
Bulletin of the Section of Logic
Volume 48/1 (2019), pp. 45–76

http://dx.doi.org/10.18778/0138-0680.48.1.04

Dorota Leszczyńska-Jasion,
Yaroslav Petrukhin, Vasilyi Shangin
and Marcin Jukiewicz

FUNCTIONAL COMPLETENESS IN CPL
via CORRESPONDENCE ANALYSIS

Abstract

Kooi and Tamminga’s correspondence analysis is a technique for designing proof

systems, mostly, natural deduction and sequent systems. In this paper it is used

to generate sequent calculi with invertible rules, whose only branching rule is

the rule of cut. The calculi pertain to classical propositional logic and any of its

fragments that may be obtained from adding a set (sets) of rules characterizing

a two-argument Boolean function(s) to the negation fragment of classical propo-

sitional logic. The properties of soundness and completeness of the calculi are

demonstrated. The proof of completeness is conducted by Kalmár’s method.

Most of the presented sequent-calculus rules have been obtained automati-

cally, by a rule-generating algorithm implemented in Python. Correctness of the

algorithm is demonstrated. This automated approach allowed us to analyse thou-

sands of possible rules’ schemes, hundreds of rules corresponding to Boolean func-

tions, and to find dozens of those invertible. Interestingly, the analysis revealed

that the presented proof-theoretic framework provides a syntactic characteristics

of such an important semantic property as functional completeness.

Keywords: correspondence analysis, invertible rules, classical propositional
logic, functional completeness, sequent calculus, automated deduction, au-
tomated rules generation.

http://dx.doi.org/10.18778/0138-0680.48.1.04

46 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

1. Introduction

Correspondence analysis is Kooi and Tamminga’s [13, 26] proof-theoretic
approach which, originally, was developed in order to axiomatize via natural
deduction systems all the truth-functional unary and binary extensions of
three-valued logic LP (Logic of Paradox) [1, 24]. To be sure, this technique
can be applied for other many-valued functionally incomplete logics.

In this paper, we, first, extend this method to sequent calculi. The
calculi capture various fragments of CPL (Classical Propositional Logic),
the whole CPL included. Second, correspondence analysis has been used
here in a refined way, in order to obtain invertible rules only. The main
motivation of this step is the fact that both invertibility of rules and the
use of cut support proof-search.1

Last but not least, it may be observed that binary connectives can be
grouped according to their syntactic characteristics provided by the invert-
ible rules found via correspondence analysis. This characterization clearly
covers with the division between primary and non-primary connectives. We
have used an algorithmic approach in order to generate in an automatic
manner all the possible invertible rules corresponding to particular Boolean
functions. The algorithmic approach helped us to understand the observed
regularities.

A brief history of correspondence analysis

• Kooi and Tamminga [13] invented correspondence analysis and used
it to obtain natural deduction systems for all the unary and binary
extensions of three-valued logic LP (Logic of Paradox) [1, 24].

• Tamminga [26], using correspondence analysis, presented natural de-
duction systems for all the unary and binary extensions of Kleene’s
strong three-valued logic K3 [11, 12].

• Petrukhin [21] formulated via correspondence analysis natural deduc-
tion systems for all the unary and binary extensions of Belnap-Dunn’s
four-valued logic FDE (First Degree Entailment) [2, 3, 6] supplied
with Boolean negation. Petrukhin and Shangin have recently applied
correspondence analysis for FDE itself [20].

1Another motivation stems from the logic of questions, but we will not elaborate on
this issue here. This issue is described in another paper, “The method of Socratic proofs
meets correspondence analysis” submitted to the Bulletin of the Section of Logic.

Functional Completeness in CPL via Correspondence Analysis 47

• Petrukhin and Shangin [16] developed a proof-searching algorithm for
natural deduction systems for all the binary extensions of LP.

• In [17], Petrukhin and Shangin extended their proof-searching tech-
nique to the case of all the binary extensions of K3.

• Petrukhin [23] presented via correspondence analysis natural deduc-
tion systems for all the unary and binary extensions of Kubyshkina
and Zaitsev’s [14] four-valued logic LRA (Logic of Rational Agent).
Besides, he generalized Kooi and Tamminga’s ([13], [26]) results for
a wider class of three-valued logics [22].

• Petrukhin and Shangin [18] used correspondence analysis to syntac-
tically characterize Tomova’s natural logics [27, 10].

• Petrukhin and Shangin [19] presented correspondence analysis for
PWK (Paraconsistent Weak Kleene logic) [8, 4] which is Kleene’s
weak logic Kw

3 [11, 12] with two designated values.

Let us mention Segerberg’s paper [25] where one may find a predecessor
of the method of correspondence analysis. In fact, Segerberg has already
used the very idea of correspondence between truth table entries and infer-
ence rules, but he has not emphasized it via a special definition in contrast
to Kooi and Tamminga (see Definition 1 of single entry correspondence).
He developed a general way of producing sound and complete natural de-
duction rules for all Boolean n-ary functions. However, his rules generally
are not invertible. Hence, they are not suitable for our purposes.

2. Correspondence analysis for CPL

Notation. Let P be a countably infinite set {p1, p2, p3, . . .} of proposi-
tional variables and let B = {◦⊥, ∧, 6→, ◦1, 6←, ◦2, Y, ∨, ↓, ≡, ◦¬2,←, ◦¬1,
→, ↑, ◦>} be a set of binary operators, where:

A B ◦⊥ ∧ 6→ ◦1 6← ◦2 Y ∨
1 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0

48 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

A B ↓ ≡ ◦¬2 ← ◦¬1 → ↑ ◦>
1 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1
0 0 1 1 1 1 1 1 1 1

Let L ◦¬ be propositional language with the alphabet 〈P,B,¬, (,)〉. We
define the set F ◦¬ of all L ◦¬ ’s formulas in a standard way.

Let us recall some well-known facts concerning functional completeness
(see [29]). A binary connective ◦ such that {¬, ◦} is functionally complete,
will be called primary (see [7, p. 13]), other binary connectives are called
non-primary. Primary connectives of L ◦¬ are: ∧, 6→, 6←, ∨, ↓, ←, →, ↑.
Among the non-primary connectives we will distinguish trivial (for lack of
a better name) and non-trivial ones. Connective ◦ is trivial if the only 2-
argument Boolean functions that can be defined by {¬, ◦} are expressed by
A◦B, B ◦A, ¬(A◦B) and ¬(B ◦A). Among the non-primary connectives,
◦>, ◦1, ◦2, ◦¬2, ◦¬1, ◦⊥ are trivial: ◦> together with ¬ defines ◦⊥, similarly
◦⊥ defines ◦>, any of ◦1, ◦2, ◦¬2, ◦¬1 together with ¬ defines all of ◦1, ◦2,
◦¬2, ◦¬1. The remaining connectives (non-primary and non-trivial) are Y
and ≡. Each of them, together with ¬, produces {¬,Y,≡, ◦⊥, ◦>}.

Why do we consider such a rich language? Mainly because correspon-
dence analysis invites and supports this step.

Let ◦ stand for any of the 16 binary connectives listed above. Let f¬
and f◦ be, respectively, truth tables of truth functional operators ¬ and ◦.
Let x, y, z ∈ {0, 1} and f◦(x, y) = z be an f◦’s entry such that if v(A) = x
and v(B) = y, then v(A ◦ B) = z, where v is an arbitrary valuation and
A,B ∈ F ◦¬.

The idea of correspondence. Let A ∈ F ◦¬ and X ⊆ F ◦¬. If it is true
that a natural-deduction rule of the form X / A is semantically correct iff
f◦(x, y) = z is true of ◦, then we say that there is a correspondence between
the rule and the entry.

Sequents are introduced as expressions of language L ◦¬⇒ which is built
upon L ◦¬ . Formally, L ◦¬⇒ is a language with the alphabet of language
L ◦¬ enriched with ‘⇒’ (the sequent arrow) and the comma ‘,’. The only
category of a well-formed expression of L ◦¬⇒ is that of a sequent of L ◦¬⇒,
which is an expression of the form:

Γ⇒ ∆ (2.1)

Functional Completeness in CPL via Correspondence Analysis 49

where Γ and ∆ are finite, possibly empty multisets of formulas of L ◦¬ .
If Γ = A1, . . . , An, ∆ = B1, . . . , Bk, then a comma occurring in the an-
tecedent and the succedent of (2.1) may be thought of as the sign of sum
of multisets. Expression ‘A,Γ⇒ ∆’ is to be understood as:

A,A1, . . . , An ⇒ B1, . . . , Bk

and similarly in analogous contexts.
Sequent calculus for the negation fragment of CPL. Our aim

is to find invertible rules corresponding to particular binary connectives.
These will be added to a “sequent base”, that is the rules for the negation
fragment of classical logic together with the structural rule of the cut, which
is the only branching rule of the system.

(Ax) A,Γ⇒ ∆, A

A,Γ⇒ ∆

Γ⇒ ∆,¬A (⇒ ¬)
Γ⇒ ∆, A

¬A,Γ⇒ ∆
(¬ ⇒)

Γ⇒ ∆, A A,Γ⇒ ∆

Γ⇒ ∆
(cut)

The symbol ‘|=’ stands for entailment in both languages: L ◦¬⇒ and L ◦¬ ,
but, as we shall see, this should not lead to confusion. If Γ = A1, . . . , An

is a finite multiset of formulas of L ◦¬ , then ‘
∧

Γ’ stands for a generalized
conjunction of Γ, that is, a formula of the form:

A1 ∧ (A2 ∧ . . . ∧An)

and similarly for ‘
∨

Γ’ (a generalized disjunction).2 If v is a valuation, then
we say that sequent (2.1) is true under v iff v(

∧
Γ) = 1 yields v(

∨
∆) = 1.

Hence it follows that if (2.1) is true under every valuation, then
∧

Γ |=
∨

∆.
Finally, the inscription:

Γ⇒ ∆ |= Θ⇒ Λ

means that for every valuation v, if sequent Γ ⇒ ∆ is true under v, then
sequent Θ ⇒ Λ is true under v. Let us observe that in the case of both
languages: L ◦¬⇒ and L ◦¬ , |= amounts to transmission of truth.

2Since Γ is a multiset, not a sequence, this is not an unequivocal description. However,
since ∧,∨ are commutative and associative in classical logic, we may assume that the
formulas A1, . . . , An are given in any order—e.g. alphabetical one.

50 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

For our case we need the following version of Kooi and Tamminga’s
definition of a single entry correspondence presented in [13, Definition 2.1]
and [26, Definition 1].

Definition 1 (Single entry correspondence). Let Γ,∆,Θ,Λ stand for fi-
nite, possibly empty multisets of formulas of L ◦¬ . Let x, y, z ∈ {0, 1}.
Then we say that the truth table entry f◦(x, y) = z is characterized by an
inference scheme Γ⇒ ∆/Θ⇒ Λ, if

f◦(x, y) = z if and only if Γ⇒ ∆ |= Θ⇒ Λ.3

As we have explained in the introduction, our aim was to find not only
schemes that correspond to particular entries, but ones that, when inverted,
still correspond to an entry (not necessarily the same one). In other words,
we have found inference schemes such that if f◦(x, y) = z, where x, y, z ∈
{0, 1}, is characterized by Γ⇒ ∆ / Θ⇒ Λ, then there are x′, y′, z′ ∈ {0, 1}
such that f◦(x

′, y′) = z′ is characterized by Θ ⇒ Λ / Γ ⇒ ∆. What is
more, in this account the rules are not only invertible, but they will be
actually inverted and used in both directions.4 The reason for this is that,
as we shall see, both directions are actually needed.

By invertibility of a rule we mean the fact that the correctness of the
conclusion yields the correctness of the premise. More specifically, we say
that rule Γ⇒ ∆ / Θ⇒ Λ is:

• sound iff for each valuation v, if Γ⇒ ∆ is true under v, then Θ⇒ Λ
is true under v;

• invertible iff for each valuation v, if Θ ⇒ Λ is true under v, then
Γ⇒ ∆ is true under v.

In the case of branching rules, like (cut), soundness amounts to the fact
that for each v, if both premises are true under v, then the conclusion is
true under v. In turn, invertibility of such a rule amounts to the fact that
for each v, if the conclusion is true under v, then so are both premises.
The context-sharing version of (cut) that we have adopted is sound and
invertible. So are the rules for negation.

3Note that in the original formulation, Kooi and Tamminga deal with a three-valued
logic and natural deduction rules. Thus, in their definition, f◦(x, y) = z is characterized
by an inference scheme Γ/A, if f◦(x, y) = z if and only if Γ |= A. However, Kooi and
Tamminga considered the unary connectives as well.

4As in the paradigm introduced by Došen [5]. However, our rules differ from that of
Došen. Needless to say, so do our research goals.

Functional Completeness in CPL via Correspondence Analysis 51

Let us introduce some additional terminology: in structural proof the-
ory it is common to use the notions of an active formula (active formulas)
and a primary formula of a rule. A formula is called active in a rule, if it is
distinguished in its premise, and it is called primary, if it is distinguished
in the conclusion. The remaining formulas form the context of the premise
or conclusion, respectively. Since we are going to invert the rules, the dis-
tinction between active and primary may be misleading, hence we will use
the term: distinguished formula of a rule. Hence a formula distinguished
in a scheme is one that is either active or primary.

The following rules have been found by a human researcher. The rules
have no contexts, that is, only distinguished formulas are displayed. Note
that the numbers in parentheses

(
(01), (02) etc.

)
mark pairs of invertible

rules.

Theorem 1. Let A,B ∈ F ◦¬. Then:

f◦(0, 0) =


0 iff

 (01) A⇒ B |= A ◦B ⇒ B iff
(02) B ⇒ ¬(A ◦B) |= A ◦B ⇒ A iff
(03) B ⇒ A |= A ◦B ⇒ A


1 iff

 (04) A⇒ B |= ¬B ⇒ A ◦B iff
(05) B ⇒ A ◦B |= ¬A⇒ A ◦B iff
(06) A ◦B ⇒ A |= ¬A⇒ B



f◦(0, 1) =


0 iff

 (07) B ⇒ A ◦B |= B ⇒ A iff
(08) A ◦B ⇒ B |= A ◦B ⇒ A iff
(06) ¬A⇒ B |= A ◦B ⇒ A


1 iff

 (09) B ⇒ ¬(A ◦B) |= B ⇒ A iff
(10) ¬B ⇒ A ◦B |= ¬A⇒ A ◦B iff
(03) A ◦B ⇒ A |= B ⇒ A



f◦(1, 0) =


0 iff

 (04) ¬B ⇒ A ◦B |= A⇒ B iff
(08) A ◦B ⇒ A |= A ◦B ⇒ B iff
(11) A⇒ A ◦B |= A⇒ B


1 iff

 (01) A ◦B ⇒ B |= A⇒ B iff
(10) ¬A⇒ A ◦B |= ¬B ⇒ A ◦B iff
(12) A⇒ ¬(A ◦B) |= A⇒ B



52 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

f◦(1, 1) =


0 iff

 (09) B ⇒ A |= B ⇒ ¬(A ◦B) iff
(02) A ◦B ⇒ A |= B ⇒ ¬(A ◦B) iff
(12) A⇒ B |= A⇒ ¬(A ◦B)


1 iff

 (07) B ⇒ A |= B ⇒ A ◦B iff
(05) ¬A⇒ A ◦B |= B ⇒ A ◦B iff
(11) A⇒ B |= A⇒ A ◦B



Proof: As an example, we prove the case f◦(0, 0) = 1 iff (04) A ⇒ B |=
¬B ⇒ A ◦ B. (All the remaining cases will follow from a result proved
below, see Lemma 1, page 57.)

Suppose A ⇒ B 6|= ¬B ⇒ A ◦ B. Then there is a valuation v such
that if v(A) = 1, then v(B) = 1; v(¬B) = 1 and v(A ◦ B) = 0. Then
v(B) = 0. Therefore, v(A) = 0. Thus, f◦(0, 0) 6= 1. So, if f◦(0, 0) = 1,
then A⇒ B |= ¬B ⇒ A ◦B.

Suppose A ⇒ B |= ¬B ⇒ A ◦ B. Then, for each valuation v, if
(if v(A) = 1, then v(B) = 1), then (if v(B) = 0, then v(A ◦ B) = 1).
Let “v(A) = 1” be X, “v(B) = 1” be Y , and “v(A ◦ B) = 1” be Z.
Then we obtain (X → Y) → (¬Y → Z). By classical logic, we obtain if
(X → Y) → (¬Y → Z) is true, then (¬X ∧ ¬Y) → Z is true. Thus, for
each valuation v, if v(A) = v(B) = 0, then v(A ◦ B) = 1, i.e. f◦(0, 0) = 1.
�

Theorem 1 provides us with schemes of rules which may be used to
build sequent calculi. Each scheme has exactly four distinguished formu-
las, always one formula in the antecedent of a sequent and one in the
succedent. Unfortunately, the above rules are not sufficient for the whole
CPL. Each fragment of CPL that may be expressed without the use of
the primary connectives may be captured by the above rules, but they fail
to characterize the primary connectives.

We give an example. Suppose ◦ to be equivalence (≡). Using Theorem
1, we can characterize it by three different pairs of invertible rules. Consider
f≡(0, 0) = 1. We can choose an inference scheme for f≡(0, 0) = 1 from the
following pairs of inference schemes: (04), (05), and (06). Suppose we
choose (04). Then we have an inference scheme for f≡(1, 0) = 0 as well.
The remaining entries characterizing ≡ are f≡(1, 1) = 1 and f≡(0, 1) = 0,
and the only rule that corresponds to both of them is (07). Thus for ≡ we
may adopt the following rules:

Functional Completeness in CPL via Correspondence Analysis 53

R
(04)
≡

A,Γ⇒ ∆, B

¬B,Γ⇒ ∆, A ≡ B
R

(07)
≡

B,Γ⇒ ∆, A

B,Γ⇒ ∆, A ≡ B

Double lines indicate that the rules work both ways. Surprisingly, the two
rules (or two pairs of rules, to be more specific) are sufficient to build a
sequent calculus for the fragment of CPL expressed with ¬, ≡; one can
see this from the details of the completeness proof presented in Section 4.

We could have obtained adequate characteristics of ≡ also by the pair
(05) and (08), or by the pair (06) and (11). The situation is quite sim-
ilar when Y is concerned. In the case of the other non-primary connec-
tives, there is always exactly one “match” of 2 rules that together corre-
spond to the 4 entries characterizing the connective. Table 1 presents these
“matches”.

Table 1. Rules for non-primary connectives

A ◦⊥ B A ◦1 B A ◦2 B A YB
(02), (08) (01), (07) (03), (11) (01), (09)

(02), (10)
(03), (12)

A ≡ B A ◦¬2 B A ◦¬1 B A ◦> B
(04), (07) (06), (12) (04), (09) (05), (10)
(05), (08)
(06), (11)

What about the primary connectives? Unfortunately, there never is a
match among (01)-(12). Consider ∨ as an example. In order to gain full
characteristics of the connective via our invertible rules, we need a rule
corresponding to f◦(1, 1) = 1, that is, one of (07), (05), (11); but (07)
corresponds also to f◦(0, 1) = 0, (05) corresponds also to f◦(0, 0) = 1, and
(11) corresponds also to f◦(1, 0) = 0, so none of them fits ∨. To be sure,
using Theorem 1 one can obtain non-invertible rules for the non-primary
connectives, but the above invertible rules are not sufficient. However, we
have found what follows:

Theorem 2. Let A,B ∈ F ◦¬. Then:

54 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

f◦(0, 0) =

{
0 iff (I) |= A ◦B ⇒ A,B
1 iff (II) |= ¬A,¬B ⇒ A ◦B

f◦(0, 1) =

{
0 iff (III) |= A ◦B ⇒ A,¬B
1 iff (IV) |= ¬A,B ⇒ A ◦B

f◦(1, 0) =

{
0 iff (IV) |= A ◦B ⇒ ¬A,B
1 iff (III) |= A,¬B ⇒ A ◦B

f◦(1, 1) =

{
0 iff (II) |= A ◦B ⇒ ¬A,¬B
1 iff (I) |= A,B ⇒ A ◦B

Proof: As an example, we consider the case f◦(0, 0) = 0. Suppose 6|=
A ◦ B ⇒ A,B. Then there is a valuation v such that v(A ◦ B) = 1 while
v(A) = v(B) = 0. Thus, f◦(0, 0) 6= 0.

Suppose |= A ◦B ⇒ A,B. Then, for each valuation v, if v(A ◦B) = 1,
then v(A) = 1 or v(B) = 1. Thus, if v(A) = v(B) = 0, then v(A ◦B) = 0,
i.e. f◦(0, 0) = 0. �

There are two ways to obtain the sequent rules from the inferences
schemes presented in Theorem 2. The first one supposes that we treat these
inference schemes as axioms. We use Roman numerals in parentheses

(
(I),

(II) etc.
)

in order to mark pairs of axioms. In fact, axioms from the same
pair are invertible in the following sense:

Definition 2. Let Γ⇒ ∆ be a sequent of language L ◦¬⇒. We call Γ⇒ ∆
invertible, if it is both the case that |= Γ⇒ ∆ and |= ∆⇒ Γ.

Our invertible axioms have the following form:

A
(I)
◦↑ A,B,Γ⇒ ∆, A ◦B A

(I)
◦↓ A ◦B,∆⇒ Γ, A,B

A
(II)
◦↑ ¬A,¬B,Γ⇒ ∆, A ◦B A

(II)
◦↓ A ◦B,∆⇒ Γ,¬A,¬B

A
(III)
◦↑ A,¬B,Γ⇒ ∆, A ◦B A

(III)
◦↓ A ◦B,∆⇒ Γ, A,¬B

A
(IV)
◦↑ ¬A,B,Γ⇒ ∆, A ◦B A

(IV)
◦↓ A ◦B,∆⇒ Γ,¬A,B

Combining these axioms with the invertible rules which were obtained
by Theorem 1, as well as the axioms and the rules for the negation fragment
of CPL, we can obtain sequent calculi for all the extensions of the negation
fragment of CPL by binary connectives — both primary and non-primary.
See the table below.

Functional Completeness in CPL via Correspondence Analysis 55

(I) and (08) A ◦B = A ∧B
(I) and (10) A ◦B = A ∨B

(II) and (08) A ◦B = A ↓ B
(II) and (10) A ◦B = A ↑ B

(III) and (02) A ◦B = A 6→ B
(III) and (05) A ◦B = A← B
(IV) and (02) A ◦B = A 6← B
(IV) and (05) A ◦B = A→ B

The second way is to transform these inference schemes into invertible
rules which have the following form:

R
(I)
◦

A,B,Γ⇒ ∆, A ◦B
A ◦B,Γ,⇒ ∆, A,B

R
(II)
◦

¬A,¬B,Γ⇒ ∆, A ◦B
A ◦B,Γ⇒ ∆,¬A,¬B

R
(III)
◦

A,¬B,Γ⇒ ∆, A ◦B
A ◦B,Γ⇒ ∆, A,¬B

R
(IV)
◦

¬A,B,Γ⇒ ∆, A ◦B
A ◦B,Γ⇒ ∆,¬A,B

We combine these invertible rules with the ones which were obtained by
Theorem 1 in the same way we did above for the case of invertible axioms.
This approach is sound due to the following consequence of Theorem 2.
Note that there is a general method due to Indrzejczak [9] of the transfor-
mation of the axioms into the sequent rules which, surely, can be applied
in our case as well.

Corollary 1. Let A,B ∈ F ◦¬. Then:

f◦(0, 0) =

{
0 iff (I) A,B ⇒ A ◦B |= A ◦B ⇒ A,B
1 iff (II) A ◦B ⇒ ¬A,¬B |= ¬A,¬B ⇒ A ◦B

f◦(0, 1) =

{
0 iff (III) A,¬B ⇒ A ◦B |= A ◦B ⇒ A,¬B
1 iff (IV) A ◦B ⇒ ¬A,B |= ¬A,B ⇒ A ◦B

f◦(1, 0) =

{
0 iff (IV) ¬A,B ⇒ A ◦B |= A ◦B ⇒ ¬A,B
1 iff (III) A ◦B ⇒ A,¬B |= A,¬B ⇒ A ◦B

f◦(1, 1) =

{
0 iff (II) ¬A,¬B ⇒ A ◦B |= A ◦B ⇒ ¬A,¬B
1 iff (I) A ◦B ⇒ A,B |= A,B ⇒ A ◦B

There is a clear difference between the rules considered in Theorem 1
(only non-primary connectives) and Corollary 1 (primary connectives). In
the former case, each rule is composed of two sequents with exactly two
distinguished formulas each, whereas in the latter case the sequents have
exactly three distinguished formulas each. The question: why it is the case,

56 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

seemed puzzling. Is it a feature of the primary / non-primary connectives,
or maybe we were not ingenious enough to find some counter-examples
to this apparent regularity? In order to answer this question, a human
researcher decided to check all the possible schemes automatically.

3. More rules: algorithmic approach

In this section we present Algorithm 1, designed to find all cases of sequent-
calculus rules corresponding to the particular entries. The algorithm was
implemented in Python.

Language for the purpose of the implementation. Vocabulary
consists of the following signs: A,B,¬, ◦, (,). Formulas are expressions of
the form: A, B, ¬A, ¬B, A ◦ B, ¬(A ◦ B). Inference schemes, or simply
schemes, are pairs (L1, L2) such that L1 is a list of formulas and L2 is a
list of formulas. Lists are treated as sets, that is, repetitions and order
are neglected. (However, let us recall that in a pair the order matters.)
There are exactly 63 different non-empty lists containing some (possibly
all) formulas. Hence there are exactly 3969 (= 63 · 63) different schemes
combined from the lists.

If a list is of the form (L,L), that is, the conclusion is identical to the
premise, then the scheme is called id-trivial. There are exactly 3906 (3969−
63) different schemes which are not id-trivial. The rules are written in the
file RulesAll.txt. All the files mentioned in this Section are available on
https://github.com/mjukiewicz/Correspondence-Analysis in the txt
format together with a tex source.

Interpretation of lists and sequents. The intended reading of a
single list is a disjunction. Sequents may be used to eliminate the use of
negation. Hence, e.g., a list containing ‘A,¬B,A ◦ B’ represents: the dis-
junction ‘A ∨ (¬B) ∨ (A ◦ B)’; and also the sequent ‘B ⇒ A,A ◦ B’. We
deal with the nice and simple CPL, and the deduction theorem assures the
correspondence between the use of negation and disjunction (i.e. implica-
tion) and the sequent arrow. It is convenient to analyse lists without the
sequent arrow, but to display the schemes as sequent rules.

Trivial cases of rules. If the first list of a scheme is contained in the
second list, i.e., each formula from the premise is present in the conclusion,
then the scheme is correct for trivial reasons, which excludes correspon-
dence with an entry. (For exactly the same reason validity of a formula of
the form ‘A ◦B → ((A ◦B) ∨C)’ does not depend on the properties of ◦.)

RulesAll.txt
https://github.com/mjukiewicz/Correspondence-Analysis

Functional Completeness in CPL via Correspondence Analysis 57

Another trivial case is that of a non-falsifiable conclusion. Again, if
correctness of a scheme follows from the fact that the conclusion is an
axiom, that is, of the form ‘Γ, C ⇒ C,∆’, then the correctness is not
connected to an entry.

Algorithm 1 generates all the schemes corresponding to the following
entry: ‘f(0, 0) = 0’.

The lists for the remaining 7 entries are obtained by algorithms con-
structed as Algorithm 1 but with a suitable modification of lines 11-13, as
indicated in Table 2 on page 59. For each entry a separate file has been
generated, their names are indicated in Table 2. Each file contains exactly
68 schemes of rules.

Correctness of the algorithm

The following Lemma 1 establishes that the algorithm is correct, that is,
that the list of schemes which were “not rejected” is exactly the list of
schemes that correspond to the relevant entry. Lemma 1 will also yield
soundness of our sequent calculi.

Lemma 1. Let Lijk stand for the list of schemes generated by Algorithm
1+Table 2, suited to the entry f◦(i, j) = k. Let S ∈ Lijk. Entry f◦(i, j) = k
holds iff S is semantically correct.

Proof: The proof goes by cases. Let i = j = k = 0 and S = (L1, L2).
(→) Suppose that entry f◦(0, 0) = 0 holds for ‘◦’, but the scheme is not

correct, that is, it is possible to assign value 1 to at least one element of
L1 and value 0 to every element of L2. Let H stand for the element of L1

which is true under this purported countervaluation v. In the while-loop
(lines 9-20) we arrive at an iteration with H as the head of the list. Then
H 6∈ L2, for otherwise the conclusion of S would be true under v. Scheme
S has not been rejected, so the if-then-else conjunctive condition described
in lines 11,12,13 of Algorithm 1 has failed. It means that at least one of
the three conjuncts failed:

If the one described in line 11 failed, then: H = ¬A, and B, ¬(A ◦B)
are elements of L2. Then v(A) = 0, v(B) = 0, whereas v(A◦B) = 1, which
contradicts entry f◦(0, 0) = 0.

If 12 failed, then: H = ¬B, so v(B) = 0, A and ¬(A ◦B) are elements
of L2, and thus are both assigned 0, which contradicts the entry. Similarly
if 13 failed.

58 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

Algorithm 1: f(0, 0) = 0 correspondence

Data: the list of all schemes RulesAll.txt

the following algorithm is performed for each scheme (L1, L2) on
the list

1 if L1 ⊆ L2 ; /* removes the trivial cases */

2 then
3 REJECT the scheme from the list
4 end
5 if both A, ¬A ∈ L2 or both B, ¬B ∈ L2 or both A ◦B,
¬(A ◦B) ∈ L2 ; /* removes */

; /* the schemes with non-falsifiable conclusions */

6 then
7 REJECT the scheme from the list
8 end
9 while L1 is non-empty do

10 if L1 = [H|Tail] and (H 6∈ L2) then
11 if (H 6= ¬A or B 6∈ L2 or ¬(A ◦B) 6∈ L2) and
12 (H 6= ¬B or A 6∈ L2 or ¬(A ◦B) 6∈ L2) and
13 (H 6= A ◦B or A 6∈ L2 or B 6∈ L2) ; /* links

correctness */

; /* of the scheme with an entry */

14 then
15 REJECT the scheme from the list
16 else
17 L1 ← Tail
18 end

19 else
20 L1 ← Tail
21 end

22 end
Result: a list: list0[000].txt of the schemes which were not

rejected from RulesAll.txt

(←) Suppose that the scheme is correct, although f◦(0, 0) 6= 0. Since
the scheme is not rejected in lines 1-4 of the algorithm, there is a formula H
in L1 which is not an element of L2. We consider what happens when in the

RulesAll.txt
list0[000].txt
RulesAll.txt

Functional Completeness in CPL via Correspondence Analysis 59

Table 2. modifications of Algorithm 1 for the other entries

li
st

’s
n

o.
tx

t
fi

le
en

tr
y

li
n

es
1
1
-1

3

0
l
i
s
t
0
[
0
0
0
]
.
t
x
t

f
(0
,0

)
=

0
a
s

in
A

lg
o
ri

th
m

1
1

l
i
s
t
1
[
0
0
1
]
.
t
x
t

f
(0
,0

)
=

1
11

(H
6=
¬A

o
r
B
6∈
L
2
o
r
A
◦
B
6∈
L
2
)
a
n
d

12
(H
6=
¬B

o
r
A
6∈
L
2
o
r
A
◦
B
6∈
L
2
)
a
n
d

13
(H
6=
¬(

A
◦
B

)
o
r
A
6∈
L
2
o
r
B
6∈
L
2
)

2
l
i
s
t
2
[
0
1
0
]
.
t
x
t

f
(0
,1

)
=

0
11

(H
6=
¬A

o
r
¬B
6∈
L
2
o
r
¬(

A
◦
B

)
6∈
L
2
)
a
n
d

12
(H
6=

B
o
r
A
6∈
L
2
o
r
¬(

A
◦
B

)
6∈
L
2
)
a
n
d

13
(H
6=

A
◦
B

o
r
A
6∈
L
2
o
r
¬B
6∈
L
2
)

3
l
i
s
t
3
[
0
1
1
]
.
t
x
t

f
(0
,1

)
=

1
11

(H
6=
¬A

o
r
¬B
6∈
L
2
o
r
A
◦
B
6∈
L
2
)
a
n
d

12
(H
6=

B
o
r
A
6∈
L
2
o
r
A
◦
B
6∈
L
2
)
a
n
d

13
(H
6=
¬(

A
◦
B

)
o
r
A
6∈
L
2
o
r
¬B
6∈
L
2
)

4
l
i
s
t
4
[
1
0
0
]
.
t
x
t

f
(1
,0

)
=

0
11

(H
6=

A
o
r
B
6∈
L
2
o
r
¬(

A
◦
B

)
6∈
L
2
)
a
n
d

12
(H
6=
¬B

o
r
¬A
6∈
L
2
o
r
¬(

A
◦
B

)
6∈
L
2
)
a
n
d

13
(H
6=

A
◦
B

o
r
¬A
6∈
L
2
o
r
B
6∈
L
2
)

5
l
i
s
t
5
[
1
0
1
]
.
t
x
t

f
(1
,0

)
=

1
11

(H
6=

A
o
r
B
6∈
L
2
o
r
A
◦
B
6∈
L
2
)
a
n
d

12
(H
6=
¬B

o
r
¬A
6∈
L
2
o
r
A
◦
B
6∈
L
2
)
a
n
d

13
(H
6=
¬(

A
◦
B

)
o
r
¬A
6∈
L
2
o
r
B
6∈
L
2
)

6
l
i
s
t
6
[
1
1
0
]
.
t
x
t

f
(1
,1

)
=

0
11

(H
6=

A
o
r
¬B
6∈
L
2
o
r
¬(

A
◦
B

)
6∈
L
2
)
a
n
d

12
(H
6=

B
o
r
¬A
6∈
L
2
o
r
¬(

A
◦
B

)
6∈
L
2
)
a
n
d

13
(H
6=

A
◦
B

o
r
¬A
6∈
L
2
o
r
¬B
6∈
L
2
)

7
l
i
s
t
7
[
1
1
1
]
.
t
x
t

f
(1
,1

)
=

1
11

(H
6=

A
o
r
¬B
6∈
L
2
o
r
A
◦
B
6∈
L
2
)
a
n
d

12
(H
6=

B
o
r
¬A
6∈
L
2
o
r
A
◦
B
6∈
L
2
)
a
n
d

13
(H
6=
¬(

A
◦
B

)
o
r
¬A
6∈
L
2
o
r
¬B
6∈
L
2
)

list0[000].txt
list1[001].txt
list2[010].txt
list3[011].txt
list4[100].txt
list5[101].txt
list6[110].txt
list7[111].txt

60 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

while-loop we arrive at H in the head of L1. The scheme is not rejected, so
at least one of 11-13 fails. If 11 fails, then H is of the form ¬A, and both B
and ¬(A◦B) are elements of L2. Since the scheme has not been rejected in
5-8, list L2 contains neither ¬B nor A◦B. We already know that ¬A /∈ L2,
therefore, except for B and ¬(A ◦ B), L2 can contain only A, that is, L2

is either composed of A,B,¬(A ◦B) or solely of B,¬(A ◦B). Now we can
put v(A) = 0, v(B) = 0 and v(A ◦B) = 1, but it shows that the scheme is
falsifiable, contrary to the assumption. The reasoning is analogous if 12 or
13 fails.

From (→) and (←): f◦(0, 0) = 0 iff L000 contains correct schemes.
The reasoning is analogous for the remaining entries. �

Having the 8 lists of schemes for the 8 variants of Algorithm 1, we
could perform some tasks in an automatic manner. Thus we have found all
schemes such that: scheme (L1, L2) is present on at least one of the lists
and (L2, L1) is present on at least one of the lists, where these may be two
different lists. The result contains all invertible rules we aimed at, and it
was written in: results[0,1,2,3,4,5,6,7].txt. There are 104 schemes
on the list, but one should remember that for each scheme, its “inverse” is
also present on the list, thus there are 52 different invertible rule schemes.

Next, we have found all schemes such that: (i) scheme (L1, L2) is on
at least one of the lists no.: i,j,k,l, and scheme (L2, L1) is on at least one
of these lists, where the combination i, j, k, l characterizes one of the 16
different binary Boolean functions. For example, disjunction is character-
ized by entries ‘000’, ‘011’, ‘101’, ‘111’; the rules corresponding to them
are contained in lists nos 0, 3, 5, and 7, so the invertible rules for ∨ were
found among these lists. The result is written in the file named ijkl.txt;
in the case of disjunction it is 0357.txt. Here we summarise the result
in Table 3. In the first column’s header we put: 2-f-scheme, by which we
mean a rule scheme composed of two sequents with 2 distinguished formu-
las each; analogously for a 3-f-scheme, where each of the two sequents has
3 distinguished formulas.

By and large, each 2-f-scheme found automatically is equivalent to one
of those already listed above in Theorem 1, modulo negation expressed by
a side of a sequent; or is syntactically different from them, but semantically
equivalent to one of the rules in the sense that it corresponds to the same
pair of entries. The situation is slightly different in the case of 3-f-schemes:

results[0,1,2,3,4,5,6,7].txt
ijkl.txt
0357.txt

Functional Completeness in CPL via Correspondence Analysis 61

Table 3. invertible rules for disjunction

2-
f-

sc
h

em
es

3
-f

-s
ch

em
es

n
am

e
of

th
e

ru
le

or
n

a
m

e
o
f

th
e

ru
le

o
r

en
tr

ie
s

it
co

rr
es

p
on

d
s

to
en

tr
ie

s
it

co
rr

es
p

o
n

d
s

to

(0
3)

A
∨
B
⇒

A

B
⇒

A
0
1
1

a
n

d
1
0
1

B
⇒

A
,A
∨
B

A
⇒

B
,A
∨
B

(1
0)

⇒
B
,A
∨
B

⇒
A
,A
∨
B

(I
)

A
∨
B
⇒

A
,B

A
,B
⇒

A
∨
B

(0
1)

A
⇒

B

A
∨
B
⇒

B
1
0
1

a
n

d
1
1
1

A
⇒

B
,A
∨
B

A
,B
⇒

A
∨
B

01
1

an
d

10
1

(a
s

(1
0)

)
A
⇒

A
∨
B

B
⇒

A
∨
B

1
0
1

a
n

d
0
0
0

A
⇒

B
,A
∨
B

A
∨
B
⇒

A
,B

00
0

an
d

10
1

(a
s

(0
1)

)
⇒

B
,A
∨
B

⇒
A
,B

0
1
1

a
n

d
1
1
1

B
⇒

A
,A
∨
B

A
,B
⇒

A
∨
B

01
1

an
d

00
0

(a
s

(0
3)

)
⇒

A
,B

⇒
A
,A
∨
B

0
1
1

a
n

d
0
0
0

B
⇒

A
,A
∨
B

A
∨
B
⇒

A
,B

62 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

here we have found automatically more then we have previously reported
in Corollary 1.

The results concerning all binary connectives are summarized in Table
4. Interestingly, the lists differ with respect to their size, where by size of
a list we mean the number of schemes5 on the list, and there is a clear
correspondence between a list’s size and the semantic characteristics of
◦ in terms of functional completeness, which we have introduced at the
beginning of this paper.

Rules matching no connective. The next task was to find all
schemes such that: (i) scheme (L1, L2) is on at least one of the lists: 0, 1;
and (ii) so is (L2, L1). Similarly for the lists: 2 and 3, 4 and 5, 6 and 7. In
each case, the two lists contain rules corresponding to incompatible entries,
and we were curious if we can find a non-empty list as a result . . . Well,
yes, we can! In each case, the result is one invertible rule (see Table 5).

The leftmost rule in Table 5 is suitable when ◦ represents a Boolean
function such that f◦(0, 0) = 0 and f◦(0, 0) = 1 at the same time. Plainly,
it does not make sense on the grounds of CPL, but it reveals the potential
of the automatic approach in the field of non-classical logics.

3-f-schemes. There are exactly 8 different sequents containing exactly
3 different formulas A, B, A ◦ B (the order of formulas in the antecedent
/ succedent is not essential). Each of the sequents is correct iff one of
the 8 entries holds. The sequents may be combined into inference schemes
in exactly 8 · 8 = 64 ways, among which 8 have the same premise and
conclusion. Among the 56 schemes left there are 8 schemes matching no
connective: those displayed in Table 5 and their inverses. Thus there are
48 3-f-schemes left, hence 48/2=24 different invertible rules.

On the other hand, a two-argument Boolean function is characterized
by 4 entries. Each entry corresponds to exactly one sequent with 3 formulas.
Hence, each such function can be assigned exactly 4 · 3 = 12 3-f-schemes.
This is what we can see in Table 4: the functions differ in the numbers
of the 2-f-schemes. In other words, the number of 2-f-schemes provides a
syntactic characteristics of the properties of being primary, non-primary
and non-trivial, and non-primary and trivial.

Question. We have observed previously that we cannot find a match

5Let us recall that scheme is a pair (L1, L2) and each pair goes with its inverse which
forms a separate scheme. Thus in order to obtain the number of different invertible rules
present on a list we need to divide the list’s size by 2.

Functional Completeness in CPL via Correspondence Analysis 63

Table 4. Results for 16 Boolean functions
co

n
n

ec
ti

ve
li

st
s’

n
u
m

b
er

s
li

st
s’

n
o
.

o
f

3
-f

-
n

o
.

o
f

2
-f

-
ar

g
le

ft
0

0
1

1
(t

h
e

n
a
m

e
o
f

fi
le

)
si

ze
-s

ch
em

es
-s

ch
em

es
ar

g
ri

gh
t

0
1

0
1

p
ri

m
a
ry

∧
0

0
0

1
0
2
4
7
.
t
x
t

2
4

1
2

1
2

6→
0

0
1

0
0
2
5
6
.
t
x
t

2
4

1
2

1
2

6←
0

1
0

0
0
3
4
6
.
t
x
t

2
4

1
2

1
2

∨
0

1
1

1
0
3
5
7
.
t
x
t

2
4

1
2

1
2

↓
1

0
0

0
1
2
4
6
.
t
x
t

2
4

1
2

1
2

←
1

0
1

1
1
2
5
7
.
t
x
t

2
4

1
2

1
2

→
1

1
0

1
1
3
4
7
.
t
x
t

2
4

1
2

1
2

↑
1

1
1

0
1
3
5
6
.
t
x
t

2
4

1
2

1
2

n
o
n

-p
ri

m
a
ry

Y
0

1
1

0
0
3
5
6
.
t
x
t

3
6

1
2

2
4

n
on

-t
ri

v
ia

l
≡

1
0

0
1

1
2
4
7
.
t
x
t

3
6

1
2

2
4

n
o
n

-p
ri

m
a
ry

⊥
0

0
0

0
0
2
4
6
.
t
x
t

2
0

1
2

8
tr

iv
ia

l
◦ 1

0
0

1
1

0
2
5
7
.
t
x
t

2
0

1
2

8
◦ 2

0
1

0
1

0
3
4
7
.
t
x
t

2
0

1
2

8
◦ ¬

2
1

0
1

0
1
2
5
6
.
t
x
t

2
0

1
2

8
◦ ¬

1
1

1
0

0
1
3
4
6
.
t
x
t

2
0

1
2

8
>

1
1

1
1

1
3
5
7
.
t
x
t

2
0

1
2

8

0247.txt
0256.txt
0346.txt
0357.txt
1246.txt
1257.txt
1347.txt
1356.txt
0356.txt
1247.txt
0246.txt
0257.txt
0347.txt
1256.txt
1346.txt
1357.txt

64 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

Table 5.

lists 0,1 lists 2,3 lists 4,5 lists 6,7
⇒ A,B,A ◦B
A ◦B ⇒ A,B

B ⇒ A,A ◦B
B,A ◦B ⇒ A

A⇒ B,A ◦B
A,A ◦B ⇒ B

A,B ⇒ A ◦B
A,B,A ◦B ⇒

of 2-f-schemes that would characterize a primary connective (see page 53).
Now we are in a position to ask why it is the case, and to provide a sketch of
the answer. When one analyses correctness of a rule top-down the reasoning
may go as follows: suppose the premise is true and the conclusion is false;
both the premise and conclusion contain two formulas. If the rule is correct
top-down, then assigning value 0 to the two elements of the conclusion,
value 1 to one element of the premise, and calculating the value of A ◦ B
leads to a contradiction. The other element of the premise must be identical
to one of the conclusion’s, hence its value is settled to 0 – otherwise there
would be no contradiction.

To sum up: from the six basic elements: A,B,A ◦B,¬A,¬B,¬(A ◦B)
that occur in the scheme, there is exactly one common to the premise
and the conclusion (one can also check this by inspection on invertible
2-f-schemes!). When the top-down-reasoning is conducted, the values of the
other two formulas are settled by the assumption that the premise is true
and the conclusion false. But the same rule is also correct bottom-up, with
the same kind of reasoning settling the correctness. When the reasoning
is conducted bottom-up, then the formula common to the premise and
the conclusion has the same value as in the previous reasoning, and the
other two are assigned values opposed to those assigned in the previous
reasoning, as now the premise is assumed false, and the conclusion true.
Hence it follows that:

Corollary 2. Let S = (L1, L2) be a 2-f-scheme. If S corresponds to an
entry E1 (top-down), and (L2, L1) corresponds to an entry E2 (bottom-up),
then the two entries differ from each other in exactly two positions.

The graph below illustrates how the entries are linked by the invertible
rules. Needless to say, ijk is for f◦(i, j) = k. As we can see, the entries
create two disjoint graphs, both are full. In each case, there are exactly
two “steps” in Gray code between any two nodes in the graph.

Functional Completeness in CPL via Correspondence Analysis 65

000 110 010 100

011 101 001 111

(02)

(01)

(03) (12)

(10)

(09)

(08)

(07)

(06) (11)

(05)

(04)

As we have already observed, characterizing disjunction by 2-f-schemes
requires linking entries 000, 011, 101, 111. We can see from the graph,
however, that it is not possible. The situation is similar with the other
primary connectives: being primary consists in having three 1s and one 0,
or three 0s and one 1 (in the truth table of the connective). We can see
from the graphs above that it leaves us always with three edges from one
of the two graphs, and that one entry is not captured by the edges. We can
also observe that the 3 edges correspond to 12 2-f-schemes (see Table 4),
thus each edge is represented by 2 pairs of 2-f-schemes.

The non-primary connectives have either four 1s, or four 0s, or two 1s
and two 0s. Now the number of the 2-f-schemes depends on the way the
entries are linked by the edges. For example, for ≡ we have:

000 110 010 100

011 101 001 111

(08)

(07)

(06) (11)

(05)

(04)

And for ◦1 we have:

66 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

000 110 010 100

011 101 001 111

(01)

(07)

To sum up, the non-primary and non-trivial connectives are those charac-
terized by 6 edges in the graph and the non-primary trivial connectives are
those characterized by 2 edges. Since each edge may be represented by four
2-f-schemes (a pair of invertible 2-f-scheme rules), this gives us 6*4=24 and
2*4=8 2-f-schemes in Table 4.

4. Soundness and completeness of the calculi

In this section we define calculi for various fragments of CPL and demon-
strate that they are sound and complete.

Let CN (where N is for N on-primary) stand for a set of rules containing
all the instances of (Ax), (⇒ ¬), (¬ ⇒) and (cut), and all the instances of
at least one of the following:

• rules R
(02)
◦ , R

(08)
◦ for ◦⊥; • rules R

(05)
◦ , R

(10)
◦ for ◦>;

• rules R
(01)
◦ , R

(07)
◦ for ◦1; • rules R

(04)
◦ , R

(09)
◦ for ◦¬1;

• rules R
(03)
◦ , R

(11)
◦ for ◦2; • R

(06)
◦ , R

(12)
◦ for ◦¬2;

• rules R
(01)
◦ , R

(09)
◦ / or R

(02)
◦ , R

(10)
◦ / or R

(03)
◦ , R

(12)
◦ for Y;

• rules R
(04)
◦ , R

(07)
◦ / or R

(05)
◦ , R

(08)
◦ / or R

(06)
◦ , R

(11)
◦ for ≡;

where:

R
(01)
◦

A,Γ⇒ ∆, B

A ◦B,Γ⇒ ∆, B
R

(02)
◦

B,Γ⇒ ∆,¬(A ◦B)

A ◦B,Γ⇒ ∆, A

R
(03)
◦

B,Γ⇒ ∆, A

A ◦B,Γ⇒ ∆, A
R

(04)
◦

A,Γ⇒ ∆, B

¬B,Γ⇒ ∆, A ◦B

R
(05)
◦

B,Γ⇒ ∆, A ◦B
¬A,Γ⇒ ∆, A ◦B

R
(06)
◦

A ◦B,Γ⇒ ∆, A

¬A,Γ⇒ ∆, B

R
(07)
◦

B,Γ⇒ ∆, A ◦B
B,Γ⇒ ∆, A

R
(08)
◦

A ◦B,Γ⇒ ∆, B

A ◦B,Γ⇒ ∆, A

Functional Completeness in CPL via Correspondence Analysis 67

R
(09)
◦

B,Γ⇒ ∆,¬(A ◦B)

B,Γ⇒ ∆, A
R

(10)
◦

¬B,Γ⇒ ∆, A ◦B
¬A,Γ⇒ ∆, A ◦B

R
(11)
◦

A,Γ⇒ ∆, A ◦B
A,Γ⇒ ∆, B

R
(12)
◦

A,Γ⇒ ∆,¬(A ◦B)

A,Γ⇒ ∆, B

For primary connectives we set what follows. Let CA
P (P stands for

primary and A for axiom) be a set of rules containing all the instances
of (Ax), (⇒ ¬), (¬ ⇒), (cut) and all the instances of at least one of the
following:

• A(I)
◦ and R08

◦ for ∧; • A(I)
◦ and R10

◦ for ∨;

• A(II)
◦ and R08

◦ for ↓; • A(II)
◦ and R10

◦ for ↑;
• A(III)
◦ and R02

◦ for 6→; • A(III)
◦ and R05

◦ for ←;

• A(IV)
◦ and R02

◦ for 6←; • A(IV)
◦ and R05

◦ for →.

Further, let CR
P (R stands for rules) be constructed analogously to CA

P ,

but with R
(I)
◦ instead of A

(I)
◦ , R

(II)
◦ instead of A

(II)
◦ , and so on. On the mar-

gin, let us observe that dual connectives (e.g., ∧ and ∨) are characterised
by the same axiom/rule among I-IV.

Let C ∈ {CN ,CA
P ,CR

P }. The following concepts are needed (definitions
after [15, p. 30]):

Definition 3. A derivation in C is either an instance of (Ax) or an appli-
cation of a rule of C to derivations concluding its premise(s). The height
of a derivation is the greatest number of successive applications of rules in
it, where an instance of (Ax) has height 0.6 The height of an application
of a rule (r) in a derivation is the height of the subderivation leading to
the conclusion of (r).

We follow a standard definition of a proof in sequent calculi. For ex-

ample, sequent⇒ p ≡ p is provable in a calculus CN containing rules R
(04)
≡

and R
(07)
≡ , and here is a proof (the arrows indicate in which direction the

rule was used):

6It is almost an exact quotation of the definition in [15]. By “successive applications”
the authors mean applications of rules on the same branch. An account from [28]: a
derivation is a labelled tree, with labels regulated by the rules, and the height of a finite
derivation is the maximum length of its branches, where the length of a branch is the
number of nodes of the branch minus 1.

68 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

p⇒ p
p⇒ p ≡ p R

(07)
≡ ↑

⇒ p ≡ p,¬p (⇒ ¬)
p⇒ p

¬p⇒ p ≡ p R
(04)
≡ ↓

⇒ p ≡ p (cut)

Let us now prove the following structural results:

Proposition 1. The rule of the cut is not eliminable in CN for ≡ contain-
ing rules R

(04)
◦ , R

(07)
◦ .

Proof: The above proof of sequent: ⇒ (p ≡ p) delivers the argument:
among the rules of CN , the sequent can fit only the conclusion of (cut).

After we prove completeness of the calculi, the above argument can be
generalised as follows. Suppose that F is a valid formula of L ◦¬ . Then the
sequent ⇒ F is provable in a respective C , but the sequent fits only the
conclusion of (cut). Similarly, if F is an inconsistent formula, then sequent
F ⇒ is provable, but only with the use of (cut). The presented argument
does not work for calculi pertaining to the fragments of CPL expressed
in 〈P, {◦1, ◦2, ◦¬2, ◦¬1},¬, (,)〉, for these fragments have neither valid nor
inconsistent formulas. �

Theorem 3 (admissibility of weakening). Let F be a formula of L ◦¬ . If
Γ⇒ ∆ is provable in C , then F,Γ⇒ ∆ and Γ⇒ ∆, F are provable in C .

Proof: The proof follows standard constructions, like in [15, Section 2.3.
Proof Methods for Admissibility]: we show by induction that the ”weak-
enings” of a provable sequent may be “pushed upwards” from the root to
the leafs.

Thus suppose that Γ⇒ ∆ is provable in C , and let p stand for a proof
of the sequent. The reasoning is by induction with respect to the height
of p.

Base step. If the height is 0, then Γ ⇒ ∆ is an axiom; then the same
pertains to F,Γ⇒ ∆ and Γ⇒ ∆, F .

Induction step. Height of p is n ≥ 1. Now we consider the rule which

concludes Γ⇒ ∆. Suppose the rule is R
(01)
◦ . Then p ends with:

...
A,Γ∗ ⇒ ∆∗, B

A ◦B,Γ∗ ⇒ ∆∗, B R
(01)
◦

where Γ = A ◦ B,Γ∗ and ∆ = ∆∗, B. Then a derivation concluding
A,Γ∗ ⇒ ∆∗, B is of height n − 1, and by induction hypothesis, sequents

Functional Completeness in CPL via Correspondence Analysis 69

F,A,Γ∗ ⇒ ∆∗, B as well as A,Γ∗ ⇒ ∆∗, B, F are provable in C . But then

an application of R
(01)
◦ leads to a proof of sequent F,Γ ⇒ ∆, or, respec-

tively, sequent Γ ⇒ ∆, F . The reasoning is analogous in the case of the
other one-premise rules.

Thus suppose that Γ⇒ ∆ results by (cut):

...
Γ⇒ ∆, A

...
A,Γ⇒ ∆

Γ⇒ ∆
(cut)

The premises of (cut) both have proofs of length n− 1, thus, by induction
hypothesis, sequents F,Γ ⇒ ∆, A and Γ ⇒ ∆, A, F , and also F,A,Γ ⇒ ∆
and A,Γ⇒ ∆, F are provable in C . Then:

...
F,Γ⇒ ∆, A

...
A,F,Γ⇒ ∆

F,Γ⇒ ∆
(cut)

shows how to prove F,Γ⇒ ∆, and similarly for Γ⇒ ∆, F . �

We state the following without a proof.

Proposition 2. If a sequent, ϕ, of language L ◦¬⇒ is of the form (Ax),
then |= ϕ.

Theorem 4 (Soundness). For each sequent Γ ⇒ ∆ of language L ◦¬⇒, if
`C Γ⇒ ∆, then |= Γ⇒ ∆.

Proof: By induction on the height of a proof. Use Proposition 2, Theorem
1, and Theorem 2 (for the case of CA

P) or Corollary 1 (for the case of CR
P).

One can also use Lemma 1 for the automatically generated rules. �

Corollary 3 (Soundness for formulas). For each A ∈ F ◦¬, it holds that
if ⇒ A is provable in C , then |= A.

Proof: Immediately follows from Theorem 4. �

Completeness. We prove completeness theorem by Kalmár’s method.
We start with some auxiliary definitions and lemmas.

Definition 4. Let A ∈ F ◦¬ and v be an arbitrary valuation. Then Av is
A’s v-image iff

Av =

{
A iff v(A) = 1;
¬A iff v(A) = 0.

70 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

Lemma 2. Let x, y, z ∈ {1, 0}, A,B ∈ F ◦¬, vx, vy, and vz be valuations
such that vx(A) = x, vy(B) = y, and vz(A ◦ B) = z. Then if f◦(x, y) = z,
then Avx , Bvy ⇒ (A ◦B)vz is provable in the respective C for ◦.
Proof: Consider the case f◦(0, 0) = 0. We need to show that ¬A,¬B ⇒
¬(A ◦B) is provable in the respective C for ◦ ∈ {◦⊥,∧, 6→, ◦1, 6←, ◦2,Y,∨}.
If ◦ = ◦1, then we have R

(01)
◦ in the calculus, if ◦ ∈ {◦⊥, 6→, 6←}, then we

have R
(02)
◦ , if ◦ = ◦2, then there is R

(03)
◦ , and if ◦ = Y, then one of the

three rules is present. In these cases we follow the appropriate schemes of
derivation:

A⇒ B,A

¬A,A⇒ B
(¬ ⇒)

¬A,A ◦B ⇒ B R
(01)
◦ ↓

¬A,¬B,A ◦B ⇒ (¬ ⇒)

¬A,¬B ⇒ ¬(A ◦B)
(⇒ ¬)

B ⇒ ¬(A ◦B), B

¬B,B ⇒ ¬(A ◦B)
(¬ ⇒)

¬B,A ◦B ⇒ A R
(02)
◦ ↓

¬A,¬B,A ◦B ⇒ (¬ ⇒)

¬A,¬B ⇒ ¬(A ◦B)
(⇒ ¬)

B ⇒ A,B

¬B,B ⇒ A
(¬ ⇒)

¬B,A ◦B ⇒ A R
(03)
◦ ↓

¬A,¬B,A ◦B ⇒ (¬ ⇒)

¬A,¬B ⇒ ¬(A ◦B)
(⇒ ¬)

In the case of ◦ = {∧,∨}, we cannot apply any of the above rules. If

CP = CA
P , then we have the axiom A

(I)
◦↓ , and the following shows that

`CA
P
¬A,¬B ⇒ ¬(A ◦B):

A ◦B ⇒ A,B
(¬ ⇒)× 2¬A,¬B,A ◦B ⇒

(⇒ ¬)
¬A,¬B ⇒ ¬(A ◦B)

If CP = CR
P , then we have the rule R

(I)
◦ :

A,B ⇒ A,A ◦B
R

(I)
◦ ↓A ◦B ⇒ A,A,B
(¬ ⇒)× 2¬A,¬B,A ◦B ⇒ A

(⇒ ¬)
¬A,¬B ⇒ ¬(A ◦B), A

A,¬B ⇒ A,¬(A ◦B)
(¬ ⇒)

A,¬A,¬B ⇒ ¬(A ◦B)
(cut)

¬A,¬B ⇒ ¬(A ◦B)

The proof is analogous in the remaining cases. To save space, we
publish the remaining part of the proof in the file proof-Lemma2.pdf on
https://github.com/mjukiewicz/Correspondence-Analysis. �

proof-Lemma2.pdf
https://github.com/mjukiewicz/Correspondence-Analysis

Functional Completeness in CPL via Correspondence Analysis 71

Lemma 3. Let A ∈ F ◦¬. Let v be an arbitrary valuation, P(A) be the set
of all A’s propositional variables, and q1, . . . , qk be propositional variables
such that P(A) ⊆ {q1, . . . , qk}. Then:

qv1 , . . . , q
v
k ⇒ Av is provable in C .

Proof: We use structural induction on A.
Basis. A is a propositional variable. Clearly, A ∈ {q1, . . . , qk}. Then

Av ∈ {qv1 , . . . , qvk}. Thus, `C qv1 , . . . , q
v
k ⇒ Av, since it is an axiom.

Induction step 1. A = ¬B. By the inductive hypothesis, it holds that
`C qv1 , . . . , q

v
k ⇒ Bv. Clearly, (a) either Bv = B or Bv = ¬B.

Suppose Bv = B. Then (b) `C qv1 , . . . , q
v
k ⇒ B. Since Bv = B, so

v(B) = 1. Hence, v(¬B) = 0. Therefore, (c) (¬B)v = ¬¬B. Now we show
that (d) `C B ⇒ ¬¬B.

B ⇒ B (¬ ⇒)¬B,B ⇒
(⇒ ¬)

B ⇒ ¬¬B
By Theorem 3, if (b), then also `C qv1 , . . . , q

v
k ⇒ ¬¬B,B; and if (d),

then also `C B, qv1 , . . . , q
v
k ⇒ ¬¬B. It follows that there exists a proof

concluding the following:

...
qv1 , . . . , q

v
k ⇒ ¬¬B,B

...
B, qv1 , . . . , q

v
k ⇒ ¬¬B (cut)

qv1 , . . . , q
v
k ⇒ ¬¬B

which shows provability of qv1 , . . . , q
v
k ⇒ ¬¬B in C . From the latter and

(c) we obtain (e) `C qv1 , . . . , q
v
k ⇒ (¬B)v. Recall that A = ¬B. Then, by

(e), `C qv1 , . . . , q
v
k ⇒ Av. Thus, (f) if Bv = B, then `C qv1 , . . . , q

v
k ⇒ Av.

Suppose Bv = ¬B. Then `C qv1 , . . . , q
v
k ⇒ ¬B and (¬B)v = ¬B.7

Clearly `C qv1 , . . . , q
v
k ⇒ (¬B)v. Hence, `C qv1 , . . . , q

v
k ⇒ Av. Thus, (g) if

Bv = ¬B, then `C qv1 , . . . , q
v
k ⇒ Av.

By (a), (f), and (g), `C qv1 , . . . , q
v
k ` Av.

Induction step 2. A = B ◦ C. By the inductive hypothesis, it holds
that `C qv1 , . . . , q

v
k ⇒ Bv and `C qv1 , . . . , q

v
k ⇒ Cv. By Theorem 3, also

`C Cv, qv1 , . . . , q
v
k ⇒ (B ◦ C)v, Bv and `C qv1 , . . . , q

v
k ⇒ (B ◦ C)v, Cv. Let

(h) f◦(x, y) = z. Thus, (i) if v(B) = x and v(C) = y, then v(B ◦ C) = z.
Let (j) vx, vy, and vz be valuations such that v(B) = vx(B), v(C) = vy(C),
and v(B ◦C) = vz(B ◦C). Then (k) Bv = Bvx , Cv = Cvy , and (B ◦C)v =
(B ◦ C)vz .

7Observe that if v(B) = 0, then (¬B)v = ¬B, but ¬(B)v = ¬(¬B) = ¬¬B.

72 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

Suppose (l) v(B) = x and v(C) = y. Then, by (i), it holds that
(m) v(B ◦ C) = z. By (h), (j), (l), (m), and Lemma 2, we obtain `C

Bvx , Cvy ⇒ (B ◦ C)vz . Then, by (k), `C Bv, Cv ⇒ (B ◦ C)v. Again,
by Theorem 3, also `C Bv, Cv,Γ ⇒ (B ◦ C)v, where Γ is for qv1 , . . . , q

v
k .

Using the inductive hypothesis and two applications of (cut), we show that
`C qv1 , . . . , q

v
k ⇒ (B ◦ C)v:

...

Γ⇒ (B ◦ C)v, Cv

...

Cv,Γ⇒ (B ◦ C)v, Bv

...

Bv, Cv,Γ⇒ (B ◦ C)v

Cv,Γ⇒ (B ◦ C)v

Γ⇒ (B ◦ C)v

Since A = B ◦ C, so `C qv1 , . . . , q
v
k ⇒ Av. �

Lemma 4. Let A ∈ F ◦¬ and q1, q2, . . . , qk ∈ P. Then it holds that if
`C qv1 , q

v
2 , . . . , q

v
k ⇒ A, for each valuation v, then `C qv2 , . . . , q

v
k ⇒ A, for

each valuation v.

Proof: Suppose (a) `C qv1 , q
v
2 , . . . , q

v
k ⇒ A, for each valuation v. Let w

be an arbitrary valuation. Let u be a valuation such that
(i) w(p) = u(p), for each p ∈P such that p 6= q1;

(ii) u(q1) =

{
1 iff w(q1) = 0;
0 iff w(q1) = 1.

By (i), it holds that (b) 〈qw2 , . . . , qwk 〉 = 〈qu2 , . . . , quk 〉. By (a), it holds
that (c) `C qw1 , q

w
2 , . . . , qwk ⇒ A and (d) `C qu1 , q

u
2 , . . . , q

u
k ⇒ A. By (b) and

(d), it holds that (e) `C qu1 , q
w
2 , . . . , q

w
k ⇒ A. (c) and (e) together entail:

`C q1, q
w
2 , . . . , qwk ⇒ A and `C ¬q1, qw2 , . . . , qwk ⇒ A.

We show that if `C q1,Γ⇒ A and `C ¬q1,Γ⇒ A, then `C Γ⇒ A.

...
q1,Γ⇒ A

(⇒ ¬)
Γ⇒ A,¬q1

...
¬q1,Γ⇒ A

(cut)
Γ⇒ A

Thus, if (c) and (e), then `C qw2 , . . . , q
w
k ⇒ A. Since w is an arbitrary

valuation, so `C qv2 , . . . , q
v
k ⇒ A, for each valuation v. �

Lemma 5. For each A ∈ F ◦¬ and q1, . . . , qk ∈ P such that qi 6= qj , for
each i, j ∈ {1, . . . , k} such that i 6= j, it holds that: if `C qv1 , . . . , q

v
k ⇒ A,

for each valuation v, then ⇒ A is provable in C .

Proof: By a straightforward induction on k.

Functional Completeness in CPL via Correspondence Analysis 73

Basis. We need to show that if `C qv ⇒ A, for each valuation v and
q ∈P, then ⇒ A is provable in C .

Suppose `C qv ⇒ A, for each valuation v and q ∈ P. By Lemma 4,
`C ⇒ A, for each valuation v and q ∈P, i.e. ⇒ A is provable in C .

Induction step. By the inductive hypothesis, for each valuation v and
q1, . . . , qm ∈P such that qi 6= qj , for each i, j ∈ {1, . . . ,m} such that i 6= j,
it holds that if `C qv1 , . . . , q

v
m ⇒ A, then ⇒ A is provable in C .

Let (a) r1, . . . , rm, rm+1 ∈ P such that ri 6= rj , for each i, j ∈ {1, . . . ,
m,m + 1} such that i 6= j, and (b) `C rvm+1, r

v
1 , . . . , r

v
m ⇒ A. Then, by

Lemma 4, (c) `C rv1 , . . . , r
v
m ⇒ A, for each valuation v. By the inductive

hypothesis, if (d) `C rv1 , . . . , r
v
m ⇒ A, then ⇒ A is provable in C . By

(c) and (d), it holds that (e) ⇒ A is provable in C . By (a) and (e),
we obtain that, for each valuation v and q1, . . . , qm, qm+1 ∈ P such that
qi 6= qj , for each i, j ∈ {1, . . . ,m,m + 1} such that i 6= j, it holds that if
`C qvm+1, q

v
1 , . . . , q

v
m ⇒ A, then ⇒ A is provable in C . �

Theorem 5 (Completeness). For each A ∈ F ◦¬, it holds that if |= A, then
⇒ A is provable in C .

Proof: Suppose |= A. Then (a) v(A) = 1, for each valuation v. Since the
set P(A) of all A’s propositional variables is finite, so there are q1, . . . , qk ∈
P such that P(A) ⊆ {q1, . . . , qk}. Then, by Lemma 3, (b) `C qv1 , . . . , q

v
k ⇒

Av. By (a) and (b), it holds that (c) `C qv1 , . . . , q
v
k ⇒ A. By (c) and Lemma

5, we obtain the conclusion that ⇒ A is provable in C . �

By Theorem 5 and Corollary 3, we have the following Corollary 4.

Corollary 4 (Adequacy). For each A ∈ F ◦¬ , |= A iff `C⇒ A

Let C stand for any extension of (Ax), (⇒ ¬), (¬ ⇒) and (cut) with
a collection of axioms and/or rules characterising one, or more than one,
binary connective. In other words, C can be one of CN , one of CP , or
a sum of any number of such calculi. By arguments analogous to those
presented above, we can show that:

Corollary 5 (Adequacy of C). For each A ∈ F ◦¬ , |= A iff `C ⇒ A.

5. Conclusions and Further Work

This paper examines the potential of correspondence analysis in designing
sequent calculi for CPL. The rules corresponding to binary connectives are
always linear, so the only branching rule of the calculi is (cut). What is

74 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

more, correspondence analysis invites automatic approach to rules’ gener-
ation. This combination of sequent calculi, non-eliminable (cut), and an
automatic search for rules opens the possibility of interesting results in
efficient proof-search. This is one of the topics of future research.

Moreover, it seems especially appealing to use the automated account
to find sequent calculi for multi-valued logics, perhaps logics for which no
such calculi are known. This is another perspective for future research.

Acknowledgements. The authors’ special thanks go to the audience of
a research seminar at Department of Logic and Cognitive Science of Adam
Mickiewicz University in Poznań.

Dorota Leszczyńska-Jasion and Marcin Jukiewicz were supported finan-
cially by Polish National Science Centre, grant no. 2017/26/E/HS1/00127.

Yaroslav Petrukhin was supported financially by Polish National Sci-
ence Centre, grant no. 2017/25/B/HS1/01268.

References

[1] F. G. Asenjo, A calculus of antinomies, Notre Dame Journal of Formal

Logic, vol. 7, no. 1 (1966), pp. 103–105.

[2] N. D. Belnap, A useful four-valued logic, Modern Uses of Multiple-

Valued Logic, ed. by J.M. Dunn, G. Epstein. Boston: Reidel Publishing

Company (1977), pp. 7–37.

[3] N. D. Belnap, How a computer should think, Contemporary Aspects of

Philosophy, ed. by G. Rule. Stocksfield: Oriel Press (1977), pp. 30–56.

[4] S. Bonzio, J. Gil-Férez, F. Paoli, L. Peruzzi, On Paraconsistent Weak Kleene

Logic: Axiomatisation and Algebraic Analysis, Studia Logica, vol. 105,

no. 2 (2017), pp. 253–297.

[5] K. Došen, Logical constants as punctuation marks, Notre Dame Journal

of Formal Logic, vol. 30, no. 3 (1989), pp. 362–381.

[6] J. M. Dunn, Intuitive semantics for first-degree entailment and coupled trees,

Philosophical Studies, vol. 29, no. 3 (1976), pp. 149–168.

[7] M. Fitting, First-Order Logic and Automated Theorem Proving,

New York: Springer-Verlag, 1990.

[8] S. Halldén, The Logic of Nonsense. Lundequista Bokhandeln, Upp-

sala, 1949.

Functional Completeness in CPL via Correspondence Analysis 75

[9] A. Indrzejczak, Rule-Generation Theorem and Its Applications, Bulletin of

the Section of Logic, vol. 47, no. 4 (2018), pp. 265–281.

[10] A. Karpenko, N. Tomova, Bochvar’s three-valued logic and literal paralogics:

Their lattice and functional equivalence, Logic and Logical Philosophy,

vol. 26, no. 2 (2017), pp. 207–235.

[11] S. C. Kleene, On a notation for ordinal numbers, The Journal of Symbolic

Logic, vol. 3, no. 1 (1938), pp. 150–155.

[12] S. C. Kleene, Introduction to metamathematics, Sixth Reprint, Wol-

ters-Noordhoff Publishing and North-Holland Publishing Company, 1971.

[13] B. Kooi, A. Tamminga, Completeness via correspondence for extensions of

the logic of paradox, The Review of Symbolic Logic, vol. 5, no. 4 (2012),

pp. 720–730.

[14] E. Kubyshkina, D. V. Zaitsev, Rational agency from a truth-functional per-

spective, Logic and Logical Philosophy, vol. 25, no. 4 (2016), pp. 499–

520.

[15] S. Negri, J. von Plato, Structural Proof Theory, Cambridge: Cambridge

University Press, 2001.

[16] Y. Petrukhin, V. Shangin, Automated correspondence analysis for the binary

extensions of the logic of paradox, The Review of Symbolic Logic, vol. 10,

no. 4 (2017), pp. 756–781.

[17] Y. Petrukhin, V. Shangin, Automated proof searching for strong Kleene logic

and its binary extensions via correspondence analysis, Logic and Logical

Philosophy, vol. 28, no. 2 (2019), pp. 223–257.

[18] Y. Petrukhin, V. Shangin, Natural three-valued logics characterised by nat-

ural deduction, Logique et Analyse, vol. 244 (2018), pp. 407–427.

[19] Y. Petrukhin, V. Shangin, Completeness via correspondence for extensions of

paraconsistent weak Kleene logic, The Proceedings of the 10th Smirnov

Readings in Logic (2017), pp. 114–115.

[20] Y. Petrukhin, V. Shangin, Correspondence Analysis and Automated Proof-

searching for First Degree Entailment, European Journal of Mathemat-

ics, online first article, DOI: 10.1007/s40879-019-00344-5.

[21] Y. I. Petrukhin, Correspondence analysis for first degree entailment, Logical

Investigations, vol. 22, no. 1 (2016), pp. 108–124.

[22] Y. Petrukhin, Generalized Correspondence Analysis for Three-Valued Logics,

Logica Universalis, vol. 12, no. 3–4 (2018), pp. 423–460.

[23] Y. I. Petrukhin, Correspondence analysis for logic of rational agent, Che-

lyabinsk Physical and Mathematical Journal, vol. 2, no. 3 (2017),

pp. 329–337.

76 D. Leszczyńska-Jasion, Y. Petrukhin, V. Shangin and M. Jukiewicz

[24] G. Priest, The logic of paradox, Journal of Philosophical Logic, vol. 8,

no. 1 (1979), pp. 219–241.

[25] K. Segerberg, Arbitrary truth-value functions and natural deduction, Math-

ematical Logic Quarterly, vol. 29, no. 11 (1983), pp. 557–564.

[26] A. Tamminga, Correspondence analysis for strong three-valued logic, Logi-

cal Investigations, vol. 20 (2014), pp. 255–268.

[27] N. E. Tomova, A lattice of implicative extensions of regular Kleene’s logics,

Reports on Mathematical Logic, vol. 47 (2012), pp. 173–182.

[28] A. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, second edition,

Cambridge: Cambridge University Press, 2000.

[29] W. Wernick, Complete sets of logical functions, Transactions of the

American Mathematical Society, vol. 51 (1942), pp. 117–132.

Department of Logic and Cognitive Science,
Adam Mickiewicz University, Poznań, Poland
e-mail: Dorota.Leszczynska@amu.edu.pl
e-mail: Marcin.Jukiewicz@amu.edu.pl

Department of Logic,
Faculty of Philosophy,
Lomonosov Moscow State University, Moscow, Russia
e-mail: petrukhin@philos.msu.ru
e-mail: shangin@philos.msu.ru

Dorota.Leszczynska@amu.edu.pl
Marcin.Jukiewicz@amu.edu.pl
petrukhin@philos.msu.ru
shangin@philos.msu.ru

	Introduction
	Correspondence analysis for CPL
	More rules: algorithmic approach
	Soundness and completeness of the calculi
	Conclusions and Further Work

