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X-ray Emission from Planetary Nebulae and

their Central Stars: a Status Report
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Summary. In the era of Chandra and XMM-Newton, the detection (or nonde-
tection) of diffuse and/or point-like X-ray sources within planetary nebulae (PNe)
yields important, unique insight into PN shaping processes. Diffuse X-ray sources,
whether due to “hot bubbles” or to collimated outflows or jets, allow us to probe
the energetic shocks within PN wind interaction regions. Meanwhile, X-ray point
sources provide potential diagnostics of magnetic fields, accretion disks, and/or bi-
nary companions at PN cores. Here, I highlight recent X-ray observational results
and trends that have the potential to shed new light on the origin and evolution of
the structure of PNe.

Key words: keyword list

1 Introduction

Over the past decade, X-ray imaging by the Chandra and XMM-Newton X-ray
Observatories has provided fresh, compelling observational evidence for hot
bubbles, highly energetic jets, and/or “active” central sources within planetary
nebulae (PNe). So far, nine of ∼ 25 PNe targeted by these two contemporary
X-ray observatories3 have been detected as diffuse X-ray sources (Kastner et
al. 2000, 2001, 2003; Chu et al. 2001; Guerrero et al. 2002, 2005; Sahai et al.
2003; Montez et al. 2005; Gruendl et al. 2006), while an additional handful
have been revealed to harbor X-ray point sources at their cores (e.g., Guerrero
et al. 2001; Kastner et al. 2003). Both “flavors” of X-ray source — diffuse and
point-like — can be used to probe PN shaping processes and to constrain
models of PN structural evolution.

3 Martin Guerrero maintains a list of PNe observed by Chandra or XMM at
http://www.iaa.es/xpn/.

http://arXiv.org/abs/0709.4136v1
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2 Diffuse X-ray Sources

2.1 X-rays from PN “hot bubbles”

Models of PN shaping have long predicted the formation of X-ray-emitting
“hot bubbles.” A hot bubble may be produced within a PN as the central
star makes the transition from post-asymptotic giant branch (post-AGB) star
to white dwarf, following an evolutionary track of increasing T⋆ at constant
L⋆, followed by decreasing L⋆ and T⋆. In this phase the star produces very
fast and energetic winds (with speeds ∼ 1000 km s−1 and mass loss rates
>
∼ 10−7

M⊙ yr−1). When such a fast wind collides with ambient (previously
ejected AGB) gas, it is shocked and superheated (e.g., Zhekov & Perinotto
1996). The shocked fast wind forms an overpressured bubble that accelerates
outwards and displaces the ambient (visible, nebular) gas as it grows (Kwok,
Purton, & Fitzgerald 1978). The supersonic growth of the bubble plows the
displaced older material into a rim of dense gas which, when projected on the
sky, is seen as a thin molecular, dust, and/or ionized structure that traces the
bubble’s perimeter.

In the majority of detections of diffuse X-ray emission from PNe, the X-ray-
emitting region is fully contained within bright optical rims or bubbles (Fig. 1),
as predicted by the preceding “hot bubble” scenario. Furthermore, many of the
detected objects harbor central stars that are of Wolf-Rayet (WR) type (i.e.,
“[WC]” or “[WO]” stars) and/or display optical spectroscopic evidence for
large mass-loss rates and wind velocities. These trends were already reasonably
well established (Montez et al. 2005; Gruendl et al. 2006) when we stumbled
upon yet another example of an X-ray-emitting “hot bubble” within a [WC]
PN: NGC 5315.

Chandra’s serendipitous detection of NGC 5315

In a Cycle 5 Chandra study, we observed two [WC] PNs, NGC 40 and Hen
2-99; we detected the former, but failed to detect the latter (Montez et al.
2005). In March 2007, while searching the Chandra archives for targeted ob-
servations of PNs in support of a Chandra observing proposal, Rudy Montez
discovered — to our great surprise and amusement — that a second [WC]
PN, NGC 5315, was present at the edge of the field of our 29 ks Chandra Ad-
vanced CCD Imaging Spectrometer (ACIS) observation targeting Hen 2-99.
Rudy’s examination of the Chandra/ACIS image revealed an X-ray source at
the position of NGC 5315, ∼ 12.5′ off-axis. This serendipitous Chandra detec-
tion of X-rays from NGC 5315 is all the more remarkable when one considers
that there are only ∼ 50 known [WC] PNe in the sky (Gorny & Stasinska
1995; Tylenda 1996). Of course, it could also be said that this author pointed
one of NASA’s Great Observatories at the wrong object! Indeed, due to the
relatively poor Chandra/ACIS-S image quality at the far off-axis position of
NGC 5315, it is not possible to ascertain from the ACIS image alone whether
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Fig. 1. Images of all of the PNe for which extended X-ray emission (shown in
blue) has been detected (as of this writing) by Chandra (BD +30◦3639, Mz 3, NGC
6543, 7027, 40) or XMM-Newton (NGC 2392, 3242, 7009, 7026) — and one XMM
nondetection (NGC 2346, with open bipolar lobes) — arranged according to optical
morphology. (Image montage courtesy Bruce Balick and Martin Guerrero.)

the X-rays trace a hot bubble within this PN, emanate from the PN nucleus,
or are emitted by both the nebula and its central star(s).

Fortunately, the background-subtracted spectrum (Fig. 2), the luminosity,
and the temporal behavior of the X-ray source associated with NGC 5315 ap-
pear quite definitive regarding the origin of the X-rays. The spectrum shows
strong Ne ix line emission as well as a blend of O vii and O viii lines, with
no evidence of Fe L-shell lines. Spectral modeling indicates that the emission
arises in a ∼ 2.5× 106 K thermal plasma with enhanced Ne and depleted Fe.
These results, and the inferred intrinsic source luminosity of LX ∼ 2 × 1032

erg s−1, are very similar to those obtained for the best-characterized diffuse
X-ray PN, BD +30◦3639 (Kastner et al. 2000, 2006a). Meanwhile, the Chan-
dra/ACIS light curve shows no evidence for variability, and the absorption-
corrected X-ray luminosity of NGC 5315 is at least an order of magnitude
larger than that of any unresolved PN core region detected thus far (Guerrero
et al. 2001; Kastner et al. 2003), further supporting the interpretation that
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Fig. 2. Chandra/ACIS spectrum of the X-ray source associated with NGC 5315
(crosses), with best-fit absorbed thermal plasma (VMEKAL) model spectrum over-
laid. The fit residuals are indicated in the lower panel. (From Kastner et al. 2007.)

the X-rays arise from an extended region within NGC 5315. These results,
described in detail in Kastner et al. (2007), establish NGC 5315 as one of the
most luminous “hot bubble” PN X-ray sources yet detected.

2.2 NGC 5315 and other hot bubbles: the picture thus far

The detection of the [WC] PN NGC 5315 by Chandra underscores two signif-
icant trends that have emerged from the X-ray observations of PNe obtained
thus far by Chandra and XMM (Kastner et al. 2007):

1. Objects with WR-type (i.e., [WC], [WO], or WR(H)) central stars —
which display characteristically large wind velocities (vw) and mass-loss
rates (Ṁ) — account for a disportionately large fraction of PNe that are
established sources of luminous, diffuse X-ray emission. Specifically, five
of the seven known “hot bubble” PN X-ray sources are associated with
WR-type PNe.

2. In all cases in which diffuse X-ray emission is detected, the optical/IR
structures that enclose the regions of diffuse X-rays are clearly defined,
and these structures generally display thin, bright, uninterrupted edges (or
“rims”) surrounding a cavity of lower surface brightness that is coincident
with the extended X-ray emission (see also Gruendl et al. 2006).

These results indicate that the combination of (1) large wind kinetic energies

(Lw
>
∼ 1033 erg s−1) and (2) a “closed containment vessel” is necessary to

yield PN hot bubbles with plasma densities sufficient to produce detectable

soft (0.3-2.0 keV) X-ray luminosities LX
>
∼ 1031 erg s−1.

Fig. 3 displays scatter diagrams for various PN and central star parameters
measured for the X-ray-detected objects. The top panels demonstrate that
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Fig. 3. Results obtained thus far for PNe detected as “hot bubble” X-ray sources
by Chandra and XMM-Newton. Upper left: PN plasma temperature (TX) vs. central
star fast wind velocity. Upper right: TX vs. PN optical bubble radius. Lower left: PN
X-ray luminosity (LX) vs. wind luminosity of the PN central star (Lw) relative to
Lw of the central star of NGC 6543 (Lw for NGC 2392 [triangle] is an upper limit).
Lower right: LX vs. PN optical bubble radius. (From Kastner et al. 2007.)

the characteristic temperature of the X-ray-emitting plasma is far lower than
expected, based on simple shock models, in almost all PNs in which diffuse
X-ray emission has been detected thus far. Indeed, there is only one “hot
bubble” PN, NGC 2392, for which the predicted temperature of the shocked
wind gas is consistent with TX ; for all other such objects, the predicted post-
shock temperatures are larger than observed by factors ranging from ∼ 2 (BD
+30◦3639) to ∼ 200 (NGC 7026). It also appears that TX is uncorrelated with
present-day central star wind velocity, but is weakly anticorrelated with PN
bubble radius (Fig. 3, upper panels), suggesting that PN age is more important
than present-day wind kinetic energy in determining the temperature of the
X-ray-emitting plasma within hot bubbles.

The bottom panels of Fig. 3 indicate that X-ray luminosity is correlated
with present-day central star wind luminosity Lw = 1

2
Ṁv

2

w, and is perhaps
anticorrelated with bubble radius. The shallow slope of the LX vs. Lw corre-
lation — wherein 4 orders of magnitude in Lw results in only a factor ∼ 20
range in LX — may suggest either that the conversion of wind kinetic energy
to plasma radiation becomes more efficient as the central star wind declines
in strength, or that the luminosities (and, perhaps, temperatures) of the hot
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bubbles within these PNe are established during early phases of the post-AGB
evolution of central stars with rapidly evolving winds (Akashi et al. 2007; see
also Schönberner et al. 2006).

2.3 X-rays from collimated outflows and jets

A review of X-rays from collimated outflows and jets in PNe was presented
by Martin Guerrero at APN IV (these proceedings). Here, I merely point out
that detections of X-ray emission from the energetic shocks that are expected
to result from the interaction of PN collimated outflows, jets, and/or bullets
with slower-moving (AGB) material remain few and far between; only 2 or
3 such detections have been made to date (Hen 3-1475, Sahai et al. 2003;
Mz 3, Kastner et al. 2003; and, perhaps, NGC 7027, Kastner et al. 2001). The
dearth of X-ray detections of PN jets and jet-like structures is not particu-
larly surprising, in light of the similarly small X-ray detection rate of highly
collimated outflows from young stellar objects (e.g., Grosso et al. 2006 and
references therein).

Nevertheless, some trends may be emerging. In particular, it seems that
the characteristic temperatures of X-ray sources associated with PNe jets
(∼ 3–6 MK) are systematically higher than those of “hot bubble” PNe. Also,
as would be expected, all three “X-ray jet” PNe show evidence for dusty,
molecule-rich (H2-emitting) central tori that are potential collimating agents
for the outflows that produce the X-ray-emitting shocks, whereas only one
“hot bubble” PN X-ray source (BD+30◦3639) was detected in the H2 survey
of Kastner et al. (1996).

3 Point-like X-ray Sources within PNe

We have been revisiting all Chandra observations targeting PNe, so as to place
constraints on the X-ray luminosities of PNe central star systems (Kastner &
Montez, in prep.). The superior (∼ 0.5”) spatial resolution of Chandra (com-
pared with XMM-Newton’s ∼ 5” resolution) is required to distinguish such
point-like X-ray emission from diffuse emission originating with the surround-
ing nebula. To ascertain the Chandra point-source X-ray luminosities or lumi-
nosity upper limits, we determine the ACIS count rate within an aperture of
radius ∼ 2.5” placed at the nominal position of the PN central star (this ra-

dius accounts for typical Chandra pointing errors of
<
∼ 1”). We then compare

this ACIS count rate with that obtained for a suitably chosen background
region (typically, an annulus surrounding the source region).

3.1 “Classical” PNe

Applying this technique to Chandra observations of PNe whose central stars
are not symbiotic in nature (see below), we confirm the detection of X-ray
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point sources within four nebulae (NGC 246, NGC 4361, NGC 6543, and NGC
7293; see Guerrero et al. 2001 and http://www.iaa.es/xpn/) and obtain X-
ray flux upper limits for 10 other nebulae (including three sources of diffuse
X-ray emission, i.e., NGC 40, BD+30, and NGC 7027). We hence obtain
a preliminary (and potentially highly biased) point-source detection rate of
∼ 30% within “classical” PNe at typical sensitivities of 1029−30 erg s−1.

For purposes of understanding the potential implications of these prelim-
inary results for models of magnetic and/or accretion activity associated wth
PN cores, it may be helpful (though potentially misleading!) to compare PN
core X-ray emission levels with those of solar- and subsolar-mass, pre-main
sequence (T Tauri) stars. Evidently the hard (∼2–8 keV) X-ray emission from
such stars is usually coronal in origin (e.g., Preibisch et al. 2005), although
for some fraction of T Tauri stars the hard X-rays — as well as some or
all of the softer (∼0.3–1.0 keV) emission — likely arise as a consequence of
magnetically-governed accretion activity (e.g., Kastner et al. 2006b; Telleschi
et al. 2007). Comparing our Chandra results for the X-ray luminosities and
luminosity upper limits of point-like PNe X-ray sources with the LX dis-
tributions of a nearly complete sample of pre-main sequence stars in Orion
(Feigelson et al. 2005), one might speculate that the nondetected PN cores,
as a group, are less magnetically active than ∼ 0.5 M⊙ T Tauri stars; while
the magnetic activity levels of the four relatively X-ray-luminous PN cores
(for which LX ∼ 1030−31 erg s−1) are comparable to 1–3 M⊙ T Tauri stars
(ignoring for the moment the likelihood that the X-ray-luminous cores harbor
close binary stars; §3.2).

3.2 Symbiotic Mira systems

In stark contrast to “classical” PNe, it seems that X-ray-luminous point
sources are a common (perhaps ubiquitous) feature of symbiotic Mira sys-
tems: all but one of the six such systems observed thus far by Chandra — R
Aqr, CH Cyg, Mz 3, Hen 2-104, and Mira itself — display X-ray sources at the
positions of their central stars. The only symbiotic Mira nebula in which no
central X-ray point source is detected, OH 231.8+4.2, possesses a very highly
obscured central region (i.e., a dusty torus). The luminosities of the symbiotic
Mira X-ray point sources range over ∼ 4 orders of magnitude (from ∼ 1028 to
∼ 1032 erg s−1); this emission is typically harder than that of diffuse (shock-
induced) PN X-ray emission (e.g., Kastner et al. 2003) and may be highly
variable.

By analogy with low-mass X-ray binaries, the presence of X-ray point
sources within symbiotic Miras is likely indicative of binary mass transfer pro-
cesses. Hence, further observations and analyses of these X-ray sources should
provide unique diagnostics of accretion of AGB wind material by white dwarf
(or, in some cases, main sequence) secondaries. More generally, studies of
compact X-ray sources within symbiotic Miras should provide insight into the
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disks, jets, and disk-jet interactions that are the likely consequence of central
binary systems within PNe (see also Montez & Kastner, these proceedings).

Acknowledgements: I am indebted to my colleagues Rudy Montez, Bruce
Balick, and Orsola De Marco for their many contributions to this work.
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