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Resumo

Hoje em dia, cada vez mais experiências culturais são melhoradas tendo por base apli-

cações móveis, incluindo aqueles que usam Realidade Aumentada (RA). Estas apli-

cações têm crescido em número de utilizadores, em muito suportadas no aumento do

poder de cálculo dos processadores mais recentes, na popularidade dos dispositivos

móveis (com câmaras de alta definição e sistemas de posicionamento global – GPS), e

na massificação da disponibilidade de conexões de internet. Tendo este contexto em

mente, o projeto Mobile Five Senses Augmented Reality System for Museums (M5SAR)

visa desenvolver um sistema de RA para ser um guia em eventos culturais, históricos

e em museus, complementando ou substituindo a orientação tradicional dada pelos

guias ou mapas. O trabalho descrito na presente tese faz parte do projeto M5SAR. O

sistema completo consiste numa aplicação para dispositivos móveis e num dispositivo

físico, a acoplar ao dispositivo móvel, que em conjunto visam explorar os 5 sentidos

humanos: visão, audição, tato, olfacto e paladar.

O projeto M5SAR tem como objetivos principais (a) detectar peças do museu (por

exemplo, pinturas e estátuas (Pereira et al., 2017)), (b) detectar paredes / ambientes do

museu (Veiga et al., 2017) e (c) detectar formas humanas para sobrepor o conteúdo de

Realidade Aumentada (?). Esta tese apresenta uma abordagem relativamente ao úl-

timo objectivo, combinando informações de articulações do corpo humano com méto-

dos de sobreposição de roupas.
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Os atuais sistemas relacionados com a sobreposição de roupas, que permitem ao

utilizador mover-se livremente, são baseados em sensores tridimensionais (3D), e.g.,

Sensor Kinect (Erra et al., 2018), sendo estes não portáteis. A contribuição desta tese é

apresentar uma solução portátil baseado na câmara (RGB) do telemóvel que permite

ao utilizador movimentar-se livremente, fazendo ao mesmo tempo a sobreposição de

roupa (para o corpo completo).

Nos últimos anos, a capacidade de Redes Neurais Convolucionais (CNN) foi com-

provado numa grande variedade de tarefas de visão computacional, tais como classi-

ficação e detecção de objetos e no reconhecimento de faces e texto (Amos et al., 2016;

Ren et al., 2015a). Uma das áreas de uso das CNN é a estimativa de posição (pose)

humana em ambientes reais (Insafutdinov et al., 2017; Pishchulin et al., 2016). Re-

centemente, duas populares CNN frameworks para detecção e segmentação de formas

humanas apresentam destaque, o OpenPose (Cao et al., 2017; Wei et al., 2016) e o Mask

R-CNN (He et al., 2017). No entanto, testes experimentais mostraram que as imple-

mentações originais não são adequadas para dispositivos móveis. Apesar disso, estas

frameworks são a base para as implementações mais recentes, que possibilitam o uso

em dispositivos móveis. Uma abordagem que alcança a estimativa e a segmentação de

pose de corpo inteiro é o Mask R-CNN2Go (Jindal, 2018), baseado na estrutura origi-

nal do Mask R-CNN. A principal razão para o tempo de processamento ser reduzido

foi a otimização do número de camadas de convolução e a largura de cada camada.

Outra abordagem para obter a estimativa de pose humana em dispositivos móveis

foi a modificação da arquitetura original do OpenPose para mobile (Kim, 2018; Solano,

2018) e sua combinação com MobileNets (Howard et al., 2017). MobileNets, como o

nome sugere, é projetado para aplicativos móveis, fazendo uso de camadas de con-

voluções separáveis em profundidade. Essa modificação reduz o tempo de proces-

samento, mas também reduz a precisão na estimativa da pose, quando comparado à

arquitetura original.

É importante ressaltar que apesar de a detecção de pessoas com a sobreposição
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de roupas ser um tema atual, já existem aplicações disponíveis no mercado, como o

Pozus (GENTLEMINDS, 2018). O Pozus é disponibilizado numa versão beta que é

executado no sistema operativo iOS, usa a câmera do telemóvel como entrada para a

estimação da pose humana aplicando segmentos de texturas sobre o corpo humano.

No entanto, Pozus não faz ajuste de texturas (roupas) à forma da pessoa.

Na presente tese, o modelo OpenPose foi usado para determinar as articulações do

corpo e diferentes abordagens foram usadas para sobreposição de roupas, enquanto

uma pessoa se move em ambientes reais. A primeira abordagem utiliza o algoritmo

GrabCut (Rother et al., 2004) para segmentação de pessoas, permitindo o ajuste de seg-

mentos de roupas. Uma segunda abordagem usa uma ferramenta bidimensional (2D)

de Animação do Esqueleto para permitir deformações em texturas 2D de acordo com

as poses estimadas. A terceira abordagem é semelhante à anterior, mas usa modelos

3D, volumes, para obter uma simulação mais realista do processo de sobreposição de

roupas. Os resultados e a prova de conceito são mostrados.

Os resultados são coerentes com uma prova de conceito. Os testes revelaram que

como trabalho futuro as otimizações para melhorar a precisão do modelo de estimação

da pose e o tempo de execução ainda são necessárias para dispositivos móveis. O

método final utilizado para sobrepor roupas no corpo demonstrou resultados posi-

tivos, pois possibilitaram uma simulação mais realística do processo de sobreposição

de roupas.

Palavras chave: Redes Neurais Convolucionais, Estimação de Pose, Sobreposição

de Roupas, Inteligencia Artificial.
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Abstract

When it comes to visitors at museums and heritage places, objects speak for them-

selves. Nevertheless, it is important to give visitors the best experience possible, this

will lead to an increase in the visits number and enhance the perception and value

of the organization. With the aim of enhancing a traditional museum visit, a mobile

Augmented Reality (AR) framework is being developed as part of the Mobile Five

Senses Augmented Reality (M5SAR) project. This thesis presents an initial approach

to human shape detection and AR content superimposition in a mobile environment,

achieved by combining information of human body joints with clothes overlapping

methods.

The present existing systems related to clothes overlapping, that allow the user to

move freely, are based mainly in three-dimensional (3D) sensors (e.g., Kinect sensor

(Erra et al., 2018)), making them far from being portable. The contribution of this

thesis is to present a portable system that allows the user to move freely and does full

body clothes overlapping.

The OpenPose model (Kim, 2018; Solano, 2018) was used to compute the body

joints and different approaches were used for clothes overlapping, while a person is

moving in real environments. The first approach uses GrabCut algorithm (Rother

et al., 2004) for person segmentation, allowing to fit clothes segments. A second ap-

proach uses a bi-dimensional (2D) skeletal animation tool to allow deformations on
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2D textures according to the estimated poses. The third approach is similar to the pre-

vious, but uses 3D clothes models (volumes) to achieve a more realistic simulation of

the process of clothes superimposition. Results and proof-of-concept are shown.

Keywords: Convolutional Neural Network, Pose Estimation, Clothes Overlap-

ping, Artificial Intelligence.
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1
Introduction

Imagine a visit to a museum where you can see, hear, feel, smell and maybe even taste

what existed when the museological pieces were developed or what is represented in

them. This would be a step towards a more immersive experience when compared to

the traditional guides existing in most museums. In this context, this dissertation pro-

poses the development of a Human Shape Superimposition (HSS) module for a mul-

tiplatform Augmented Reality (AR) application (App) for mobile devices (Android,

iOS, and Windows). The application will be used within buildings and aims to serve

as a guide in cultural, historical and museological events. The application’s devel-

opment is a module in the M5SAR project: Mobile Five Senses Augmented Reality

System for Museums (for more details see Sec. 1.1).
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The HSS module projected in this thesis will do human shape detection and AR

content (clothes) superimposition, achieved by combining information of human body

joints with textures/volumes representing the clothes.

The existing texture overlapping methods for mobile devices are mainly limited

to frontal body view and do not allow the user to move freely (Martin and Oruklu,

2012; Shaikh et al., 2014). These methods are based on face detectors (e.g., Haar cas-

cades (Viola and Jones, 2001)) and markers (e.g., tags or images; a.k.a. marker-based).

However, they mainly try to explore the virtual dressing room concept, providing an

experience to virtually check the clothes fit or the style.

This dissertation also explores the use of Machine Learning (ML) methods to de-

tect human shapes, in order to overlay different clothes over those shapes. The main

intention is to detect human shapes in real-time on a mobile device, while the user is

moving freely.

1.1 Scope of the Thesis

The work presented in this thesis is a part of the M5SAR project products, funded

by Portugal2020, CRESC Algarve 2020 I&DT, n° 3322, promoter SPIC - Sonha Pensa

Imagina Comunica, Lda.1 and co-promoter University of the Algarve 2. The project

started in January 2016 and finished in October 2018.

In summary, the project aimed to develop an AR system, consisting of an applica-

tion platform and a device (here referred to as “gadget”) to be integrated with mobile

devices (phablets and tablets) that explore the 5 human senses (5S) (vision, hearing,

touch, smell, and taste). The project solutions focus on being used as a guide in cul-

tural, historical and museum events. The system consists of three products, to be used

integrated or individually, as explained next. First a (a) software Application for mo-

bile devices, that will be available in the “app store” or on a website, works on the

1http://spic.pt/
2http://www.ualg.pt/
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latest phablet and tablet devices, focusing on 4 of the 5 senses namely: sight, hear,

touch and taste. The second product consists of a (b) hardware device that can be sold

separately or rented at the museum. This device focuses on 3 of the 5 senses: touch,

smell and taste. Finally, the (c) association of the App, (a), and the device, (b), deep-

ening the user experience. For this, the hardware device is able to attach itself to the

mobile device, as well as to communicate and be integrated with the App. Together

they allow the full integration of the 5 senses in the AR. Each one of these products, in-

dividually and especially together are, without a doubt, a novelty in the market since,

as far as we now, nothing exists with these settings/specifications. The final product

allows a more immersive interaction with the surrounding space than the existing AR

systems. To achieve these goal it was necessary to combine research and development

in various areas such as Information and Communication Technology (ICT), electron-

ics, emotions psychology and design. The applications and equipment include also

a large set of usage such as Smart Cities, creative industries and media, tourism, and

natural and cultural heritage. By this via, an innovative product for the global market

was created. More information and publications about the project can be found on the

website of the project3.

The work presented in this thesis focuses on the HSS module of the product (a).

1.2 Objectives

The goal of this work is to build the HSS module, that combines pose estimation and

clothes overlapping in a multi-platform mobile device AR application. The mobile

device’s built-in camera is used to scan the environment for humans shapes, which

are then overlapped with clothes. The existing clothes overlapping systems (Erra et al.,

2018), that allow users to move freely, are based in 3D sensors (e.g., Kinect sensor (Erra

et al., 2018)), making them not portable. One of the contributions of this thesis is the

3https:goo.gl/ti4xUX
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presentation of a new portable system that allows the user to move freely and does

full body clothes overlapping on a mobile device.

While developing the HSS module three big challenges arise. The first challenge

is the human pose estimation while using a mobile device with reasonable accuracy.

The second is to do full body clothes overlapping. The third big challenge is to achieve

real-time performances on that mobile device.

As a bounding limit, the HSS module should present performances of at least three

shapes superimposition per second, while the user is moving freely.

1.3 Overview of the Thesis

In summary, the present chapter introduced the thesis theme as well as the main goal,

contributions and scope.

Chapter 2 focuses on the state-of-the-art for person detection, estimation and clothes

overlapping. It presents some of the most important developments in these areas and

the methods used for this thesis.

Chapter 3 details all the algorithms implemented for the clothes overlapping pro-

cess. It discusses the results in terms of accomplishment of the objectives.

Chapter 4 finalises this work with the general conclusions, mentioning how some

problems can be fixed in future work, and also presents some publications made dur-

ing the course of this work.
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2
Contextualization and State-of-the-art

2.1 Introduction

This chapter introduces concepts necessary to understand the content and scope of this

thesis, namely concepts of Machine Learning (ML), Neural Networks (NN), person

detection (PD), pose estimation (PE) and clothes overlapping (CO). A discussion about

the algorithmic choices made for the proposed work is also presented.

Machine Learning can be considered as a set of data analysis method(s) that au-

tomates analytical model building (Bishop, 2006). It is often considered a branch of

Artificial Intelligence based on the idea that systems can learn from data, identify pat-

terns and make decisions with minimal human intervention. Algorithms in ML are
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divide in two main groups: supervised learning and unsupervised learning (Goodfellow

et al., 2016, pp. 96).

In supervised learning, a set of training data consisting of a set of training examples

are annotated or labeled by humans, and provided to the ML system. For example,

a set of training images marked with the location and class of relevant objects can be

used for object detection (Bishop, 2006, pp. 104-106). The algorithm learns from the

labeled data and then predicts the relevant objects of new data. In supervised learning,

the most important machine learning tasks are: classification and regression (Goodfel-

low et al., 2016, pp.98-99). An example of classification is object recognition that, based

on a trained model, labels new data to classes. For regression, instead of class labels,

the new data is placed in continuous values. For example, predict the age of a person

given her picture.

In unsupervised learning, a structure or relationship between different inputs is dis-

covered without a human telling what the correct output should be. One common

unsupervised learning task is clustering (Goodfellow et al., 2016, pp.103), which discov-

ers groups of similar examples within the inputs.

In classification tasks, if the process of labeling (massive amounts of) data for su-

pervised learning is prohibitively time-consuming and expensive, a combination of su-

pervised learning and unsupervised learning can be done, called semi-supervised learning

(Chapelle et al., 2009, pp. 1-4). In semi-supervised learning, a portion of the data is la-

beled and provided to the ML system. The trained algorithm is then used to label the

unlabeled data (called the pseudo-labeling process) to train a more robust algorithm.

This approach has the risk of incorrectly labeling data.

As learning algorithm cannot include every possible instance of the inputs, it has

to be able to generalize in order to handle unseen data (Bishop, 2006, pp. 2). Sim-

ple methods can fail to capture important features, but too complex methods can do

over-fitting by not including important details or noise. Commonly, over-fitting occurs

when a complex method is used in conjunction with a too small training data. Conse-
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quently, it becomes difficult for the model to generalize new examples (validation and

test sets) that were not in the training set (Goodfellow et al., 2016, pp.448).

Quality and quantity of errors are used to evaluate the performance of the algo-

rithm. To assign a cost to the errors is used a loss function, such as mean squared error,

where the difference between the current and desired output is the error (Bishop, 2006,

pp. 41).

2.2 Neural Networks

Neural Networks are one of the most popular ML tools (Schmidhuber, 2015). For the

scope of this thesis a specific type of NN called Convolutional Neural Network (CNN) is

the focus. This section introduces the concept of NN before discussing CNN.

Neural Networks were originally named Artificial Neural Networks because they

are computational models inspired by biological systems, such as the way the brain

process information. There are mathematical functions that allow to emulate neurons,

as the artificial neuron depicted in fig. 2.1. Neuron k receives m input parameters

(x1, x2, ...xm) and has m weight parameters (wk1 , wk2 , ...wkm). Often, a bias wk0 term,

with a fixed input of 1, is included in the weight parameters. In the process, the linear

combination is done between the inputs and weights and an activation function f uses

the sum to produce the neuron output yk, i.e.,

yk = f (sk) = f

(
m

∑
j=0

wkj xj + wk0

)
. (2.1)

The neuron weights are carefully optimized to produce a desired output for each in-

put.

A combination of artificial neurons is a neural network. Layers are used to group

neurons. Figure 2.2 shows a fully-connected feed-forward multi-layer network (see Sec. 2.2.1),

where each output of a layer of neurons serves as input to each neuron in the next
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Figure 2.1: Example of an artificial neuron. Adapted from (Pokharna, 2018).

Figure 2.2: Example of a fully-connected multi-layer neural network.

layer. For example, input layer can serve to pass the data along without modifying it,

the hidden layer does the most of the computation and the output layer converts the

hidden layer activations to an output, such as classification. As expected in a fully con-

nected network, the number of neurons in the previous layer is equal to the number

of weights each neuron has (Bishop, 2006, pp. 227-229).

The final output of each neuron is determined using an activation function. A

popular activation function is Rectified Linear Units (Goodfellow et al., 2016, pp. 193),

which generates the output using an easy to compute ramp function, f (x) = max(0, x).

The softmax activation function, given by

σ(z)i =
ezi

∑K
j=1 ezj

, (2.2)

where i = 1, . . . , K, z is a vector of arbitrary values and K is the size of the vector,
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is a common function used for multi-class classification problems (Goodfellow et al.,

2016, pp.184-187) in the output layer of the network. The softmax function normalizes

z into a K dimensional vector σ(z) whose components sum to 1 (in other words, a

probability vector), and it also provides a weighted average of each zi relative to the

aggregate of zi’s in a way that exaggerates differences (returns a value close to 0 or 1),

if the zi’s are very different from each other in terms of scale, but returns a moderate

value if zi’s are relatively the same scale. Class probabilities are achieved using the

softmax (see below) output. For other activation functions see (SHARMA, 2017).

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks were inspired by the visual cortex functioning (Fu-kushi

ma, 1988). CNN have a feature called receptive fields that contain a complex arrange-

ment of receptive neurons and each of those neurons are sensitive to a specific part of

the visual field. Every time the eyes see something, the neurons act like local filters

that are well-suited to exploit the strong spatially local correlation. There are simple

neurons that detect patterns like lines and edges within their receptive area and com-

plex neurons that detect patterns that are locally invariant to the exact position of what

the eyes saw (Wang, 2013).

In CNN, there are many different architectures. Almost all of them are created from

four main types of layers in different combinations: the convolutional layer, the rectified

linear units layer (ReLU), the pooling layer and the fully connected layer (cs231n, 2018).

The convolutional layer objective is to extract features of the inputs returning as out-

put feature maps (or activation maps). This type of layer has a connection called re-

ceptive field that connects each neuron in the feature map to only a local region of the

input (previous layer). The receptive field does not look equally to a local region in

the input image, but focus exponentially more to the middle of that region. In other

words, within a receptive field, the closer a pixel is to the center of the field, the more

it contributes to the calculation of the output feature. The process to compute feature
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maps (or a forward pass through a convolutional layer) from the input can be done

by: first, the designed filter with a local region of the input is convolved. Filters have

the same depth as the input. The feature maps are computed by sliding the filters over

input data (or map). Figure 2.3 shows an example of a convolution layer. This convo-

lution layer applies zero padding, that pads the input volume with zeros around the

border. The zero padding allows the design of deeper networks and improves perfor-

mance by keeping information at the borders. Filters are slided with a defined stride

that has the objective of producing smaller output volumes spatially. A bias term with

a fixed size of 1 for first filter and 0 for second filter is included. The bias is a constant

that acts as a threshold in ReLU layer for whether a neuron has detected a low-level

characteristic.

Usually after each convolution layer is applied the ReLU layer. The rectified lin-

ear units layer can be defined as the positive part of its argument: f (x) = max(0, x),

where x is the input to a neuron. The convolution layers has just been computing

linear operations (just element wise multiplications and summations), but the ReLU

layer introduce nonlinearity. In the past, other linear functions were used, but recent

researchers found out that ReLU layer works far better because the training process of

the network is a lot faster (Goodfellow et al., 2016, pp.174-175). In basic terms, ReLU

is linear (identity) for all positive values, and zero for all negative values.

In pooling layer the intuition is that the exact location of a features is not important

as its relative location to the other features. This layer lowers the computational com-

plexity by reducing the number of parameters in the lower layers. Another effect is

control of overfitting. The overfitting is the difficulty for the model to generalize to

new examples that were not in the training set. A pooling layer is usually placed be-

tween two convolutional layers. There are different pooling operations, but the typical

ones are Max pooling and Average pooling (Wang et al., 2012; Boureau et al., 2010). Max

pooling takes the maximum value (the value of the brightest pixel) from a feature map.

The Average pooling takes the average value from a feature map. Figure 2.4 shows an
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Figure 2.3: An example of a convolution layer with two filters, each with a spatial
extent of 3, moving at a stride of 2, and input padding of 1. Adapted from (cs231n,
2018).

example of pooling operations.

A fully connected layer takes the high-level filtered images and translates them into

votes. A vector of numbers is the input to this layer. This layer connect every neuron in

the previous layer (can be convolutional or pooling) to every neuron it has. The output

is also a vector of numbers. The output vector of a fully connected layer will be feed

to loss layer. The loss layer is normally the final layer and commonly uses a softmax

activation function for classification tasks, as it generates a well-formed probability

distribution of the outputs (MONCADA, 2018).

A Neural Network learns to approximate target outputs from known inputs by

selecting the weights of the neurons. Two techniques can be used to train a CNN, a

11



Figure 2.4: Pooling operations. Top, max pooling and bottom, average pooling. The
filters and stride size is 2.

forward propagation or a backward propagation.

The forward propagation assumes that the convolutional layer output will be of size

o = (i − f + 2p)/s + 1, where o is the output size, i is the input image size, f is the

filter matrix size, p is the padding, and s is the stride. Output weights are obtained by

the convolution operation. After the convolution operation, the ReLU layer function

f (h[x, y]) = max(0, h[x, y]) is applied, being h the output feature map from convolu-

tional layer. Commonly, pooling layer is the next layer. In case of max pooling, the

output dimensionality is obtained the same way as in a convolutional layer. Each 2x2

input block is reduced to just a single value via max pooling operation (see Figure 2.4).

In a multi-layer network is difficult to solve the neuron weights analytically.

The backward propagation (Goodfellow et al., 2016, pp.204-210) solve the weights

iteratively using a simple and effective solution. The classical back-propagation algo-

rithm uses the optimization method called gradient descent to find the best weights,

i.e., the weights that yield the minimum error. Gradient descent does not guarantee

to find the global minimum of loss function and is quite time-consuming, but with

proper configuration (hyper-parameters) works well enough in practice (Cui, 2018,

pp.5-7). At the first step of the algorithm, in the neural network is propagated forward

an input vector. Before this, are initialized the weights of the network neurons. A

loss function is used to compare the predicted network output to the desired output.

12



The gradient of the loss function is then calculated, returning (the loss function is the

mean squared error) the difference between the current and desired output, which is

the output layer error. To calculate the error values of the hidden layer neurons, the

outputted error values are then propagated back through the network. The chain rule

of derivatives is used to solve the hidden neuron loss function gradients.

A hyper-parameter called learning rate (Bishop, 2006, pp. 240) is used to control

how much the weights of the network are adjusted with respect to the loss gradient.

The learning rate can be fixed or dynamic (Bishop, 2006). The neuron weights are

updated by multiplying the gradient by the learning rate and subtracting a proportion

of the gradient from the weights.

2.3 Person Detection

Three methods were analyzed and then tested for person detection: (a) Haar Cascades

(HC), (b) Histogram of Oriented Gradients (HOG) and (c) CNN. The following section

presents a brief description of those methods.

2.3.1 Haar Cascades

Haar Cascade (Viola and Jones, 2001) is a ML approach based on the concatenation of

simple classifiers that are trained with a large set of object samples. The approach uses

a boosted cascade of Haar-like features to process the captured images and detect ob-

jects. Boosted means that one strong classifier is created from weak classifiers. In other

words, a better classifier is created from a weighted majority vote of weak learners,

which depends on only one single feature, consequently increasing the classification

performance (Freund et al., 1999).

Haar Cascade has a rejection process, drawn in Fig. 2.5, that contains stages where

multiple simple classifiers vote if a region of interest is a accepted sub-window. The

earlier stages reject many feature candidates, saving substantial computation time.
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Figure 2.5: Cascade classifiers.

Figure 2.6: Haar-like features.

Simple classifiers use as input Haar-like features and a training set of positive and

negative sample images. Haar-like features are obtained by subtracting the sum of

pixels under the white rectangles from black rectangles. Figure 2.6 shows the types

of features. The final detector of different sizes is scanned over the image, extracting

features using integral images and applies the trained cascade classifier.

Four already trained detectors (Kruppa and Schiele, 2018) were used for illustration

Fig. 2.7: upper body, lower body, full body and frontal face. These detectors deals

with frontal and backside views but not with side views. Frontal face detection has a

higher accuracy rate when compared with the other detections, because it has to rely

on fragile silhouette information rather than internal (facial) features. Figure 2.7 shows
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Figure 2.7: Haar Cascades detection output. A rectangle is blue, green, red and black
for full body, upper body, lower body, and face, respectively.

some images with the accuracy results presented by drawn rectangles corresponding

to the respective detector. From the figure, despite some correct detection, several

incorrect detections are observable.

2.3.2 Histogram of Oriented Gradients

Histogram of Oriented Gradients (Dalal and Triggs, 2005) is a feature extraction method

based on evaluating over the image a dense grid of normalized local histograms of

image gradient vectors. In the first step a preprocessing that reduces the influence

of illumination effects is done. Usually, a 2D Gaussian filter is applied over the im-

age. In the second step, the horizontal and vertical gradients which captures shape

and appearance are calculated. In the third step, local gradient vectors are binned

within a spatial grid (called cell) according to their orientations, weighted by magni-

tude. Regarding the fourth step, local groups of cells (called block) are normalized.

The histogram of gradient vectors from the contributing cells are used to extract a fea-

ture vector from each block. In every feature vector, the individual cell is normalized

and shared among several overlapping blocks. In the last step, a Support Vector Ma-

chine (SVM) (Girshick et al., 2014) for human detection has as input a final descriptor

that is built using collected features vectors from all blocks. A diagram illustrating
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Figure 2.8: Histogram orientation gradient process. Adapted from (Dalal and Triggs,
2005)

Figure 2.9: Histogram of oriented gradients output. A green rectangle represents a
detection. An image without a green rectangle has no detections.

HOG approach steps is shown in Fig. 2.8.

Figure 2.9 shows some images with the detection results marked with rectangles.

As a conclusion the HOG features describes better object outline or shape and the

Harr-like features describes better brighter or darker regions. For example, Haar fea-

tures works well with frontal faces because the nose bridge is brighter than the sur-

rounding face region and HOG performs better with people detection because most

prominent features are outlines (or shapes). Nevertheless, the results presented by

both approaches are not satisfactory enough to be applied to our problem, so also a

CNN based solution was studied and tested, as explained in the next section.
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Figure 2.10: Stages of R-CNN forward propagation. Adapted from (Girshick et al.,
2014).

2.3.3 Convolutional Neural Networks Methods

This section describes and compares different person detection methods that utilize

CNN. The R-CNN (Regions + CNN) (Girshick et al., 2014) method does person detec-

tion by using an external region proposal system. A method called Selective Search

(Uijlings et al., 2013) is used to generate the regions of interest (RoI), which utilizes an

iterative merging of superpixels. To extract features from each region proposal is used

a CNN. Each RoI is warped to match the CNN input size and then fed to the network.

In the last step, a SVM uses the extracted features from the network to provide the

final classification. R-CNN have the following workflow for training: convolutional

network training, SVMs fitting to the CNN features and RoIs generating method train-

ing. In Girshick (2015) are listed three main problems: (a) training has multiple stages,

(b) SVM and region proposal training is expensive because features are extracted from

each region proposal and stored on disk, and (c) slow person detection because the

forward propagation is done separately for every object proposal. Figure 2.10 shows

the R-CNN forward propagation stages.

An evolution of the R-CNN is the Fast R-CNN (Girshick, 2015) which creates an

unified framework from three methods: feature extractor, classifier and bounding box

regressor. The framework receives as input an image plus RoIs generated using an ex-

ternal method (selective search). Then the CNN uses several convolutional and max-

pooling layers to process the image which outputs a feature map used in a RoI pooling
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Figure 2.11: Fast R-CNN architecture. Adapted from (Girshick, 2015).

layer. This layer uses the feature map to extract a fixed-length feature vector for each

object proposal. A sequence of fully connected layers uses as input the extracted vec-

tors. The fully connected layers output is the input to softmax and real-valued layers.

A probability distribution of the object classes is the output from the softmax layer. For

last in the real-valued layer, a bounding box position is computed for each class using

regression (meaning that the initial candidate boxes are refined). Fast R-CNN classi-

fication is much faster than R-CNN since each RoI uses the same feature map. The

detection time is reduced by around 30% by compressing the fully connected layers

using truncated singular value decomposition (Girshick, 2015). As a consequence, the

accuracy drops slightly. According to the author, the training time is nine times faster

than in R-CNN. The back-propagation algorithm and stochastic gradient descent can

be used to train the entire CNN. Figure 2.11 shows the Fast R-CNN architecture.

The Faster R-CNN (Ren et al., 2015b) integrates the regional proposal algorithm

into the CNN model. The framework consists of two unified CNNs: region proposal

network (RPN) that generates the feature proposals and Fast R-CNN structure for

the detection network. This CNNs are unified by using a training procedure that al-

ternates between training for RoI generation and detection. The first step is to train

separately the two networks. In the second step the networks are unified and fine-

tuned. During fine-tuning, the shared convolutional layers remain fixed and unique

networks layers pass through fine-tuning. In inference, the Faster R-CNN input is a

single image. Feature maps generation is done using the shared fully convolutional
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Figure 2.12: Faster R-CNN workflow. Adapted from (Ren et al., 2015b).

layers. RPN output region proposals using as input the feature maps. For last, the

final detection layers use as input the feature maps and the region proposals to output

the final classifications. The integration proposal algorithm into the CNN model has

the advantage of being realizable on a GPU. In CPU implementation is used an exter-

nal region proposal system. To deal with different scales and aspect ratios detections

in the sliding window are used anchor boxes. These boxes stay centered on the sliding

window and work as reference points to different region proposals. Figure 2.12 shows

the Faster R-CNN workflow.

The Single Shot MultiBox Detector (SSD) (Huang et al., 2017) uses a single forward

pass through the CNN for object detection and does not work with a region proposal

method. SSD has a default set of bounding boxes with different shapes and sizes.

Object categories predicted for these boxes have offset parameters, used to predict

the difference between the default box coordinates and the correct bounding box. The

convolutional layers output feature maps with different resolutions that serve as input
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Figure 2.13: SSD architecture. Taken from (Huang et al., 2017).

to the classifier. This CNN generates a dense set of bounding boxes. The majority of

boxes are removed using a non-maximum suppression stage after the classifier. Figure

2.13 shows the SSD architecture.

Comparison between methods

Huang et al. (2017) compares Fast R-CNN, Faster R-CNN, and SSD on the PASCAL

VOC 2007 test set (Everingham et al., 2007). The mean average precision (mAP) for

Fast R-CNN is 66.9 and for Faster R-CNN is 69.9. SSD has a mAP of 68.0 for input size

300× 300 pixels (px) and 71.6 for input size 512× 512 px. The first two methods use

images with an input size of 600 px for the shorter side. In this tests, SSD has similar

input sizes but has the best mAP. However, SSD needs extensive use of data augmen-

tation like photometric distortions and geometric distortions (expand image, random

crop and mirror), while Fast R-CNN and Faster RCNN only use horizontal flipping.

SSD processing time is 46 frames per second (FPS) for input size 300 × 300 px and

19 FPS for input size 512× 512 px on a Titan X GPU. The processing time for Faster

R-CNN is 7 FPS on the same Titan X GPU. On the same computer, Fast R-CNN has

similar evaluation speed but takes additional time if using an external method for re-

gion proposals generation. All methods use the same pre-trained VGG16 architecture.

In conclusion the results show that SSD has the highest mAP and speed.

Given those results, for this thesis, the performance of a SSD network for the hu-
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Figure 2.14: SSD-Mobilenet output. A green rectangle represents a detection.

man shapes detection with MobileNet as the base architecture was tested. Initially, a

pre-trained model on the COCO data set was used (Lin et al., 2014). The evaluation

setup consists of a windows machine with an Intel i7-6700 CPU @ 3.40GHz and an

ASUS Zenpad 3S 10 tablet. A total amount of 86 frames of expected user navigation is

the input to the network. This input has a size of 320× 320 px. A confidence threshold

of 0.25 was used to filter out weak detections. This model takes a mean value of 346.0

milliseconds (ms) to process each frame on the tablet and 33.7ms on the computer.

Figure 2.14 shows some images with detection results represented by a green box.

2.4 Pose Estimation

Pose estimation is a challenging problem due to several factors such as body parts

occlusions, different viewpoints from various cameras, or motion patterns from the

video (Zhu, 2016). In the generality of the proposed methods, estimate occluded limbs

is not reliable and to teach a model for this task is difficult. Different viewpoints can

produce, for the same pose, very different solutions. Additionally, a human body has

many degrees of freedom which makes the pose estimation more complex. However,

nowadays, good results for a single person pose estimation can be achieved (Fang

et al., 2017).

Conversely, pose estimation for multiple people is a more difficult task because

humans occlude and interact with other humans. To deal with this task, two types of
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Figure 2.15: OpenPose pipeline. Adapted from (Cao et al., 2017).

approaches are commonly used: top-down and bottom-up. In top-down (He et al.,

2017; Hernández-Vela et al., 2012; Papandreou et al., 2017), a human detector (like

HOG, Haar Cascade or SSD) is used to find each person and then run pose estima-

tion on every detection. However, top-down approach does not work if the detector

fails to detect a person, or if a limb from other people appears in a single bounding

box. Moreover, the runtime needed for these approaches is affected by the number of

people in the image, i.e., more people means greater computational cost. The Bottom-

up approach (Cao et al., 2017; Fang et al., 2017) estimates human poses individually

using pixels information. Bottom-up approach can solve both problems above: the in-

formation from the entire picture can distinguish between the people body parts, and

efficiency is maintained even as the number of persons in the image increases.

2.4.1 OpenPose

The OpenPose (Cao et al., 2017) is based on Part Affinity Fields (PAFs) and confi-

dence maps (or heatmaps), being divided in two steps: estimate the body parts (an-

kles, shoulders, etc.) and connect body parts to form limbs that result in a pose. The

pipeline of the algorithm can be viewed in Fig. 2.15. The method takes an input image,

then simultaneously infers heatmaps (b) and PAFs (c), next is used a bipartite match-

ing algorithm to associate body parts (d), and for last the body parts are grouped to

form poses (e).

A CNN is used to predict body part locations represented by heatmaps (b) and
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Figure 2.16: Architecture of the two-branch multi-stage CNN. Adapted from (Cao
et al., 2017).

the degree of association between these body parts are presented as PAFs (c). The

heatmaps and PAFs are concatenated (d) to output the limbs positions (for all hu-

mans). The CNN’s architecture is presented in Fig. 2.16. Where the predictions in the

top branches are confidence maps and in the bottom branches are PAFs. This archi-

tecture is an iterative method that refines predictions over successive stages. In each

stage exists a supervision function that controls the improvement of the predictions

accuracy.

The input to the first stage of a two-branch network is the extracted feature map

F from an auxiliary CNN (12 layers of MobileNet (Howard et al., 2017)). Then the

input for the following stages is the output from the previous stages concatenated

with the initial F. To extract from confidence maps exact points (parts locations), a

non-maximum suppression (NMS) algorithm that outputs the local maximums values

(Solano, 2018) is applied. Then a line integral is computed for each segmented line

between pairs of detected body-parts from PAFs to give each connection a score. A

Bipartite graph connects the pair candidates with the edges between them. The highest

score connection is a final limb. The final step is to use these limbs to create skeletons.
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Here, if two connections share the same part then they are merged. The pipeline that

an image follows can be viewed in Fig. 2.17. Refer to Sec. 3.2 to see some computational

results.

2.5 Clothes Overlapping

Several methods can be used for clothes overlapping. One popular concept is the

Virtual Fitting Room (VFR) (Erra et al., 2018), which combines AR technologies with

depth and color data in order to provide strong body recognition functionality and

effectively address the clothes overlapping process. Most of these VFR applications

overlap 3D models or pictures of a clothing within the live video feed and then track

the movements of the user. This approaches typically require a smartphone camera,

desktop webcam, or 3D camera (e.g., Kinect) to work (Martin and Oruklu, 2012; Isık-

dogan and Kara, 2012).

Martin and Oruklu (2012) present an image processing design flow for VFR appli-

cations using a web-cam. This algorithm has three-stages: (a) detection and sizing of

the user body, (b) detection of reference points based on face detection and augmented

reality markers, and (c) superimposition of the clothing over the user image. In step

(a), the user needs to stay in front of the camera at a certain predetermined distance.

A Canny edge (Martin and Oruklu, 2012) detection filter and morphological functions

are applied to the video frame to extract the body’s silhouette. Other filters are ap-

plied to solve the noise susceptibility of canny edge. For last, a Freeman chain (Martin

and Oruklu, 2012) code is applied to detect feature points like shoulders and the belly.

The distance between this points and the distance between the camera and the user

allows obtaining the user’s size. For step (b), the neck (reference point) is used to find

the user’s location, obtained by doing a face detection with Haar Cascade (Viola and

Jones, 2001). A different approach to get the reference point for the user’s location is

the use of markers (e.g., images). Regarding step (c), each cloths need a mask to de-
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Figure 2.17: OpenPose pipeline, followed by an image. Adapted from (Kim, 2018).
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termine which pixels should be displaying the clothe and which ones not. It is done a

mean of 5 previous images to stabilize the clothing overlap process, because the face

detection position and size changes quickly.

This approach allows only superimposition of 2D images because of the tracking

limitation. A similar approach is presented by Shaikh et al. (2014).

In (Kjærside et al., 2005) is proposed a fiducial-marker-based tracking that uses the

camera frames to automatically detect patterns. This approach requires to place one

or more markers on body parts. The camera input frames are processed in real time

using image processing techniques to determine the 3D position and orientation of

the markers and then to create an AR of the user wearing clothing. Another similar

approach was presented by Araki and Muraoka (2008). In their case, the markers

used to capture a person are small and colored. Specific joints are used to place the

markers. These markers differ in colors according to the actual position on the body.

From a consumer’s point of view, a general disadvantage is time-consuming to place

the markers and the missed comfortability to use them.

Hardware-based tracking has presented more robust and accurate solutions. Isık-

dogan and Kara (2012) uses the distance between the Kinect sensor and the user to

scale a 2D model over the detected person, only depicting the treatment of t-shirts. An-

other similar approach based on Kinect sensor was presented by Presle (2012). Other

similar approach, presented by Erra et al. (2018), uses 3D clothing with skeleton an-

imation. Two examples of several nowadays commercial applications are FaceCake

(Facecake marketing technologies, 2016) and Fitnect (Kft., 2016).

2.6 Discussion

Supported on the previous presented analysis, the pose estimation method chosen

was a bottom-up approach based on the work of Cao et al. (2017), that uses PAFs and

confidence maps (or heatmaps). For more details about this method read Sec. 3.2
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A pose estimation method was chosen because it does 2D pose estimation and can

run in real-time on mobile devices. Additionally, the estimated 2D poses can be used

to predict 3D poses using a “lifting” system, that does not need additional cameras

(Martinez et al., 2017; Tome et al., 2017). However this system is not developed in this

thesis.

The estimated pose gives the joints, that can be used to overlap clothes (2D tex-

tures or 3D models). Each joint position will be overlapped with a respective part of

the clothes. Unity 3D (Unity, 2018b) was used to manage the clothes. Unity 3D is

a fully integrated development engine, that provides out-of-the-box functionality for

the creation of interactive 3D content. A requisite of M5SAR project was that all the

software had to be developed using Unity 3D. The implementation details are shown

in Chapter 3.
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3
Clothes Overlapping

3.1 Introduction

As mention in Chapter 1, the objective of the M5SAR’s HSS module is to use a mobile

device to project AR content (clothes) over persons that are in a museum. On other

words, the goal is “to dress” museums’ users with clothes from the epoch of the muse-

ums’ objects. The HSS module has two main steps: (i) the pose estimation, and the (ii)

clothes overlapping. Those steps will be explained in detail in the following sections.

The implementation of the HSS module was done in Unity (Unity, 2018b) using the

OpenCV library (Asset for Unity). In order to verify the implementation’s reliability

tests were done in desktop and mobile systems, namely using an ASUS Zenpad 3S 10”
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Figure 3.1: Examples of pose estimation.

tablet and a Windows 10 desktop with an Intel i7-6700 running at 3.40 GHz.

3.2 Pose estimation

As already explained, the method used for pose estimation was the OpenPose model

explained in Sec. 2.4.1, see also (Kim, 2018). The method was implemented on Ten-

sorFlow (Google, 2018) and trained on the COCO dataset. In this case, the base CNN

architecture for feature extraction is MobileNets (Howard et al., 2017). The extracted

features serve as input for the OpenPose algorithm, that produces confidence maps

(or heatmaps) and PAFs maps which are concatenated. In the COCO dataset, the con-

catenation consists of 57 parts: 18 keypoint confidence maps plus 1 background and

19×2 PAFs. Here, a component joint of the body (e.g. the right knee, the right hip, or

the left shoulder; see Fig. 3.1, where red and blue circles indicate the person’s left and

right body parts, respectively) is a body part. A pair of connected parts (e.g., the right

shoulder connection with the neck; see Fig. 3.1, the green line segments) is a limb.

A total amount of 86 frames of expected user navigation were the input to the

CNN. Furthermore, two input sizes images for the CNN were tested: 368×368 and
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Figure 3.2: Top row, example of confusion between left and right ankle (left) and a well
detected pose (right). Bottom row, example of pose estimation with spatial size of the
CNN equal to 368×368px (left) and 184×184px (right).

184×184 pixels (px). Depending on the size of the input, the average process time for

each frame was 236ms (milliseconds) and 70ms, in the desktop, respectively, while in

the tablet, the average process time for each frame is 2031ms and 599ms, respectively.

As expected, reducing the input size images of the CNN allow attaining improve-

ments on the execution time, but the accuracy of the results dropped. A pose is always

estimated but the confidence map for a body part to be valid was defined to be above

25% (this value was empirically chosen). A body part is considered as missing if the

confidence is 25% or lower. One example of missing body part for an 184×184 px

image which was detected given the 368×368 px image is shown in Fig. 3.2.

Another problem noticed, many times solved when using larger images, is that

sometimes a confusion between right and left hands/legs occurs (see Fig. 3.2).

A stabilization method is used to optimize the presented results, since an estimated

pose can change, for instance, due to light changes, i.e., a joint can have wrong (out-

side the body normal pose) positions for each frame. The stabilization is done using

groups of body parts from the estimated pose. The body parts selected for each group

is based on when one change position the others change too. Table 3.1 shows the cre-

ated groups. A RoI (ellipse) of 2% (of the width and height of the frame; this value was
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Table 3.1: Pose estimation stabilization groups.

empirically chosen) is used to validate if all the parts of a group have changed position

or not. For example, to consider a changed body part position correct the other parts

has to change also. The wrong body parts are replaced by the correct previously esti-

mated body parts. over The stabilization method solves the confusion between right

and left body parts, for a person what has a front or back view if occurred for a single

body part of a group. For example, if the left and right ankle positions are swapped the

stabilization method replaces them with the previous estimated body parts. To solve

the swapped body parts problem when occurred with more body parts of a group at

the same time the estimated pose view is used. For example, in front view, the body

parts right side x coordinates should be smaller than the left side. The creation of the

pose views is explained in Sec. 3.3.3. To replace a missing body part from a pose is

used the correct previously estimated pose.

3.3 Clothes Overlapping

The clothes overlapping methods has as input an estimated pose. For clothes over-

lapping, three methods were tested: (a) segments, (b) textures and (c) volumes, as

detailed next.

3.3.1 Segments

This section explains one of the methods used to fit the clothes into the persons namely

by using segments. This algorithm was divided into 4 main components: (a) split

clothes into segments, (b) for each limb (or group of limbs) place the clothes segment,
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Figure 3.3: Examples of the clothes segments.

(c) segment the person, and (d) (re)fit clothes segment to the correspondent person

segment.

In Step (a), the clothes are divided into several segments depending on their type

and shape. For example, a suit is divided into 9 segments, while a dress is divided

into 2 segments, as shown in Fig. 3.3. Currently, these segments are manually com-

puted and each clothes segment is associated with two or more body parts returned

by OpenPose. For instance, in the suitcase (Fig. 3.3 left), segment number 9 uses both

shoulders and hips, while segment 5 uses the right shoulder and right elbow. In the

case of the sleeveless dress (Fig. 3.3 right), the projection of segment 1 also uses the

shoulders and the hips, while segment 2 uses the hips combined with the ankles.

Regarding Step (b), in order to properly project contents over the person’s body, it

is necessary to calculate the angle (α) of each limb relative to a vertical alignment (see

Fig. 3.4 top left), and rotate the respective clothes segment (see the resulting segment

in Fig. 3.5 top row).

In step (c), the person is segmented in order to fit the clothes to each body part. For

this purpose the GrabCut (see more in the appendix) segmentation algorithm (Hernández-

Vela et al., 2012) was used (see also Appendix A). The GrabCut algorithm is a semi-

automatic procedure because it receives the foreground and background areas as in-

put. To create a fully automatic algorithm, the body parts coordinates, given by Open-

Pose, are used. By using the bounding coordinates from the body parts, it is possible
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Figure 3.4: Top row, limb’s angle (left), and the distances calculated to fit the clothes
(right). Bottom row, segment stretch directions (left), and final result (right) (see
Sec. 3.3.1).

to create a bounding box area around the person, see Fig. 3.5 middle row left. In more

detail: (c.1) use the coordinates from neck, hands and ankles to create a bounding

box around the person. (c.2) Increase the bounding box area by 10%; this will put a

bounding box around the human body and is used as the foreground in the GrabCut

algorithm. (c.3) Cut the input image, with double the size of the initial bounding box

(up to the image limits), with the same center, and use the cropped area as the back-

ground; this to optimize the GrabCut processing time. Finally, (c.4) use the GrabCut

algorithm to do the segmentation. The resulting segmentation can be seen in Fig. 3.5

middle row right image.

In the last Step (d), each segment is computed and fit to the person’s body as fol-

lows. (d.1) For each limb (the ones that match with the clothes segment) a line is
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Figure 3.5: Top row, example clothes overlapping. Middle row, example of a bounding
box (left) and segmentation (right). Bottom row, projection of contents on person body
after clothes fitting.
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defined between the parts that create that limb, then the upper and lower distances, in

a perpendicular, are computed between this line and the segmented area previously

determined in (c), see a1 and b1 in Fig. 3.4 top row right. (d.2) This distance is increased

by 10% (this value was empirically chosen). (d.3) The same values are projected into

the opposite perpendicular direction of the limb, a2 and b2. Now, computed the a1,

a5, b1 and b2 coordinates, apply (d.4) a warp perspective to the segmented clothes in

order to fit them into the polygon defined by the coordinates.

Finally, (d.5) segments that are nearby, in a way they have continuity in their con-

tours, are adjusted. For instance, if after the above process (d.1-4), segments numbered

3 and 4 (in Fig. 3.3 left) still do not have contour continuity, they are stretched out/in

until coordinates a1 and b1 of one segment exactly match the coordinates a2 and b2 of

the other segment. Figure 3.4 bottom row left shows the directions of the stretch for

this specific case and on the right the final result.

Figure 3.5 bottom row shows the final results obtained for the suit and for the

dress when overlapped in the same person. Figure 3.6 shows a sequence of 3 frames

of another person moving in a different environment using the same suit and dress.

The clothes overlapping process takes an average processing time of 127ms (per

frame) using the desktop and 1086ms on the mobile device. The complete process

takes a mean time of 197ms (70ms + 127ms) in the desktop and 1645ms (559ms +

1086ms) in the mobile device for each frame. This means that, we are still far from the

intended results, i.e., to do at least one clothes overlap per second. Nevertheless, this

is the initial proof-of-concept and optimizations are required.

3.3.2 Textures

The second method used to overlap clothes was textures. The main steps of the al-

gorithm are the following: (a) add skeleton to the textures, (b) resize textures, and (c)

project textures over the person.

The first step, (a), is done to allow deformations on textures, by adding a skeleton
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Figure 3.6: Sequence of frames of a human shape superimposition using “segmenta-
tion”.

to them. For this purpose, a 2D Skeletal Animation tool Unity (2018a) is used to do

a set-up of bones and automatically calculate the geometry and weights related to the

textures. The geometry is the number of vertices attached to each bone. For example,

if a bone moves or rotates the attached vertices do the same. A weight specifies of how

much influence a bone has over a vertex. Set-up of skeleton bones for a suit and a dress

are shown in Fig. 3.7. The number of bones defined for the suit is 14 and for the dress is

10. Additionally, the most common and correct outputs of body joints from OpenPose

define the position of the bones. In the second step, (b), the distance between ankles

and neck (an approximation to the person’s height) is taken into consideration to resize

the textures. Regarding step (c), the estimated body joints from OpenPose are used to

place the textures. To rotate the texture bones, the angle (αi) of each limb relative

to a vertical alignment is calculated. In other words, the textures deformed over the

person’s body is the process achieved by placing each bone from texture skeleton over
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Figure 3.7: Example of created bones.

Figure 3.8: Example of human shape superimpostion using “textures”.

the respective body parts. The results showing two people overlapped with a dress

and a suit are shown in Fig. 3.8.

To overlap textures over a person takes an average processing time of 29.31ms on

the mobile device and 6ms using the desktop. In general, the overall process takes a

mean time of 588.31ms (559ms + 29.31ms) in the mobile device and 76ms (70ms + 6ms)
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Figure 3.9: Example of four volume 2D views.

in the desktop.

3.3.3 Volumes

The third method used to overlap clothes was volumes. The main steps of the algo-

rithm are the following: (a) rotate the volume, (b) resize the volume and (c) project it

over the person.

The first step, (a) the volume developed in 3DS MAX (MAX, 2018) is imported to

Unity. The volume is rotated horizontally accordingly to pose view. The frontal, back,

and side (right and left) views of the volume are presented in Fig. 3.9, those were ro-

tated respectively 0, 180, -90, and 90 degrees. Views are created based on OpenPose

detected and not detected body parts: nose, right eye, left eye, right ear and left ear.

The conditions used for each view are shown in Table 3.2, with one (1) the detected

body part, and zero (0) not detected body parts. Additionally, to strengthen the as-

surance of front or back view, the x coordinates distance between right and left body

parts (just hips and shoulders) should be more than 6% of the frame width (this value

was empirically chosen).

A condition to confirm the view front or back is to use the body parts right and left

sides x coordinates. For example, in front view, the x coordinates of the person right

side should be smaller than the left side. The previous estimated view is used if none
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Table 3.2: Created views conditions represented horizontally. A detected part is repre-
sented by 1 and not detected by 0.

Figure 3.10: Example of volume keypoints.

of the above conditions are met.

In the second and third step, the volume is resized (b) and is projected over the user

(c) like in Sec. 3.3.2, i.e., the volume body parts keypoints (see Fig. 3.10) are overlapped

over the estimated OpenPose pose keypoints and rotated accordingly to the calculated

angle (αi) of each OpenPose i limb relative to a vertical alignment. The results showing

a person overlapped with an volume are shown in Fig. 3.11.

To overlap volumes over a person takes an average processing time of 31.4ms on

the mobile device and 6.1ms using the desktop. In general, the overall process takes

a mean time of 590.4ms (559ms + 31.4ms) in the mobile device and 76.1ms (70ms +

6.1ms) in the desktop.
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Figure 3.11: Example of human shape superimpostion using “volumes”.

3.4 Discussion

The first proposed method (see Sec. 3.3.1) allows to fit each piece of clothing inde-

pendently. However, the final overlapped segments result in some unaesthetic effects.

The superimposition approach using “textures” (see Sec. 3.3.2) presents better (quality

and running time) results when compared with the previous approach. A disadvan-

tage here is that a skeleton bones may share the control over the same areas of the

“textures” which result in unwanted deformations when a user moves his arms up.

The “volumes” method (see Sec. 3.3.3) achieve a more realistic simulation of the pro-

cess of clothes superimposition. An advantage of this method is that it turns possible

the rotation of the volume accordingly to person horizontal rotation.

Due to the presented, the approach chosen is based on the adoption of a volume of

the clothing.
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4
Conclusions and Future Work

4.1 Conclusion

The objective of this thesis was to develop a HSS module for mobile devices, capable

of doing human shape detection and AR content (clothes) superimposition. The HSS

module is part of the M5SAR project, and was meant to improve and augment as much

as possible, the experience of visiting a museum.

This thesis presented an proof-of-concept for HSS. It studied different techniques

to do person detection, pose estimation and clothes overlapping, and used that knowl-

edge as a base to create the HSS module. The OpenPose model is the input chosen for

all the proposed clothes overlap methods.
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The first proposed method use 2D textures segments of clothes to fit to the human

body while using GrabCut algorithm. Despite working in the mobile device, opti-

mizations to achieve performances of at least one shape superimposition per second

are still needed. The second method presents the superimposition using 2D textures

while using a 2D Skeletal Animation tool to allow deformations of the textures. Su-

perimposition using textures presents better results (quality and running time) when

compared to the first method. The method with the volumes in terms of running time

have similar results like the second approach but the difference is the possibility to

rotate horizontally the volume accordingly to pose view in a more realistic simulation

of the process of clothes superimposition. The volumes method is chosen for the final

HSS module with the OpenPose model for pose estimation as input.

For better pose estimation accuracy in mobile devices was created a stabilization

method and the pose views (front, back, left, right). The pose views also turned possi-

ble the rotation of the clothes accordingly to person horizontal rotation. For real-time

performances on mobile devices an OpenPose model with a Mobilenet architecture

was tested. The testes are done to two input sizes images (368×368 and 184×184 px)

for the OpenPose model. The smallest size is the best option for mobile devices, in

term of execution time, but worse in term of accuracy than compared with the higher

size.

To conclude, the results in general are coherent with an proof-of-concept for “mo-

bile” human shape superimposition. This work does 2D pose estimation and clothes

overlapping in a multi-platform mobile device AR application. A built-in camera is

used to do human pose estimation, which are then overlapped with clothes. This

thesis presented a new portable system that does clothes overlapping, while the user

moves freely.
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4.2 Future work

This work can be enhanced in several points. First, faster and more accurate perfor-

mance with OpenPose could be achieved by testing new network architectures, new

training strategies and other datasets. Another way to get better pose estimation re-

sults could be achieved by testing models like PoseNet (Oved et al., 2018). For the

HSS module, other way to do pose view estimation (front, back, left, right) is to train

a model to do body/foot keypoints estimation and use the foot keypoints position to

know the pose view. Additionally, a future work is to predict 3D poses by using the

estimated 2D poses as input for the “lifting” system.

4.3 Publications

Five papers were published and/or accepted for publication, during the time of this

master’s degree. The following list enumerates the published works, where the first

two ones focused on this thesis, and the others present complementary information or

work not directly related to this thesis, but on the scope of the M5SAR Project:

Bajireanu, R., Veiga, R., Pereira, J., Sardo, J., Cardoso, P.J.S., and Rodrigues, J.M.F.

(2018b). Mobile human shape superimposition using OpenPose: An initial approach.

In Procs 24rd edition of the Portuguese Conference on Pattern Recognition, Coimbra,

Portugal, 26 Oct., pp. 69-70.

Bajireanu, R., Pereira, J., Veiga, R., Sardo, J., Cardoso, P.J.S., Lam, R., and Ro-

drigues, J.M.F. (2018a). Mobile human shape superimposition: an initial approach

using OpenPose. In Procs 18th International Conference on Applied Computer Sci-

ence, Dubrovnik, Croatia, 26-28 Sep.

Rodrigues, J.M.F., Veiga, R., Bajireanu, R., Lam, R., Pereira, J., Sardo, J., Cardoso,

P.J.S., and Bica, P. (2018). Mobile augmented reality framework - MIRAR. In 12th Inter-

national Conference on Universal Access in Human-Computer Interaction, integrated

in the 20th HCII, Las Vegas, USA, pp. 102–121.
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Cardoso, P.J.S., Rodrigues, J.M.F., Pereira, J., Nogin, S., Lessa, J., Ramos, C., Ba-

jireanu, R., Gomes, M., Bica, P. (2018) Cultural Heritage Visits Supported on Visitors’

Preferences and Mobile Devices, Accepted for Universal Access in the Information

Society

Veiga, R., Bajireanu, R., Pereira, J., Sardo, J., Cardoso, P.J.S., and Rodrigues, J.M.F.

(2017). Indoor environment and human shape detection for augmented reality: an ini-

tial study. In Procs 23rd edition of the Portuguese Conference on Pattern Recognition,

Amadora, Portugal, 28 Oct., pp. 67-68.
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A
GrabCut

In computer vision one of the oldest and most widely studied problems is image seg-

mentation. In person segmentation context, exists many approaches trying to over-

come changing illumination conditions, variable human poses and the need for user

intervention. In indoor scenarios with a static background, one background subtrac-

tion approach is pixel-based background subtraction. Such approach extracts the fore-

ground using each pixel independently and does not consider the relationships among

the surrounding pixels (Javed et al., 2002). Conversely, to directly deal with person

segmentation problem the generative classifiers methods are used. They learn a model

from seeds (or bounding boxes), which will estimate the background and foreground

distributions, usually applying Expectation Maximization (EM).
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One of the most popular is GrabCut (Rother et al., 2004), an interactive segmen-

tation method based on graph cuts (Boykov and Jolly, 2001). To refine silhouettes is

combined pixel appearance information with neighborhood relations. A prior step is

to define a bounding box as an initialization region. GrabCut will be used in this thesis

in combination with person detectors and pose estimators.

GrabCut (Rother et al., 2004) is an interactive segmentation method based on graph

cut algorithm proposed by Boykov and Jolly (2001). However, GrabCut represent fore-

ground and background colors with Gaussian Mixture Models (GMMs) (Reynolds,

2015), which are less error-prone when classifying colors.

Figure A.1 shows a diagram of the Grab Cut approach. In step (a) is given a

seed (bounding box) with four categories: sure foreground, sure background, prob-

able foreground and probable background. For step (b) is generated a graph with a

node for sure background and foreground and using the probable regions as weights.

Edge information or pixel similarity define the weights between the pixels. The edge

between the foreground and background will get a low weight by a large difference

in pixel color. Step (c) makes a cut separating background from foreground with a

minimum cost function. The sum of all weights of the edges that are cut is the cost

function. Finally step (d) presents the output result. In GrabCut, the users can refine

the output by pointing out misclassified regions and rerunning the optimization, by

introducing sure foreground and background to the mask between iterations. In this

thesis, a person detector is used to output a bounding box for step (a) initialization.

Figure A.2 shows some images with person segmentation results using SSD-Mobilenet

(Huang et al., 2017) as the person detector.
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Figure A.1: Example of GrabCut approach. Adapted from OpenCv (2018).

Figure A.2: Grab Cut segmentation output. A green rectangle represents a detection.
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