there exists a nonempty neighborhood 
N(0|Σ.) ⊂ R

n+,20 such that ∀β ∈ N(0|Σ) ∪ 0, cultural traits in the society Φ(t) converge (for 
Φ(0) arbitrary).

Proof. In Appendix B.5. �
In the proof of this Proposition, we show first that if Σ has a strictly positive diagonal, then it 

has a simple Perron–Frobenius eigenvalue of 1 where the absolute value of all other eigenvalues 
is located in the interval (0, 1). Now, the eigenvalues are continuous in the underlying matrices. 
Thus, it must be possible to at least slightly perturb Σ such that the resulting matrix M also has a 
unique eigenvalue 1 with the absolute value of all other eigenvalues in the interval (0, 1). Hence, 
Mt converges. Notably, this holds even though M might have negative entries.

To summarize, convergence of cultural traits is implied either by small socialization incen-
tives βi or by special structures of the matrix Σ , which means here that socialization weights 
are symmetric σij = σji and parents’ socialization weights σii are large enough. Conversely, it 
takes both a different network structure (implied by unrealistic assumptions) and strong enough 
socialization incentives to obtain non-convergence.

4.3. Persistence of cultural traits

In our model, convergence to a steady state implies that dynasties in essential communication 
classes converge to the same trait. Hence, the empirically observed phenomenon of persistence 
of cultural traits can be represented in our model in two ways.

The first has been indicated in Example 1. Suppose that most families belong to the rest of 
the world. Then as shown in Example 1 those families end up with heterogeneous traits in the 

20 N(0|Σ.) means that the size of the neighborhood around β = 0 depends on Σ .
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long-run even if they belong to one communication class, which is inessential. The following 
example illustrates how this argument applies to the case of immigration.

Example 2 (Immigration). Consider a set of immigrants who have moved from some country 
B to another country A. Within both countries there is interaction between residents. Moreover, 
immigrants keep some ties to their origin country. As an example, suppose the network struc-
ture Σ is such that P(Σ) = {L1, L2, L3, L4} where L1 and L2 are essential communication 
classes from country A and B , respectively. We interpret these as the leading culture of each 
country. For instance, these communication classes may consist of a group of dynasties who are 
only influenced by the cultural trait of their respective home country. L3 and L4 are inessential 
communication classes of residents in Country A such that the immigrants are represented by 
I ⊂ L4. In period t = 0 the immigrants arrive in Country A with a cultural trait close to their 
home country’s leading cultural trait and find some interaction with natives from Country A in 
L4 and other immigrants I ⊂ L4.

One instance of such a network is given in Example 1. In this example, let there be one 
immigrant represented by dynasty 7. The immigrant’s home country B , which is given by a single 
representative dynasty 3 in Example 1, has a leading cultural trait intensity of 0. In Country A, 
the leading culture is represented by the two dynasties in the essential communication class L1
with a cultural trait intensity close to 100. From Example 1 it is straightforward to see that the 
immigrating dynasty 7 assimilates over time, but differences in traits are persistent, even in the 
long run (cf. Fig. 4). This is due to the fact that in this example, influence by the immigrant’s 
origin, country B , is still present. Aleksynska [1] reports a similar phenomenon when immigrants 
maintain contacts to the origin country. Moreover, as it can also be seen from Fig. 4, this fact 
also leads several natives to adopt a different cultural trait such that multiple heterogeneous traits 
persist in the long run.

Thus, the first explanation for persistence of cultural traits in our model is based on het-
erogeneous network connections. The second explanation for persistence of cultural traits was 
indicated in the discussion of the two-dynasty case. Even if the society converges to a homo-
geneous trait intensity, relative positions of cultural trait intensities are prevailing, although the 
difference vanishes over time. This process might be sufficiently slow to conclude empirically 
that heterogeneous traits persist.21 Note that in Bisin and Verdier [8], the assumption of imper-
fect empathy ensures persistence of heterogeneous cultural traits in the long run. In our model 
of continuous traits, the assumption of imperfect empathy may have an effect for the speed of 
convergence.

As a benchmark, consider the case where parents do not care about the cultural trait of 
their children, i.e. where βi = 0 for every parent i ∈ N . Mathematically, the dynamics in the 
benchmark case are governed by the power series of Σt , while the dynamics of our model 
with quadratic utilities are governed by Mt , since Φ(t + 1) = MtΦ(t) and M = Σ if βi = 0
for any i ∈ N . Thus, the spectral properties of both matrices not only determine convergence 
conditions but also determine the speed of convergence. Since both matrices Σ and M have 
1 as the largest eigenvalue (see Proposition 4), convergence speed is governed by the sec-
ond largest eigenvalue. Let the eigenvalues of Σ and M be ordered according to size, i.e. 

21 Such an interpretation of persistence is recently also adopted in empirical literature (see e.g. Giavazzi et al. [23]). 
In fact, Giavazzi et al. [23] present evidence that assimilation of immigrant traits is observed, but speed of convergence 
depends on the trait under consideration.



292 B. Buechel et al. / Journal of Economic Theory 154 (2014) 274–309
|λ1(Σ)| > |λ2(Σ)| ≥ ... ≥ |λK(Σ)| and |λ1(M)| > |λ2(M)| ≥ ... ≥ |λK(M)|, such that mul-
tiple eigenvalues may occur.22 Then convergence of Mt is slower than convergence of Σt if 
|λ2(M)| > |λ2(Σ)|, which indeed holds, as is established by the following proposition.

Proposition 6 (Speed of convergence). Let the parental optimization problems be as in Eq. (8). 
If Σ is symmetric positive definite and βi > 0 for all i ∈ N , then the eigenvalues of M (which 
are real and positive) satisfy: λk(M) > λk(Σ) for all 2 ≤ k ≤ K . Thus, socialization incentives 
β reduce the speed at which traits Φ(t) converge for t → ∞. Moreover, λk(M) → 1 for all 
k = 1, ..., K if βi → ∞ for all i ∈ N . That is, for large socialization incentives β convergence of 
traits becomes arbitrarily slow.

Proof. In Appendix B.6. �
To interpret Proposition 6, note that zero socialization incentives, i.e. βi = 0 for all i ∈ N , 

imply that displayed traits always coincide with true traits. Thus, Proposition 6 first shows that 
parents’ behavioral deviations from true trait slow down convergence. Second, if the socialization 
incentives βi grow for all i ∈ N , then the eigenvalues of M approach 1. This means that all 
families invest more and more to keep their cultural trait and the change of cultural traits from one 
generation to the next becomes arbitrarily small. Thus, an arbitrarily low speed of convergence 
obtains.

To summarize, we find that high parents’ influence on own children σii facilitates convergence 
since alternating dynamics are avoided, while higher values of socialization incentives βi lead 
to higher behavioral overshooting and hence to slower convergence. In case of convergence, 
families within essential communication classes reach the same cultural trait in the long run, 
while heterogeneity is obtained across essential communication classes and within the rest of the 
world. In any case of convergence, the long-run traits are contained in the interval of the initial 
cultural traits.

5. Discussion

5.1. Possible extensions

Throughout the analysis we assumed that the social network does not change over time. This 
assumption, which is also used in most models on opinion dynamics, is made for analytical 
tractability and yields a benchmark case. While, trivially, our convergence results are robust to 
small vanishing perturbations on the interaction structure, it would be interesting to study the 
dynamics of traits when the network structure itself is endogenous. In this section, we want to 
discuss briefly how our model may be extended in this direction.

First, suppose that parents do not only choose their displayed trait, but are also able to control 
how much they influence their own children. Higher influence can be achieved by e.g. spending 
more time with their children, thereby limiting interactions with other members of the society 
(extreme cases could include home-schooling of children). Increasing the influence on own chil-
dren requires higher efforts and is, hence, more costly. These ideas are in line with the literature 

22 Note that for irreducible matrices Σ and M there is always a unique largest eigenvalue. With our assumptions in 
Proposition 6 we even show that all eigenvalues of both Σ and M are real and positive, and thus all inequalities are strict 
and the eigenvalues equal their absolute values.
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on cultural traits (cf. e.g. Bisin and Verdier [8]) where the socialization efforts of parents directly 
translate into a higher probability of learning the own trait. These socialization efforts do not 
imply a direct externality on others in contrast to the case of choosing behavior.

If the time devoted to children is the only variable of choice, then this leads to trivial dynam-
ics as noted in Remark 1 (cf. also Panebianco [38]). Hence, as an extension of our model we 
briefly outline a model where parents choose their behavior and their time spent with children as 
socialization instruments while keeping the relative interaction with others unchanged. In other 
words, when being influenced more by their parents than before, the influence of other families 
in the society decreases proportionally.

Thus, as in the baseline model, let the network be exogenously given by Σ . In each period 
t ∈ N parents i ∈ N may choose efforts xi(t) ≥ 0 to increase the influence on their child from the 
given socialization endowments σii to σii+xi (t)

1+xi (t)
.23 By this modeling choice, influence is concave 

in efforts xi(t) and approaches 1 for arbitrarily large efforts. The influences of other families 
j = i decrease proportionally and are hence given by σij

1+xi (t)
. Then, analogously to our baseline 

model (see Eq. (2)), children would learn from the displayed traits of others according to the 
adjusted learning weights such that the adopted trait will result from:

φi(t + 1) = σii + xi(t)

1 + xi(t)
φd

i (t) +
∑
j =i

σij

1 + xi(t)
φd

j (t). (10)

Considering, as before, quadratic utility, and, moreover, quadratic cost of effort, this yields the 
following optimization problem of parents:

min
(φd

i (t),xi (t))∈R×R+

(
φd

i (t) − φi(t)
)2 + βi

(
φi(t + 1) − φi(t)

)2 + γi

(
xi(t)

)2 (11)

such that φi(t + 1) is given by Eq. (10). As before, βi denotes the degree of imperfect empathy, 
while γi denotes the cost of effort (both relative to the cost of behavioral deviation which is 
normalized to 1).

Analogously to the analysis presented in this paper, the properties of Proposition 1 still hold 
in equilibrium, denoted by (Φd∗

(t), x∗(t)). Additionally, we always have x∗
i (t) > 0 if φi(t) =

φd∗
Ni

and σii < 1 (similar to the reasoning in Proposition 1). Note here that with the adjusted 

weights, the representative displayed trait φd∗
Ni

= ∑
j =i

σij

(1+x∗
i )(1− σii+x∗

i
1+x∗

i
)

φd∗
j = ∑

j =i

σij

1−σii
φd∗

j is 

still defined as before.
Now, let φi(t) = φd∗

Ni
. The FOCs imply

(φd∗
i (t) − φi(t))

(φi(t) − φd∗
Ni

(t))
= βi(σii + x∗

i (t))(1 − σii)

(1 + x∗
i (t))2 + βi(σii + x∗

i (t))2
. (12)

The right-hand side of Eq. (12) is decreasing in x∗
i (t) for all x∗

i (t) ∈ R+ and all 1/2 ≤ σii . This 
implies that, faced with the same φd∗

Ni
as in the baseline model, each family will choose a less 

extreme behavioral deviation than before.

23 As in the literature (see also Appendix A), it is also possible to assume that spending no effort implies no influence 
of children, i.e. socialization endowments are given by σii = 0. Here we present a slightly more general approach.
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To sketch the resulting dynamics briefly, let us consider the case of two dynasties with suf-
ficiently large parental socialization endowments, σii ≥ 1/2. To compare these dynamics to our 
baseline model, we denote the original choices and outcomes by a hat, i.e. φ̂d∗

i (t) represents the 
best reply displayed trait of player i, when this is the only variable of choice, i.e. xi(t) = 0. As in 
the two-dynasty case in Section 3, let φ1(t) < φ2(t). By the reasoning above, we have again that 
the best replies in displayed traits are such that φd∗

1 (t) < φ1(t) < φ2(t) < φd∗
2 (t). From Eq. (12)

it is then immediate that for σ11, σ22 ≥ 1/2, we get φ̂d∗
1 (t) < φd∗

1 (t) and φd∗
2 (t) < φ̂d∗

2 (t) which 
implies φ1(t) < φ1(t + 1) < φ2(t + 1) < φ2(t). Thus relative positions are preserved, implying 
smooth convergence. Further, we also have |φi(t + 1) − φi(t)| < |φ̂i (t + 1) − φi(t)|, i.e. parents 
will achieve that their children’s traits are closer to their own than in the original model. This 
holds since each dynasty is faced with a less extreme behavior of the other dynasty than in the 
original model, coupled with the fact that dynasties have a richer choice set.

To sum up, by introducing direct socialization efforts into our model, we still get convergence 
when parents are the primary socialization source, but convergence obtains at a lower speed. We 
conjecture that these observations also extend to the n-dynasty case for the following reasons: 
first, convergence is reinforced since behavior is less extreme and the diagonal is larger (recall 
that for all positive definite interaction structures we established convergence). Second, we expect 
convergence to be slower for the exact same reason, i.e. parents invest more into socialization 
since they have an additional socialization instrument available. Thus, persistence of cultural 
traits in relative positions and in terms of slow convergence is strengthened when parents can 
control their influence on their children. Moreover, being the primary socialization source, may 
be achieved not only by the requirement that the socialization endowment σii is large enough, 
but also by low enough effort costs. Both these conditions ensure the parental influence to be 
large enough in equilibrium which may result in less demanding convergence conditions on 
the interaction structure. Technically, however, the dynamics result in a time-inhomogeneous 
product of matrices which may contain also negative entries. In Appendix C, we show how to 
handle such time-inhomogeneous law of motions. The assumptions on the interaction structure 
(requiring a symmetric ultrametric structure) are, however, more demanding than necessary when 
applied to the setting of endogenous efforts. Hence, we leave the details of this analysis to future 
research.

Another very interesting approach of introducing a time-varying interaction structure is to 
allow parents to control the whole network of their children. This could be achieved by mov-
ing to a certain neighborhood, or choosing a particular school for their children. Compared to 
determining the own influence, these network choices, however, have also implications for the 
following generations’ networks, since it seems reasonable to assume that the network is passed 
over to the next generation. Deviating from the inherited network should be costly depending 
e.g. on some distance measure. Under these assumptions a co-evolution of network and traits 
can be studied which may as well yield separation and persistence of heterogeneous traits in the 
long-run. While analytically challenging, such a type of model deserves extensive investigation 
in future research.

Moreover, we assumed throughout the present paper that the adopted trait has no effect on 
an individual’s wealth. If such effects are considered, then additional incentives arise which feed 
back to the trait formation process (see, e.g., Doepke and Zilibotti [17]). Hence, it would be 
ultimately desirable to understand the co-evolution of cultural traits, individual wealth, and the 
social network.
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5.2. Conclusion

In this paper, we introduce a model of cultural transmission of continuous traits within a finite 
population. Interaction ties are captured by a social network structure. In the related literature on 
cultural transmission of traits, usually a continuous player set is assumed and interaction itself is 
global (see for a survey, Bisin and Verdier [9]). However, empirical evidence strongly suggests 
that the transmission of cultural traits is local (e.g. Dohmen et al. [18], Voigtländer and Voth 
[42]). We show in this paper that not only the socialization incentives, but also the interaction 
structure matters for the question of whether a homogeneous society is observable in the long 
run.

In case of symmetric social networks, positive definiteness of the network is necessary and 
sufficient for convergence of continuous cultural traits (Proposition 4). This condition has a quite 
intuitive interpretation: if children are more influenced by their parents than by the social envi-
ronment, then the dynamics converge. We have shown this when both utility components are 
quadratic, but similar conditions are required for general utility (see Proposition C1 in Ap-
pendix C.1).

While a deterministic model on continuous cultural traits is more likely to result in conver-
gence to a melting pot society (cf. also Vaughan [41] and Panebianco [38]) than a probabilistic 
model on discrete traits (e.g. Bisin and Verdier [8]), our exercise yields two possible answers 
to the puzzle of the long-term persistence of heterogeneous cultural traits. First, convergence 
to a steady state in our model does not imply homogeneity of traits in the whole society but 
only within closed subgroups of it (Proposition 3). In particular, across these groups, and more 
interestingly, outside these groups (i.e. in the rest of the world), heterogeneous cultural traits 
generically coexist in the long-run. As an example, we briefly outlined how such a model can 
be used to explain persistence of cultural traits after immigration (Example 2). Second, speed 
of convergence depends on the interaction structure and, most importantly, it is reduced by the 
parents’ socialization efforts (Proposition 6). Thus, for high socialization incentives convergence 
may be very slow, thereby matching empirical results of persistence of cultural traits. Indeed, Gi-
avazzi et al. [23] interpret persistence of cultural traits as slow convergence and present empirical 
evidence that the speed of evolution depends on the trait in question. In the light of our model, it 
is the degree of the socialization incentives for the considered trait that drives the observed speed 
of convergence.

Interestingly, our model is also very close to that of opinion formation dynamics of DeGroot 
[15] and the succeeding literature (e.g. DeMarzo et al. [16], Golub and Jackson [24]). The opinion 
dynamics have been studied so far only with respect to truth telling, omitting the possibility of 
exaggerating as strategic choice in discussion. Interpreting our model in this way, we show that 
the introduction of strategic interaction leads to cases of non-convergence, while the opinion 
dynamics in DeGroot [15] converge whenever the matrix that represents the network has a strictly 
positive diagonal. Hence, the conditions for convergence that we identify require more structure 
on the underlying network.
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Appendix A. A more standard model

Here, we briefly study an alternative model, which is closer to the models in the literature 
(Bisin and Verdier [8], Vaughan [41], Panebianco [38]), in particular, with respect to the social-
ization instrument. For this purpose, we reconsider Eq. (1) and make two simplifying assump-
tions. First, suppose that for each parent displayed trait equals true trait, i.e. φd

i (t) = φi(t) ∀i, t . 
Second, let the relevant social environment of every child be the unweighted average of the soci-
ety φN(t). Then Eq. (1) reads as follows:

φi(t + 1) = σiiφi(t) + (1 − σii)φN(t). (A.1)

We follow the literature by assuming that parents can invest into their socialization weight σii , 
while there are socialization costs C(σii). As in Bisin and Verdier [8], Vaughan [41], and 
Panebianco [38] we consider the case of imperfect empathy and quadratic disutilities. Then the 
parental optimization problem is: minσii∈[0,1][φi(t + 1) − φi(t)]2 + cσ 2

ii , where c > 0 is a cost 
parameter and φi(t + 1) is determined by Eq. (A.1).

The first order condition yields the following optimal socialization weight:

σ ∗
ii = (φi(t) − φN(t))2

(φi(t) − φN(t))2 + c
= 1 − c

c + (φi(t) − φN(t))2
. (A.2)

Observe that optimal parental weight is decreasing in the cost parameter c and increasing in the 
difference between a parent’s trait and the societal average trait. Thus, the more distant a parent’s 
trait from the average trait, the higher its socialization investment – an effect which is referred to 
as cultural substitution. However, we always obtain σ ∗

ii ∈ (0, 1), which implies that all dynasties 
converge to one single trait since traits move towards the average trait. Thus, cultural substitution 
is not sufficient to avoid homogeneity of traits in the long run. The model we study in this paper 
(Eq. (1)) yields different dynamics: It does not guarantee convergence to a steady state (due to 
a different socialization instrument); and, under convergence, multiple cultural traits can emerge 
(due to local interaction structures).

Appendix B. Proofs

B.1. Proof of Proposition 1

Given φi(t), σii and φd
Ni

(t), let us define f : R �→ R s.t. f (x) = vi(σiix + (1 − σii)φ
d
Ni

(t)), 
i.e. f evaluates the inter-generational utility at each displayed trait of a parent. Then, a parent’s 
maximization problem Eq. (4) can be written as follows

maxui(x) + f (x). (B.1)

x∈I
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Note f ′′(x) = v′′(σiix + (1 − σii)φ
d
Ni

(t))σ 2
ii . By the assumptions that ui and vi are strictly con-

cave, we have u′′
i (x) + f ′′(x) < 0 for all x ∈ I . Since we maximize a continuous and strictly 

concave function over a compact set, there is a unique solution, which we denote by x∗.

Proof of part (a).

1. If σii = 0, then f (x) is constant for all x. Hence, x∗ = arg maxui(x) = φi(t).
2. If σii = 1, then f (x) = v(x) such that x∗ = φi(t) maximizes both ui(x) and f (x).
3. If φd

Ni
(t) = φi(t), then again x∗ = φi(t) maximizes both ui(x) and f (x) (since it implies 

that φi(t + 1) = φi(t)).
4. Let φi(t) = minI . Then φi(t + 1) ≥ φi(t) for any x. Thus, f (x) is non-increasing in x, 

while ui(x) is decreasing in x attaining its maximum at x∗ = φi(t). And analogously, for 
φi(t) = maxI .

Proof of part (b). We first assume that φd
Ni

(t) > φi(t) and φi(t) ∈ I̊ and show that it implies 

φd∗
i (φi(t), φd

Ni
(t)) < φi(t). Using the definition of f as above, we note that for σii ∈ (0, 1), f (x)

is strictly decreasing for all x ≥ φi(t). ui(x) is non-increasing such that x > φi(t) cannot be 
optimal. At x = φi(t) we have u′

i (φi(t)) = 0 and f ′(φi(t)) < 0 such that x = φi(t) − ε is an 
improvement for small enough ε > 0. Moreover, for small enough ε > 0, this choice is interior 
by the assumption that φi(t) is interior. And analogously for φd

Ni
(t) < φi(t).

For the opposite direction, let us assume that x∗ < φi(t) and suppose that it does not imply 
that φi(t) is interior and that φd

Ni
(t) > φi(t). If φi(t) is at the boundary, part (a) of Proposition 1

implies that x∗ = φi(t), which contradicts the assumption. If φd
Ni

(t) ≤ φi(t), then for x < φi(t)

both f (x) and ui(x) are increasing such that x < φi(t) cannot be optimal. A contradiction.

Proof of part (c). Let σii ∈ (0, 1). We show that φ̃d
Ni

(t) < φd
Ni

(t) implies φd∗
i (φi(t), φ̃d

Ni
(t)) >

φd∗
i (φi(t), φd

Ni
(t)) by distinguishing between three cases.

(i) Suppose φ̃d
Ni

(t) ≤ φi(t) ≤ φd
Ni

(t), where at least one of the two inequalities is strict. Propo-

sition 1 part (a) and part (b) imply that φd∗
i (φi(t), φ̃d

Ni
(t)) ≥ φi(t) ≥ φd∗

i (φi(t), φd
Ni

(t)), 
where strictness of each inequality carries over.

(ii) Suppose φ̃d
Ni

(t) < φd
Ni

(t) ≤ φi(t) and let x∗ be the best response to φd
Ni

(t), i.e. the solu-

tion to the maximization problem maxx∈I ui(x) + f (x) as above. Now, consider φ̃d
Ni

(t)

instead of φd
Ni

(t) and define f̃ : R �→ R s.t. f̃ (x) = vi(σiix + (1 − σii)φ̃
d
Ni

(t)). Then the 
optimization Eq. (4) becomes (analogously to above),

max
x∈I

ui(x) + f̃ (x). (B.2)

The optimal solution to (B.2) is denoted by x̃∗. Note that f and f̃ are strictly concave for 
σii ∈ (0, 1). Since φ̃d

Ni
(t) < φd

Ni
(t) we have that f̃ (x) is a right-shifted version of f , i.e. 

f̃ (x) = f (x − δ) for δ := 1−σii

σii
(φNi

(t) − φ̃Ni
(t)) > 0. Thus, it holds that f̃ ′(x) > f ′(x) for 

any x (since f̃ ′ and f ′ are strictly decreasing).
For an interior solution x∗, which satisfies the first order condition f ′(x∗) = −u′

i (x
∗), this 

implies f̃ ′(x∗) > −u′
i (x

∗). Hence, u′
i (x) + f̃ ′(x) > 0, i.e. the target function ui(x) + f̃ (x)

is increasing at x∗, which yields x̃∗ > x∗ if x∗ is interior. If x∗ is not interior, we have 
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x∗ = maxI (by Proposition 1 part (b)) and hence u′
i (x

∗) + f ′(x∗) ≥ 0. Again, f̃ ′(x) >
f ′(x) implies u′

i (x
∗) + f̃ ′(x∗) > 0, which leads to a boundary solution x̃∗ = x∗ = maxI . 

However, this case is excluded by the assumption that one of the solutions must be interior. 
(This shows the claim in Case (ii) since x̃∗ = φd∗

i (φi(t), φ̃d
Ni

(t)) > φd∗
i (φi(t), φd

Ni
(t)) = x∗

if x∗ is interior.)
(iii) Suppose that φi(t) ≤ φ̃d

Ni
(t) < φd

Ni
(t). The arguments that establish that φd∗

i (φi(t),

φ̃d
Ni

(t)) > φd∗
i (φi(t), φd

Ni
(t)) are fully analogous to Case (ii) above.

The three cases show the first direction (“IF”) of Proposition 1 part (c). To establish the other 
direction (“ONLY IF”) note first that φd

Ni
(t) < φ̃d

Ni
(t) implies that x̃∗ < x∗ by the three cases 

above when exchanging φ̃d
Ni

(t) and φd
Ni

(t). Moreover, φ̃d
Ni

(t) = φd
Ni

(t) implies x̃∗ = x∗ because 
there is a unique solution to the two coinciding maximization problems. �
B.2. Proof of Proposition 2

From Eq. (2), it follows that ∀i ∈ N , φi(t + 1) is linear in φd
i (t), thus vi(φi(t + 1)|φi(t)) is 

concave in φd
i (t) (by A3). This implies that the target functions of the optimization problems of 

all parents are concave (and continuous). Since also the displayed trait choice set is compact and 
convex, a non-empty, upper hemicontinuous and convex set of displayed trait best replies exists 
for any parent (Berge’s Theorem of the Maximum). Thus, a fixed point, i.e. a Nash equilibrium, 
exists (Kakutani’s Fixed Point Theorem). �
B.3. Proof of Proposition 3

(a) That in any steady state, parents choose their adopted trait as displayed trait is directly 
implied by Proposition 1.

(b) By the definition of steady states and the trait formation rule Eq. (2), it follows that the 
set of steady states coincides with the set {Φ ∈ In|ΣΦ = Φ.}. Hence, it is immediate that if 
the traits of all members of an essential communication class are identical, then ΣLΦL = ΦL, 
where ΣL is the restriction of Σ to some essential communication class L, and ΦL is its vector 
of adopted traits restricted to that set. We proceed by showing that steady state traits cannot 
differ within an essential communication class. To show a contradiction, suppose that for an 
essential communication class L ∈P(Σ), |L| ≥ 2, there exists i, j ∈ L with φi = φj . Denote by 
φ̄L := max{φi |i ∈ L} the maximal trait in communication class L. Since L is a communication 
class, it follows that there exists an i ∈ {l ∈ L : φl = φ̄L} and a j ∈ {l ∈ L|φl = φ̄L} such that 
σij > 0. Moreover, due to maximality of φ̄L and the fact that L is essential, σik = 0 for all k ∈ N

with φk > φ̄L. Thus, e′
iΣΦL = φi implying that this cannot be a steady state (ei denotes the i-th 

unit vector).
(c) Suppose that for some inessential communication class L′ ∈ P(Σ) with connections 

to other dynasties J := {j ∈ N |i → j, i ∈ L′} the set of traits ΦL′ is not included in 
conv(φj |j ∈ J ). W.l.o.g. we have φ̄L′ := max{φi |i ∈ L′} > max{φj |j ∈ J }. Since L′ is a commu-
nication class and is inessential with all outside connections being to dynasties with traits strictly 
less than φ̄L′ , we get (similarly to (b)) for some player k ∈ {i ∈ L′|φi = φ̄L′ } that there exists 
j ∈ N and φj < φ̄L′ such that σkj > 0. Again, due to maximality of φ̄L′ and all other connections 
being to dynasties with traits strictly less than φ̄L′ , we get that e′

kΣΦL′ = φk , implying that this 
cannot be a steady state. Hence, all traits of the dynasties in inessential communication classes 
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L′ ∈ P(Σ) are convex combinations of the traits of the communication classes L ∈ P(Σ) such 
that J ∩ L = ∅. �
B.4. Proof of Proposition 4

To prove the proposition, we will apply the following Lemma (see e.g. Friedberg and Insel 
[21]).

Lemma B1 (Convergence). Let A be a square matrix with complex or real entries. Then, the 
sequence {At }t→∞ converges if and only if the following two conditions are satisfied.

(i) If λ is an eigenvalue of A, then either λ = 1 or λ lies in the open unit disc of the complex 
plane, i.e. |λ| ∈ (−1, 1).

(ii) If 1 is an eigenvalue of A, then its algebraic multiplicity equals its geometric multiplicity.

Let us denote by Λ(A) the set of eigenvalues of a matrix A and let λ(A) ∈ Λ(A). Moreover, if z
is a complex number, then we denote by Re(z) the real part and by Im(z) the imaginary part of z.

Proof of part (a). We show that condition (i) of Lemma B1 is satisfied for symmetric positive 
definite matrices Σ . To see this, note first that by definition M = Σ(I + BΣ)−1(I + B) =
(B + Σ−1)−1(I + B),24 which implies that M is invertible and M−1 = (I + B)−1(B + Σ−1). 
Let B̃ denote the diagonal matrix B̃ := (I +B)−1. Thus, for all i = 1, ..., n the entries of B̃ given 
by b̃ii = 1

1+σiiβi
are such that b̃ii ∈ (0, 1). Then, B̃B = I − B̃ , and

M−1 = B̃
(
B + Σ−1) = I − B̃ + B̃Σ−1 = I + B̃

(
Σ−1 − I

)
. (B.3)

First, note that since Σ is assumed to be symmetric positive definite, so is Σ−1 and (Σ−1 −I )

(see below) and the eigenvalues of these matrices are real and positive.
Second, the matrices B̃(Σ−1 − I ) = B̃1/2[B̃1/2(Σ − I )] and B̃1/2(Σ−1 − I )B̃1/2 have the 

same eigenvalues,25 where B̃1/2 is the diagonal matrix with entries (B̃1/2)ii =
√

b̃ii . Moreover, 

it is easily checked that B̃1/2(Σ−1 − I )B̃1/2 is positive definite and symmetric, i.e. has only 
positive real eigenvalues. Thus, also the eigenvalues of M−1 (and hence those of M) are real and 
positive.

Now, since Σ is row stochastic, we have |λ(Σ)| ≤ 1, which implies that λ(Σ−1) ≥ 1. Thus, 
λ(Σ−1 −I ) ≥ 0 (subtraction of I decreases all eigenvalues by 1). By above, we have λ(B̃(Σ−1 −
I )) ≥ 0, which implies λ(I + B̃(Σ−1 − I )) ≥ 1, i.e. λ(M−1) ≥ 1, and hence all eigenvalues 
of M are real and located in the interval (0, 1]. Furthermore, since M has row sum one (see 
Lemma C2, using x = (1, 1, ..., 1)′), at least one eigenvalue must be equal to 1. Note that, the 
number of 1-eigenvalues as well as the number of associated linear independent eigenvectors 
equals the number of essential communication classes of M . Hence condition (ii) of Lemma B1
is also satisfied. Thus, Mt converges, i.e. M∞ := limt→∞ Mt exists, and since 1 is an eigenvalue 
of M , M∞ = 0. Denoting Φ(∞) := M∞Φ(0) it is easy to see that Φ(∞) is a steady state since 
MΦ(∞) = MM∞Φ(0) = M∞Φ(0) = Φ(∞).

24 That this representation is well defined if Σ is positive definite has been discussed in footnote 18.
25 This holds since for any two n × n matrices A, B the eigenvalues of AB are the same as the eigenvalues of BA, 
although the eigenvectors may differ.
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Proof of part (b). Assume that the condition in the statement is not satisfied, i.e. let there be an 
eigenvalue λ̃(Σ) that satisfies Re(λ̃(Σ)) < |λ̃(Σ)|2. The latter is equivalent to Re(λ̃−1(Σ)) < 1, 
simply because z−1 = Re(z)

Re2(z)+Im2(z)
+ − Im(z)

Re2(z)+Im2(z)
i and |z|2 = Re2(z) + Im2(z) for any complex 

number z ∈C. By assumption, Σ is invertible and we note that λ̃−1(Σ) is an eigenvalue of Σ−1. 
Now, let for each i, βi ≡ k

σii
, k ∈ R, so that B = kI . We show that if k is large enough, then 

M has an eigenvalue with absolute value larger than 1 and hence condition (i) of Lemma B1 is 
violated.

To do so, we will use M−1 = (I + B)−1(B + Σ−1) = (I + kI)−1(kI + Σ−1) = ((1 +
k)I )−1(kI + Σ−1) = 1

1+k
(kI + Σ−1). Now, since Re(λ̃(Σ−1)) = Re(λ̃−1(Σ)) < 1, we have 

Re(λ̃(kI + Σ−1)) < 1 + k, because λ̃(kI + Σ−1) = k + λ̃(Σ−1). For k large enough, we must 
have |λ̃(kI + Σ−1)| < 1 + k.26 To see that this must hold, denote ε := 1 − Re(λ̃(Σ−1)) and we 
get:

∣∣λ̃(
kI + Σ−1)∣∣2 = Re2(λ̃(

kI + Σ−1)) + Im2(λ̃(
kI + Σ−1))

= (1 − ε + k)2 + Im2(λ̃(
Σ−1))

= (k + 1)2 + Im2(λ̃(
Σ−1)) + ε2 − 2ε − 2εk,

which is smaller than (1 + k)2 for k >
Im2(λ̃(Σ−1))+ε2−2ε

2ε
. Thus, we get for k large enough,

1

1 + k

∣∣(λ̃(
kI + Σ−1))∣∣ =

∣∣∣∣λ̃
(

1

1 + k

(
kI + Σ−1))∣∣∣∣ = ∣∣λ̃(

M−1)∣∣ < 1

and hence |λ̃(M)| > 1 so that condition (i) of Lemma B1 is violated. �
B.5. Proof of Proposition 5

As by Lemma B1 above, for the convergence of the powers of a matrix A it is sufficient that 1
is exactly one eigenvalue of A and all other eigenvalues are in the interval (−1, 1). To prove the 
proposition, we will in a first step apply the Perron–Frobenius Theorem (henceforth: PFT) for a 
regular row-stochastic matrix A: (i) The spectral radius (the largest eigenvalue in absolute value) 
of A is 1. (ii) For all other eigenvalues λ it holds that |λ| < 1. (iii) The eigenvalue 1 is simple. 
Consider any row stochastic Σ such that Σ is irreducible with strictly positive diagonal. This 
implies that Σ is regular, so that by the PFT for regular row stochastic matrices, Σ has simple 
eigenvalue 1 and all other eigenvalues are in (−1, 1).

Let us now consider the transformations M = Σ(I +BΣ)−1(I +B). In a first step, we have to 
guarantee that I + BΣ is invertible, so that M exists. Note that strict diagonal dominance would 
be sufficient for non-singularity. For strict diagonal dominance, we require that 1 + βi(σii −∑

j∈Ni
σij ) > 0 holds for every i ∈ N . Since Σ has a strictly positive diagonal, this is always 

satisfied if e.g. β ≤ 1.
Given this, it follows again by the continuity of the eigenvalues that there exists a non-empty 

neighborhood N(0|Σ) ⊂ R
n+ such that ∀β ∈ N(0|Σ) ∪ 0 both I + BΣ is strictly diagonally 

dominant and M has exactly one eigenvalue equal 1 and n −1 eigenvalues in the interval (−1, 1). 
Thus, Mt converges. �
26 If λ̃−1(Σ) is a real number, then this holds trivially.
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B.6. Proof of Proposition 6

For symmetric positive definite and row stochastic matrices Σ , convergence of Σt for t → ∞
is trivially implied and convergence of Mt for t → ∞ is already established by Proposition 4. 
To show that convergence of Mt is slower than convergence of Σt for t → ∞, we show that all 
eigenvalues of M are real and λk(Σ) < λk(M) for all 2 ≤ k ≤ K .

By (B.3) we have that M−1 = I + B̃(Σ−1 − I ) with B̃ being a diagonal matrix with entries 
0 < b̃ii = 1

1+σiiβi
< 1 for all βi > 0. As in the proof of Proposition 4 we have,

λk

(
M−1) = 1 + λk

(
B̃

(
Σ−1 − I

)) = 1 + λk

(
B1/2(Σ−1 − I

)
B1/2).

Moreover, by the proof of Proposition 4, (Σ−1 − I ) and B̃1/2(Σ−1 − I )B̃1/2 are symmetric and 
positive definite.

Since (B̃1/2)∗ = B̃1/2 and B̃1/2 is non-singular,27 and (Σ−1 − I ) is symmetric, we get by 
Theorem 1 in Ostrowski [36] (see also Horn and Johnson [27]) that λk(B̃

1/2(Σ−1 − I )B̃1/2) =
θkλk(Σ

−1 − I ), where θk are real numbers such that λK(B̃1/2B̃1/2) ≤ θk ≤ λ1(B̃
1/2B̃1/2). Since 

B̃1/2B̃1/2 = B̃ is diagonal with entries 0 < b̃ii < 1, it holds that λk(B̃
1/2(Σ−1 − I )B̃1/2) <

λk(Σ
−1 − I ) for all k such that λk(Σ

−1 − I ) > 0. The latter is satisfied for λk(Σ) < 1, and thus 
for all λk(Σ) such that 2 ≤ k ≤ K .

Hence, for 2 ≤ k ≤ K :

λk

(
M−1) = 1 + λk

(
B̃

(
Σ−1 − I

))
< 1 + λk

(
Σ−1 − I

) = 1 + λk

(
Σ−1) − 1 = λk

(
Σ−1),

which implies that λk(M) > λk(Σ) for all 2 ≤ k ≤ K proving the statement and implying that 
convergence of Mt is slower than convergence of Σt for t → ∞.

To show the second part, consider the limit when all socialization incentives grow, βi → ∞
for all i = 1, ..., n. Then, b̃ii = 1

1+σiiβi
→ 0, and, hence, M−1 = I + B̃(Σ−1 − I ) → I . Thus, 

λk(M) → 1 for all eigenvalues λk of M , k = 1, ..., K . �
Appendix C. Convergence in the general case

We show in this part of the appendix how convergence conditions for more general utility 
functions can be obtained. In particular, the convergence conditions found for quadratic utility 
(presented in Section 4.2) generalize nicely to utility functions that satisfy Assumptions A1–A3. 
In this case, best reply displayed cultural traits Φd∗

(t) need not be linear in the true cultural 
traits Φ(t). Since we assume that in each period a Nash equilibrium is played, the dynamics are 
non-linear, too. In particular, the law of motion of the dynamics depends on the vector of cultural 
traits Φ(t). First, we show how such dynamics can be represented by a linear system, which is 
analogous but more general than the process Φ(t + 1) = MΦ(t) that we derived in the quadratic 
utility case. Then we will derive a condition on the network structure Σ which is sufficient for 
convergence and finally we prove this result.

27 The asterisk denotes the complex conjugate transpose.
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C.1. Linearizing the dynamical system

In this section we show how the dynamics of cultural traits can be presented by a linear system, 
a product of time-dependent matrices M(t). For this purpose, we define a map B∗ which picks 
one Nash equilibrium each period.

Corollary C1 (Nash equilibrium map). There exists a Nash equilibrium map B∗ : In �→ R
n+, 

such that for every i ∈ N and for every t ∈N, B∗(Φ(t)) = (b∗
1(t), . . . , b∗

n(t))
′ satisfies

φd∗
i (t) − φi(t) = b∗

i (t) · (φi(t) − φ∗
i (t + 1)

)
where φ∗

i (t + 1) := ∑
j∈N σijφ

d∗
j (t). This map has the property that b∗

i (t) ≥ 0 for all t ∈ N. 
Moreover, if for all i ∈ N , σii = 0, then b∗

i (t) = 0, ∀t ∈N.

Proof. Follows immediately from the best reply characterization of Proposition 1 and the Nash 
equilibrium existence of Proposition 2. �

The Nash equilibrium map simply represents the Nash equilibrium displayed trait choices in 
terms of their deviations from the adults’ traits relative to the deviation of the children’s adopted 
traits from the socialization targets. This representation can equivalently be written as φd∗

i (t) +
b∗
i (t)ΣiΦ

d∗
(t) = (1 + b∗

i (t))φi(t), for every i ∈ N . Defining B(t) := diag(b∗
1(t), . . . , b∗

n(t)), we 
thus obtain,(

I + B(t)Σ
)
Φd∗

(t) = (
I + B(t)

)
Φ∗(t)

so that

Φd∗
(t) = (

I + B(t)Σ
)−1(

I + B(t)
)
Φ∗(t)

and hence

Φ∗(t + 1) = Σ
(
I + B(t)Σ

)−1(
I + B(t)

)
Φ∗(t).

For this representation to be well-defined, it is sufficient that either Σ is diagonally dominant 
(since then I + B(t)Σ is then strictly diagonally dominant, thus invertible) or symmetric pos-
itive semidefinite (the assumptions used in our result below will imply in particular that Σ is 
symmetric positive definite).

Finally, denoting M(t) := Σ(I + B(t)Σ)−1(I + B(t)), it follows that

Φ∗(t + 1) = M(t) . . .M(0)Φ(0) = M(t,0)Φ(0), t ∈N\{0} (C.1)

where M(t, 0) denotes the backward accumulation M(t, 0) := M(t) · M(t − 1) · . . . · M(0).

C.2. Convergence result

The representation of the dynamics derived in Appendix C.1 allows us to resort to linear alge-
bra results on the convergence of left products of matrices. Specifically, Lorenz [30,31] provides 
convergence results for left products of row stochastic matrices – while as (for our specific con-
text) not sufficient results are available on the left product convergence of more general matrices 
(that have row sum one, but with possibly negative entries). However, to guarantee that the in-
dividual matrices M(t) are row stochastic in every period t ∈ N, we have to endow the social 
learning matrix Σ with sufficient structure, which is given by the following definition.
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Definition 1 (Symmetric ultrametric matrix). A n × n-matrix Σ is symmetric ultrametric if

(i) Σ is symmetric,
(ii) σii ≥ max{σij : j ∈ Ni}, ∀i ∈ N ,

(iii) σij ≥ min{σik; σkj }, ∀i, j, k ∈ N .

Property (i) means that interaction weights are symmetric, i.e. ∀i, j ∈ N σij = σji . Property 
(ii) means that among all adults, the parents have the largest socialization influence on their 
children. In general, the third property requires a sort of consistency of the socialization patterns. 
It states that for any triple i, j, k ∈ N , if the socialization influence of j on child i is strictly 
smaller than that of k on child i, then it must not hold that k has a strictly larger socialization 
influence on child j than on child i (since σkj = σjk). This requirement can be interpreted as 
ruling out the existence of dynasties that have a ‘too dominant’ social learning influence on other 
dynasties.28

We now get the following convergence result.

Proposition C1 (Convergence general). If Σ is symmetric ultrametric, then the cultural traits in 
the society Φ(t) converge to a steady state.

Proof. The proof is presented in Appendix C.3 below. �
In the proof of Proposition C1 we show that given that the social network Σ is symmetric 

ultrametric, the submatrix of each essential communication class will converge to a matrix of 
rank one (i.e. a consensus matrix). This is done by making use of the special structure of Σ to 
show that each element of the law of motion M(t) is row stochastic.29 Second, we can show 
that the entries of M(t) corresponding to strictly positive entries of Σ can be bounded away 
from zero. This is due to the linearity of the determinants of the minors of M(t) in every b∗

i (t), 
and the boundedness of b∗

i (t). In the last step, we construct a sequence of sub-accumulations of 
M(ts+1, ts)s∈N such that for each element the minimal strictly positive entry can be uniformly 
bounded away from zero, which also implies “type-symmetry” and a strictly positive diagonal. 
Thus, we can then apply the convergence result by Lorenz [30], which implies that the traits of 
each connected subset converge to the same point, i.e. all dynasties in a communication class 
reach a homogeneous state. Note that due to the assumption of symmetric ultrametric Σ all 
communication classes are essential and there is, hence, no rest of the world.

Thus, endowing the social learning matrix Σ with sufficient structure, we arrive at a general 
result: In the long-run the dynasties forming a communication class (i.e. forming a component of 
the social network) will reach a steady state, and will end up with the same cultural trait (cf. also 
Proposition 3). The traits across communication classes may differ. Thus, symmetric ultrametric 
and connected societies (i.e. where every dynasty is at least indirectly influenced by any other 
dynasty) will always converge to a melting pot society even if objective functions are fairly 
general. Finally, we note that the typical assumption in the literature is that oblique socialization 
is homogeneous in the sense that all members are weighted equally, which translates to σij = σik

28 The third property (iii) of symmetric ultrametric matrices is a strong assumption, which we do not need when studying 
the case of quadratic utility (cf. Proposition 4).
29 For literature on inverses of symmetric ultrametric matrices see Nabben and Varga [33,34], Martinez et al. [32], and 
for results on inverse-positive matrices see e.g. Fujimoto and Ranade [22].
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for all j, k = i. It is straightforward to see that this assumption along with symmetry implies that 
the interaction structure is symmetric ultrametric and hence by Proposition C1 convergence also 
obtains in these cases.

In the quadratic utility case studied in Section 4.2, we needed the social network Σ to be 
symmetric positive definite to ensure convergence, which is satisfied in a diagonally dominant 
network. When utility is more general, we have shown here a qualitatively similar result: a suf-
ficient condition on the network for convergence is that it is symmetric ultrametric, which also 
means that the social network is symmetric, that the diagonal is sufficiently large, and, addition-
ally, that no dynasty has dominant influence on others.

The assumption of symmetric ultrametric networks guarantees that the law of motion M(t) is 
row stochastic for all t ∈ N. However, the necessity to guarantee that all M(t) are row stochastic 
significantly reduces the convergence path types that we can analytically address. Row stochas-
ticity of M(t) implies that dynamics of cultural traits are such that all next-period cultural traits 
lie in the interval formed by the minimum and the maximum trait intensity of the current period. 
Thus, we can state the following straightforward Corollary.

Corollary C2. If Σ is symmetric ultrametric, then φi(t + 1) ∈ conv{φj (t), j ∈ N} for all i ∈ N

and for all t ∈N.

Proof. Corollary C2 follows directly from Proposition C1 since in the proof of which it is shown 
that M(t) is row stochastic for each t ∈ N and hence φi(t + 1) = e′

iMΦ(t) ∈ conv{φj (t), j ∈ N}
for all i ∈ N , where ei is the i-th unit vector. �

Corollary C2 particularly implies that each dynasty will converge to a cultural trait that is a 
mixture of the initial cultural traits in the sense that it lies in the convex hull of the cultural traits 
in period 0.

C.3. Proof of Proposition C1

This proof is organized into three essential steps. In the first step, we will show that if Σ
is symmetric ultrametric, then M(t) is row stochastic for every t ∈ N. In the second step we 
will show that for every i, j ∈ N with Σij > 0, there exists a δij > 0 such that for every t ∈ N, 
mij (t) ≥ δij . We use these results to show in the third step that the backward accumulation matri-
ces are type-symmetric and have a strictly positive diagonal. This allows us to apply Theorem 2 
of Lorenz [30] to conclude that the desired convergence result holds. For the first step, we also 
need the following.

Lemma C2 (Unit eigenvectors). Let Σ be symmetric positive definite. Then, ∀x ∈ Rn, ∀t ∈ N, 
M(t)x = x if and only if Σx = x (i.e. x is a unit-eigenvector of M(t) if and only if x is a 
unit-eigenvector of Σ ).

Proof. Note that M(t) = Σ(I + B(t)Σ)−1(I + B(t)) = (Σ−1 + B(t))−1(I + B(t)). That the 
latter representation is well-defined if Σ is positive definite follows since Σ is then invertible 
and also its inverse is positive definite. Thus, also Σ−1 + B(t) is positive definite and invertible. 
Given this, both the ‘if’ and the ‘only if’ direction of the proof can be directly seen from the fol-
lowing sequence of transformations: Σx = x ⇔ x = Σ−1x ⇔ (B(t) + I )x = (B(t) +Σ−1)x ⇔
M(t)x = (B(t) + Σ−1)−1(B(t) + I )x = x. �
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1. In the first step of the (main) proof, we show that if Σ is symmetric ultrametric, then M(t)

is row stochastic for every t ∈ N. To do so, note first that since Σ is symmetric ultrametric, it 
is also positive definite (see below). Hence, by Lemma C2 (and setting x = (1, 1, ..., 1)′) the 
row entries of M(t) = [mij (t)] sum up to one since the same holds for Σ . Thus, M(t) is row 
stochastic if and only if M(t) has non-negative entries (that is M(t) ≥ 0). Now, since I + B(t)

is a diagonal matrix with strictly positive entries (since B(t) is non-negative by Corollary C1), 
M(t) = Σ(I + B(t)Σ)−1(I + B(t)) is non-negative if and only if

Σ
(
I + B(t)Σ

)−1 = (
Σ−1 + B(t)

)−1

is non-negative (that this representation is well defined if Σ is positive definite has been dis-
cussed in the proof of Lemma C2). In other words, we have to check whether Σ−1 + B(t) is 
inverse-positive.

Now, since Σ is symmetric ultrametric, it follows that its inverse is a diagonally dominant 
Stieltjes matrix (see Nabben and Varga [33,34] and Martinez et al. [32]), i.e. a real symmet-
ric positive definite matrix with positive diagonal and negative off-diagonal entries. Thus, also 
Σ−1 + B(t) is a diagonally dominant Stieltjes matrix. In particular, it is an M-matrix, the class 
of which is inverse-positive (on this issue, see e.g. Fujimoto and Ranade [22]). Hence, M(t) has 
only non-negative entries.

2. For the second step, we show first, that the map b∗
i (t) = b∗

i (φi(t), φd
Ni

(t)) is bounded for 
every i ∈ N .

Lemma C3 (Boundedness of B∗(t)). Let Assumptions A1–A3 hold. Then, ∀i ∈ N b∗
i is bounded 

for every φd
Ni

(t), φ(t) ∈ I . In particular,

lim
φd

Ni
(t)→φi(t)

b∗
i

(
φi(t), φ

d
Ni

(t)
) = σiiv

′′
i (φi(t)|φi(t))

u′′
i (φi(t)|φi(t)) + σ 2

iiv
′′
i (φi(t)|φi(t))

< ∞.

Proof. Note that for x := φi(t), y := φd
Ni

(t), and f (x, y) := φd∗
i (x, y), b∗

i is defined by (see 
Corollary C1)

f (x, y) − x = b∗
i (x, y)

(
(1 − σii)x − (1 − σii)y

)
. (C.2)

Let x ∈ I be given and without loss of generality assume that y ≥ x. First, note that for every 
y ∈ I such that x = y it holds by Proposition 1 that 0 ≤ b∗

i (x, y) ≤ 1
1−σii

x−xmin
x−y

for xmin :=
min{z ∈ I}, since by Proposition 1 xmin ≤ f (x, y) ≤ x Further, by Proposition 1 we get for 
σii = 1 that b∗

i (x, y) = 0 for all y > x.
Hence we are left to show that limy↓x b∗

i (x, y) < ∞ for σii < 1. Since x is fixed, we denote 
f (y) := f (x, y), abusing notation. We get from (C.2),

lim
y↓x

b∗
i (x, y) = lim

y↓x

1

1 − σii

f (y) − x

y − x
= − 1

1 − σii

f ′(x),

given differentiability of f at the point x, which we show subsequently. By the first order condi-
tion, f (y) solves u′

i (f (y)|x) + σiiv
′
i (σii(f (y) + (1 − σii)y)|x) = 0. With the implicit function 

theorem,

f ′(x) = − (1 − σii)σiiv
′′
i (σii(f (x) + (1 − σii)x)|x)

u′′(f (x)|x) + σ 2v′′(σ (f (x) + (1 − σ )x)|x)
. (C.3)
i ii i ii ii
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By Proposition 1, we have f (x) = x, and hence by Assumption A3 the right-hand side is well 
defined implying differentiability of f at x. We get

lim
y↓x

b∗
i (x, y) = − 1

1 − σii

f ′(x)

= σiiv
′′
i (x|x)

u′′
i (x|x) + σ 2

iiv
′′
i (x|x)

,

which is by A3 positive and bounded. �
Now, we continue to show that for every i, j ∈ N with σij > 0 there exists a δij > 0 such that 

mij (t) ≥ δij for every t ∈ N. Again, since I + B(t) is a diagonal matrix with strictly positive 
entries, we can restrict our attention to the matrix (Σ−1 + B(t))−1 =: A(t) = [aij (t)]. Con-
sider any i, j ∈ N such that σij > 0. Since A(t) is non-negative by step (1), it follows that 
sign(aij (t)) ∈ {0, sign(σij )}.

Let us rule out the case sign(aij (t)) = 0 for σij (t) > 0. To do so, let us compare

aij (t) = (−1)i+j |Σ−1 + B(t)|ji

|Σ−1 + B(t)| vs. (−1)i+j |Σ−1|ji

|Σ−1| = σij (C.4)

where | · |ji denotes the determinant of the (n −1) × (n −1) matrix derived from an n ×n matrix 
such that the j -th row and the i-th column are deleted. Note that since Σ is positive definite, the 
same holds for its inverse and Σ−1 + B(t). It follows that the determinants of the matrices Σ−1

and Σ−1 + B(t) are strictly positive and hence the denominators of (C.4) are strictly positive.
Moreover, we have that for all i, j ∈ N , |Σ−1 + diag(b∗

1(t), . . . , b∗
n(t))|ji and |Σ−1 +

diag(b∗
1(t), . . . , b∗

n(t))| are linear in every individual element of {b∗
1(t), . . . , b

∗
n(t)} (to verify 

this most easily, consider the Leibniz formula). Since we have |Σ−1 + B(t)| ≥ 0 for all 
b∗

1(t), . . . , b∗
n(t) ≥ 0, it holds that

∂(−1)i+j |Σ−1 + B(t)|ji

∂bk

≥ 0 (C.5)

and

∂|Σ−1 + B(t)|
∂bk

≥ 0, (C.6)

because otherwise the determinant would switch signs for bk → ∞ due to linearity in bk , for all 
k ∈ {1, ..., n}.

Now, since b∗
i is bounded by Lemma C3, we have bk(t) ∈ [0, b̄] for all t ∈ N. By linearity of 

|Σ−1 + B(t)|ij and |Σ−1 + B(t)| in bk(t) for all k ∈ {1, ..., n} and compactness of [0, b̄], we 
thus get existence of a minimum:

δ̂ij := min
k∈{1,...,n} min

bk(t)∈[0,b̄]
= (−1)i+j |Σ−1 + B(t)|ji

|Σ−1 + B(t)| ≤ (−1)i+j |Σ−1|ji

|Σ−1|
Moreover, 0 < δ̂ij since both of nominator and denominator are bounded and strictly positive 

due to (C.5) and (C.6) and because of boundedness of bk .
Thus, if σij > 0, then aij (t) ≥ δ̂ij for all t ∈ N. Multiplication with the diagonal matrix I +

B(t) does not change this fact, even though the minimum might be attained at different values of 
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bk ∈ [0, b̄] and k ∈ {1, ..., n}. Thus, for all i, j ∈ N such that σij > 0, there exists a δij > 0 such 
that mij (t) ≥ δij for all t ∈ N.

3. In the last step, we show that given the above, the left product of the matrices M(t)M(t −
1) . . .M(0) converges such that the adopted traits of all dynasties of a connected subset are iden-
tical (respectively, the communication classes in P(Σ) reach a consensus). Recall that M(t ′, t)
denotes the accumulation M(t ′, t) = M(t ′)M(t ′ − 1) . . .M(t) and PΣ(i) ⊆ N denotes the el-
ement of the partition P(Σ) which i belongs to, i.e. PΣ(i) is such that PΣ(i) ∈ P(Σ) and 
i ∈ PΣ(i).

First, note that all communication classes of Σ are essential by symmetry of Σ . By the defi-
nition of P(Σ), we have that for all L ∈P(Σ) and for all i, j ∈ L, there exists a k ∈ {0, ..., |L|}
such that Σk

ij > 0. Note that P(Σ) =P(M(t)) for all t ∈ N since σij > 0 implies mij (t) ≥ δ for 
all t ∈ N as shown above and, since every communication class of Σ is essential, mij (t) = 0 if 
j /∈ PΣ(i). Hence, for all L ∈ P(Σ) and for all i, j ∈ L there exists a k ∈ {0, ..., |L|} such that 
M(t + k, t)ij > 0 for all t ∈ N.

Now, consider a sequence of time steps (ts)s∈N such that t0 = 0 and ts+1 = ts + L̄, where 
L̄ := max{|L| : L ∈ P(Σ)}, and consider the sequence of accumulations (M(ts+1, ts))s∈N. By 
the rules of matrix multiplication, we get that for any two row stochastic A, B with a positive 
diagonal, (AB)ij > 0 if and only if Aij > 0 or Bij > 0. Hence, for any L ∈ P(Σ) and for all 
i, j ∈ L, M(t + |L|, t)ij > 0 for all t ∈ N since M(t) is row stochastic with a positive diagonal. 
Moreover, M(t + |L|, t)ij = 0 if j /∈ PΣ(i) since P(Σ) = P(M(t)) for all t ∈ N. Thus, for the 
accumulations M(ts+1, ts) it holds that M(ts+1, ts)ij > 0 if and only if j ∈ PΣ(i). In particular, 
M(ts+1, ts) is type-symmetric for all s ∈ N.

For a non-negative matrix A let min+(A) denote the lowest positive entry of A. We have 
shown above that there exists a δ > 0 such that σij > 0 implies mij (t) ≥ δ for all t ∈ N. Note 
that for any i, j ∈ L ∈ P(Σ), there exists a k ≤ |L| and a sequence of dynasties (il)0≤l≤k with 
i0 = i and ik = j such that σil,il+1 > 0, implying M(t + k, t)ij ≥ ∏k−1

l=0 mil,il+1(t + l) ≥ δk . 
Thus, for the accumulations M(ts+1, ts) it holds that M(ts+1, ts)ij ≥ δts+1−ts if j ∈ PΣ(i) and 
M(ts+1, ts)ij = 0 else. Hence, min+(M(ts+1, ts)) ≥ δts+1−ts =: δ|L̄|.

In summary, we have shown that the backward accumulation matrices (M(ts+1, ts))s∈N have 
a uniform lower bound of the positive entries min+(M(ts+1, ts)) ≥ δ|L̄|, are type-symmetric and 
have a strictly positive diagonal. By Lorenz [30, Theorem 2], we get the desired result for the 
sequence (M(ts+1, ts))s∈N. Since limk→∞

∏k
s=0 M(ts+1, ts) = limt→∞ M(t), we also establish 

the statement of the Proposition. �
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