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“Each generation doubtless feels called upon to reform the world.  

Mine knows that it will not reform it, but its task is perhaps even greater.  

It consists in preventing the world from destroying itself.” 

 

Albert Camus’ Nobel Prize speech (1957) 

  



Abstract 

In a context of climate emergency, storing temporarily carbon in biogenic 

construction materials seems a particularly attractive strategy to mitigate important 

building sector impact on global warming. Usually, environmental impacts are 

assessed using standard Life Cycle Assessment (LCA), a product-based method that 

gives notably the global warming potential (GWP). In LCA, all greenhouse gas 

emissions linked to the product are assumed to be released in the first year even if 

they are emitted at different times within the chosen time horizon. Their GWP is 

calculated at this time horizon, which is usually 100 years. Moreover, biogenic carbon 

is often excluded of the calculation assuming a balance between captured and 

emitted carbon. On the other hand, new global warming impact calculation methods 

such as dynamic LCA propose to include timing in the calculation and to assess the 

value of temporarily storing carbon in long-lived products such as building 

structures.  

The aim of this study was to investigate the impact of these hypotheses on the 

estimated GWP of building materials, by comparing the static and a dynamic LCA 

approach. 

Two types of exterior walls were compared: one made with conventional materials 

(concrete and glass wool), the other mostly composed of bio-based materials such as 

straw and timber.  Several parameters are discussed in detail: the real lifespan of 

buildings in France, carbon storage by forests and annual crops, the time horizon used 

to calculate GWP, the different greenhouse gases emitted, the accuracy of CO2 

equivalent as an indicator of global warming. Finally, the overall impact on the global 

warming of different building construction and renovation materials is estimated 

under different scenarios applied to the French context.  
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Introduction 

As the Great Acceleration study showed, we are living an exponential period of : 

energy use, population, GDP, transportation, fertilizer consumption, greenhouse 

gases emissions, tropical forest loss and so on [1]. Environmental limits within which 

humanity can safely operate are getting crossed (see Figure 1). Our global 

industrialized civilization is too complex, generates too much pollution, and is then 

likely in an already begun process of collapse ([2]–[4]).  

 

 

Figure 1 : Planetary Boundaries (from [5]) 

 

Global warming is one increasing risk parameter to deal with. In this context, 

European Union (EU) has signed the Paris Agreement at COP21. EU members 

recognised the need to “hold the increase in the global average temperature to well 

below 2°C above pre-industrial levels and pursue efforts to limit the temperature 

increase to 1.5 °C”, that “sustainable lifestyles and sustainable patterns of 

consumption and production [...] play an important role in addressing climate 

change” and aimed to “achieve a balance between anthropogenic emissions by 

sources and removals by sinks of greenhouse gases in the second half of this century” 
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[6]. The EU has made quantified commitments such as at least 40 % cuts in 

greenhouse gas emissions (from 1990 levels) for the year 2030. France being part of 

it, has set objective to be carbon neutral by 2050, meaning reduce GHG emissions by 

6 to 7 [7]. 

The building sector is a big contributor to global warming: worldwide, it consumes 

30-40% of primary energy and contributes up to one-third of GHG emissions ([8]–

[10]). In France, this sector represents 43% of French energy consumption (660 TWh), 

and around 25% of carbon dioxide (CO2) emissions [4], [5]. Including both 

construction and demolition, it accounts for 50% of all natural resources exploited, 

40% of the waste produced and 16% of the water consumed [6].  

The French metropolitan housing stock comprises around 34.5 million houses, of 

which 56% are individual homes and 44% are collective [1]. More than half were built 

before the first French thermal building regulations were introduced in 1974 [11], 

[12]. In addition, the tertiary activity park extends over more than 800 million m², one 

third of the total housing stock area ([12]–[14]).  

Building new buildings and undertaking energy efficiency renovation of existing 

buildings will require a significant amount of work and the construction materials, 

together with their global warming impact (GWI) due to greenhouse gas emission 

from embodied energy need to be calculated. The embodied energy of a building 

material is the total energy consumed for its production, use and disposal, from the 

extraction of the raw materials to the end-of-life treatment. The embodied energy of 

a building technology is the embodied energy’s sum of its components, plus the 

energy needed for transportation and construction/destruction.   

The building sector is then a key sector in terms of mitigation potential. For this 

reason, biogenic materials have been identified by the French government as a sector 

to be developed, notably because it is able to reduce fossil origin raw material 

consumption, to capture emitted carbon and to create new economic fields [15]. 
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Wood and straw products used in bio-based construction enable carbon storage due 

to photosynthesis. The proportion of carbon that may be released at the end of life, 

for instance if the materials are burned, is called temporarily stored carbon.  

The global warming potential (GWP) of products or systems is calculated using Life 

Cycle Assessment (LCA). However, the main problem with this method is that it does 

not take the time scale into consideration: emissions within a set time horizon are 

treated equally. According to the the same logic, biogenic CO2 is generally considered 

to be climate neutral, i.e. for wood there is balance between carbon sequestration at 

forest level and re-emission at end of life (EoL) of wood products [16], [17], and for 

straw short biomass cycle do not alter natural carbon cycle [18]. Temporary storage 

of carbon is totally neglected. Different authors have addressed these issues [19]–

[21]. Levasseur et al. ([22], [23]) used an interesting dynamic LCA (dLCA) methodology 

based on timing the capture and emission of greenhouse gases (GHG)  on a year-by-

year basis. 

 

Robust methodologies are required to evaluate the environmental impacts of 

different materials for design guidance. In the present work, three different methods 

are compared: static LCA, dynamic LCA and simplified dynamic LCA. The three 

methods are applied to two walls, one representative of conventional building, and 

one composed of biobased materials (straw and timber). The present analysis 

focusses on the global warming potential (GWP). The results of the comparison of 

three LCA methodologies are discussed in terms of the lifespan of buildings, the time 

horizon at which GWP is calculated and the accuracy of CO2 equivalent as an indicator 

of global warming. Then, the impact of different French strategies regarding the use 

of bio-based materials in buildings is evaluated. 
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1. Bibliographic review 

First, the French building context is presented to better understand the current needs 

of the sector. Then, data were collected to investigate whether a lifespan of 50 years 

for a building is representative of the real situation. Finally, reviews on carbon 

sequestration of timber and straw as well as GHG emissions due to decay of these 

biogenic materials and to cement and lime carbonation were done to properly assess 

carbon storage and release dynamics.   

1.1 Housing stock in France 

Currently, concrete buildings are very much the rule and the use of bio-sourced 

materials is exceptional in the building sector. In terms of structure, wood 

construction only accounts for 9% of new individual houses and 4% of new collective 

housing [24], only 7% of insulating materials are bio-sourced (50% are mineral wool 

and 40% are plastic foam). Table 1 gives an overview of the current building stock in 

France.   
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Table 1: Overview of the current French building stock [12], [25], [26] 

Construction types 

Number 

of existing 

buildings 

Construction period of existing housings 

before 1948 1948-1974 1974-2000 
after 

2000 

Residential 

(70% of the floor 

area - 2011.106 

m² of which 

33,8.106 m² 

built in 2017 

(+1.7%)) 

Individual 

houses 
19 million 33% 22% 33% 12% 

Collective 

housing 
15 million 28% 41% 23% 8% 

Tertiary 

(30% of the floor area - 862 

106 m² of which 25.106 m² 

built in 2017 (+2.9%)) 

1.46 

million 

(before 1960) 

10% 

(1960-1974) 

35% 
43% 12% 

Mean area of houses 75 m² 75 m² 82 m² 80 m² 

Main materials used in the respective time 

periods 

 

Stone; solid 

brick; adobe ; 

timber frame 

+ earth. 

Stone ; solid and 

hollow brick ; 

Hollow concrete 

block 

Hollow concrete block 

 

Hollow and solid brick 

Main insulating materials none 
Mineral wools 

Synthetic foams 

Proportion of inefficiently 
insulated houses 

(F and G in the Energy 
Efficiency Rating) 

Individual 

houses 
26% 44% 17% 2% 

Collective 

housing 
38% 30% 11% 13% 

 

1.2 Building lifespan and in-service life of products and systems 

The longer the lifespan of a product or a building, the longer biogenic materials 

temporarily store the carbon, and the less petro-sourced materials are used. This 

parameter thus requires particular attention in LCA. The main issue is that estimating 

a building’s lifespan does not only depend on ageing of the structure but also on 

social and aesthetic considerations. Data were gathered to evaluate if building 

lifespan of 50 years is a figure representative of the real situation.  

The average increase in the construction of housing in France in the last 20 years has 

been about 1% [25]. Hence the replacement rate of existing buildings is around 0.7% 

of the housing stock, which represents 70% of the floor surface (see Table 1). 



6 
 

Assuming the average growth rate remains constant, the building stock will be 

completely renewed in 90 years, which can be considered as representative of the 

lifespan of a building. Another way to estimate the lifespan is the average age of 

existing buildings. In France, this is about 50 years ([25], [27], [28]), which means the 

average lifespan is clearly more than 50 years. In addition, two studies conducted in 

Norway propose a statistical way to define the lifespan: a Weibull distribution for 

housing with a lifespan of between 40 and 300 years, a median value of 100 years 

and a mean of 125 years ([29], [30]).  

It thus seems reasonable to prescribe a lifespan of 50 years for tertiary buildings 

(offices and shops) and a lifespan of 100 years for residential buildings. 

Administrative buildings (town halls, libraries, museums) are generally thought to last 

more than 150 years. For unspecified buildings, a default value of 75 years is assigned. 

 

During a building’s lifetime, the building materials will be changed, i.e., they have an 

in-service life. Brand theorized the notion of shearing layers of change: because of 

the different rates of change of its components, a building is always tearing itself 

apart [31]. He proposed “the six S’s”:  

- Site which outlasts generations of buildings; 

- Structure (foundation and load-bearing elements) whose lifetime ranges from 30 

to 300 years;  

- Skin which consist of exterior surfaces. They last around 20 years to keep pace 

with technology and trends; 

- Services : electrical and communications wires, fluid network which last between 

7 to 15 years ; 

- Space plan : interior facings and non-load-bearing partitions. They last 3 years in 

commercial spaces and up to 30 in individual houses ; 

- Stuff: chairs, desk, phones, pictures, kitchen appliances, lamps, and furniture that 

have high turnovers. 

The lifespan of the component materials used in the types of wall studied here are 

inspired by this layer approach and their impacts are counted as many times as they 
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are replaced. As a building, they have both a physical lifespan and an in-service 

lifespan, the latter being shorter. The in-service lifespans is defined as follows:  

- 100 years for the structure (concrete or timber beam); 

- 50 years for the insulator (glass wool or straw bale compressed by timber 

battens) as well as for gypsum plasterboard; 

- 25 years for renders made of cement, lime or earth; 

- 15 years for the paint.  

1.3 Greenhouse gas dynamics linked to bio-based materials 

1.3.1 Carbon sequestration 

Biogenic materials play a fundamental role in the carbon sequestration, since the 

biomass absorbs carbon dioxide (CO2) during plant growth due to photosynthesis.  

One kilogram of straw can sequester 1.34 to 1.5  kgCO2 ([32], [33]) and additional 

literature data are summarized in Appendix 1. A straw carbon content of 45% is here 

considered. With 15% moisture content [34], this leads to a carbon uptake of 

1.40 kgCO2/kg of wet straw.  

Timber materials are often referred as being “carbon neutral” because the CO2 

released at the EoL due to decay or incineration refers to the CO2 captured during 

plant growth. Wiloso & al. [35] showed that assuming biogenic carbon neutrality 

leads to biases in the ‘true’ values based on a complete inventory. It can either 

underestimate or overestimate GWI, depending on the system boundaries chosen, 

the form of carbon emissions, and biomass valuation[35]. For instance, burning 

biomass for energy provision increases the amount of carbon in the air just like 

burning fossil fuels if harvesting the biomass reduces the amount of carbon stored in 

plants and soils [36]. He Hence, flows from carbon biomass are counted as inputs into 

and outputs from the system. Concerning inputs, carbon content of wood is 

considered to be negative if the wood was produced under sustainable forest 

management ([37], [38]). After a literature review (see Appendix 1), the carbon 

content of wood is considered to be 50.6%, and so carbon uptake is 1.86 kgCO2/kg of 

dry wood ([33], [39]). 
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Since decomposition of organic material derived from biomass sources is the primary 

source of CO2 released from waste [40], it should be carefully analysed. But EoL 

impacts of biogenic materials are not clear in the literature. The following literature 

review was thus undertaken to assess the real impacts of biogenic carbon decay. 

 

1.3.2 Reemission of captured biogenic carbon in landfill and composting sites 

2006 IPCC Guidelines for National GHG Inventories aim to estimate greenhouse gas 

(GHG) emissions from the waste sector. For biogenic carbon decomposition of 

landfilled waste, these guidelines provide a default value for the fraction of 

degradable organic carbon that decomposes under anaerobic conditions (DOCf). 

DOCf equals 0.5 [40]. No methodology is provided for N2O emissions from SWDS 

because they are not significant. The DOCf value seems to be overestimated, 

especially for wood [101], [102]. Eq. 1 inspired by [100] corrects the amount of 

estimated methane (CH4) emissions resulting from the decay of bio-based materials 

in a managed composting site. 

 

Eq. 1  𝐶𝐻4𝑥 = 𝑊 × 𝐷𝑂𝐶 × 𝐷𝐸𝐺𝑥 × 𝐷𝑂𝐶𝑓 × 𝑀𝐶𝐹 ×
16

12
× 𝑂𝑋  

where CH4x is the mass of methane generated at year x, W the deposited mass of 

waste, DOC the degradable organic carbon in the year of deposition, DEGx the 

percentage of degradation at year x, DOCf the DOC fraction that decomposes under 

anaerobic conditions, MCF the part of the waste that will decompose under aerobic 

conditions before the conditions become anaerobic in the SWDS, and OX is the 

oxidation factor. 

 

Here, referring to semi-aerobic managed solid waste disposal sites, MCF is 0.5  and 

COR is 0.1 [40]. This leads to the following ranges of values: 

- a carbon decomposition into the air as CO2 (50% to 77.5% of the carbon) and 

as CH4 (22.5% to 50%); 

- a negligible emission of N2O. 
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Moreover, according to WisardTM software developed by Ecobilan/PwC for waste LCA 

[41], landfilled wood is 15% degraded after 100 years. Hence, 15% of carbon 

contained in wood degrades as CO2 and CH4. After that, residual carbon is 

permanently stocked in the soil of the SWDS.  

 

When composted, 79% of the carbon in the straw is degraded at during the first year 

to form humus. The humus degradation rate is thus set at 0.8% per year for the 100-

year horizon [42]. As a result, 9.5% of carbon straw remains in the soil. IPCC 

Guidelines also give default emission factors for composting sites : 10g CH4/kg of 

treated waste and 0.6g N20/kg of treated waste on a dry weight basis [43]. It is 

indicated that these values are based on a limited number of studies and it is thus 

good practice to use updated scientific information to improve emission factors. 

Hence, data from a literature review of industrial composting sites’ emissions were 

preferred here. According to (Hermann, 2011) [42], without distinguishing short-term 

carbon storage, a mean of 97.55% of degradable carbon is released as CO2 and 2.45% 

as CH4 with extra emission of 0.787 gram N20 per kilogram of carbon (gN2O/kgC). For 

straw with 15% moisture content, this leads to 1 237 gCO2/kg of straw and 11.8 

gCH4/kg of straw. These values are close to IPCC default values. Nevertheless, 

(Hermann, 2011) criticized some values and chose 0.11% CH4 and 0.6 N2O emissions. 

Moreover, French data gives 0.95 gCH4/kg of composted matter [44].  

More details are in Appendix 2. 

1.4 Carbonation process 

CO2 present in gaseous state in the air penetrates materials like concrete or cement 

and lime renders through porosity and cracks. In the presence of water (which is 

present at least in the smallest pores), it causes a chemical reaction with the hydrated 

paste cement known as carbonation [45]. This is a CO2 diffusion process, which is 

controlled by the saturation of the capillary system by water [46]. 

The carbonation process can be described by the following chemical equations [46]:  

1. CO2(g) + H2O = HCO3
- +H+  
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2. HCO3
- = CO3

2- + H+  

3. The carbonate ion will react with Ca ions in the pore solution: 

Ca2+ + CO3
2- = CaCO3 

 

Thus, with carbonation, hydrates and particularly calcium hydroxide (portlandite) 

Ca(OH)2 will dissolve and calcium carbonate CaCO3 will precipitate until all of the 

Ca(OH)2 is consumed.  

As shown in Eq. 2, carbonation kinetics follows a square root law [46]–[48]: 

 

Eq. 2  𝑑𝑐 = 𝑘 × √𝑡 

where dc is the depth of carbonation, k the rate factor and t the time in years.  

 

Thiery [49] proposed a law for the mass of CO2 uptake (see Eq. 3) : 

 

Eq. 3  
𝑀𝐶𝑂2

𝑀𝐶𝑂2𝑚𝑎𝑥
=

𝑘×√𝑡

𝑒
  

where e the thickness of the wall 

 

Finally, Eq. 4 is used to calculate the CO2 uptake year by year:  

 

Eq. 4  𝐶𝑂2𝑢𝑝𝑡𝑎𝑘𝑒 =
𝑀𝑎𝑥(𝐶𝑂2𝑢𝑝𝑡𝑎𝑘𝑒)×𝑘×√𝑡

𝑒
 

where Max(CO2uptake) is the total carbonation potential at t=0. 

 

According to the Nordic Innovation Centre [46], the porosity of the carbonated 

concrete is related to the strength of the non-carbonated concrete. Hence, the 

authors propose k values which are determined by assigning the materials to 

categories based on strength as well as exposure conditions (buried, indoor, 

sheltered and outdoor). 
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In the EPD conventional wall scenario, concrete has a mechanical strength of 8 MPa 

and is exposed. The carbonation rate is then k=5 mm/year½. Carbonation is not taken 

into account in the EPD scenario on mortar. In the conventional Ecoinvent scenario, 

only carbonation of cement render and mortar joints is considered during the use 

stage. Lime render is included in biobased carbonate as well. 

To calculate the maximum uptake of carbon dioxide by cement-based materials, a 

mean of 64% of CaO in cement was used ([45], [50], [51]). It was assumed that 

hydration of lime has no impact on the carbonation process. Indeed, conversion of 

CaCO3 into CaO can occur above 900◦C where the resulting CaO rapidly hydrates. 

Since Portland cement clinker is heat treated at 1 400 to 1 500◦C, it contains only a 

small amount of uncombined or hard-burnt CaO (which seldom exceeds 1% in 

modern concretes) [50]. Thus, the 64% CaO content is assumed to carbonate. The 

same assumption concerning hydrated CaO applies to the hydraulic lime render, 

where CaO content is 70% ([52]–[54]). 

Lastly it is considered that not all the Ca(OH)2 carbonates. Renders whose thickness 

is limited to a very few centimetres can be considered as having reached their final 

carbonation levels, i.e. 80% to 92% within 1 to 2 years [55]. The final carbonation 

level was set to the average value 86%. For mortar joints, the final carbonation levels 

progress at a rate of 1.9 mm/year starting from the side which is not insulated [55]. 

In this study, this rate is assumed to be 2 mm/year to include the carbonation that 

takes place ahead of the carbonation front.  

Hence, for all materials, the CO2 uptake in kg due to carbonation follow Eq. 5: 

  

Eq. 5   𝐶𝑂2𝑢𝑝𝑡𝑎𝑘𝑒(𝑖) = 𝐶𝑎𝑂%(𝑖) × 0.86 ×
𝑚(𝑖)∗𝑀(𝐶𝑂2)

𝑀(𝐶𝑎𝑂)
  

where i is cement or lime, m(i) is the mass of i in kg which comprises mortar or render, 

M(CO2) is the molar mass of carbon dioxide, 44 g/mol, and M(CaO) is the molar mass 

of calcium oxide, 56 g/mol.  
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2. Methods 

Global Warming Potential is a measurement that establishes the relative climate 

effects of greenhouse gases. The impact of a product on global warming is calculated 

using life cycle assessment (LCA). In this section standard LCA is first presented, 

followed by the dynamic LCA method and finally by a simplification of dynamic LCA. 

2.1  Life cycle assessment (LCA) 

As defined by ISO 14040, life cycle assessment is a compilation and evaluation of the 

inputs, outputs and the potential environmental impacts of a product system 

throughout its life cycle. Standard LCA is based on the ISO standards 14040:2006 and 

14044:2006 [56], [57] and is therefore divided into four phases: 1) Goal and scope 

definition; 2) Life-cycle inventory (LCI); 3) Life-cycle impact assessment (LCIA); 4) Life-

cycle interpretation. 

All the referenced emission data for a given gas are first aggregated at year one. The 

aggregated emissions are then multiplied by the GWP of the gas at a given time 

horizon (usually 20, 100 or 500 years, as mentioned by the IPCC [58]), and converted 

into kilogram CO2 equivalent (kgCO2e). The overall impact is the sum of the GWI of 

each GHG.  

To conduct LCAs of different wall designs, LCI data were obtained from the Ecoinvent 

3.2 database. Data were analysed using Open LCA 1.5 software. Standard LCA 

focusses on GWP100 based on the IPCC 2013 impact assessment method [59]. This 

method sets the 100-year time horizon GWP values of GHG relative to CO2.  In the 

present study, the main gases emitted are carbon dioxide (CO2), methane (CH4), 

dinitrogen monoxide (N2O) with GWP100 values of 1, 28 and 264.8 kgCO2eq 

respectively [58].  

To make this study as local as possible, the Ecoinvent 3.2 dataset was sometimes 

manually modified to fit the French or European context.  
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The environmental impacts of building products manufactured by French companies 

are recorded in Environmental Product Declarations (EPD) (French acronym FDES). 

These declarations are established using the LCA approach according to the standard 

NF EN 15804+A1 [60] and are available in the INIES database (www.inies.fr). EPD are 

cradle-to-grave designed. EPD are designed to be cradle-to-grave. The EPD are filled 

in by the manufacturer and are then checked and validated by an accredited expert. 

Accordingly, the database contains several EPDs for similar products produced by 

different manufacturers. It is sometimes difficult to judge whether the differences 

between EPDs are due to different methodologies/hypothesis or to real differences 

in energy efficiency between producers.  

For the purpose of comparison, LCA calculations were performed using both 

Ecoinvent database and the EPD database. As the Ecoinvent scenario is the reference, 

unless otherwise specified, the Ecoinvent database was used. 

 

It has been observed that 50-year-lifespan buildings are mostly chosen as a standard 

for LCA without any explanations. The literature review showed this figure 

underestimate the lifespan of buildings.    

2.2  Dynamic LCA (dLCA) 

LCA results depend on an established time horizon, a time beyond which further 

impacts are no longer taken into consideration [22]. By convention, a 100-year time 

horizon is considered. Changing this time horizon will modify the GWP, since 

greenhouse gases have different lifetime in the atmosphere: CH4 stays 12.4 years, 

N2O 121 years whereas more than 20% of emitted anthropogenic CO2 remains in the 

atmosphere ([58], [61], [62]). Thus, the cumulative effective global warming due to a 

process that emits carbon will always increase with time. Moreover, a time horizon 

of 100 years is problematic if a building with a 101-year lifespan is studied, since EoL 

will fall outside its scope. 
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Consequently, a dynamic approach makes real sense. One of the first dynamic 

approaches is the Lashof method [63]. As shown in Figure 2, it consists of calculating 

benefits against a time horizon of temporary carbon storage that implies delayed 

emission, meaning a delay in radiative forcing.  

 

 

Figure 2 : Lashof method example: instantaneous impact for the emission of 1 kg of CO2 at 

year 1 or year 71, and a time horizon of 100 years. 

 

This method was criticized because it still needs a time horizon and delaying 

emissions has no real advantage as it simply postpones the problem [64]. Thus the 

dynamic LCA proposed by Levasseur ([22], [23], [65]) appears to be the most relevant 

to estimate the effect of the storage or emission of GHGs over time. It resembles the 

Lashof method extended to all kinds of GHGs and time horizons. Levasseur and her 

co-authors developed dynCO2, a spreadsheet which makes it possible to obtain time-

dependent curves of the impact on global warming due to radiative forcing 

throughout the lifecycle [66]: 

- the instantaneous impact of global warming GWIinst in W.m-2 calculated with 

Eq. 7 thanks to Eq. 6: 

 

Eq. 6   𝐷𝐶𝐹𝑖𝑛𝑠𝑡𝐺𝐻𝐺(𝑡) = ∫ 𝑎𝐺𝐻𝐺𝐶𝐺𝐻𝐺(𝑡)𝑑𝑡
𝑡

𝑡−1
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Eq. 7 𝐺𝑊𝐼𝑖𝑛𝑠𝑡(𝑡) = ∑ ∑ 𝑔𝐺𝐻𝐺(𝑖)𝑡
𝑖=0𝐺𝐻𝐺 ∗  𝐷𝐶𝐹𝑖𝑛𝑠𝑡𝐺𝐻𝐺(𝑡 − 𝑖) 

where: 

- DCFinstGHG(t) is the dynamic characterization factor of a specific GHG emission that 

occurs at time t; 

- aGHG is the instantaneous radiative forcing per unit mass present in the 

atmosphere for a specific GHG ; 

- CGHG(t) is the mass atmospheric load of a given GHG, t years after the emission; 

- gGHG(i) is the dynamic inventory result for a given GHG in year i. 

 

- the cumulative impact of global warming GWIcum in W.m-2 (see Eq. 8): 

 

Eq. 8  𝐺𝑊𝐼𝑐𝑢𝑚(𝑡) = ∑𝑡
𝑖=0 𝐺𝑊𝐼𝑖𝑛𝑠𝑡(𝑡) 

- the relative impact in kgCO2e, which refers to a “dynamic” GWP by 

comparing GWIcum at year i with GWIcum of 1 kg of CO2 emitted in year 1. 

 

Changes in GWP over the years are then available, instead of LCA values established 

at year 1 and integrated only over 20, 100 or 500 years. The time at which 

sequestration and emission occur are differentiated, which is indispensable if one is 

to evaluate the real impact of building material on global warming at different 

timescales. This interest to shift towards dLCA for the buildings has been shown [67], 

especially to address the biogenic carbon issue when bio-based materials are used 

([54], [65], [68]).  

2.3  Simplified dLCA  

In France, a group of experts was brought together in 2019 to work out how to 

account for temporary carbon storage in environmental assessments in future French 

building regulations [69]. One idea that was put forward is to apply weight factors to 

the GWP100 indicator to depict shifts in time of GHG emissions that are generated 

over the course of the life cycle. This approach represents a simplified dLCA since 
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corrective factors are determined using the Lashof method through the simulation of 

1 kg CO2 emission, but with a 100-year time horizon to fit with EPD data. Figure 3 

shows that at the 100-year time horizon, the area under the grey instantaneous 

impact curve divided by the area of the black curve equals the corrective factor. The 

corrective factors used are listed in Table 2. The strong point of this method is that it 

is easy to use since only LCA data that are already available in EPD or in Ecoinvent are 

required.  

 

 

Figure 3: Radiative forcing of 1 kg of  CO2 emitted at year 1 or year 25 to determine 

correction factors at a 100-year time horizon in simplified dLCA 

 

Table 2 : Impact of shifting of 1 kg of CO2 GWP adjusted to a 100-year time horizon. The 

original table from [69] is in Appendix 3 

Emission/capture year 0 15 25 50 101 

Corrective factor 1 0,87 0,79 0,57 0 
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3. Experimental  

3.1  Functional unit and system definition & boundaries 

The two types of studied exterior walls have the same functional unit (FU). According 

to NF EN 15804 [70] and NF EN 16783 [71], a FU has to contain a thermal resistance 

value (R) to be applied to an insulated wall and usually to a surface in panel-like 

systems. Thus, the FU is defined as follows: 

- 1 m² of wall whose main function is to form a load-bearing structure; 

- R value of 7.3 m².K.W-1 (U=0.137 W.m-2.K-1), which corresponds to passive 

house standards; 

- a lifespan of 75 years. 

The system with its boundaries refers to EN 15804 and is illustrated in Figure 4. It 

corresponds to a cradle-to-grave approach. The production of the wall known as 

module A includes five stages (A1 to A5): extraction of raw materials as well as 

biogenic captured carbon for bio-sourced materials, transport to the manufacturing 

plant, production, supply to the construction site, and construction of a 1m² wall. 

Given the scope of this analysis, in module B, only stage B1 (use due to carbonation) 

and stage B4 (replacement of some materials) were considered relevant. As part of 

B4, processes involved in the production of new materials and in replacing materials 

at the end of life (EoL) are counted. The EoL of the wall is included in module C (C1-

C4). This module includes demolition of the wall, transport of the sorted materials to 

the proper waste treatment site, recycling processes in the case of recyclable 

materials, and disposal of non-recyclable materials. Module D covers benefits and 

charges that are beyond the system boundaries: production of aggregates from 

recycled concrete, of energy or chips from recycled wood, and of energy or compost 

from recycled straw. In standard LCA, this module is indicated as additional 

information but was not taken it into consideration in the comparison of LCA and 

dLCA.  

During LCI some flows are excluded from the boundaries of the system. In accordance 

with EN 15804+A1, these flows are: lighting, heating and cleaning of workshops, 
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activities of administrative departments, workers’ transport, screws used in 

construction processes, biomass residues, electricity consumption during 

construction and replacement. 

 

INFORMATION ON THE LIFE CYCLE OF A BUILDING WALL   

BENEFITS AND LOADS 

OUTSIDE THE SYSTEM 

BOUNDARIES 

A1-A3  A4-A5  B1-B7  C1-C4   D 

PRODUCTION 

stage 
 

CONSTRUCTION 

stage 
 

USE 

stage 
 

ENF OF LIFE 

stage 
  

Reuse, Recovery, 

Recycling potential 

 

Figure 4 : System boundaries of the LCA model for the two types of walls 

 

In dynamic LCA, the production stage accounts for year 0 or 1, the construction stage 

for year 1, use for year 1 to year 75, and end of life from year 76. Carbon uptake by 

straw and wood products are counted the year before these products are used in the 

FU (i.e. year 0 or 49 in the case of product renewal). Indeed, assumptions of an 

equilibrium state for fields of annual crops and that French forests produce sufficient 

biomass in one year to offset the volumes harvested are made. 

3.2  Walls under study 

The first wall named “Concrete with internal thermal insulation” (conventional) and 

is composed of materials commonly used by the building industry. It is compared to 

a second wall named “Timber and bales of wheat straw” (biobased), which is one of 

the well-known low-tech biobased construction methods. For the assessments, 

materials of specified thickness that can be found in the market are used.  

These two types of wall were compared through LCA and dLCA by using Ecoinvent 

3.2 database. To be able to properly compare them with French EPD results, the 

processes chosen are based on the French and European context. The results are 

incorporated in the “Ecoinvent scenario”. More details on the materials used can be 

found in the paragraph below. Ecoinvent process are detailed in Appendix 4 

For a comparison purpose, the same comparison was done using EPD.   
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3.2.1. Materials 

Concrete: due to the thickness of joints a little less than ten 20x20x50 cm 

hollow concrete blocks are used per FU. The density of a concrete block varies 

between 885 and 1 080 kg/m3 ([72], [73]). A density of 1 000 kg/m3 was set to obtain 

a 20-kg concrete block as in the concrete EPD [74]. Since the selected concrete 

process gives a density of 2 315 kg/m3, a correction factor to enter the proper 

concrete volume was applied. Concrete forms the structure of the conventional wall 

and has the same lifespan.  

Cement mortar is used for the joints between the concrete blocks. The density of 

cement mortar varies between 1 800 kg/m3 and 2 200 kg/m3 ([75]–[77]). The usual 

composition is 67% sand, 22% cement, 11% water [78], [79], which gives a density of 

1 900 kg/m3. The mixing procedure is included in the Ecoinvent process. The 

horizontal joints between two layers of concrete blocks are 1 cm thick. There are 4 

horizontal layers per FU. The vertical joints between the concrete blocks are also 

counted. Mortar joints have the same lifespan as concrete.  

Cement render is used on the outside of conventional walls. The render is made of 

aerated mortar, whose density is 1 500 kg/m3. It is 2 cm thick. The render has a 

lifespan of 25 years, but EPD recommends and French law requires renovation of the 

facade every 10 years in some municipalities including Paris [80].  

Glass wool is an inorganic insulator made of silica and recycled glass by fusion up to 

1 400 °C, centrifugation and extrusion [81]. A density of 25 kg/m3 and a thermal 

conductivity of 0.035 W.m-1.K-1 were set [82], [83].  Several different lifespans can be 

found in the literature: 30 years [81], 40 years[19], 50yrs [84]. A lifespan of 50 years 

was chosen according to NF EN 16783. This also corresponds to what is observed in 

the field: in France, buildings built before 1974 are subject to thermal renovation. 

Current installation of internal insulation in new buildings are considered to last as 

long as possible. No information was found in the literature on how performances 

might change during the lifetime of the material due to ageing or unexpected 

situations.  
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Gypsum plasterboard is a standardized product with a thickness of 12.5 mm. Its in-

service life is 50 years [85]. 

Paint is only applied inside the building. The yield of typical paints available on the 

market is 0.1 L/m². The density was set at 1 500 kg/m3 [86]. The solvent is water at 

10 w%. Two to three layers are applied, which leads to 0.35 kg/FU. Paint’s lifespan is 

15 years [87]. 

 

Straw: wheat straw grown in intensive farming system was chosen. Two-string bales 

of straw 47x37x100 cm in size are usually used in building applications. The minimum 

required density is 85 kg/m3 [88] and density can go up to 180 kg/m3, but is often 

around 100 kg/m3, which is enough to ensure material homogeneity as well as lighter 

to carry for workers. Its thermal conductivity is 0.052 W.m-1.K-1 ([32], [89]). The 

lifespan was set at 50 years to match the NF EN 16783 norm.  

Wood: softwood was chosen such as Douglas fir, a species whose wood does not 

require treatment. Its density at 15% moisture content is 550 kg/m3 [90]. Two 

220x45 mm beams and three 27x32 mm battens are made out of it. Beam lifespan is 

the same as the wall, since it is the bearing element. The function of the battens is to 

compress the bales of straw bales and they thus have the same lifespan. 

Clay plaster is composed of 55% clay, 25% sand and 20% water in weight [91], its 

density is 1 800 kg/m3. Its thickness is 3cm and it has a 25-year lifespan. The mixing 

procedure is included in the Ecoinvent process. 

Lime render: the process was created. According to building site data, the 

composition of render (in weight) is 12% hydrated lime, 70% sand and 18% water, 

giving a density of 1 400 kg/m3. The mixing procedure is the same as for clay. The 

render is then applied in a 2-cm thick layer. Its lifespan is 25 years. 

 

Table 3 gathers figures for each component of the walls presented in Figure 5. Figures 

found in EPDs for each constitutive materials of biobased and conventional walls are 

in Appendix 5. 
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Figure 5: Wall compositions referring to Table 3;  

conventional wall (left), biobased wall (right) 

 

Table 3: Materials inventory for the two types of wall construction according to Ecoinvent 

database and literature - Ecoinvent scenario 

Ref. Material Density 

Kg.m-3 

Thickness 

mm 

λ 

W.m-1.k-1 

Mass 

Kg/FU 

Lifespan 

yr 

Waste treatment 

conventional - Concrete with internal thermal insulation 

1 Paint 1500 - - 0.35 15 landfilled 

2 Cement render 1900 20 1.2 30 25 Recycling 

potencial 

3 OPC concrete blocks 1000 200 1 192 100 Recycling 

potencial 

4 Cement mortar 1900 - 1.2 33.8 100 Recycling 

potencial 

5 Glass wool 25 240 0.035 6 50 landfilled 

6 Gypsum plasterboard 770 12.5 0.3 10 50 landfilled 

biosourced - timber and bales of wheat straw 

1 lime render 1400 20 0.8 28 25 landfilled 

2 Straw 100 370 0.052 37 50 Composted, 

incinerated 

3 Wood battens 550 - 0.14 1.4 50 landfilled, 

incinerated, 

recycled 
4 Timber beam 550 - 0.14 10.9 100 

5 Clay plaster 1800 30 0.8 54 25 landfilled 

 

Considering the thermal resistances of the interior and exterior surfaces, Rsi and Rse, 

as 0.13 and 0.04 m².K.W-1, the global R values are 7.36 for the conventional wall and 

7.33 for the biobased wall.  
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3.2.2 Impacts of the materials on climate change – production and construction 

stages 

Some of the materials used in the FU involve several processes in the Ecoinvent 3.2 

database. In order to ensure the GWP of the materials is consistent, the values were 

compared with values in the literature. Table 4 shows there are few discrepancies 

between the Ecoinvent processes and the literature.  

 

Table 4: Processes chosen in Ecoinvent 3.2 to ensure their impact matches the literature 

review     

Material (unit) 

GWP100 of process in 

Ecoinvent 3.2 

kgCO2e/unit 

Average GWP100 from 

literature 

kgCO2e/unit 

Standard 

deviation in 

literature data 

Source 

Cement (t) - 838.2 60.9 [44], [51], 

[92]–[100] 

Aggregates (t) - 2.87 0.52 [100]–[103] 

Water (kg) - 3.10-4 - Ecoinvent 3.2 

OPC Concrete (m3) 314.0 332.5 27.6 [92], [100], 

[103] 

Cement mortar (t) 198.6 201.7 37.2 [75], [104], 

[105] 

Glass wool (kg) 1.4 1.33 0.13 [82], [106], 

[107] 

Gypsum plasterboard (kg) 0.19 0.26 0,03 [85], [108], 

[109] 

15%moisture wood - CO2 

uptake (kgCO2/kg of wood) 
- 1.56 0.064 Appendix 1 

Process of timber beam / 

timber battens (m3) 
44.1 / 31.7 36.6 / 31.6 16.4 / 11.4 [44], [109] 

15%moisture straw - CO2 

uptake (kgCO2/kg of straw) 
- 1.66 0.055 Appendix 1 

Straw baling processes (kg) 

 
0.142 0.127 0.063 

[32], [39], 

[110] 

Lime render (kg) 0.142 0.16 0.07 [111], [112] 

Earth plaster (kg) 0.029 0.04 - [111] 

 

Due to cement, concrete will have a high environmental impact in the conventional 

wall. Figure 6 compares concrete production processes in Ecoinvent 3.2, 

reconstituted concrete and mean impact taken from the literature. For concrete 

production, a volume of matter was determined to form a hollow concrete block. 

Some data were modified to fit the European context. 
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Since the production of concrete of 25 MPa and 35 MPa in Ecoinvent is not destined 

for hollow blocks, Eq. 9 was applied the get the proper mass per FU. “Reconstructed 

concrete” was obtained by mixing the mean impact of cement, aggregates and water 

in the literature (see Table 4) at respective proportions of 9%, 86% and 5% , and then 

adding transport and manufacturing.  

The 35 MPa concrete process matched the average in the literature. Moreover, with 

carbonation its impact was similar to that in low impact Ecoinvent processes.  

 

 

Figure 6: comparison between concrete production processes in Ecoinvent 3.2, a 

reconstituted concrete and mean impact found in the literature review. 

 For concrete production, a volume of matter has been determined to form hollow concrete block 

(cf. Eq. 9). Some data have been modified to fit with the European context. Reconstructed concrete” 

has been obtained by mixing mean literature impact of cement, aggregates and water (cf. Table 4) 

with a proportion of 9%, 86% and 5% respectively, and by adding transport and manufacturing 

 

Eq. 9 𝑖𝑚𝑝𝑎𝑐𝑡𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
25

35
𝑀𝑃𝑎 = 𝑖𝑚𝑝𝑎𝑐𝑡𝐸𝑐𝑜𝑖𝑛𝑣𝑒𝑛𝑡

25

35
𝑀𝑃𝑎 ×

𝑑ℎ𝑜𝑙𝑙𝑜𝑤𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒𝑏𝑙𝑜𝑐𝑘

𝑑𝑒𝑐𝑜𝑖𝑛𝑣𝑒𝑛𝑡𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
25

35
𝑀𝑃𝑎

 

where d is the density in kg/m3. 

 

The  impact of growing the wheat straw was allocated based on the knowledge that 

straw represents 10% of income from the sale of wheat [113]. Hence, the impact of 

wheat straw is 10% of “soft wheat grain” one, a process included in the French 

Agribalyse database. For the production of baled straw, a process was created 
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comprising pressing, grouping and storage using diesel powered baling machines and 

including fertilisers so as to model nutrient losses from the field caused by exporting 

straw. These losses are 7 kg nitrogen (N), 1.2 kg phosphorous (P2O5) and 12.3 

potassium (K20) per ton of exported straw [39].  

As stated before, carbon uptake of biogenic materials are: 1.40 kgCO2/kg of wet straw 

1.86 kgCO2/kg of dry wood.   

 

For each type of wall, a 16–32 metric ton truck, EURO4, is used for transport in sub-

module A4. For the conventional wall, transport concerns the delivery of concrete 

blocks from the ready-mix plant to the construction site (200 km [114]) and cement 

mortar transported from the packing facility to the construction site, which is 

assumed to be located at a distance of 50 km [19]. Plasterboard and insulator are also 

transported over a distance of 50 km. For the biobased wall, the reference distance 

for French Douglas fir wood is 200 km [115]. As clay is a locally available material, it 

is conservatively assumed that it is transported for 50 km. Lime is assumed to be 

transported over a distance of 500 km [116]. An exception was made in the means of 

transport for straw: 50% of the straw is assumed to be transported 10 km by tractor, 

40% 40 km by truck and 10% 80 km by truck ([89], [113]). The electricity consumed 

at the building site and for the transport of the workers are not included.  

Table 5 lists the amounts of CO2, CH4, N2O, CO and SF6 generated by the materials 

used in conventional and biobased construction.  

 

 

 

 

 

 

 

 



25 
 

Table 5: GHG emissions during the manufacturing of building materials (GWP at the 100-year 

horizon [59]: CO2 = 1, CH4=29.7, N20=264.8, CO=4.06, SF6=23506.8). * mean carbon storage 

is not shown here  

Material 

production 

quantity 

u 

% CO2 

emission 
kg CO2/u kg CH4/u kg N20/u kg CO/u kg SF6/u CO2e/u 

Concrete 1 kg 97% 3,04.10-1 2,52.10-4 2,13.10-6 3,33.10-4 5,34.10-9 0.314 

Mortar 1 kg 95% 1,88.10-1 2,67.10-4 1,95.10-6 4,26.10-4 5,07.10-9 0.199 

Glass wool 1 kg 74% 9,82.10-1 3,92.10-3 7,55.10-4 2,23.10-3 1,47.10-7 1.330 

Gypsum 

plasterboard 
1 kg 90% 2,34.10-1 6,57.10-4 1,21.10-5 2,56.10-4 2,21.10-8 0.260 

Painting 1 kg 87% 4,58 1,27.10-2 4,79.10-4 3,32.10-2 2,67.10-7 2.240 

Transport 1 t x km 96% 1,63.10-1 1,56.10-4 3,08.10-6 3,52.10-4 2,89.10-9 0.170 

Diesel burned 1 MJ 95% 8,97.10-2 7,22.10-5 3,12.10-6 3,24.10-4 8,00.10-10 0.094 

Straw bale* 1 kg 49% 7,13.10-2 1,05.10-4 2,64.10-4 8,53.10-5 2,11.10-9 0.146 

Wood beam* 1 kg 79% 6,33.10-2 1,84.10-4 6,27.10-6 2,34.10-3 6,14.10-9 0.080 

Wood batten* 1 kg 79% 4,84.10-2 1,37.10-4 2,87.10-6 1,96.10-3 2,87.10-9 0.061 

Clay 1 kg 91% 2,67.10-2 7,22.10-4 7,90.10-7 6,89.10-3 2,26.10-9 0.029 

 

3.2.3 Use stage 

In this study, only carbon uptake due to cement and lime carbonation and the impact 

of replacement materials influence the use phase. It is considered that cement and 

lime render carbonate in 2 years and mortar joints render carbonate at a rate of 2 

mm/year. Carbonation reactions are detailed in 1.4. 

Materials whose lifespan is shorter than that of the wall are replaced. Replacement 

is simulated using the same process as that used to produce the wall. As specified in 

EN 15804+A1:2014, end-of-life processes of replaced materials are also included in 

B4. Transport is modelled by a 16–32 metric ton truck, EURO4. For each material, 

truck distances include the transport of the material supplied plus waste disposal. As 

prescribed by FD norm P01-015, waste with no potential and compostable waste are 

landfilled at a distance of 30 km from the construction site, whereas recycled waste 

is treated at a distance of 100 km from the construction site [74].  

 

3.2.4 End of Life stage 

Demolition of the conventional wall is performed by a high load diesel machine whose 

power is more than 74.57 kW, e.g. a Volvo EC 300DL 170 kW. A 100-m²-house with 



26 
 

4-metre high walls, e.g. 160 m² walls, takes 3 to 4 hours to demolish. A 1-minute-

operation is attributed to the FU demolition and the sorting of materials. A diesel 

power saw is used for the demolition of the biobased, wall for 0.1 h/m² [113]. Waste 

transport is the same as in 3.2.3. 

Glass wool is eliminated on landfill sites ([84], [117], [118]) along with painted 

gypsum plasterboard ([118], [119]). In France, 68% of concrete blocks are recycled 

and 32% are landfilled [117]. Recycled concrete is crushed to be used as a base layer 

in road construction. The mortar and cement render applied to the concrete blocks 

are assumed to be recycled the same way. Physical allocation with the mass of used 

material is applied. Taken together, for the conventional construction mode, 173.4 

kg(waste)/FU are recycled, and 97.6 kg(waste)/FU are landfilled. Complete 

carbonation of concrete blocks can be rapid, since the blocks are in contact with air 

and crushed. Since mortar did not totally carbonate during the use phase, the rest is 

added at this stage. Total carbonation in conventional EoL is 8.3 kgCO2e, while in the 

use phase, it is 10.9 kgCO2e. 

For the demolition of the biobased, carbonation of the wall lime is 1.56 kgCO2e and 

is attributed to the use phase. In the EoL, clay plaster and lime render are landfilled. 

Wood beams and battens follow the mean French EoL scenario for wood building 

products prescribed by FCBA: 17.3% is dumped in solid waste disposal sites (SWDS), 

25.5% is incinerated, and 57.2% is reused as raw material by wood chip panel plants 

[41]. According to recommendation by the sector, wheat straw is incinerated or 

composted [33]. Thus, there are two end of life scenarios for biobased:   

- “composted”, meaning 100% of straw is composted; 

- “incinerated”, meaning 100% of straw is incinerated. 

 

From the review about GHG emissions at EoL of biogenic materials, two emissions 

scenarios (min and max) for composted straw and landfilled wood are used in this 

study to respect the broad range of GHG emission data in the literature (see Table 6). 

These modifications were made to Ecoinvent processes which already include other 
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GHG emissions. This makes two curves, min and max, for each “biobased GHG” curve. 

As a result, some Ecoinvent processes were modified (see Appendix 6). 

 

Table 6: CO2, CH4 and N20 emission scenarios (min and max) for composted straw and 

landfilled wood, both with 15% moisture content, at a 100-year time horizon. Details can be 

found in Appendix 2 

   

 

3.2.5 Reuse, recovery and recycling potential 

As described by EN 15 804, benefits due to reuse as a new source for material or for 

energy production are affected in module D. Hence, recycled concrete is counted as 

crushed gravel with a negative impact. The same goes for recycled wood counted as 

chips: the benefits are avoided embodied energy of forest management and of the 

sawmill. Incineration of biowaste cogenerates heat and electricity. These benefits are 

counted by calculating the net outgoing energy flow that replaces production by the 

downstream energy system. In France, waste incineration provides 293.6 kWh of 

electricity per ton of waste and 583 kWh of thermal energy per ton of waste [120]. 

Avoided emissions due to this co-generation are 79 gCO2/kWh of produced electricity 

(French mix) and 279 gCO2/kWh of produced thermal energy (European mix) [44]. 

Lastly, compost made from straw is used instead of fertilisers.   
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4. Results 

4.1  Standard LCA 

The impacts of materials at each stage of their life cycle are shown in Figure 7. 

Ecoinvent and EPD scenarios are both shown. The GHG emissions profile is quantified 

in terms of CO2 equivalent.   
 

 

  

  



29 
 

Figure 7: Results of standard LCA for (a) a conventional wall and (b) a biobased wall using 

EPD or Ecoinvent data, with details of the impacts of materials processes - (in the biobased 

wall 50% of the straw is composted and 50% is incinerated) 

 

Conventional LCA results give a GWP100 of 63.1 kgCO2e in the EPD scenario and 79.8 

kgCO2e in the Ecoinvent scenario. For the biobased wall, the GWP100 is 4.1 kgCO2e 

in the EPD scenario and 25.5 kgCO2e in the Ecoinvent scenario. In both cases, the 

Ecoinvent scenario has a higher impact but the two scenarios show similar trends.  

The material with the most impact in the conventional wall is concrete, which 

accounts for 35.3 of the overall impact, transport and carbonation included. 

Construction professionals can mitigate the impact of a concrete building by choosing 

aerated, porous concrete blocks with optimised cement content. In this case, by 

selecting the 25-MPa-concrete process instead of the 35-MPa-concrete, the impact 

of concrete in the FU drops by 15%. Nonetheless, concrete remains a source of 

carbon emissions, whereas using wood as an alternative structural material would 

stock carbon. Glass wool and paint have a high impact in terms of their mass in the 

FU. 

In the biobased wall, wheat straw drives both carbon uptake and carbon release and 

wood plays a smaller role in both scenarios (see Table 7). This is partly due to the 

difference in mass per FU between the two materials. Lime and mortar renders differ 

significantly in the Ecoinvent and EPD scenarios, notably due to the difference in their 

lifespan: 25-year-lifetime renders are used in the Ecoinvent scenarios and 50-year 

lifespans are used in EPD to more accurately reflect building sector practices. This 

highlights the importance of double checking if the input data matches the practices 

in the geographical region being studied. Carbonation significantly reduces the 

impact of renders. Most of the lime render’s impact is due to transport. Here, clay 

plaster has a significant impact according to the Ecoinvent database. Since clay 

plaster might be made with local materials and almost no processing, the process in 

the Ecoinvent database is a conservative one.  

The EoL of biomaterials is stated in terms of GHG emissions due to biogenic carbon 

decay and needs to be precisely described in LCA. There is no consensus on GHG 
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emissions, first, due to the composting process: IPCC guidelines give a wide range for 

composted materials ([0.08-20] gCH4 per kg of waste), while Hermann gives (0.11% 

to 5.1% carbon degraded as CH4). In practice, compost needs to be aerated on a 

regular basis at composting sites. Second, emissions from landfilled wood are not 

clearly defined in the literature: methane emissions range from 10% [121] to 50% 

[40] of carbon content.  

Like for the conventional wall, EoL processes have a low impact, but apart from 

concrete, cannot be recycled.  

Biobased Module D is significant in terms of negative carbon impacts. Bio-sourced 

materials have high reuse, recovery or recycling potential which is not yet fully 

exploited.  

 

Table 7 : Outcome of wood and straw biogenic carbon sequestration and emission for the FU   

 
Uptake 

(kgCO2) 

Landfilled wood (17.3%) 

composted straw (100%) 

(kgCO2e)/FU 

Incinerated wood (25.5%) 

incinerated straw (100%) 

(kgCO2e)/FU 

Recycled wood 

(57.2%) 

(kgCO2e)/FU 

Biogenic carbon 

assessment (sum) 

(kgCO2e)/FU 

Wood 

(12.32 

kg) 

-19.48 
min: 1.64 

max: 2.96 
4.62 0 

min: -13.42 

max: -11.90 

Straw 

(37 kg) 
-51.89 

min: 53.79 

max: 66.40 
51.89 - 

100% compost: 

[1.9 ; 14.51] 
 

100% incineration: 

0 

4.2  Dynamic LCA 

The results of LCA integrated in the dynCO2 tool are given here. First, conventional 

and biobased constructions are compared from the point of view of the FU. Second, 

the influence of the building lifespan is presented. Also, biobased and conventional 

results are compared using the EPD database. Last, results when emissions are in CO2 

equivalent are plotted. Module D is not considered since it is beyond the system 

boundaries.  
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4.2.1 Results of the functional unit - EoL influence 

Comparison of the two types of construction are presented in Figure 8. The two EoL 

biobased scenarios are plotted. The instantaneous impact curve shows the effects on 

radiative forcing of replacing materials. 

Biobased curves with instantaneous radiative forcing have both negative areas under 

the curve until the EoL of the building, whereas areas under conventional curves are 

directly positive. Hence the cumulative impact clearly distinguishes between the two 

types of construction: the conventional wall contributes to climate change, whereas 

the biobased wall has a cooling effect, at least for several decades. This information 

is new compared to standard LCA results.  

Moreover, the longer the time horizon, the bigger the difference in impact between 

the two types of construction. Also, when straw is incinerated, the min and max 

scenarios are very similar. There is a bigger difference between the minimum and 

maximum biobased wall when the straw is composted. Lastly, one can observe that 

composting straw has a higher impact in the first decades, but a lower impact in the 

long term. This is due to significant CH4 emissions at 50 and 75 years, which have a 

higher GWP but do not last long in the atmosphere compared to CO2.  

Overall, dLCA curves highlight the importance of distinguishing time trends when 

storage and emission of CO2 occur, especially for biogenic carbon in biobased 

constructions. 
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Figure 8: dLCA of biobased and conventional scenarios from the Functional Unit 

 

From now on, based on the cumulative impact curves, the specification is made that 

“biobased min” will be the lower curve of “biobased - composted”, and “biobased 

max” will be the higher curve of “biobased - incinerated”. 

 

4.2.2 Influence of the building’s lifespan 

In this subsection, the following FU is considered: 1m² of wall (R=7.3 m².K.W-1) that 

perform the housing function at the same site for 300 years.  

Figure 9 shows the impact of construction and demolition of biobased and 

conventional walls over a period of 300 years with either a 50-year or 100-year 

building lifespan. This figure shows that the differences in impact on global warming 

between the two types of construction are even more significant than the 75-year 

building lifespan comparison. In the case of a conventional wall, the longer the wall 
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lasts, the lower the impact. A biobased wall with a 50-year lifespan has less impact 

than a biobased wall with a 100-year lifespan, which seems strange. In fact, in the 

present study, wood stores more carbon than it releases, thus by increasing the use 

of timber beams, the impact is reduced. 

 

 

Figure 9 :  comparison of construction and demolition at one site of biobased and 

conventional housing with a 50- or 100-year lifespan over a 300-year time period  

 

4.2.3 Influence of the database 

Figure 10 shows dLCA results for the EPD and Ecoinvent scenarios. It is important to 

note that in both scenarios GHG emissions are modelled as CO2 equivalent since EPD 

data are all in CO2e. EPD data seem to underestimate the impact of materials, since 

both conventional and biobased EPD scenarios have lower impacts than their 

equivalent with Ecoinvent data. But analysis of EPD or Ecoinvent data does not affect 

the difference between the two types of construction: the difference in cumulative 

radiative forcing in conventional and biobased walls is very similar in the two 

scenarios.  
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Figure 10 : Instantaneous and cumulative radiative forcing in the EPD and Ecoinvent 

scenarios. 75-year life span of housing - CO2e data used for Ecoinvent scenarios 

 

4.2.4 Influence of CO2 equivalent emissions  

Almost all LCAs use CO2 equivalent data. Figure 11 compares the results of the FU 

with CO2 equivalent results. “CO2e” means that CO2 equivalent LCA data were used 

directly. “GHG” means that impacts resulting from LCA have been discretized into 

CO2, CH4, N2O, CO and SF6 emissions. Figure 11 highlights the fact that results in CO2e 

always show higher impacts, especially in the long term. This is due to the fact that 

part of CO2 remains in the atmosphere which is not the case of the other GHGs 

studied.  

These results underline the fact that the choice of time horizon is decisive for 

assessments made using CO2e data. Here, the CO2e curve does not overestimate 

conventional constructions in the long term, whereas it overestimates biobased 

constructions when straw is composted because significant amounts of CH4 are 

released. 

Nevertheless, Figure 11 shows that, by focusing on a 200-year horizon, conventional 

and biobased walls (with both incinerated or composted straw) can reasonably be 

compared with dynamic CO2e results. In this case, the 100-year time horizon, which 

is the convention for GWP in CO2e, is appropriate. 
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From these discussions, one can see that working with radiative forcing values over 

years, which shows the real effect of GHG emissions on global warming, makes it 

possible to ignore CO2e and time horizon issues. 

Table 8 compares “static” and “dynamic” GWPs. “Static” GWP100 appears to be 

similar to “dynamic” GWP1000 which reveals a problem in the standard LCA method. 

While dLCA represents the real impact of materials on global warming over time, the 

GWP100 is a matter of choice. Differences in impacts on global warming impact vary 

depending on whether “dynamic” GWP20, GWP100, GWP500 or GWP1000 are 

considered. Lastly, standard LCA seems more unfavourable in the case of biobased 

walls than conventional ones.  

These comments are crucial since this environmental indicator is being used to steer 

design guidelines and regulations.  

 

 

Figure 11 : Influence of CO2e and differentiated GHG Ecoinvent emissions data on dLCA for 

conventional and biobased - 75 years lifetime housing. 
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Table 8: relative Global Warming Potential calculated as “static” with LCA or “dynamic” with 

dLCA -75 years lifetime housing (straw’s EoL is here 50% composted - 50% incinerated). 

 
Impact conventional 

kgCO2e/FU 

Impact biosourced 

kgCO2e/FU 

« static » 𝑮𝑾𝑷𝟏𝟎𝟎 79.8 26.3 

 CO2e GHG CO2e (min) 
GHG 

(min /max) 

« dynamic » 𝑮𝑾𝑷𝟐𝟎 56.0 60.0 -57,4 -56.5 / -56.5 

« dynamic » 𝑮𝑾𝑷𝟏𝟎𝟎 71.6 70.8 -23.8 -22.2 / -9.8 

« dynamic » 𝑮𝑾𝑷𝟓𝟎𝟎 78.1 71.8 17.4 9.8 / 14.3 

« dynamic » 𝑮𝑾𝑷𝟏𝟎𝟎𝟎 78.9 71.2 21.9 11.1 / 13.7 
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5. Discussion 

5.1  Comparison of results obtained with static LCA, dLCA and simplified dLCA 

Conventional constructions have a relatively higher impact on global warming than 

constructions made with biobased materials. Biobased constructions even have a 

cooling effect for several decades. A similar comparison was made by (Pittau et al., 

2018) [19]. Their cumulative impacts on global warming of concrete walls insulated 

with expandable polystyrene (EPS) range from 8.10-12 to 14.10-12 W.yr.m-2 at a 100-

year horizon. In the present study, the GWIcum of conventional walls at a 100-year 

horizon is 6.5 10-12 W.yr.m-2. The main difference is due to the type of insulation 

material used, EPS having more impact than glass wool. Otherwise, the impact of the 

conventional wall is of the same order of magnitude.  

(Pittau et al, 2018) also studied a wall composed of light clay straw with a timber 

frame. For GWIcum, these authors found [-9 to -3].10-12 W.yr.m-2 at the 100-year 

horizon. In the present study, biobased results are [-2.1 to 0.1].10-12 W.yr.m-2 at the 

100-year horizon. The straw and wood carbon content chosen are similar in the two 

studies, but the amount of biodegradable matter and emitted CO2, CH4 and N20 

during EoL differ. The present study underlines that one needs to be careful when 

considering data on EoL processes involving biomaterials since biogenic emissions are 

not properly counted and CH4 emissions due to decay are not clearly stated in the 

literature. That is why EoL processes of straw and wood have been modified to 

include emitted CO2 and CH4 due to biogenic carbon decay as fossil GHG. Considering 

that every mechanised human activity always involves a positive GWI over time, it 

makes sense that GWIcum becomes positive for biobased constructions after a 

certain time.  

However, building using biobased materials can be a great help in facing global 

warming in the coming decades, and would make it possible to continue building and 

renovating houses at a minimum environmental cost. Given that today more than 

90% of buildings are made of conventional materials in France, the benefit from using 

biobased material should be considered as the difference between the impact of a 
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conventional and a biobased solution. This difference is always in favour of biobased 

solutions, whatever the time scale.  

 

Speaking of time scale, the interest of using dLCA for buildings has already been 

shown [67], especially to address the biogenic carbon issue when bio-based materials 

are used ([54], [65], [68]). This method makes it possible to:  

- estimate the real radiative forcing impact as well as relative CO2e impact 

(“dynamic GWP”) over time instead of only one GWP value at the 100-year 

horizon. The shift to dLCA involves major changes in the interpretation of 

environmental impacts; 

- differentiate between GHG emissions such as CO2, CH4 or N2O. It was shown 

this is of second order importance to compare the two walls in the present 

study; 

- account for emissions and storage when these processes actually occur in the 

defined scenario; 

- model carbon uptake over time due to carbonation or plant growth thanks to 

physical laws. 

 

Due to complexity and the need to change LCA tools, dLCA would be difficult to apply 

in the professional building sector. However, Figure 12 shows that using a simplified 

dLCA still enables accurate estimation of the real impact of materials on global 

warming. Using this method is attractive since it can be applied using data that are 

already available in databases. dLCA results are in “dynamic GWP100. There may be 

as small difference between dLCA and simplified dLCA when CO2e data are used for 

simplified dLCA. 
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Figure 12: “GWP100” comparison of conventional and biobased walls using the 3 

assessment methods and a 75-year life span for housing. CO2e data were used for Ecoinvent 

scenarios. 

 

Also, even if it is scientifically meaningful to distinguish between greenhouse gases, 

in practice it is not easy in France since EPDs are based on equivalent carbon dioxide. 

Filling in EPDs is time consuming for companies. The present results show that only 

considering only carbon dioxide equivalent is apparently acceptable for the building 

sector, at least up to a 200-year time horizon. In the longer term (more than 500 

years), if significant amount of GHG such as CH4 or N2O are emitted, dLCA shows that 

these gases should be considered. 

5.2  Remark on the limits of carbon analysis of biogenic materials 

On another note, a paradox was observed: changing timber more often reduces the 

impact of biobased walls. The reason is that 57% of the wood is recycled, and the 

decay of the second wood product is beyond the LCI system boundaries. Moreover, 

landfilled wood is assumed to permanently store a significant amount of carbon. 

Lecompte noticed a similar phenomenon [54]: the thicker a biobased wall, the more 

carbon it stores. In both cases, even if using a lot of biogenic materials is 

advantageous in terms of mitigation, prudent use of available resources is a key to 

sustainability. Thus, from a global environmental standpoint, material consumption 
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should be optimized to needs and the lifespan of the material should be as long as 

possible.   

Straw has a positive GWP over its whole life cycle. Nevertheless, the benefits of 

energy generation and composting are not counted. Based on the assumption that 

the bales of straw are composted, a cycle between wheat cropping and composting 

the straw is reached after 75 years: composted straw is spread on the field as 

nutrients. In that case, chemical inputs are no longer needed to compensate wheat 

straw removal and the impact of straw may become negative. Biological crop is 

another way to reduce straw impact. 

5.3  Impact of a change of practice towards biobased walls in the French building 
sector  

A scenario was designed to compare the impact of biobased and conventional walls 

at French scale. Based on an 80-m²-mean housing area with a 2.5-metre-high wall, 

this leads to 90 m² of wall per flat. In 2017, 33.8.106 m² (floor area), meaning 38.106 

m² of wall, were built. It is possible to calculate differences in GWI between biobased 

and conventional walls (Table 9) : The real savings at the 100-year horizon is 87 

kgCO2e /FU (which consists in 1 m² of wall). This represents 8.1 tCO2e savings for a 

90-m² wall in a house with a 75-year lifespan.  

In 2016, French emissions were 464 MtCO2e [122], of which 23% originated in the 

building sector [123]. The impact of wall construction alone, if all the walls are made 

of conventional materials, corresponds to 38.106 m² x 71 kgCO2e (from Table 9) = 2.7 

MtCO2e.year-1 which is about 2.5 % of building sector emissions. If biobased walls are 

built instead of conventional one, the savings are about 38 x 106 m² x 87 kgCO2e = 3.3 

MtCO2e.yr-1.  

However, the overall savings in France due to the use of biobased wall instead of 

conventional ones, 3.3 MtCO2e.yr-1, represent less than 1% of the current French 

emissions (464 MtCO2e in 2016).  
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In 2009, carbon emissions due to house heating were about 20 kgCO2.m-2.yr-1  in 

France [124]. For 80 m² housing (90 m² wall), it represents 1600 kgCO2.yr-1 and 120 

tCO2 per 75 years, which is much higher than the 8.1 tCO2e per 75 years savings due 

to biobased walls. Taking the poor performance of existing buildings into account, the 

largest reduction in carbon emissions in refurbishing comes from better thermal 

insulation, and in second place, from the choice of the construction material. 

Choosing biobased materials would add an additional benefit, but it should not be 

detrimental to the performance. In addition, current French recommendations for 

future regulations based on a carbon tax would artificially enable economic savings 

when biobased materials are used, which could be reinvested in additional 

improvements to energy efficiency including the renovation of existing buildings. 

Eventually, the climate change emergency of should lead us to drastically limit the 

release of fossil CO2 for needed applications like heating. When a biobased option 

exists, it should be preferred.    

 

One can expect newly constructed buildings to have a high thermal insulation 

performance. According to (D’Alessandro, 2017), in a passive house, thermal energy 

and electricity consumption in winter per m² of wall equals 8.19 and 2.34 kWh.m-2.yr-

1 respectively (<15 kWh.m-2.yr-1). With the carbon intensity of the French electricity 

mix and with the European thermal energy mix [64], With the carbon intensity of the 

French electricity mix and with the European thermal energy mix [64], this leads to 

1.3 kgCO2e/m2/year and  8.7 tCO2e for a 75-year flat measuring 80 m². In such a case, 

the 8.1-tCO2e-savings made by the use of biobased walls instead of conventional walls 

are almost equal to the carbon emitted for heating and represents a major source of 

potential carbon savings. Breels showed similar results [125]. savings. This analysis is 

limited to walls, but ecological practices can also be used for the whole building 

including floor slab, ceiling or roof. Thus, choosing biobased materials is becoming 

one of the most influential solutions to further reduce the impact of constructing new 

buildings.     
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Table 9 shows the overall savings in CO2e if 20% or 50% of the built area (assumed to 

be similar to those in 2017) had been built using biobased materials instead of 

conventional materials. 

 

Table 9: Impact of conventional and biobased construction from Table 8 and deduction of 

saved CO2 emissions over the life cycle if 20% or 50% of yearly construction were biobased 

instead of conventional.  

 

impact 

conventional 

(kgCO2e/FU) 

impact 

biobased 

(kgCO2e/FU) 

Difference 

(kgCO2e/FU) 

50% biobased 

construction  

(saved tCO2e/yr) 

100% biobased 

construction  

(saved tCO2e/yr) 

static GWP100 CO2e 80 26 53 1 017 000 2 034 000 

dyn GWP100 GHG 71 -16 87 1 650 000 3 301 000 

dyn GWP1000 GHG 71 12 59 1 118 000 2 236 000 

 

This analysis was performed in CO2e because data are available in this unit. However, 

as discussed above, this do not represent the real global warming potential, which is 

linked to the radiative forcing. 

Hence, the impact of building all the new buildings in France using biobased material 

instead of conventional material in terms of radiative forcing was investigated.  

 

Here, the FU is 1m² of wall that enables a house to last for 500 years on the same 

site. Figure 13 presents the instantaneous impacts for conventional and biobased 

walls, which have been linearized. The difference between the two impacts is also 

shown. One can see that the difference increases over time. One can also note that 

simply maintaining the existing housing stock using conventional materials is a 

significant source of carbon emissions.  
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Figure 13: Instantaneous radiative forcing over a period of 500 years for conventional and 

biobased walls and their linearization (left), and difference between the two impacts (right).  

 

Global radiative forcing equals 2.3 W.m-2 (1.1 to 3.3 W.m-2) [126]. In 2015, world 

emissions were 46 400 MtCO2e [127] and French emissions were 464 MtCO2e [122], 

1% of world emissions. It can thus be considered that current French radiative forcing 

is 2.3 x 0.01 = 23 mW.m-2 (11 to 33 mW.m-2).  

As the building sector produces 23% of French emissions, radiative forcing due to the 

French building sector is 23% x 23 = 5.3 mW.m-2 (2.5 to 7.6 mW.m-2).  

Table 10 shows the potential of biobased in terms of radiative forcing reduction. If all 

houses were built with biobased walls for now on, the impact of the building sector 

would drop by 0.8% (0.8 to 1.1%) per year. By extending it to all the housing stock, 

the savings are between 11% and 20% (8% to 43%).   

This approach is based on some assumptions. But other emitting part of the house 

such as the roof, the floor are not considered. Insulation effect is also out of the scope 

of this table. Knowing that 77% of building sector emissions come from heating [124], 

biobased walls with passive properties would divide by five the heating needs (from 

250 to 50 kWh.m-2.yr-1), saved emissions would be 65.7 MtCO2e per year. Thus, if all 

the housing stock was biobased and passive, the building sector would reduce its 

radiative forcing by around 80%.  
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Table 10: Radiative forcing (RF) saved if 100% of practices change to biobased wall, if 100% 

of the housing stock is biobased, this means it is passive. (38.106 m² are built per year, the 

stock extends over 2011.106 m²; French RF=0.023 W/m²; French building sector RF=0.0053 

W/m²) 

 
biobased 

impact  

(W/m²) 

conventional 

impact  

(W/m²) 

difference 

(W/m²) 

100% biobased 

construction  

each year 

(saved W.m-2) 

reduction 

in French 

RF 

reduction 

in building 

sector RF 

per year 

reduction in RF 

of building sector  

if 100% of the 

stock is biobased 

dyn GWP1  

- all GHG 
-8.910-14 1.1.10-13 9.5.10-14 3.6.10-6 0.03% 0.8%  16.9% 

dyn GWP100 

- all GHG 
-1.9.10-14 1.1.10-13 1.3.10-13 5.0.10-6 0.02%  0.8% 11.3% 

dyn GWP500 

- all GHG 
7.9.10-14 3.5.10-13 2.8.10-13 1.1.10-6 0.04% 0.9% 20.5% 

 

Hence, to reduce consumption by and the impact of the building sector, insulating 

houses should be a priority. However, changing the construction mode towards 

biobased walls would reduce significantly building sector’s radiative forcing on the 

housing stock scale.  

That analysis applied to global warming. For a systemic environmental evaluation, 

other aspects such as available local resources or impacts on biodiversity should be 

taken into consideration. Since biobased construction is very advantageous from the 

point of view of carbon, analyses on available straw and timber resources in France 

were performed. This is important, since changing construction to biobased buildings 

may imply changing the endpoint of crop products and changing land uses. The same 

concerns have emerged for instance in the energy sector with the development of 

biofuels ([128], [129]). 

5.4  Available resources: timber from sustainable managed forest and/or annual 
plants? 

Forests control the global carbon cycle. Carbon stored in forest soil and litter amounts 

to about 80 tC/ha, plus 85 tC/ha in standing trees, while the carbon stored in the soil 

under annual crops and orchards is around 50 tC/ha, plus around 1 tC/ha in harvested 

biomass ([130], [131]). In Europe, timber harvesting is not correlated with 

deforestation: forest area and carbon storage have increased in recent decades, even 
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if part of forest biomass is used as softwood lumber, paper, furniture or energy. 

According to the IGN  [132], forest area in France has increased at a rate of 0.7% per 

year since 1987, that is between 25 and 36 million m3 per year ([132], [133]), even if 

38.3 million tons of wood have been harvested in 2017 [134]; 32.3% of French forest 

are certified and 90% of 3 000 wood processing plants are also certified ([135]–[137]). 

Sales of certified timber account for 56% of total sales [134], and up to 92% of sales 

to the building sector [137].  

Recommendations are to maintain older, longer-rotation forests and protected old-

growth forests and to optimise forest management to fulfil different objectives: 

wood production, climate change mitigation and prevention of biodiversity loss 

[138]. Sustainably managed forest is one way to maintain forests and to optimise tree 

growth. It is a key parameter in any plan to store carbon in buildings. Moreover, the 

extension of sustainably managed forest may prevent land use change, which are a 

major source of GHG emissions, and may encourage afforestation of unproductive 

agricultural lands.  

Nevertheless, care must be taken with sustainable managed forest, since loss of 

biodiversity, monoculture, chemical inputs, degraded forest soil, and clear cutting 

can also be observed in such places. The closer the origin of the wood one uses, the 

more one knows about the harvesting practices of this renewable resource.  

 

As annual crops are harvested every year, the order of magnitude of stored carbon is 

lower but nevertheless similar. In addition, annual crops already account for 12 

million hectares in France, of which 5 million hectares are under wheat. Hence, unlike 

wood, there is almost no pressure on straw resources. Currently, wheat straw is only 

chopped and left on the surface of the field or used to feed livestock. Building walls 

with it is a valuable way out for this underused co-product 

Table 11 summarises data on timber and wheat production in France. It shows that 

the cereal straw potential is massive, (50.5% of arable land), and as forest area is 

increasing, the generalisation of biobased walls made of around 11 kg of wood and 
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37 kg of straw per m2 seems feasible to us. There is no particular reason to promote 

more one these two resources. 

 

Table 11: yield per hectare and carbon storage in bio-sourced materials used for construction 

in France 

Type of bio-

sourced 

material 

Biomass production 

per hectare per 

year 

Quantity of carbon permanently 

stored in the field or forest 

[tons of carbon per ha] 

Used surface 

area in 

France (ha) 

Sources 

Timber 

5 m3.ha-1.yr-1, being 

around 3 t.ha-1.yr-1 

(and 3 m3.ha-1.yr-1 

harvested) 

165 tC/ha 

(standing timber ~85 tC/ha 

Litter ~ 10 tC/ha 

Soil ~ 70 tC/ha) 

17 x 106 ha 

[130], [131], 

[133], [134], 

[139] 

Wheat straw 

& grain 

4-6 t/ha of wheat 

straw 

7 t/ha of grain 

51 tC/ha 

(Soil ~50 tC/ha 

Organic residues ~1 tC/ha) 

Cereals : 

9.3 x 106 ha 

(50,5% of 

arable lands) 

[130], [140] 
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Conclusion 

In the context of increasing awareness of global warming among citizens, policy 

makers and professionals, there is a pressing need to clarify how to evaluate the real 

environmental impact of materials and processes. This is especially the case for highly 

emitting sectors such as the building sector. 

The method currently used to evaluate global warming potential in the building 

sector in France is based on a static LCA which assumes that all carbon storage and 

emissions occur the first year. In this work, this static method was compared with a 

dynamic LCA approach. Dynamic LCA describes contributions to global warming in 

much greater detail since, first, it considers the time at which each carbon storage 

and emission takes place, and it can distinguish the type GHG. This present study has 

shown that there are significant differences in GWP100 between the two methods. 

A second difference is that dynamic LCA can distinguish between the different 

greenhouse gases emitted. The obtained results show this does have an impact, 

although the impact does not drastically affect the conclusions.  

It also has been proved that a simplified dynamic LCA is sufficient to model carbon 

sequestration and release over time. This approach is immediately applicable since 

the data are already available in LCA databases. The GHG distinction aspect could be 

neglected in a simplified approach adapted to the building sector. 

Most important is that, regardless of the LCA method, it has been proved that 

biobased construction is an obvious way to mitigate GWI of the building sector. In 

addition, the present study shows that dLCA, simplified or not, can be used to support 

future policy makers in designing building regulations. 

 

Some complementary results were found. First, a wide literature survey showed that 

a building with a 75-year-lifespan is probably more representative than a building 

with a 50-year lifespan, as currently considered. Increasing the lifespan improves the 

GHG impact of conventional buildings and reduces the “positive” impact of biobased 

buildings. Nonetheless, from a more global environmental point of view, increasing 

the lifespan meaningfully reduces anthropogenic impacts. Some differences were 
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also found between the results based on data from Ecoinvent and French EPD 

database. French EPD data tend to be more optimistic than Ecoinvent data. This 

highlights one of the biggest difficulties in the assessment of environmental impacts: 

the questionable reliability of incoming data. For this reason, all the data used in the 

present study were checked in the scientific literature.  

Also, an estimation as shown that forests can store about 165 tC/ha and in annual 

crops 51 tC/ha. Thus, it is not necessary to promote forest (slow growing) or annual 

crops (fast growing) since both contribute to carbon storage in the same order of 

magnitude. It is more important to consider available local resources grown using 

sustainable practices.  

Finally, some scenarios were designed to evaluate the impact of building future 

houses with bio-based walls instead of conventional walls. It was found that a 50% 

biobased wall significantly reduces the impact of the overall wall construction: it 

would contribute to the announced effort to reduce global French emissions since it 

represents [0.6-2.2]% saving of French radiative forcing. But alone, this is not 

sufficient, to bring emissions down to sustainable values (divided by a factor 4 to 8), 

a systemic change will be needed. 

 

To sum up the results of this study:  

- bio-based walls mitigate emissions by the building sector, and even have a 

temporary cooling effect; 

- conventional walls clearly contribute to climate change; 

- dynamic LCA is more relevant than classical LCA to assess the real global 

warming potential in the building sector, especially when bio-based materials 

are used. Simplified dLCA is a rapid method that produces reliable results; 

- using CO2 equivalent produces acceptable results, especially in the short- and 

medium-term. In the long term, care must be taken with CO2e if CH4 is 

released; 

- Insulation of buildings is the priority. When buildings use less than 50 kWh.m-

2.yr-1, the impact of the materials is significant. Hence, this work enables to 
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recommend including the embodied energy of a wall (construction, 

replacement during use and end of life impacts) in passive house certification. 

 

As a perspective, other types of walls that are not as different as the two studied 

conventional and biobased walls would be interesting to assess. For instance, one can 

study bio-based construction materials such as hemp hurds mixed with a more or less 

impacting binders (earth, lime, cement). Moreover, biogenic materials do not always 

mean environmentally friendly materials since chemical stabilisers can be added. 

Hence, it would be interesting to compare wood wool, earth or hemp fibres with or 

without polyester resin using dLCA. 
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Appendix 

Appendix 1: Literature review of carbon content in bio-sourced materials  

1.1 Composition and carbon fraction of different bio-sourced materials 

Some values have been calculated from the composition considering 44,4%C for 

holocellulose, 62%C for lignin and 40%C for potential extractibles. Calculated values 

are in italic. 

 

Biosourced 

materials 
Holocellulose Lignin 

Extractibles 

and minerals 

Carbone fraction 

(%mass) 
Sources 

Cereal straw 43,9%-65,9% 
12,7%-

22,5% 
16,7%-35,1% 

45,5% 

43% 

45,7%-47,2% 

[141] 
[142] 

[143]–[145] 

Soft wood 
 

52%-75% 

 

 

21%-37% 

 

0%-8,5% 

50% 

50,6%-51,9% 

47%-55% 

49,3-50,8% 

51,4% 

48,5%-51,9% 

[19] 
[141] 
[146] 
[147] 
[148] 

[145], [149]–
[151] 

Hard wood 56%-86% 
 

14%-34% 
0%-7,5% 

47,1% 

46%-49% 

47,7%-48,8% 

47%-50,6% 

[141] 
[147] 
[148] 

[145], [149]–
[151] 

 

1.2 Carbone composition and sequestered CO2 from the atmosphere by different 
bio-sourced materials 
 

biosourced 

materials 

Mean mass carbon fraction 

at dry state from the 

literature review - C% 

Mass of captured CO2  per kg of 

wood   

[kg CO2] 

Dry state 15% moisture 

Wheat straw 45% 1.61 1.41 

Soft wood 50.6% 1.86 1.58 

Hard wood 48% 1.76 1.50 
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Appendix 2: Calculus details of biogenic carbon emission during end-of-life of bio-

sourced materials  

 

Column “kg(gas)/kg of wet wood/straw” is the one whose values have modified 

outputs of Ecoinvent processes. Wet wood and straw have 15% moisture. 

 

GHG emissions landfilled wood - EoL scenarios 

  
 

mass 

(kg) 

impact factor  

at 100 years 

GWP100  

(kgCO2e) 

kg(gas)/kg  

of wet wood 

carbon mass/FU 17,3% 0,906      

carbon which is degraded after 100 years 15% 0,136     

 CO2 - IPCC default 50% 0,249 1 0,25 0,1169 

 CH4 - IPCC default 50% 0,091 29,7 2,69 0,04250 

total IPCC default       2,94   

 CO2 - IPCC managed SWDS 77,5% 0,386 1 0,39 0,1833 

 CH4 - IPCC managed SWDS 22,5% 0,041 29,7 1,21 0,01935 

total IPCC managed SWDS       1,60   

 

 

 

GHG emissions composted straw - EoL scenarios 

  

 
mass 

(kg) 

impact 

factor  

at 100 years 

GWP100 

from decay  

(kgCO2e) 

kg(gas)/kg 

of wet 

straw  

carbon mass (straw 100% composted)/FU   14,15       

which is degraded after 100 years 90,5% 12,808       

 CO2 - max  97,45% 45,767 1 45,77 1,2369 

 CH4 max  2,55% 0,435 29,7 12,92 0,0118 

N2O - max   

0,00078

7 264,8 0,21 0,000787 

total max (Hermann)       58,89   

CO2 min 99,79% 46,866 1 46,87 1,2667 

CH4  min 0,21% 0,035 29,7 1,04 0,00095 

N2O min  0,0006 264,8 0,16 0,0006 

total min (ADEME)       48,07   
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Appendix 3 : Climate change impact (GWP adjusted at a 100-year time horizon) for 

the time shift of 1 kgCO2 (from [27]) 
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Appendix 4 : Ecoinvent processes used for conventional and biobased walls – 
production, use and end of life inventory  

 

Changed Ecoinvent processes are highlighted in yellow and described below. 

 

Conventional production: 

- Concrete production 35MPa :  
o “Market for sand”: sand process changed from RoW to CH 
o “Market for cement, Portland” changed from US to Europe without 

Switzerland 
o “Market group for tap water” changed from GLO to Europe without 

Switzerland 
o “Market for electricity, medium voltage” changed from GLO to FR 
o Addition of “blast furnace slag” – 74kg/m3 (process changed with 

“Electricity market FR”) 

 

Biobased 

- Treatment of biowaste (compost & incineration) 
o see Appendix 6 

- Treatment of waster wood (incineration & landfill) 
o see Appendix 6 

 
  



62 
 

4.1 Production 

Ref. Material 
description 

Ecoinvent materials/process Amount Unit 

Conventional 

1 Paint 

alkyd paint, white, without water, in 60% solution state | cut-off, U - RER 0,35 kg 

market group for tap water | tap water | cut-off, U - RER 0,035 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,175 t*km 

2 Cement Render 
cement mortar production | cement mortar | cut-off, U 30 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 1,5 t*km 

3 
OPC Concrete  

blocks 

concrete production 35MPa, RNA only | concrete, 35MPa | cut-off, U 0,0872 m3 

diesel, burned in building machine | diesel, burned in building machine | cut-
off, U - GLO 

19 MJ 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 38,4 t*km 

4 Cement mortar 
cement mortar production | cement mortar | cut-off, U - CH 33 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 1,65 t*km 

5 Glass wool 

glass wool mat production, Saint-Gobain ISOVER SA | glass wool mat | cut-off, 
U - CH 

6 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,3 t*km 

6 
Gypsum  

plasterboard 

gypsum plasterboard production | gypsum plasterboard | cut-off, U - CH 10 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,05 t*km 
     

Biobased 

1 

lime render - 1 
kg (there are 

28kg/FU) 
from clay 

plaster process 

market for silica sand | silica sand | cut-off, U - GLO 0,7 kg 

lime, hydrated, packed | lime production, hydrated, packed | cut-off, U - CH 0,12 kg 

market for tap water | tap water | cut-off, U - CH 0,18 kg 

market for conveyor belt | conveyor belt | cut-off, U - GLO 3,33E-08 m 

market for industrial machine, heavy, unspecified | cut-off, U - GLO 6,67E-06 kg 

electricity, medium voltage | market for electricity, medium voltage | cut-off, 
U - CH 

0,0278 kWh 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,085 t*km 

2 
Straw bale - 

1kg (there are 
37kg/FU) 

Carbon dioxide, fossil 1,4025 kg 

Soft wheat grain, conventional, national average, at farm gate - FR 0,00052 7,1 t 

potassium sulfate, as K2O | potassium sulfate production | cut-off, U - RER 0,0123 kg 

phosphate fertiliser, as P2O5 | ammonium nitrate phosphate production | 
cut-off, U - RER 

0,0017 kg 

urea, as N | urea production, as N | cut-off, U - RER 0,0073 kg 

market for diesel | diesel | cut-off, U - Europe without Switzerland 0,00778 kg 

transport, tractor and trailer, agricultural | cut-off, U - CH 0,005 t*km 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,028 t*km 

3 Wood battens 

Carbon dioxide, fossil 2,25 kg 

lath, softwood, raw, air drying to u=20% | sawnwood, lath, softwood, raw,  
dried (u=20%) | cut-off, U - CH 

0,00259 m3 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,284 t*km 

4 Timber beam 

Carbon dioxide, fossil 17,217 kg 

planing, beam, softwood, u=20% | sawnwood, beam, softwood, dried 
(u=20%),  
planed | cut-off, U - CH 

0,02 m3 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 2,2 t*km 

5 Clay plaster 
clay plaster production | clay plaster | cut-off, U - CH 54 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 2,9 t*km 
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4.2 Use 

Ref. Material 
description 

Ecoinvent materials/process Amount Unit 

Conventional 

1 Paint 

alkyd paint, white, without water, in 60% solution state | cut-off, U - RER 1,4 kg 

market group for tap water | tap water | cut-off, U - RER 0,14 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,7 t*km 

2 Cement Render 

cement mortar production | cement mortar | cut-off, U 60 kg 

Carbon dioxide, fossil 8,5 kg 

inert waste, for final disposal | treatment of inert waste, inert material landfill | cut-
off, U - CH 

-60 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 4,8 t*km 

3 
OPC Concrete  

blocks    
4 Cement mortar Carbon dioxide, fossil 2,4 kg 

5 Glass wool 

glass wool mat production, Saint-Gobain ISOVER SA | glass wool mat | cut-off, U - CH 6 kg 

treatment of inert waste, sanitary landfill | inert waste | cut-off, U - CH -6 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,48 t*km 

6 
Gypsum  

plasterboard 

gypsum plasterboard production | gypsum plasterboard | cut-off, U - CH 10 kg 

treatment of waste gypsum, inert material landfill | waste gypsum | cut-off, U - CH -10 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,08 t*km 
     

Biobased 

1 

lime render - 1 
kg (there are 

56kg/FU) 
from clay 

plaster process 

market for silica sand | silica sand | cut-off, U - GLO 0,7 kg 

lime, hydrated, packed | lime production, hydrated, packed | cut-off, U - CH 0,12 kg 

market for tap water | tap water | cut-off, U - CH 0,18 kg 

market for conveyor belt | conveyor belt | cut-off, U - GLO 
3,33E-

08 
m 

market for industrial machine, heavy, unspecified | cut-off, U - GLO 
6,67E-

06 
kg 

market for electricity, medium voltage | electricity, medium voltage | cut-off, U - CH 0,0278 kWh 

Carbon dioxide, fossil 0,055 kg 

treatment of inert waste, inert material landfill | inert waste, for final disposal | cut-
off, U - CH 

-1 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,09 t*km 

2 
Straw bale 
(for 1 kg) 

Carbon dioxide, fossil 1,4025 kg 

Soft wheat grain, conventional, national average, at farm gate - FR 0,00052 7,1 t 

potassium sulfate, as K2O | potassium sulfate production | cut-off, U - RER 0,0123 kg 

phosphate fertiliser, as P2O5 | ammonium nitrate phosphate production | cut-off, U 
- RER 

0,0017 kg 

urea, as N | urea production, as N | cut-off, U - RER 0,0073 kg 

market for diesel | diesel | cut-off, U - Europe without Switzerland 0,00778 kg 

treatment of biowaste, composting | biowaste | cut-off, U - CH 0 or -1 kg 

treatment of biowaste, municipal incineration with fly ash extraction | cut-off, U - 
CH 

0 or -1 kg 

transport, tractor and trailer, agricultural | cut-off, U - CH 0,005 t*km 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,058 t*km 

3 Wood battens 

Carbon dioxide, fossil 2,25 kg 

lath, softwood, raw, air drying to u=20% | sawnwood, lath, softwood, raw, dried 
(u=20%) - CH 

0,00259 m3 

treatment of waste wood, untreated, municipal incineration | waste wood, 
untreated | U - CH 

-0,3635 kg 

treatment of waste wood, untreated, sanitary landfill | waste wood, untreated | cut-
off,U - CH 

-0,2466 kg 

treatment of waste wood, post-consumer, sorting and shredding | wood chips, from  
post-consumer wood, measured as dry mass | cut-off, U - CH 

0,74416 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,284 t*km 

4 Timber beam       

5 Clay plaster 

clay plaster production | clay plaster | cut-off, U - CH 108 kg 

treatment of inert waste, inert material landfill | inert waste, for final disposal | cut-
off, U - CH 

-108 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 8,64 t*km 
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4.3 End of life 

Ref. Material 
description 

Ecoinvent materials/process Amount Unit 

Conventional 

    machine operation, diesel, >= 74.57 kW, high load factor |cut-off, U - GLO 1 min 

1 Paint       

  Cement Render 

treatment of waste concrete, inert material landfill | waste concrete | cut-off, 
U - CH 

-30 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 2,33 t*km 

3 
OPC Concrete  

blocks 

treatment of waste concrete, inert material landfill | waste concrete | cut-off, 
U - CH 

61,4 kg 

rock crushing | rock crushing | cut-off, U - RER 130,6 kg 

Carbon dioxide, fossil 7,46 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 14,9 t*km 

4 Cement mortar 

treatment of waste concrete, inert material landfill | waste concrete | cut-off, 
U - CH 

9,6 kg 

rock crushing | rock crushing | cut-off, U - RER 20,4 kg 

Carbon dioxide, fossil 0,8 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 2,33 t*km 

5 Glass wool 
treatment of inert waste, sanitary landfill | inert waste | cut-off, U - CH -6 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,18 t*km 

6 
Gypsum  

plasterboard 

treatment of waste gypsum, inert material landfill | waste gypsum | cut-off, U 
- CH 

-10 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,03 t*km 
     

Biobased 

    power sawing, without catalytic converter | cut-off, U - RER   h 

1 lime render 

treatment of inert waste, inert material landfill | inert waste, for final disposal 
| cut-off, U - CH 

-28 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,14 t*km 

2 
Straw bale 
(for 1 kg) 

treatment of biowaste, composting | biowaste | cut-off, U - CH 0 or -1 kg 

treatment of biowaste, municipal incineration with fly ash extraction | cut-off, 
U - CH 

0 or -1 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 0,01 t*km 

3+4 
Wood battens 

 
Timber beam 

treatment of waste wood, untreated, municipal incineration | waste wood, 
untreated | U - CH 

-3,14 kg 

treatment of waste wood, untreated, sanitary landfill | waste wood, 
untreated | cut-off, U - CH 

-2,13 kg 

treatment of waste wood, post-consumer, sorting and shredding | wood 
chips, from  
post-consumer wood, measured as dry mass | cut-off, U - CH 

7,05 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 1,084 t*km 

5 Clay plaster 
treatment of inert waste, inert material landfill | inert waste, for final disposal 
| cut-off, U - CH 

-54 kg 

transport, freight, lorry 16-32 metric ton, EURO4 | cut-off, U - RER 1,62 t*km 
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Appendix 5 : Materials inventory for the two types of wall according to French EPDs 

- EPD scenario 

 

Note that EPD neglect low R values materials thermal performance (renders, gypsum 

plasterboard…), which is acceptable in the present case since it represents less than 

1% of the wall thermal resistance. 

 

Cod. Material FU R 

m².K/W 

Mass 

Kg/FU 

Lifespan 

Year 

Waste 

treatment 

EPD source 

conventional - Concrete with internal thermal insulation 

1 Cement render 
Cover 1m² with features 

described in NF EN 998-1 

- 24 50 landfilled FDES SNMI [152]    

2 
hollow 

concrete blocks 

1m² of bearing wall 1.12 200 100 70% recycled  

30% landfilled 

FDES Confort 

City [74] 

3 Cement mortar 

link masonry 

components for a 1m² 

wall 

- 24.7 100 landfilled FDES SNMI [153] 

4 Glass wool 
Insulate from the inside 

1m² of wall 

6.25 4.6 50 landfilled FDES URSA [82] 

5 
Gypsum 

plasterboard 

Ensure facing for a 1m² 

wall 

- 9.3 50 95% landfilled  

5% recycled 

FDES St-Gobain 

[154] 

6 Paint 
cover and protect a 1m² 

wall 

- 0.5 15 landfilled FDES SIPEV [87] 

biosourced - timber and wheat straw bale  

1 lime render 
Cover 1m² with features 

described in NF EN 998-1 

- 24 50 landfilled FDES SNMI [152] 

2 Straw 
insulate 1m² of wall with 

non-bearing straw 

7.1 37 50 landfilled FDES CEREMA 

[39] 

3 Wood battens - 

- 1.27 50 landfilled, 

incinerated, 

recycled 

FDES CEREMA  

4 Timber beam 1m² of bearing wall 

- 11.4 100 landfilled, 

incinerated, 

recycled 

FDES FCBA [155] 

5 Clay plaster  - 54 25 landfilled Ecoinvent 3.2 
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Appendix 6 : Modification of Ecoinvent data for bio-based materials EoL treatment 

 

Since the IPCC 2013 impact method considers that biogenic CO2 has no impact on the 

GWP100, data were modified to include CO2 emissions due to decay and then to 

balance these emissions with captured biogenic CO2 counted as negative in the 

production stage: 

- wood which is landfilled is modelled by the process “treatment of waste 
wood, untreated, sanitary landfill {CH}” originally worth 0.077 kgCO2 per kg of 
wood. Biogenic CO2 is changed into fossil CO2. Moreover, this process 
considers a 1.5% overall degradability of wood in 100 years. CO2, CO and CH4 
are multiplied by 10. Overall, GWP100 of landfilled wood now equals 0.77 
(min) or 1.39 (max) kgCO2eq/kg of wood. 
 

- Incinerated wood is described by “treatment of waste wood, untreated, 
municipal incineration {CH}”. Its original impact is very low (0.01885 
kgCO2e/kg of wood) since during combustion, oxidized carbon is counted as 
biogenic CO2. As the impacts of energy valorisation are mostly linked to wood 
combustion [99], biogenic emissions are converted into fossil emissions. The 
impact is now 1.47 kgCO2e/kg of wood.  

 
- Wheat straw disposal is modelled by the process “treatment of biowaste, 

composting {CH}”. Biogenic CO2 is converted into fossil CO2. CO2, CH4 and N2O 
emissions are increased. The impact of the process was originally 0.21 
kgCO2e/kg and now equals 1.46 kgCO2e/kg (min) or 1.80 kgCO2e/kg (max). 

 
- Incinerated straw is modelled by “Biowaste, incineration”. Biogenic CO2 is 

converted into fossil CO2. The value is increased from 0.55 kgCO2e/kg to 1.44 
kgCO2e/kg since the carbon content of straw is higher than the carbon 
content decided specified in the process.  

 

Recycled wood is not changed because its impacts are linked to transport and wood 

crushing which is well described by Ecoinvent 3.2. 

 


