
 
 
 

http://researchcommons.waikato.ac.nz/ 
 
 

Research Commons at the University of Waikato 
 
Copyright Statement: 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

The thesis may be consulted by you, provided you comply with the provisions of the 

Act and the following conditions of use:  

 Any use you make of these documents or images must be for research or private 

study purposes only, and you may not make them available to any other person.  

 Authors control the copyright of their thesis. You will recognise the author’s right 

to be identified as the author of the thesis, and due acknowledgement will be 

made to the author where appropriate.  

 You will obtain the author’s permission before publishing any material from the 
thesis.  

 

http://researchcommons.waikato.ac.nz/


GERHARD VENTER, BE(MECH)

Identification and Manipulation of Lily
Bulbs for an Automated Lily Bulb Planting

System

Master’s Thesis

to achieve the university degree of

Master of Engineering

Master’s degree programme funded by: Callaghan Innovations

submitted to

The University of Waikato

Supervisor

Dr. Shen Hin Lim

Waikato Robotics, Automation and Sensing
Head:

Hamilton, June 2019



Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used.

Date Signature

ii



Abstract

Automation in agriculture is growing year by year. The goal of automating
processes is to provide inexpensive and more effective solutions for everyday
problems present in the industry. Automation in agriculture adds value to the
product and in turn, to the farmer’s infrastructure. This automation also aims to
provide higher skill labour for workers that the automation processes substitute.
Using machine vision as a means of automating processes is very common
in factory environments and is being adapted for the external agriculture
environments (i.e. automated detection for produce harvesting).

Machine vision and manipulation techniques for a lily bulb plantation were
presented. The techniques were investigated to determine the feasibility of using
an autonomous, machine vision based approach to manipulate and plant lily
bulbs from a provided source, to pre-augered holes produced by a pre-defined
autonomous platform.

The machine vision approach involved taking a top down image of the bulbs and
identifying the head positions and what orientation they were facing relative
to their root structures. This was achieved using various standard machine
vision techniques like segmenting using global thresholding and identification
of heads using the Hough circular transform. The investigated manipulation
method involved applying the above mentioned vision system to a standard
ABB IRB-120 universal manipulator with a three bellow suction gripper to pick
up the detected bulbs and manipulate the bulbs in the orientation perceived by
the vision system.

It was found that the machine vision algorithm provided a 75 per cent success
rate when providing an optimal region of interest within the bulbs head. The
success rate is a considerably successful result as the detection algorithm not
only needed to detect the location of the bulbs, but the centroid of its head and
also determine the approximate orientation relative to each samples individual
root structure. The manipulation results showed that the engagement of the
suction gripper was a significant component of failure during testing. The ob-
served success rate was at 41 per cent. This high failure rate means that further
improvements should be made before a successful end effector and manipula-
tion pair would be achieved. Improving suction rate or developing a specialized
gripper for the specific amorphous bulbs would have to be investigated further
before there is confirmation of a satisfactory solution for the Automated Lily
Planter. Further work could be done to improve the algorithm and fine-tune
the output provided. Improvements could be made to optimise the detection
algorithm like improved lighting and better contrast between the bulbs colour
gradient and that of the platform’s background. Further development on the
manipulators approach should also be conducted for validation.
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1. Introduction

Historically, the concept of ‘robot’ was introduced to be manufactured biological
beings to perform unpleasant manual labour (Hockstein et al., 2007). The
advancement of technology in the last century and many defining researches
(B. Horn, Klaus, and P. Horn, 1986) (Brooks, 1986) has evolved the definition
of robots and autonomous vehicles and now has brought us closer to realise
this concept. There’s been a few successful applications where autonomous or
remote-controlled vehicles has replaced human input to investigate or monitor
hazardous environment (Hoefling et al., 2015) (Noguchi et al., 1998) (Günther
and Kim, 2005).

The importance of automation in agriculture spans across a wide range of
industries. The end goal of automating processes is to provide a cheaper and
more effective alternative for common tasks present in industry. This cheaper
alternative not only adds value to the farmers yield, but also provides higher
quality jobs for the workers previously working on the fields. These jobs involve
tasks that require more intellectual labour, rather than the taxing manual labour
the workers previously had to endure.

Consistency of operation is another key factor that automation in agriculture
adds to industry. A labourer would typically provide inconsistent results in
a given task due to factors like fatigue, illness or just a lack of concentration.
Automated systems mitigate these factors and it would typically ensure a
much more consistent output when it comes to the same task. Whether it be
planting, harvesting or packing. An automated robot is expected to provide
more consistent results than its manual labourer counterpart. This process
consistency provides a more consistent and satisfactory end product for the
consumer.

The automation evolution has also affected the perception of farmers and
growers in agriculture about automation in recent years. ‘Internet of things’
is a prime example of a technology being embraced by agriculture industry
in sensing and also simple decision making (Ashton et al., 2009). We also see
successful harvesting applications (Barnett, 2018) (Rowe, 2015) (McGuinness,
2018).

Lilies by Blewden, as one of the largest producers of lilies in New Zealand, has
also embraced the autonomous technology and developed a semi-autonomous
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1. Introduction

vehicle in planting lilies bulb. The current mechanism, as seen in Figure 1.1, au-
tomatically drives through a given plantation row within the farm’s greenhouse.
While it drives through the row, it periodically augers ten holes throughout the
width of the row itself. These holes, as seen in Figure 1.2, provide the plant-
ing space for the tulip bulbs. After the holes are augered in the ground, two
labourers seated on the mechanism manually plant the bulbs in the mentioned
holes.

Figure 1.1.: Current System used by Lilies by Blewden. The first image provides an overall view
of the system, while the second image shows the ten augers used for the process.

Figure 1.2.: Holes systematically augered by the mechanism.

2



1. Introduction

While the vehicle aided a lot of consistency of the holes, manual labour is still
required to plant the bulbs and is very challenging to automate the plantation
of the lilies bulb. The bulb, as seen in Figure 1.3a, consists of a large head with
cloves similar to that of cloves of garlic. The bulb also contains a root structure
as well. One of the crucial components of the ABP was that it had to ensure that
the root structure would be facing downwards when planted into the augered
holes. Since the bulbs would be inserted in a batch process, without knowing
its root orientation, the system must ensure that the root faces in the correct
orientation before planting.

(a) Sample bulb (b) Sample crate of bulbs

Figure 1.3.: Sample bulbs and crate used by Lilies by Blewden. The crate stores approximately
120 bulbs each

The requirement mentioned would prove to be the most challenging for the
detection and manipulation system since the algorithm since it not only needed
to detect a relative head centre but also in what orientation it was placed relative
to the platform. The current system augurs at an estimated 8 seconds per row,
with ten bulbs processed as fast as possible, to ensure that the ABP achieves
the unmanned speed required, to keep up with the significant bulb demand,
while still providing consistent and accurate results as to where the bulbs are
positioned on the platform. From the procedure of lilies bulb planting, it is
apparent that the research challenge comes from the bulb identification and the
roots direction.

Thesis Objective

This thesis aims to investigate an optimal method to detect the lily bulbs to
accurately manipulate the detected bulb into the augered holes. An adequate
vision system should be investigated to detect the bulbs position as well as the
bulbs relative orientation. Manipulation should be incorporated in such a way
to ensure the bulbs be picked up and planted in the right orientation.

3



1. Introduction

Approach

The first step was to investigate existing detection method and also manipulation
method. This is followed by fundamentals of machine vision and also the
proposed method for detecting lilies bulb with characteristics essential for
accurate manipulation. Manipulation method is also covered to investigate
the efficiency of the detection method. Investigation into common causes of
failure for different stages of manipulation are also investigated and assessed to
determine areas of significance when it comes to automatically plant lily bulbs
from a given source.

4



2. Literature Review

The following section provides a review on various algorithms and approaches
commonly used in the industry to detect objects from an image that can be
applied to lily bulbs detection, also an investigation of end-effector design to
manipulate the lily bulb.

2.1. Machine Vision

The use of machine vision to segment objects in a 2-D image has been used
commonly in practice. The algorithms used to isolate shapes within an image
have been developed throughout the years to be as fast and process as efficient
as possible.

The following sub-section provides a brief overview of relevant literature re-
lating to object detection and image segmentation used in industry, as well
as conventional techniques used to identify shape characteristics within an
image.

Sabanci, Kayabasi, and Toktas, 2016 applied machine vision for classification
of wheat grains. This is achieved by utilising Otsu’s thresholding method to
derive a binary background and foreground region. The algorithm obtains the
grains region and computes a simplified, elliptical geometry that resembles the
size and shape of the grain as closely as possible. The geometry data provided
by the threshold regions get tabulated to classify different wheat genotypes
using an artificial neural network as the classifier tool. This article provides
useful information as to how a sample image typically gets pre-processed before
shape analysis takes place, with the use of global thresholding to segment the
foreground samples from the background. after pre-processing, various machine
vision techniques could be used more effectively and consistently, be it using
a numerical method or with an artificial neural network, which in Sabanci,
Kayabasi, and Toktas, 2016, case was the preferred method of investigation.

Sun, 2000 provides a method of detecting topping densities on a pizza using
a top down image and processing this image using standard machine vision
techniques. Typical algorithms, like thresholding the image and using sobel
edge detection proved to be somewhat useful for detection. The results proved
to be much more fruitful when splitting the image into localized regions and
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2. Literature Review

then conducting segmentation and edge detection on the split images. The
end results were very successful, with a segmentation accuracy of over 90

per cent. This method of segmenting using split image shows promise and
should be investigated in the lily bulb method as an alternate approach of
pre-processing.

Kumar et al., 2014 provides a detailed algorithm to investigate root structures
used for a more scientific purpose, to determine a plants genetic makeup via
its unique root structure. This research provides a method of detecting the
root structure using a sophisticated, pre-trained machine learning algorithm to
segment and classifies different critical regions of the roots themselves. Since the
tulip bulbs only need to be recognized via its orientation, this highly detailed
method of detecting roots might be over complicated for the design specification.
The detail required for Kumar et al., 2014 is much higher than the requirement
present for the lily bulb detection, since the root structure would only needed
to be detected relative to the space provided.

Töreyin et al., 2006 discussed a method of detecting fire hazards present on a
video feed using computer vision to detect variations in color gradient, as well
as using variations in ordinary motion. The computer vision algorithm aimed to
detect fir flickers in a live video feed to ensure a safer environment by providing
on-demand fire surveillance. The results proved to be successful. Töreyin et al.,
2006 shows that detection using color grading and motion de4tection is a valid
method of obtaining information on a video feed and could be considered when
investigating a method to detect the lily bulbs.

Mizushima and Lu, 2013 developed a comprehensive solution for optimising
the image processing classification of apples, using a support vector machine
(SVM), as well as Otsu’s method of thresholding. The primary identifier of
apple quality in this research was its size. The SVM method is used as a pre-
processing method for the apple identifier. It provides a much larger contrast
between the background and foreground of the given sample, ensuring a more
detailed and precise edge gradient between the apple and the background.
Otsu’s method provides an automatic global threshold value based on the
intensity data provided in a given 1-D image (i.e. grayscale image). After the
image had been adequately simplified, a geometric array that was designed to
provide a mean diameter of the apple was plotted over the image of the apple.
The mean diameter would then be used to classify the quality of the sample.

Mizushima and Lu, 2013 mentioned that Otsu’s method does not work ad-
equately if there are variations in brightness and colour on an object, since
they may provide spots of data that would be deemed below the calculated
threshold. The conclusion presented by Mizushima and Lu, 2013 suggests that
the overall SVM method used provided minimal error for multi-channel image
segmentation.

6



2. Literature Review

Razmjooy, Mousavi, and Soleymani, 2012 discussed using thresholding and
defect detection methods to assess the sizes of various potatoes, while also using
the defect detection algorithm to classify the potatoes based on quality. The
potatoes were initially segmented using Otsu’s method of global thresholding to
assess the overall size of the sample, then the defects are detected using a color
grading system that classifies the potato based on the color gradient presented
within the segmented bounds. The results proved to be very successful and
shows another example of highly effective global thresholding used for detecting
the morphology of a given sample. The potato sample also closely reflects that
of the lily bulbs.

Following the past literature on different fruit identification, the following
paragraphs cover the standard object identification procedure individually to
investigate the possible combination for lily bulb detection processes.

A standard method used for segmenting a single object type from its environ-
ment would be to differentiate the target object from its background. Suppose
an image contains a dark object with a background with a different colour
gradient.

Creating a threshold that would filter all pixels from one set of intensity from
another would produce the region of interest required for detecting the target
(Gonzalez, Woods, and Eddins, 2003). The proposed vision system would detect
a large count discrepancy between the intensity of a given colour-scale. This
global threshold would be used to determine the pixels in an image that would
be deemed as the object and the pixels that are the background. Figure 2.1
shows the resulting image after a global threshold had been applied to a sample
bulb image described at the start of section 2.1. The resulting image would be
presented in binary form. Figure 2.1 displays the result processed in MATLAB
from the earlier sample image.

It is crucial to test out the output of the threshold on a singular sample, in
order to evaluate any inconsistencies present. If there are inconsistencies in one
sample, those inconsistencies could be iterated for multiple samples on the same
image. The shading seen on Figure 2.1 shows a large region of inaccuracy at the
root structure present, due to shading around the roots being detected as a the
bulb intensity. This shading could mitigated using adequate overhead lighting
that would minimize shading and provide a more detailed root morphology.
This shading could provide large detremental effects on the sample, were they
more abundant and presented at a lower resolution.

After an edge filter would be applied to a subject, possible regions of interest
would be seen mixed with shapes outside of this specified region. Parker, 1996

describe the use of binary erosion and dilation as a method to reduce the
information required to represent a specific shape in a binary image.

7



2. Literature Review

Figure 2.1.: The sample image of the lily bulb being isolated from its respective background
using Otsu’s method of global thresholding

In image processing, identifying sudden shifts in information change is crucial
in simplifying a model for further analysis. A gradient-based edge detection
method would simplify the data for faster processing speeds(Costa and Roberto
Marcondes Cesar, 2000b). There are many commonly used edge detection
algorithms used in the industry. Conventional techniques were investigated
and experimented with a sample bulb image. A gradient-based edge detection
algorithm would take an array of a 1-D gradient-based image set (i.e. A grayscale
image) and specify any abrupt changes in is shade. The location of these gradient
shifts would then be recorded and a much simpler, binary output would be
obtained. This output would be useful to plot simplified geometry throughout
its geometry, rather than using the original RGB image. Figure 2.2 below shows
an RGB sample image taken of a tulip bulb provided by Lilies by Blewden. This
image was converted to grayscale and parsed through a Sobel gradient edge
detection algorithm on MATLAB. The second image shows the Sobel gradient
result, a clear outline of the previous image.

Figure 2.2.: Sample binary image with its edges isolated using a MATLAB sobel edge detection
algorithm

It should be noted that a high contrast in the photo taken would increase the
overall effectiveness of this method in terms of providing a better-defined result.
Also, note how the shadows cast by the bulb interferes with the edge output

8
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at the upper root section of the bulb. The interference would be due to the
contrast from the shadowed region to the white surface being more apparent
than the roots to the shadow. This interference could undermine the final output.
It should still be determined whether it would cause a significant error since
complex edge identification around the root structure of the bulb is not required
for the machine vision algorithm, only a way to discern between it and the
bulb heads present on each bulb. After an edge filter would be applied to a
subject, possible regions of interest would be seen mixed with shapes outside
of this specified region. Parker, 1996 describes the use of binary erosion and
dilation as a method to reduce the information required to represent a specific
shape in a binary image. A binary image is an array image with only high
and low values, instead of the 255 units of gray-scale measurements present
on a typical gray-scale image. A binary image provides a simpler input for the
binary erosion algorithm as it only needs to discern between the edges of a
singular value of measurement.

The Hough transform approximates a line from simplified binary image data.
It is instrumental in detecting straight or circular lines for a given pixel set
and could prove useful in determining the circular nature of the bulbs head.
The current A possible side effect of using the Hough transform would be its
processing time required to detect the required object. The detection process
typically takes 3-7 seconds on a PC and could hinder the rate at which roots
could be planted in a continuous form. The Hough Line Transform also struggles
with larger pixel based references, meaning that a large scale image may need
rescaling before using a Hough Transform.

2.1.1. Neural Network and Deep Learning

The following sub-section describes an alternate approach to detecting objects
in an image, namely using a convolutional neural network (CNN) that had been
trained to detect and segment objects within a given RGB image space.

Goodfellow, Bengio, and Courville, 2016 describes deep learning as model
designed for a computer to learn from experience and to develop solutions using
a hierarchy of different concepts. Deep learning algorithms are proven to be very
successful in intuitive problem solving relative to traditional computer aided
algorithms. Computer programs were always renowned for being exceptional at
processing large amounts of abstract data, but were never exceptional at more
vague or intuitive problems. Image classification, for example had always been
a challenging problem for computer processes, until deep learning and the use
of large convolutional neural networks made image classification a reality on
high performance computers.

9



2. Literature Review

Figure 2.3.: A typical structure of a deep learning algorithm, from Michael Nielsen, 2018. With
its dedicated input on the left, with hidden layers of weighted nodes providing an
estimated output. These weights had been adjusted to minimize the cost function
present at the output during network training

A predefined image classification neural network was used as a base model
for detecting the bulb heads from a given overhead image. Various common
classification networks (ie. MobilenetV2, Inception) had been evaluated for the
specific task of detecting bulb heads and the success rate of identifying the
head locations. The mentioned pre-trained networks provide segmentation and
classification for a wide array of varying classes, like birds, cars or people. These
networks could be retrained to fulfil a specific need. Retraining the model for a
new need is called Transfer Learning.

An alternate segmentation method had been conducted using a pre-trained,
semantic segmentation convolutional neural network model developed called
Deeplab (Chen et al., 2018) (C. Liu et al., 2019). Deeplab provides classification
of various common objects as well as semantic segmentation of said objects.
Figure 2.4 shows an example of Deeplab semantic segmentation on a provided
sample image.

Figure 2.4.: Sample image processed using a Deeplab semantic segmentation using the Mo-
bilenetV2 as the main pre-trained network (Sandler et al., 2018). Runners are
accurately segmented as people.

10



2. Literature Review

2.2. Gripper Investigation

Figure 2.5.: Table of various gripper technologies extracted from Blanes et al., 2011

End effectors are devices at the end of a given manipulator, designed in a
way that interacts with a given subject in a specified manner. A manipulator
without an adequate end effector for the problem would be useless under the
application. The following section delves deeper into different end effector
designs and provides various examples of common end effectors used for
similar design criteria required for the automated bulb planter. Blanes et al.,
2011 provides a review on various gripper designs for fruits and vegetables
used in factory designs. The review provides a detailed comparison of various
manipulation designs, as seen in Figure 2.5. The three main designs considered
in this review are the vacuum, contact and ingressive methods.

Hayashi et al., 2011 used a suction cup with a 4DOF arm to adequately pick
up and orient strawberries with the end caps facing upwards, for packaging
purposes. A camera detects the end cap orientation for the given strawberry.
The arm would then rotate and align itself to the strawberry end cap, use
the suction cup to pick lift it at an angle and places the strawberry at the
required packaging area. The following Figure 2.6, extracted from Hayashi et al.,
2011, shows the cups angle of approach during the lifting stage. The suction
gripper technique would prove useful for the Automated Bulb Planter since it
would not only be able to orient the bulb adequately, but the arm could also
be used to plant it from the suction cup straight to the provided auger holes.
One main issue with suction cups would be its tendency to underperform in
porous environments. One of the main problems facing a suction cup design
for the tulip bulb application would mainly be the large continuous energy
consumption required for consistent use. The estimated power consumption
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needed for a single suction cup would be around 1 Kilowatt, based on the
strawberry cups required usage.

Figure 2.6.: Sample gripping method. Image extracted from Hayashi et al., 2011.

Another essential requirement, according to Blanes et al., 2011, would be a
relatively clean contact surface for the cup to operate accordingly. This is not
feasible for the tulip bulbs since they are initially stored in soft grit and are not
thoroughly cleaned before planting. The suction gripping shows promise and
could provide a solution for the bulb manipulation problem. A prototype of
the concept would be conducted to investigate the aforementioned potential
issues with the design, specifically relating to its consistency upon picking up a
sample and how a commercial cup would handle peat and a dirty sample.

Another adaptation method for a vacuum based design was also investigated.
Han et al., 2018 provides a design investigation revolving around a universal
gripper for different shapes. It uses a flexible holder filled with granular material
as its gripper. Upon contact, the gripper wraps around the object, and a vacuum
is applied within the flexible bag to provide a shaped gripper for the given
object. The design uses a combination of suction and friction to lift any given
shaped object within a range of sizes relative to the end effectors diameter.
The granular gripper could provide another solution to the amorphous contact
surface required during picking. The consistency of the design should be
investigated, and the material used for the wrapping of the grains should be
carefully considered since, after multiple uses, the membrane could tear and
break the gripper. Another issue would be the normal force required to pick up
the bulb since the main benefit of a suction-based design would be its ease of
angular approach due to it not requiring any normal force for lifting.
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2. Literature Review

Foglia Mario and Reina, 2006 provides a method of harvesting radicchio plants
using a large gripper tool to harvest the produce by physically pulling it from
the earth. It uses a threshold based computer vision tool to identify the centroids
of the samples and maps the motion required by the arm in order to direct it
and harvest the targeted radicchio. The use of contact grippers could provide
multiple disadvantages that could prove the manipulation method undesirable
for the given use. The speed at which the grippers pick up and manipulate a
given sample could be too slow as it must first identify a location of attack for
the grippers, pick the sample up, rotate and drop the sample all in one for one
given cycle. Since the bulb planter plants ten bulbs every 20 seconds, the rate at
which the gripper manipulates a sample would take too long.

2.2.1. Summary

In summary, this section covers literature review on machine vision, different
types of end-effector grippers for manipulation, and also the potential of neural
network to be applied as part of the object detection. This literature review
showed a few different techniques that can be useful for developing the new lily
bulb technique and also provided the important characteristics of lily bulb such
as centroid and root tip direction. Different effectors were also investigated to
ensure that the lily bulb is not damaged and can be transitioned to the auger
holes. The complexity of the lily bulb shapes, in particular the root section, can
also be aided by neural network application.

13



3. Machine Vision for Lily Bulb
Detection

The requirements of the machine vision system are two-fold. Firstly to identify
the head positions of all the bulbs present on the platform at a given time, and
secondly to provide an adequate estimate of the relative orientation of each
head detected, being either north or south facing.

The vision system must also produce an accurate centroid for the head of all
the bulbs present on the platform. The centroid should be within the bounds of
the bulb head, for optimal suction contact and gripping. The following chapter
will discuss the two main machine vision varieties tested to detect the bulb
orientation and head locations for the required application of manipulating and
planting the bulbs to an augured hole.

3.1. Methodology

The techniques used for the numerical method were derived from (Gonzalez
and Woods, 2001), (Gonzalez, Woods, and Eddins, 2003), (Costa and Roberto
Marcondes Cesar, 2000a), (Parker, 1996) and (Solomon and Breckon, 2011).
Figure 3.1 provides a flow diagram that describes the steps taken to provide an
adequate numerical algorithm for detecting the bulb heads and their orientation.
Further detail into each component of the algorithm will be discussed. The
following section describes the step by step approach described in Figure 3.1
and provides sample images of each individual process using Figure 3.2 as the
example image.

Color
Filtering

Global
Threshold

Value

Binary Dila-
tion/Erosion

Hough
Transform

Global
Coordinate
Conversion

Figure 3.1.: A process flow of the tested numerical algorithm used for bulb detection and
orientation identification

The original image taken by the camera consists of an RGB image of all bulbs
present within the length of the platform. The blue gradient of the original
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Figure 3.2.: Sample image used to provide context on the approach used during for the numeri-
cal detection method.

image gets isolated since it is the gradient with the most substantial contrast
between the bulb foreground and the current white background. The blue filter
had been confirmed after numerous testing to be the best gradient for threshold
segmentation between the bulb foreground and the white background of the
conveyor belt used for manipulation testing. Figure 3.3 provides the sample
image with only the blue gradient present.

The assumption of using a blue gradient filter presumes that the majority of the
bulbs have a similar color gradient throughout testing.

Figure 3.3.: The initial sample image with the blue gradient isolated within the sampled RGB
image.

A Gaussian filter had been applied to the blue-filtered image to reduce the noise
present in the sample image by blurring the sample image. It should also be
noted that increasing the blur to a significant degree would significantly reduce
detail present in the image and may provide a misrepresentation of the bulbs
morphological shape.

The following two-dimensional Gaussian distribution equation had been applied
to the image.

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (3.1)

where σ is the standard deviation of the given pixel intensity distribution.

The output kernel provides a mean bell-shaped curve over a given discrete
amount of pixels. The kernel size had been adapted to fulfil the function, with
the final iteration using a kernel size of 11 pixels squared. Figure 3.4 shows the
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output image after a Gaussian filter had been applied with a kernel size of 11

pixels.

Figure 3.4.: The blue filtered image after a Gaussian filter had been applied to reduce noise

Otsu’s method for global thresholding was used to segment the image into two
components, namely the pixels that relate to the background and the pixels that
relate to the foreground, which in the case of the sample, was the bulbs with
their respective heads and root structures.

Figure 3.5.: Otsu’s global threshold method used on the blue filtered sample image displayed
in Figure 3.3

A global threshold value is determined using Otsu’s method that would discern
between the foreground and background pixel intensities. Otsu’s method uses
a grayscale images pixel intensity distribution and finds the threshold pixel
intensity value that would maximize the inter-class variance within the given
distribution between the two classes present, namely the bulb intensity and the
background intensity.

Otsu, 1979 provides the weighted inter-class variance function applied to the
provided intensity distribution on a given image. k represents the threshold
value and should be adjusted so that σ2

B(k), the inter-class variance is maxi-
mized.

σ2
B(k) =

[µTω(k)− µ(k)]2

ω(k)[1 − ω(k)]
(3.2)

where

ω(k) =
k

∑
i=1

pi (3.3)
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and

µ(k) =
k

∑
i=1

ipi (3.4)

pi states the pixel fraction at a given gray level i:

pi =
ni

N
(3.5)

ni is the pixel count at gray level i and N being the total number of pixels
present on the image. µt defines the total mean level:

µt = µ(L) (3.6)

L is the maximimum gray level value present in the sample.

Otsu’s method assumes a substantial variation between the foreground pixel
intensity and the background pixel intensity to determine an intensity threshold
value that would discern between the intensity of the bulbs from the belts white
colour. The resulting output would be a binary image displaying the segmented
bulbs from its background. Figure 3.5 shows the output of the head of bulbs
present, with some remnants of peat or other darker objects that were detected
to be higher than the set threshold value.

Figure 3.6 defines the sample images pixel distribution. The vertical line was
the predicted Otsu threshold value, separating the expected foreground and
background pixel clusters.

The output provided after global thresholding, is a binary image with a back-
ground class and bulb class visible on the two-dimensional image. This binary
image would be dilated slightly to account for any patches of isolated pixels
the threshold deems too low intensity on the head of the bulb itself. After the
initial dilation, the image then gets eroded to the extent that all of the root
structures have been removed from the image and only the centre of the head of
each bulb remains. This erosion also removes any considerable amounts of peat
present on the platform as well. The remaining head centres would be used to
determine the region of interest for manipulation.

Binary erosion is a method of reducing external information on the edges
of a given binary image. A small binary matrix (i.e. a 4x4 matrix compared
to the 1000x1200 image) gets superimposed for each pixel present on the
original binary image. Every time the matrix superimposes a pixel, it checks if
it correlates with the matrix surrounding the mentioned pixel. If they correlate,
then the pixel becomes a 1, and the pixel would be 0 if they do not correlate.
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Figure 3.6.: Pixel distribution of the blue gradient of the sample image after a gaussian filter had
been applied. The Otsu threshold value can be seen with the vertical line separating
the predicted foreground and background pixels.

Figure 3.7.: Eroded binary image with only the bulb heads present, with some remnants of their
respective stem structures.
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Figure 3.8.: An example of binary erosion on a sample matrix. The left, 3x3 matrix defines

the erosion matrix used to superimpose on the second matrix, which is a sample
10x10 matrix with some discontinuities represented by the zeroes present. The third
matrix represents the output after erosion had occurred throughout the sample
matrix.

Figure 3.8 describes an example situation with a 3x3 erosion matrix. the initial
20x20 matrix gets eroded based on that 3x3 matrix.

Binary dilation uses the same principle as binary erosion, but instead of remov-
ing the edges, it expands these edges. It acts like binary erosion but is its matrix
is inverted.

Since the erosion magnitude value used to erode and dilate the threshold image
remains constant throughout samples, it is assumed that the sample bulbs do
not vary significantly in size throughout all tests. If a significantly large bulb is
tested, then the root structure present may not have been entirely eroded, while
if the sample is significantly small then the samples head structure may get its
shape completely deformed and would prove to be difficult to detect its shape
characteristics in future detection processes.

A circular Hough transform provides the coordinates for the centroids of circular
structures with the highest likelihood to be displayed on the eroded image. The
circular Hough transform is used instead of a centre of area calculation because
the eroded heads visible in Figure 3.1 could still provide some detail of the
stem of the root structure if the bulbs root structure were prominent enough.
The set of centroid data would be transferred to the manipulator for lifting and
planting.

ρ = x ∗ cos(θ) + y ∗ sin(θ) (3.7)

where ρ defines the shortest distance between the origin and the line and θ the
angle from the horizontal axis to the line connecting the origin with the shortest
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distance to the line.

The defined line gets superimposed over a binary image and the count of pixels
Q that correlate to the line gets recorded for the specific input values for ρ
and θ. This is done for a finite amount of lines, with the highest Q values
determining the highest likelihood of a line being present at the correlating
parametric values.

The Hough transform for a circle would use a similar approach, but instead of
using the parametric equation of a line to determine the shape to look for, it
would instead use the parametric equation of a circle.

r2 = (x − x0)
2 + (y − y0)

2 (3.8)

where r is the radius, and (x0, y0) being the circles centroid relative to the
origin.

Similar to the Hough line transform, the circular transform finds the pixel count
Q for the image superimposed by the given circular function for finite cases of
r, x0 and y0, With the largest values of Q representing the highest likelihood of
a circular shape being present at the corresponding parameters.

After the centroids had been discovered, the coordinates get overlapped to the
original binary image and compared to the overall bounds of each segmented
object. The numerical method assumes that the bulb would be facing in an
orientation where the bulb heads are position offset from the centroid of the
Rectangular region of interest since the root structure provides a broad spread
of each bulbs region of interest. Figure 3.9 provides the output of the overall
numerical method. Each centroid and orientation value pair would be sent to
the respective manipulator for the planting phase of the process.

Figure 3.9.: The output of the numerical algorithm. The circles represent the Hough transform
estimate of the centre of each bulb head based on the eroded binary image shown
in Figure 3.7. The rectangles represent the ROI of each individual bulb and the
arrowheads depict the relative orientation of eahc bulb.
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3.1.1. Global Coordinate Conversion

The relative image coordinates of the head position and their relative orientation
(being either left or right facing) gets converted to a global linear coordinate
framework that the manipulator could use to position itself to the heads of the
bulbs. The transfer to a linear coordinate frame was done using a linear transfer
function relating between the relative pixel distance and the linear distance the
arm travels on its encoder.

The transfer function had been constructed based on the equations:

xd = xim ∗ M + x0 (3.9)

yd = yim ∗ M + y0 (3.10)

where (xd, yd) is the coordinate value for the target relative to the manipulators
origin, in mm. (xim, yim) is the pixel coordinate data relative to images origin,
in pixel count.(x0, y0) the offset between the image origin and manipulators
origin, in mm.

M is the metric distance to pixel ratio present in the image, in mm/count. M is
measured using the following relationship:

M =
mag[(xd1, yd1)(xd2, yd2)]

mag[(xim1, yim1)(xim2, yim2)]
(3.11)

where mag[(xd1, yd1)(xd2, yd2)] is the magnitude between two known points
relative the manipulators point of origin in mm and mag[(xim1, yim1)(xim2, yim2)]
is the magnitude between the same two points measured relative to the images
origin, in pixel count.

The linear transfer function provided metric coordinate data that the ABB
manipulator could use to approach the predicted target using the suction cup
manipulator.

3.2. Evaluating Success

A successful vision system for this experiment would be able to detect the centre
of the head as closely as possible for the manipulator to approach and lift the
detected bulbs successfully. An experiment had been conducted to evaluate the
optimal algorithm for the manipulation of the bulbs.

Figure 3.10 shows three successfully detected bulb sets using the numerical
method mentioned in section 3.1. the line drawn between the centroid of the
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bulb heads and the centroids of their region of interest depicts the expected
orientation for the tested bulb.

Figure 3.10.: Examples of successfully detected bulbs, The red centroid displays the calculated
centroids, while the blue box describes each bulbs bounding region. the line
between the centroid of the head and the centroid of the bounding box indicate
the expected orientation for each bulb

3.3. Results

3.3.1. Experimental Setup

The following section describes a brief instruction to the setup method used
for obtaining the images of the bulbs for both methods. Both methods use the
same testing images so the setup would apply for both cases. The process flow
chart, as seen in Figure 3.11, provides a brief description of the required steps
for testing.

Bulbs are placed linearly with roots parallel to the linear direction, either front
facing or rear facing. This binary orientation would be adequate since it was
proven that the bulbs could be manipulated mechanically on the belt using

Bulb
Placement

Camera Recognition Control
Comparison

Accuracy
Evaluation

Figure 3.11.: Process Flow of the experimental setup required for a successful detection analysis
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a ramp feed that would either face the bulbs on one direction or the on the
opposite direction. Figure 3.15 shows an example of the bulbs being placed on
the platform, spaced and placed in either a left or right facing direction. Figure
3.12 shows the overall final assembly used for testing.

A camera placed 1.1m above the bulbs ground plane, takes an image of the
bulbs, as seen in Figure 3.13a. The camera would be taking a top facing image
that would encompass the majority of the belt, and the detectable area would
also be the possible area of manipulation for the manipulator. Figure 3.14

provides an example image taken of the entire scope of the camera. The image
gets cropped to the proper region of interest as seen in Figure 3.15.

Figure 3.12.: A diagram representing the setup used for the machine vision system used for
testing. The camera is positioned centrally 1.1m above a given platform, taking
images of the sample bulbs provided by Lilies by Blewden

The image is processed using the numerical or neural network method to
determine the relative location of all the bulb heads displayed, as well as their
respective orientation.

3.3.2. Head Detection

Before presenting the detection results of the machine vision algorithm, a
successful detection occurrence should be defined and assessed. Where, within
the bulbs head-region, is a good region of engagement for the manipulator to
grip the bulb samples.
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(a) Testing Platform (b) Camera used for image capture

Figure 3.13.: The overall setup used for experimental testing. The camera detects from a height
of 1.1m identifies a range of 800mm in length along the whole width of the belt of
200mm.

Figure 3.14.: Sample image if the camera taking a top view image of the platform

Figure 3.15.: Cropped and rotated image of the sample image present in Figure 3.14
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Testing had been conducted to evaluate the best regions of engagement for the
gripper to engage and manipulate the tested bulb heads provided by Lilies by
Blewden.

The test manipulator (ABB IRB-120) had been manually placed within a given
region of the centroid of the bulb heads used for testing. Three regions were
evaluated, namely when the manipulator end-effector engaged close to the bulb
heads centroid (within 5mm of the heads perceived centroid), when the end
effector engaged within a 5mm to 15mm radius of the bulbs perceived centroid
and then tested at edge cases where the end effector engaged it between 15 to
20mm outside the centroid of the bulb head. The bulb heads typically range
from 15mm to 30mm in radius, so the final region would sometimes completely
miss the sample entirely, given a small enough sample.

The only manual component of the test was to position the manipulator for
engagement, the actual engagement and manipulation process was standardized
using an automated script that would engage and manipulate the bulb head
at a constant speed. The end effector used was a three bellow suction cup that
would suck at contact.

Table 3.1 represents a set of successful and unsuccessful manipulation manually
attempted by the ABB IRB-120 robotic arm. The attempts were cross-referenced
with three gripper engagement regions. Figure 3.16 shows the three regions in
question, namely within 5mm of the perceived centroid of the bulb, between
5mm to 10 from the centroid, and the edge cases where the cups centroid was
perceived to be close to the edge of the bulb head, between 15 and 20mm from
the centroid.

Figure 3.16.: Regions mentioned for success evaluation. The Red circle represents the 20mm
radius, Blue the 15mm radius region and the green region is within 5mm of the
perceived centroid.

The results indicate a high level of success within the 10mm region. This success
rate implies that any detected regions within 10mm from the centroid were
seen as valid targets for manipulation.

The set of test images (>100 images) were evaluated, and the relative head
centres and orientations labelled manually. Both vision systems were tested
based on the manually selected set of bulb coordinates and the overall accuracy
of the two methods were compared.
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Region Distance from Centroid (mm) Success Rate (Percentage)
Close <5 84.62

Within Head 5 - 15 80.77

Edge Case 15 - 20 38.46

Table 3.1.: Success rates relative to the perceived engagement region. The results from the
investigation would provide validation for a successful region of detection within for
the machine vision algorithm.

The results from the manual engagement region evaluation show a significant
variation (from 80.77 per cent to 38.46 per cent) in successful engagement
from Region 2 (Within Head) and Region 3 (Edge case). The majority of these
extra failures were due to the suction gripper not fully enveloping the sample
during contact. These failures indicate that the majority of successful gripper
engagements took place within 15mm relative to the bulbs centroid. It would be
safe to assume a successful target for the machine vision algorithm is anywhere
within 15mm from the actual centroid of the bulb itself. This 15mm assumption
would be used to evaluate the performance of the machine vision algorithm in
future discussions.

As seen in Table 3.2 for 74.26 per cent of the recorded cases, a result was
calculated within the radius of the smallest possible bulb size present at Lilies
by Blewden, of around 15mm in radius. A 59 per cent success rate was present
within a 10mm radius of the expected centroid. Data for each case can be found
in Appendix B.

Figure 3.17 provides the normal distribution of all the calculated bulb positions
against the relative accuracy of each individual case.

Radius From Centroid (mm) Successful Targets (Percentage)

5 19.12

10 59.56

15 74.26
20 77.94

25 78.68

Table 3.2.: Variation between the success rate of the numerical method compared to the radius
from the predicted centroid

A 75 per cent success rate is a considerably successful result as the detection
algorithm not only needed to detect the location of the bulbs, but the centroid
of its head and also determine the approximate orientation relative to each
samples individual root structure. Iteration would also be incorporated during
the manipulation phase of the process. This incorporation means that if failure
did occur during detection and manipulation, the manipulator would conduct
another opportunity since the bulb is still present on the platform itself.
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Figure 3.17.: Distribution of the distances between the predicted bulb centroids against the
centroids calculated by the numerical algorithm

3.3.3. Observations

The shape analysis algorithm was found to be consistent in detecting either
the small white oriental bulbs as well as the larger, traditional bulb types used
by Lilies by Blewden. This implies that the algorithm detects varying bulb sizes
relatively consistently and can be used for both cases.

A typical issue observed in the results was that some of the bulbs had regions
within the bulb seen as the same gradient as the background of the image, as
seen in a threshold example in Figure 3.18. The incorrect gradient detection
provides inconsistent shape analysis since the threshold value commonly ex-
cludes glossy areas of the oriental bulb heads. This can be mitigated with a belt
colour that is contrasting to any of the bulbs used in the tests and should be
considered in future testing.

Figure 3.18.: Sample image depicting the issue with otsus threshold present in some of the
test samples. The rightmost bulb has a cavity present that would propagate with
further erosion, deteriorating its shape characteristics.

The Hough circular transform provided inconsistent results and required tweak-
ing for edge cases. This tweaking makes sense since there are inconsistencies
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in the shape and size of the bulbs themselves that would provide these incon-
sistencies during detection. If a bulb with a smaller than average head and
a larger than average root structure is present, the detection algorithm may
represent a significant component of the root structure as part of the head itself,
since erosion value remains constant. The constant erosion value would mean
that if the heads are of a similar size and shape, which could be categorized
by the bulb varieties present, then the detection algorithm, specifically that of
the Hough circular transform, would be more consistent for the bulbs on the
platform.

Another observation would be the importance of using adequate lighting for
the detection component of the experiment. The samples had a set of LED
lights used overhead to provide relatively consistent lighting throughout the
setup, which is a requirement for a consistent machine vision output but some
external light still reflected throughout the testing setup. It would be beneficial
in future to ensure that the lighting only comes from a consistent source (i.e.
the mentioned top-down LED light) and that the testing platform is covered in
a light prohibiting shroud during machine vision testing.

3.4. Neural Network Investigation

Deeplab was used to provide comparable semantic segmentation to a subset
of the various bulb images taken for testing. The Deeplab solution had been
conducted as a comparison between its segmentation and the segmentation
conducted in the numerical method described in section 3.1. Figure 3.19 shows
a sample segmentation output using a pre-trained Deeplab model, namely one
that had been derived from MobilenetV2 (Sandler et al., 2018), as the pre-trained
network. It can be seen that the model interprets the bulbs as birds. This is
because no bulb data sets had been trained on the model above and it had not
been trained to detect bulb heads.

Figure 3.19.: Example output used with a pre-trained neural network on a sample bulb image.
The outputs are seen as birds since the network had not been trained for bulbs.

In future work, it would be advisable to develop a model further using transfer
learning to apply the bulb heads as valid targets to the pre-trained network,
since the model detected the bulbs relatively adequately without the use of any
prior understanding of what the bulb should look like.

It should be acknowledged that the hardware requirements for the CNN method
are vastly higher than that of classical numerical shape analysis. CNN typically
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require a large GPU to process a large number of edge cases found in the CNN
itself. The large GPU requirements mean that the hardware required on the
mechanism would be more expensive and must be protected from dust damage
as well. The GPU would also require a much larger power supply, a supply
that the current mechanism cannot provide at this time. The limitations of the
current mechanism should be acknowledged when investigating the optimal
machine vision algorithm for the Automated Bulb Planter.

3.4.1. Summary

In conclusion, the 75 per cent success rate of detecting the bulbs was found to
be a relatively successful output, taking into consideration all the constraints
that could provide failure during detection. Many improvements could be made
to optimise the detection of the bulb heads. The use of a machine vision system
to detect and manipulate the bulbs for the Automate Bulb Planter was found
to be promising within the manipulator’s frame of reference. It should also
be acknowledged that the manipulation system would be an iterative system,
meaning that if a failure does occur during detection and manipulation, that
the system would retry the same bulb until it gets manipulated from the bulbs
platform itself.
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4. Manipulation and End Effectors

The following chapter describes the analysis conducted by applying the vision
system to a manipulation system that would mimic the intended design for
the current automated bulb planter used by Lilies by Blewden. Further under-
standing of the bulbs overall characteristics and the assumptions made before
manipulation should be acknowledged before discussing the validity of the
manipulation testing conducted.

4.1. Bulb Characteristics

The following section describes the practical constraints that had to be consid-
ered for the automated component of the ABP and what would be needed to
provide a working prototype on the mechanism itself. A proposal for a working
concept would also be provided. Lilies by Blewden produce two lily variations on
their farms, namely the traditional and oriental lily variations. Both of which
have very differing bulb characteristics that needed to be considered for iden-
tification and manipulation. The oriental bulbs typically have a whiter head
complexion than their traditional bulb counterparts, where the traditional bulbs
typically have a brown coloring with a more pronounced clove structure. The
oriental bulb heads are also typically smaller in diameter than the traditional
bulbs.

Sizes for the bulbs vary in a range between 35mm and 55mm in diameter, while
the mass differs from 30g up to 80g. The ease of damaging the bulbs was an
important factor when evaluating the feasible manipulation methods available
for the lily bulbs. Ingressive methods of manipulation would be impossible
since it would ultimately destroy the bulbs before they are planted, while
a mechanical gripper manipulation would require high precision due to the
varying size for the bulbs, requiring a varied entry for the mechanical gripper

Another key component of the bulbs that needed to be considered in its manip-
ulation, is the high permeability of the bulb head. This needed to be taken into
account when considering vacuum manipulation as a valid approach since it
would require a very high flow rate to account for the seepage present on the
head itself.
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4.2. Assumptions

The following assumptions were made on the overall structure of the process
used for the automated manipulation of the bulbs. These assumptions were
needed to determine an adequate scenario for the machine vision investigation.
The bulbs would also be cleared of the majority of the peat present when they
were initially stored in their respective crates. The storage would be done either
manually as a pre-step before packing into the mentioned source or using an
oscillating filtering mechanism that would prepare the bulbs before storage.

The bulb would be placed evenly spaced on a conveyor platform during detec-
tion and manipulation using an automated feed mechanism from a source. The
feed conveyor would be static for the duration the detection and manipulation
process. The conveyor would feed further bulbs from the source after the plat-
form had been cleared of bulbs. The Notification of a clear platform would be
provided by the detection system.

The bulbs would either be facing in North or South direction relative to their
root structures on the conveyor feed. The simplified orientation is achieved with
a mechanical manipulation where the bulbs get fed on the belt with a ramp
feeding the bulbs to a wall that would forcibly rotate the bulbs to either a north
or south facing direction. Prototyping was conducted to confirm the validity of
this assumption.

The centre of the head of the bulb would be seen as an optimal target for an end
effector to manipulate. The current manipulator uses a suction cup end effector
that presses on the end of the bulb and applies suction to lift and manipulate the
bulb itself. finding the head of the bulb is crucial for this manipulation process
and it is assumed that an adequate head centroid be sent to the manipulator for
its approach and lifting phases. Figure 4.1 shows an example of a suction cup
end effector lifting a sample bulb head.

4.3. Manipulator Solution

The proposed solution for the lily bulb planting problem was to use a linear
3 Degree of Freedom gantry mounted on the mechanism, behind the augurs
of the manipulator itself. The manipulator would approach the bulbs from a
feed conveyor mounted on the mechanism. The approach co-ordinates would
be determined using a camera detecting the heads of the bulbs using one of
the standard machine vision solution mentioned in section 3.1. A suction cup
end effector would lift a bulb head, move the head to one of the ten augured
holes. The bulbs would be planted with the roots facing downwards by rotating
the end effector 90 degrees in either the clockwise or anti-clockwise direction.
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4. Manipulation and End Effectors

Figure 4.1.: Example of a bulb being lifted using a suction cup end effector. The head centroid
is crucial for an optimal lifting procedure

The rotation direction would be determined from the machine vision algorithm
detecting the root orientation present when the bulbs were placed statically on
the conveyor platform.

Figure 4.2 shows a Computer Assisted Drawing of a prototype design for the 3

Degree of Freedom linear rail manipulator. The proposed idea had to be tested
for its validity before the prototype could be purchased. The key components
that had to be tested were the machine vision solution as well as the method of
manipulating and planting the bulbs provided by Lilies by Blewden.

An industrial ABB arm was used as a substitute manipulator as a proof of
concept. The ABB IRB120 arm, seen in Figure 4.4, was provided for testing
by the University of Waikato’s agriculture automation division and was used
for testing the validity of the use of a 3-DOF manipulator with a suction end
effector to manipulate the lily bulbs form a conveyor feed using a camera to
identify the head positions for manipulation.
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Figure 4.2.: CAD model of the proposed gantry prototype. The gantry would have a total of 4

linear rails moving the end effector in 3 linear directions of movement.

4.4. Results

4.4.1. Experimental Setup

The following section describes the experimental setup for the required inves-
tigation. The setup could be derived from the six phases shown in Figure 4.3,
namely: Conveyor Feed, Bulb Identification, Co-ordinate Transfer, Manipulation
and Iteration. Figure 4.4 presents the overall assembly for the experiment. The
ABB arm would manipulate the bulbs on the conveyor belt using a suction cup
as the end effector. The belt would be controlled based on the count of bulbs
seen by the camera process, stopping at a set count of bulbs on the belt. The
ABB arm would then systematically lift and manipulate the provided bulbs to
the required sink.

Feed Identification Manipulation Iteration

Figure 4.3.: Process Flow of the experimental setup required for a successful manipulation cycle

Bulbs are placed linearly with roots parallel to the linear direction, either front
facing or rear facing. The orientation of the bulbs is based on the assumption
that an adequate mechanical manipulation step had been conducted to orient
the samples in either the north or south facing directions mentioned above.
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A camera, 1.1m above the bulbs ground plane, takes an image of the bulbs, as
seen in Figure 3.13a. The image is processed using OpenCV to determine the
relative location of all the bulb heads displayed on the image. The direction of
the roots are also evaluated based on the position of the bulb heads.

Given the relative co-ordinate and direction for all the bulbs have been processed,
the relative pixel co-ordinates are converted to linear, arm co-ordinates using
a linear transfer function, and then sent to the ABB arm as an ABB RAPID
command relayed via a python script and a socket connection to the arms IRC5

controller.

The ABB universal arm directs itself to the nearest bulb head co-ordinate,
manipulates it using a suction-based manipulator and rotates it so that root
would be facing in the downwards direction. The arm moves the bulb towards
the planting location and subsequently plants it using an external force to press
it in place.

The ABB arm repeats the action until all bulbs on the provided image had
been planted in their required locations. After all the bulbs were planted on
the platform, the conveyor belt would feed an adequate amount of 4-6 bulbs
toward the arms reach. The bulb count would be determined using a continuous
machine vision stream, counting the bulbs on the platform every time it had
attempted a planting sequence. The conveyor belt process would repeat itself
when all the bulbs were planted on the platform. When all the bulbs had been
planted visible on the platform, the conveyor would feed further bulbs until the
infrared light sensor would be tripper again.

The success rate of the manipulator planting the bulbs would determine the
overall feasibility of the manipulation system. This would determine whether
the approach would be consistent enough to provide adequate results for the
final prototype and whether the concept would be developed on further.

4.4.2. Manipulation Results

The final results found in the experiment were found to have an overall success
rate of 41.38 per cent, as seen in Table 4.1. The table defines the success rate of
each process, assuming that the previous process worked within its required
degree of success so that the process is the only degree of error present. For
example, the Engagement success rate was determined with test results that had
a 100 per cent success rate during detection. The manipulation results were also
divided into separate categories based on the most significant areas of possible
failure when it comes to the manipulation of the bulbs from the conveyor belt
to the sink. Raw data can be found in Appendix B.

From Table 4.1, it is clear to see that the cup engagement to the sample itself
provided the most substantial amount of manipulation failure during testing.
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Figure 4.4.: Current ABB arm assembly used during prototyping. The suction end effector
would lift and orient the bulbs present on the conveyor platform.

This failure makes sense since each bulb head would have a slightly different
head structure even if the centroid had been detected.

Stage Individual Success Rate (Percent)

Detection 74.26

Engagement 63.64

Manipulation 85.71

Planting 100.00

Table 4.1.: Success Rates for the varying stages of manipulation

4.4.3. Observations

The following observations were made with regards to the manipulators at-
tempts to plant the bulb samples to a given sink.

The ABB arm was found to be difficult to handle using its built-in RAPID
communication from the client. A socket connection had to be incorporated
using Python and OpenCV as the interpreter between the data collected on the
camera and the ABB manipulator since the dedicated ABB software was found
to be very restrictive as to how it could be altered during experimentation. The
alterations would be one of the many reasons as to why the ABB manipulator
would not be a suitable solution for the final iteration for the automated bulb
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planter. Other reasons include the price, robustness in farming conditions as
well as its speed.

It was found that the best region of engagement was at the centroid of the
head itself and adequate regions were where the cup end effectors centroid was
present within the bulb heads diameter. When the cups engagement region was
at an edge scenario it was found the cups bellows would adjust to the steep
angle of approach and encapsulate the top end of the bulb head.

It was observed that the suction gripper used to manipulate the bulbs were
found to be more successful with samples that still had some water on the
surface present, which makes sense since the water layer would prevent some
seepage from occurring throughout the cloves of the bulbs themselves.

Another critical factor to adequate gripping was the structural integrity of
individual cloves on the bulbs during the initial lifting sequence. Older bulbs
(approx. week old) tend to have weaker cloves and could be torn off by the cup
during the initial stages of lifting. Other issues include high vibration during
manipulation for bulbs with weaker cloves, due to the oscillations on the clove
itself. This oscillation could provide inconsistent planting if not considered.

The planting evaluation used for the results was not an adequate representation
of the real world scenario. In the actual problem, the bulbs need to be pressed
into the ground in order for it to fit snugly in the augered holes made by the
current ABP. A 100 percent success rate was present due to the fact the bulb
only needed to be oriented to the correct orientation and dropped to a sink
prior to planting, rather than targeted into a small hole and pressed into place.
The targeted planting and pressing must be considered for future work in order
for an adequate manipulator process.

It should also be noted that the system was found to have an overall success rate
of 50 per cent for a single attempt at manipulating the bulbs. The system was
designed to provide multiple attempts on the same bulb to ensure that as many
bulbs as possible get planted during the cycle. This repetition is done with an
infrared sensor detecting the position of the final bulb on the belt. The infrared
sensor would ensure that the manipulator would attempt to plant the same
bulb at least twice before the bulb moves past the sensor and gets stored in a
bulk sink for recycling into the system. It was found, after the second attempt
of planting, that the overall success rate of the manipulator increases to 70 per
cent. The likely reason for not obtaining close to 100 per cent is possibly due to
the sample being an unusual shape for the camera to detect or possibly the ma-
nipulator not contacting the bulb properly due to weak cloves on the bulb, high
amount of peat or the root structure obstructing an adequate contact region.
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4.4.4. Further Prototyping

The final iteration of the ABP would need to involve the manipulation of bulbs
with either north-south facing orientation. The bulbs would be manipulated
from a conveyor feed using a linear 3-DOF gantry system, as seen in Figure
4.2. The gantry model shown is a prototype that had been proposed for as-
sembly as an adequate testing rig for the ABP concept. The rig would be an
adequate prototype to validate the proposed concept for the rough outdoors
environment.

The relative position and orientation of each bulb on the belt would be detected
using an image taken from an RGB camera positioned overhead of the conveyor
belt. The heads and orientation of the bulbs would be calculated using an image
processing algorithm specifically tuned for the environment and would consis-
tently send accurate co-ordinate and orientation data to the manipulator. The
manipulator would approach and manipulate each bulb individually towards
the specified hole augured by the mechanism.
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In conclusion, the machine vision and manipulation techniques for lily bulb
plantation was presented. The machine vision approach involved taking a
top down image of the bulbs and identifying the head positions and what
orientation they were facing relative to their root structures. This was achieved
using various standard machine vision techniques like segmenting using global
thresholding and identification of heads using the Hough circular transform.
The investigated manipulation method involved applying the above mentioned
vision system to a standard ABB IRB-120 universal manipulator with a three
bellow suction gripper to pick up the detected bulbs and manipulate the bulbs
in the orientation perceived by the vision system.

It was found that the machine vision algorithm provided a 75 per cent success
rate when providing an optimal region of interest within the bulbs head. Im-
provements could be made to optimise the detection algorithm like improved
lighting and better contrast between the bulbs colour gradient and that of the
platform’s background.

A 75 per cent success rate is a considerably successful result as the detection
algorithm not only needed to detect the location of the bulbs, but the centroid
of its head and also determine the approximate orientation relative to each
samples individual root structure. Further work could be done to improve the
algorithm and fine-tune the output provided.

The manipulation results showed that the engagement of the suction gripper was
a significant component of failure during testing. The observed failure means
that further improvements must be made before a successful end effector would
be achieved. Improving suction rate or developing a specialized gripper for the
specific amorphous bulbs would have to be investigated further before there is
confirmation of a satisfactory solution for the Automated Lily Planter. Further
development in the manipulator would also be conducted for validation.
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5.1. Future Work

5.1.1. Vision Enhancements

The following section describes factors that could optimize the results in the
future development of the machine vision algorithm. The main concern during
the testing scenario was inconsistent lighting throughout as well as colour
gradient similarities between the foreground bulbs and the background belt.

Ensuring consistent lighting throughout the detection phase of the process
would be crucial to ensure optimal bulb detection and orientation identification.
In future, an adequate method of limiting any external lighting would be
necessary to provide the best results from the machine vision algorithm.

It was discovered that there was a considerable resemblance between the white
background colour of the conveyor belt and the white oriental bulb heads
used during testing. The colour similarities provided inconsistency during the
numerical shape analysis since it likely discerned the background intensity of
the belt to be similar to that of the head. Using a belt with a colour that contrasts
the heads of both traditional and oriental bulbs would provide a better variation
in intensity for the numerical algorithm to identify the required regions of
interest.

An alternative method of detecting the bulbs would be to use a pre-trained
segmentation neural network, mentioned in section 3.4, and retrain the model
to detect and segment the lily bulb heads on the platform. The investigation
into the performance of a neural network alternative could be promising as a
pre-trained network had been found to provide relatively successful results,
even without any retraining present in the network.

Given more time, the following would improve imaging and manipulation
results for the current prototype. The enhancements would be expected to
either provide a noticeable improvement in detection quality or provide a more
consistent gripping and planting methods. Further work in terms of the feed
and planting designs would also be discussed in the following section.

At the end of the experiment, issues were found with the pump used for testing,
namely in overall suction rate and suction consistency. A possible upgrade
to the pump may measurably improve the manipulation success rate present
for the experiment. A pump with a higher suction rate that would adequately
manipulate the bulb through the seeping cloves would help provide a more
consistent manipulation. Addition of a proper grit filter would also be essential
for repetitive testing throughout as well.

The primary end effector considered was a soft suction cup gripper with a
large number of flexible bellows, since it had been proven a successful end
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effector for amorphous shapes (Hayashi et al., 2011). Other avenues for the end
effector were not thoroughly investigated, and a more detailed end effector may
improve consistency during manipulation.

5.1.2. Future Prototype Iterations

Before designing a final product for the ABP, further iteration is necessary to
confirm other aspects needed for a successful process. Further development
in the manipulator mechanism itself would be needed to substitute the ABB
arm currently used since it is too expensive and would not be a robust enough
solution for the current environment, which is a greenhouse with high quantities
of peat and water present that could damage a universal arm such as the ABB
IRB-120.

The following aspects should also be investigated and developed further before
a final iteration could be installed to the Automated Bulb Planter. A magazine
concept had been derived for the feed setup of the ABP to ensure an equal flow
of bulbs onto the feed belt, where the bulbs would be manipulated. It was also
proven that the bulbs would be manipulated mechanically so that all the bulb
roots would either be facing in an upwards or downwards direction relative to
the direction of movement on the belt. The pre-step bulb organisation would
greatly assist in the manipulation process since the manipulator only needs to
constrain its movement to a singular rotational degree of freedom in order to
manipulate the bulb to the right direction for planting.

Further investigation into the feasibility of such a magazine design would be
required before installation onto the ABP. The incorporation of it and the vision
system would be crucial in determining the overall success of the automated
component of the system.

An adequate planting mechanism must be developed to ensure a fully functional
automated bulb planter. The bulbs must not only be placed in each individual
hole, but must also be pressed into the hole deep enough for the roots to pierce
the soil during planting, while not damaging the bulb head in the process.

Further development into an adequate planting mechanism must be conducted
to ensure the Automated bulb planter works to the consistency required by
Lilies by Blewden.

The currently proposed alternative to the ABB IRB-120 involves a 3-DOF gantry
system mounted to the current auguring mechanism, with a rotating suction
cup end effector lifting the bulbs from conveyor feed using a top-down camera
as the bulb detector. Figure 5.1 shows a Computer Aided Model of the proposed
prototype. Further work would ensure that this prototype is tested outside
in a dusty and wet environment and that it would be a financially feasible
alternative to planting the bulbs individually by hand.
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Figure 5.1.: CAD model of the proposed gantry prototype with the conveyor platform sus-
pended using a frame for prototyping purposes. The conveyor would be used as
the base platform used for the feed while the gantry system would lift and plant
bulbs to the required holes.
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Appendix A.

Raw data

A.1. Success Validation Data

Region 1 Region 2 Region 3
<5mm 5 - 10mm 10 - 20mm
SUCCESS SUCCESS FAIL
SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS FAIL
SUCCESS SUCCESS FAIL
SUCCESS SUCCESS FAIL
SUCCESS SUCCESS SUCCESS
SUCCESS FAIL FAIL
SUCCESS SUCCESS FAIL
SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS SUCCESS
FAIL SUCCESS FAIL
SUCCESS FAIL FAIL
SUCCESS SUCCESS SUCCESS
FAIL FAIL FAIL
SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS FAIL
SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS FAIL
SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS FAIL
FAIL FAIL FAIL
SUCCESS SUCCESS FAIL
SUCCESS SUCCESS FAIL
SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS SUCCESS
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A.2. Machine Vision Data

Distance (mm) Distance (Pixels)
60.00 -22.00 43.15 63.91 BAD
-22.00 -1.00 14.87 22.02 GOOD
-7.00 -3.00 5.14 7.62 GOOD
8.00 -3.00 5.77 8.54 GOOD
-24.00 -14.00 18.76 27.78 BAD
49.00 -16.00 34.81 51.55 BAD
3.00 -8.00 5.77 8.54 GOOD
-16.00 -4.00 11.14 16.49 GOOD
-1.00 -3.00 2.14 3.16 GOOD
-6.00 6.00 5.73 8.49 GOOD
3.00 1.00 2.14 3.16 GOOD
-60.00 -5.00 40.66 60.21 BAD
-12.00 -4.00 8.54 12.65 GOOD
-21.00 -18.00 18.68 27.66 BAD
21.00 -1.00 14.20 21.02 GOOD
9.00 4.00 6.65 9.85 GOOD
8.00 -11.00 9.18 13.60 GOOD
-35.00 -16.00 25.99 38.48 BAD
-4.00 -6.00 4.87 7.21 GOOD
4.00 10.00 7.27 10.77 GOOD
11.00 0.00 7.43 11.00 GOOD
-11.00 -2.00 7.55 11.18 GOOD
2.00 -4.00 3.02 4.47 GOOD
6.00 2.00 4.27 6.32 GOOD
0.00 -12.00 8.10 12.00 GOOD
16.00 3.00 10.99 16.28 GOOD
-7.00 -6.00 6.23 9.22 GOOD
6.00 4.00 4.87 7.21 GOOD
1.00 -8.00 5.44 8.06 GOOD
17.00 7.00 12.41 18.38 GOOD
-3.00 -7.00 5.14 7.62 GOOD
7.00 3.00 5.14 7.62 GOOD
-51.00 0.00 34.44 51.00 BAD
49.00 45.00 44.92 66.53 BAD
-5.00 -8.00 6.37 9.43 GOOD
17.00 -9.00 12.99 19.24 GOOD
8.00 -1.00 5.44 8.06 GOOD
51.00 39.00 43.35 64.20 BAD
41.00 5.00 27.89 41.30 BAD
-15.00 2.00 10.22 15.13 GOOD
0.00 7.00 4.73 7.00 GOOD
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Table A.2 continued from previous page
Distance (mm) Distance (Pixels)

-32.00 19.00 25.13 37.22 BAD
4.00 3.00 3.38 5.00 GOOD
-8.00 -2.00 5.57 8.25 GOOD
14.00 3.00 9.67 14.32 GOOD
6.00 -1.00 4.11 6.08 GOOD
-7.00 1.00 4.77 7.07 GOOD
31.00 -6.00 21.32 31.58 BAD
-14.00 0.00 9.45 14.00 GOOD
-3.00 9.00 6.41 9.49 GOOD
7.00 6.00 6.23 9.22 GOOD
-10.00 -6.00 7.87 11.66 GOOD
288.00 -114.00 209.16 309.74 BAD
177.00 83.00 132.01 195.49 BAD
15.00 4.00 10.48 15.52 GOOD
14.00 1.00 9.48 14.04 GOOD
2.00 1.00 1.51 2.24 GOOD
4.00 0.00 2.70 4.00 GOOD
5.00 -4.00 4.32 6.40 GOOD
9.00 -5.00 6.95 10.30 GOOD
5.00 -2.00 3.64 5.39 GOOD
11.00 -12.00 10.99 16.28 GOOD
-10.00 -6.00 7.87 11.66 GOOD
65.00 -5.00 44.02 65.19 BAD
3.00 -8.00 5.77 8.54 GOOD
-54.00 19.00 38.66 57.25 BAD
37.00 -11.00 26.07 38.60 BAD
5.00 -6.00 5.27 7.81 GOOD
48.00 -13.00 33.58 49.73 BAD
-59.00 -44.00 49.70 73.60 BAD
3.00 7.00 5.14 7.62 GOOD
0.00 1.00 0.68 1.00 GOOD
4.00 6.00 4.87 7.21 GOOD
-57.00 9.00 38.97 57.71 BAD
8.00 2.00 5.57 8.25 GOOD
4.00 2.00 3.02 4.47 GOOD
15.00 1.00 10.15 15.03 GOOD
-52.00 29.00 40.20 59.54 BAD
22.00 8.00 15.81 23.41 BAD
13.00 1.00 8.80 13.04 GOOD
6.00 -7.00 6.23 9.22 GOOD
-13.00 5.00 9.41 13.93 GOOD
23.00 -14.00 18.18 26.93 BAD
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Table A.2 continued from previous page
Distance (mm) Distance (Pixels)

13.00 3.00 9.01 13.34 GOOD
-2.00 -10.00 6.89 10.20 GOOD
-14.00 2.00 9.55 14.14 GOOD
19.00 3.00 12.99 19.24 GOOD
14.00 6.00 10.29 15.23 GOOD
-15.00 -5.00 10.68 15.81 GOOD
86.00 -37.00 63.22 93.62 BAD
-10.00 1.00 6.79 10.05 GOOD
63.00 -16.00 43.89 65.00 BAD
21.00 2.00 14.24 21.10 GOOD
85.00 -31.00 61.09 90.48 BAD
-8.00 1.00 5.44 8.06 GOOD
-6.00 5.00 5.27 7.81 GOOD
12.00 9.00 10.13 15.00 GOOD
-5.00 8.00 6.37 9.43 GOOD
-12.00 -5.00 8.78 13.00 GOOD
-3.00 9.00 6.41 9.49 GOOD
172.00 -107.00 136.78 202.57 BAD
7.00 -2.00 4.92 7.28 GOOD
7.00 -14.00 10.57 15.65 GOOD
-10.00 8.00 8.65 12.81 GOOD
-6.00 -3.00 4.53 6.71 GOOD
12.00 11.00 10.99 16.28 GOOD
5.00 8.00 6.37 9.43 GOOD
-11.00 8.00 9.18 13.60 GOOD
-3.00 -6.00 4.53 6.71 GOOD
12.00 10.00 10.55 15.62 GOOD
-13.00 -3.00 9.01 13.34 GOOD
-7.00 -8.00 7.18 10.63 GOOD
77.00 14.00 52.85 78.26 BAD
13.00 3.00 9.01 13.34 GOOD
64.00 7.00 43.47 64.38 BAD
4.00 -2.00 3.02 4.47 GOOD
-14.00 4.00 9.83 14.56 GOOD
-1.00 -6.00 4.11 6.08 GOOD
-8.00 -11.00 9.18 13.60 GOOD
92.00 15.00 62.94 93.21 BAD
1.00 4.00 2.78 4.12 GOOD
23.00 -5.00 15.89 23.54 BAD
-10.00 1.00 6.79 10.05 GOOD
5.00 -5.00 4.77 7.07 GOOD
-23.00 38.00 29.99 44.42 BAD
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Table A.2 continued from previous page
Distance (mm) Distance (Pixels)

-43.00 6.00 29.32 43.42 BAD
9.00 0.00 6.08 9.00 GOOD
-54.00 -3.00 36.52 54.08 BAD
-2.00 -6.00 4.27 6.32 GOOD
-18.00 -4.00 12.45 18.44 GOOD
71.00 9.00 48.33 71.57 BAD
11.00 3.00 7.70 11.40 GOOD
3.00 1.00 2.14 3.16 GOOD
15.00 -6.00 10.91 16.16 GOOD
13.00 -2.00 8.88 13.15 GOOD
-4.00 -8.00 6.04 8.94 GOOD

A.3. Manipulation Data

Detection Engagement Manipulation Planting
SUCCESS SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS SUCCESS SUCCESS
SUCCESS FAIL RECUR FAIL RECUR FAIL
FAIL RECUR FAIL RECUR FAIL RECUR FAIL
SUCCESS FAIL RECUR FAIL RECUR FAIL
SUCCESS SUCCESS SUCCESS SUCCESS
SUCCESS FAIL RECUR FAIL RECUR FAIL
FAIL RECUR FAIL RECUR FAIL RECUR FAIL
FAIL RECUR FAIL RECUR FAIL RECUR FAIL
SUCCESS FAIL RECUR FAIL RECUR FAIL
SUCCESS SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS FAIL RECUR FAIL
SUCCESS SUCCESS SUCCESS SUCCESS
SUCCESS FAIL RECUR FAIL RECUR FAIL
SUCCESS SUCCESS SUCCESS SUCCESS
SUCCESS FAIL RECUR FAIL RECUR FAIL
FAIL RECUR FAIL RECUR FAIL RECUR FAIL
SUCCESS SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS SUCCESS SUCCESS
FAIL RECUR FAIL RECUR FAIL RECUR FAIL
FAIL RECUR FAIL RECUR FAIL RECUR FAIL
SUCCESS SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS SUCCESS SUCCESS
SUCCESS FAIL RECUR FAIL RECUR FAIL
SUCCESS SUCCESS SUCCESS SUCCESS
FAIL RECUR FAIL RECUR FAIL RECUR FAIL

47



Appendix A. Raw data

Table A.3 continued from previous page
Detection Engagement Manipulation Planting
SUCCESS FAIL RECUR FAIL RECUR FAIL
SUCCESS SUCCESS SUCCESS SUCCESS
SUCCESS SUCCESS FAIL RECUR FAIL
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