

Low Computational Cost Method to Calculate the Hosting Capacity in Radial Low Voltage Networks

Juan Morales-Conde, Sebastián Martín, Juan Pérez-Ruiz

Escuela de Ingenierías Industriales Universidad de Málaga Málaga, Spain

1st October 2019

Index

1 Introduction	3
Methodology	7
3 Case Study	19
Conclusions and Summary	23

Introduction: Context

- Prosumers (load + PV) \rightarrow sizing, operation, management.
- Optimization problem.
- Voltage phasors and impedances \rightarrow auxiliary variables.
- Comply with network constraints: overvoltage, ampacity.

Introduction: Literature Review

S. M. Ismael et al, "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, vol. 130, 2019

- A) Convexification of network constraints:
 - Sophisticated mathematics as second order cone programming.
 L. Gan et al, "Exact convex relaxation of optimal power flow in radial networks," Automatic Control, IEEE Transactions on, vol. 60, Jan 2015
- B) Hosting capacity (construction of feasible regions):
 - Stochastic methods (sampling), as
 M. Rylander and J. Smith, "Stochastic Analysis to Determine Feeder Hosting Capacity for Distributed Solar PV," Tech. Rep. 1026640, EPRI, Dec. 2012
 - Linearization of power flow equations:
 - M. Alturki et al, "Optimization-based distribution grid hosting capacity calculations," Applied Energy, vol. 219, 2018.
 - M. S. S. Abad et al, "Probabilistic assessment of hosting capacity in radial distribution systems," IEEE Transactions on Sustainable Energy, vol. 9, Oct 2018

Complex formulations and high computational cost.

Introduction: Proposed Method

- Low computational cost.
- High accuracy.
- ullet Use of Thévenin equivalent to map the high dimensional problem ightarrow low dimension space.
- Valid for low voltage radial networks.
- Allows for the construction of feasible operation regions.
- Comply with the network constraints in the optimization problem without including power flow equations.

Methodology

Methodology: Problem for each user *k*

- Difficulties:
 - Uncertainty in some parameters (PV generation).
 - Uncertainty on the other users actions (non-controllable loads).

- Simple loop circuit for each user k:
 - System Thévenin from user k point of view.
 - Thévenin of the user own installation.
 - Each Thévenin parameter taking values in a certain region (contours of those regions are computed with the proposed method).

Methodology: Steps in the Method (I)

- 1) Parameters for each user k can take values in box type sets, $|S_k| \in [|S_k|, |\overline{S_k}|], \ldots$
 - Regions for the Thévenin parameters of the installation of each user k.
- 2) Regions for the Thévenin parameters of the whole system from the point of view of user *k*.
- 3) Simple loop circuit using the Thévenin parameters from the previous steps:
 - Network constraints are applied on this circuit.
 - Feasible regions for power injection of user *k* are calculated.

Methodology: Steps in the Method (II)

Methodology: Thévenin for user k own installation (I)

- User installation: load + PV
- Load of each user:

Equivalent impedance:
$$Z_k = \frac{|U^{ref}|^2}{|S_k|^2} S_k$$
, $|S_k| \in [|\underline{S_k}|, |\overline{S_k}|]$

- PV installation:
 - Ideal source of voltage: U_k^{inv}
 - In series with impedance $Z_k^{inv} = R_k^{inv} + j \cdot X_k^{inv}$ $X_k^{inv} = R_k^{inv} \cdot tan(\phi_k^{inv}); R_k^{inv}$ constant and ϕ_k^{inv} variable

Methodology: Thévenin for user k own installation (II)

 Zth_k and Uth_k depend on four parameters: $|S_k|$, ϕ_k , $|U_{\nu}^{inv}|$, and ϕ_{ν}^{inv} .

$$Zth_{k} = \frac{Z_{k}^{inv} \cdot Z_{k}}{Z_{k}^{inv} + Z_{k}}$$

$$Uth_{k} = U_{k}^{inv} \cdot \frac{Z_{k}}{Z_{k}^{inv} + Z_{k}}$$

$$(1)$$

$$Uth_k = U_k^{inv} \cdot \frac{Z_k}{Z_k^{inv} + Z_k} \tag{2}$$

Methodology: Region for Zth_k

Point	1	2	3	4	5	6	
$\phi_{\pmb{k}}^{\pmb{inv}}$	$\overline{\phi}_{\pmb{k}}^{{inv}}$	$\overline{\phi}_{\pmb{k}}^{\mathit{inv}}$	$\overline{\phi}_{\pmb{k}}^{{inv}}$	ϕ_k^{inv}	ϕ_k^{inv}	$\frac{\phi_k^{inv}}{}$	
$\phi_{\pmb{k}}$	0	$\overline{\phi}_{\pmb{k}}$	$\overline{\phi}_{m{k}}$	$\overline{\phi}_{\mathbf{k}}$	$\phi_{\mathbf{k}}$	$\phi_{\mathbf{k}}$	
$ S_k $	$ \overline{S}_k $	$ \overline{S}_k $	$ \underline{S}_k $	$ \overline{S}_k $	$ \underline{S}_k $	$ \overline{S}_k $	

Methodology: Region for Uth_k

Methodology: Equivalent system from user k point of view (I)

- Zth^s_k, Uth^s_k Thévenin parameters for the system, point of view of user
 k.
- For a system with N users, the regions for Zth_k^s , Uth_k^s are computed in N-1 steps.
- Based on observation from numerical experiments (no formal proof):
 - 1) Only the regions for the equivalent of two parallel branches are computed at each step.
 - 2) Calculation based on the points in the contours of the regions.
 - 3) Regions for the new branch parameters are defined by their contour.

Methodology: Equivalent system from user k point of view (II)

- Let be a system with N users, and M sample points for each parameter (four parameters per user).
- Less than 30 points needed to be checked to define a contour (observed).
- Computational cost (for 11 users and 10 points for parameter, N=11, M=10):
 - 1) Proposed method $\approx (N-1) \cdot 30 \cdot 30 \Rightarrow 9000$.
 - 2) Sampling method $M^{4 \cdot N} \Rightarrow 10^{44}$.

Methodology: Results for each user k

Unknowns:
$$I_k^{loop}$$
, U_k , I_k

$$I_k^{loop} = \frac{Uth_k - Uth_k^s}{Zth_k^s + Zth_k} \tag{3}$$

$$U_k = Uth_k - I_k^{loop} \cdot Zth_k \tag{4}$$

$$I_k = \frac{U_k}{Z_k} \tag{5}$$

Unknowns: I_k^{inv} , U_k^{inv} , P_k^{inv}

$$I_k^{inv} = I_k + I_k^{loop} \tag{6}$$

$$U_k^{inv} = Z_k^{inv} \cdot I_k^{inv} + U_k \tag{7}$$

(3)
$$I_{k}^{inv} = I_{k} + I_{k}^{loop}$$
(4)
$$U_{k}^{inv} = Z_{k}^{inv} \cdot I_{k}^{inv} + U_{k}$$
(5)
$$P_{k}^{inv} = Re \left[U_{k}^{inv} \cdot \left(I_{k}^{inv} \right)^{*} \right]$$
(8)

Methodology: Recommendations to comply with network constraints

- Inverter efficiency R_k^{inv} strongly linked to load voltage U_k .
- Inverter impedance angle ϕ_k^{inv} linked to: I_k^{inv} , I_k , I_k^{loop} .
- ullet System Thévenin impedance Zth_k^s strongly linked to: $|I_k^{loop}|$, $|U_k^{inv}|$.
- System Thévenin impedance Zth_k^s weakly linked to: Z_k (load impedance).

Case Study

Case Study: Example with three users

Inputs Pa-	User 1	User 2	User 3	
rameters				
Load				
Model:				
$\frac{\phi}{\underline{k}}$	-0.7(rad)	-0.7(rad)	-0.7(rad)	
$\overline{\phi}_{k}$	0.9(rad)	0.9(rad)	0.9(rad)	
$ \overline{S}_k $	5000 VA	5000 VA	5000 VA	
<u>S_k</u>	100 VA	100 VA	100 VA	
<u>U</u> ref	218.5 V	218.5 V	218.5 V	
$ \overline{\overline{U}}^{ref} $	241.5 V	241.5 V	241.5 V	
$ \overline{U}^{ref} $	230 V	230 V	230 V	
Line				
Impedances:				
Z_k^d	0.0588 +	0.0588 +	0.0588 +	
	$0.01074j(\Omega)$	$0.01074j(\Omega)$	$0.01074j(\Omega)$	
Z_k^p	0.0252 +	0.0252 +	0.0252 +	
	$0.0130j(\Omega)$	$0.0130j(\Omega)$	$0.0130j(\Omega)$	
Feeder:				
U ^f	$\frac{400}{\sqrt{3}}$ V	$\frac{400}{\sqrt{3}}$ V	400 V	
Z ^{sc}	0.0099 +	0.0099 +	0.0099 +	
	$0.0039j(\Omega)$	$0.0039j(\Omega)$	$0.0039j(\Omega)$	
PV Instal-				
lation:				
η_k^{inv}	0.96	0.96	0.96	
Uinv	233 V	233 V	233 V	
$\overline{U}_{\nu}^{\hat{i}nv}$	238 V	238 V	238 V	
$\phi_{\nu}^{\hat{l}n\nu}$	-0.45 (rad)	-0.45 (rad)	-0.45 (rad)	
ϕ_{k}^{inv}	0.00(rad)	0.00 (rad)	0.00 (rad)	
<u>S</u> inv	6000 VA	6000 VA	6000 V	

Case Study: Results (I)

Case Study: Results (II)

Conclusions and Summary

Conclusions and Summary

- Thévenin mapping, from high dimension to low dimension space.
- Parameters regions defined by their contour in the Thévenin mapping.
- Low computational cost.
- It can be applied to a system with large number of users and/or repetitive processes:
 - Calculation of feasible operation for each user.
 - Optimal allocation of distributed generation in a low voltage radial network.
 - Calculation of hosting capacity for each user.
- Based on observed results from numerical experiments.
- Currently working on formal proofs for the observed results.

Thanks for your attention!