
Pruning Dominated Policies in Multiobjective Pareto
Q-learning???

Lawrence Mandow and José-Luis Pérez-de-la-Cruz

Universidad de Málaga, Andalucı́a Tech, Departamento de Lenguajes y Ciencias de la
Computación, Málaga, España.

lawrence|perez@lcc.uma.es

Abstract. The solution for a Multi-Objetive Reinforcement Learning problem
is a set of Pareto optimal policies. MPQ-learning is a recent algorithm that ap-
proximates the whole set of all Pareto-optimal deterministic policies by directly
generalizing Q-learning to the multiobjective setting. In this paper we present a
modification of MPQ-learning that avoids useless cyclical policies and thus im-
proves the number of training steps required for convergence.

1 Introduction

The problem of solving Multi-Objective Markov Decision Processes (MOMDPs) and
more concretely the application of Reinforcement Learning techniques to this prob-
lem (MORL) has raised some interest in recent literature [1]. MORL algorithms can
be single-policy and multi-policy [2]. The later try to approximate part or the whole
set of Pareto optimal policies. There are currently very few multi-policy MORL algo-
rithms; among them we will consider in this paper MPQ-learning [3]. It is an off-policy
temporal-difference method. Off-policy methods are particularly interesting in multiob-
jective reinforcement learning, since they allow to learn a set of Pareto-optimal policies
simultaneously. MPQ-learning was shown to solve standard problems from the bench-
mark proposed in [4]. However, there are efficiency issues due to the nature of the
algorithm, that aims to learn all deterministic optimal policies (including non station-
ary ones). In this paper we propose a modification of MPQ-learning that controls the
generation of cycles during the learning process and thus improves greatly its efficiency
in terms of training steps.

The paper is structured as follows: in section 2 MPQ-learning is summary described
and some problematic features are identified and discussed. Then we describe the pro-
posed modifications (section 4) and present and discuss the results obtained in a set of
experiments (section 5). Finally some conclusions are drawn.

? Supported by: the Spanish Government, Agencia Estatal de Investigación (AEI) and Eu-
ropean Union, Fondo Europeo de Desarrollo Regional (FEDER), grant TIN2016-80774-R
(AEI/FEDER, UE); and Plan Propio de Investigación de la Universidad de Málaga - Cam-
pus de Excelencia Internacional Andalucı́a Tech.

?? The final authenticated version is available online at https://doi.org/10.1007/978-3-030-00374-
6 23



2 L. Mandow and J.L. Pérez-de-la-Cruz

Fig. 1: Sample non-deterministic transition from state s1 through action a.

2 MPQ-learning

2.1 The Algorithm

MPQ-learning [3] is an extension of Q-learning to multiobjective problems. The goal
is to obtain the set of all Pareto-optimal deterministic policies. These include both sta-
tionary and non-stationary policies, as nonstationarity is an essential feature of multi-
objective reinforcement learning problems.

A detailed description of MPQ-learning can be found in [3]. Let us briefly describe
here the rationale of the algorithm in an intuitive way. A basic underlying idea of the
algorithm (and also of the improvements presented later) is to reduce the set of candi-
date policies applying the principle of optimality. Just like Q-learning, MPQ-learning is
an off-policy temporal-difference method. An agent interacts with the environment and
learns the optimal expected long term rewards of its actions. Without loss of generality
we shall assume that all rewards are to be maximized. Sets of labeled vectors Q(s, a)
are learned for each state-action pair. Each labeled vector q ∈ Q(s, a) estimates the ex-
pected vector reward when a particular Pareto-optimal policy is followed after choosing
action a in state s. Additionally, set V(s′) denotes the set of all Pareto-optimal vector es-
timates for all actions available to state s′. These sets are the multi-objective analogues
of the scalar Q and V sets used in Q-learning.

An important feature of MPQ-learning is that it learns a partial model of the en-
vironment. This is in contrast with Q-learning, which is a model-free algorithm. The
partial model is necessary for two main reasons. In the first place, it helps to reduce
the number of candidate policies tracked by the algorithm. Additionally, once learning
is over, the model can be used to recover the actions associated to a particular Pareto-
optimal policy chosen by the agent. Therefore, in MPQ-learning each vector estimate
q ∈ Q(s, a) is labeled with a set of indices P , where each index (s′, i) ∈ P indicates
that q is updated from the i-th vector in V(s′).

Let us assume that at step n, transition s, a, r′, s′ is stochastically performed by the
agent. The updating expression for MPQ-learning is,

Qn(s, a) =


Nn−1(s, a) ∪ Un−1(s, a) ∪ En−1(s, a)

if s = sn ∧ a = an
Qn−1(s, a)

otherwise

(1)

The updated Q-set results from the union of three sets: N, U and E. These depend
on the nature of the transition s, a, r, s′. Let us consider the sample stochastic transition
shown in figure 1.



Pruning Dominated Policies in Multiobjective Pareto Q-learning 3

Let us assume that action a is selected for the first time from state s1, and the agent
transitions to state s2 obtaining some vector reward r. Let us further assume that cur-
rently there is a single optimal estimate for s2, i.e. V(s2) = {q2

1}. According to the
principle of optimality, optimal policies in s1 can be obtained by combining optimal
policies from s2 and s3. Since Qn−1(s1, a) is empty, a new estimate is added to Q(s1, a)
for each estimate in V(s2). In this case Qn(s1, a) = {(q1

1 , (s2, 1))}, indicating that q1
1

is related to vector 1 in V(s2) as indicated by the formula,

Nn−1(s, a) = {((1− αn)q + αn[rn + γvj ], P ∪ {(s′, j)} |
(q, P ) ∈ Qn−1(s, a) ∧ vj ∈ Vn−1(s

′)

∧ s′ 6@ Qn−1(s, a)} (2)

where s′ 6@ Qn−1(s, a) denotes that state s′ does not participate in any index in
Qn−1(s, a), and αn and γ are the usual learning rate and discount factor respectively.

Notice that if transition s1, a, r, s3 is performed afterwards for the first time, and
there is just one optimal estimate in V(s3) = {q3

1}, then q1
1 would be updated from q3

1

and its set of indices extended to (s2, 1), (s3, 1), indicating that q1
1 is obtained combin-

ing estimate 1 from V(s2), and estimate 1 from V(s3).
When the transition s1, a, r, s2 is repeated, vector q1

1 will be updated from q2
1 , pro-

vided both are still part of Q(s1, a) and V(s2) respectively. Analogously for transition
s1, a, r, s3. The general expression for this situation is given by the formula,

Un−1(s, a) = {((1− αn)q + αn[rn + γvj ], P ) |
(q, P ) ∈ Qn−1(s, a) ∧ (s′, j) ∈ P

∧ vj ∈ Vn−1(s
′)} (3)

Finally, let us consider that transition s1, a, r, s2 is repeated one more time, but now
V(s2) = {q2

1 , q
2
2} is populated by two estimates: the previous one q2

1 (with possibly
now a more accurate value), and a new, or extra one q2

2 that was not present the last time
transition s1, a, r, s2 was traversed. As described in formula 3, the value of estimate q1

1

will be rigthfully updated with that of q2
1 , as indicated by the indices of the former.

However, an additional estimate will be included in Q(s1, a) reflecting a possibly new
optimal policy that can be followed combining results obtained from the second vector
in V(s2), and the first one (and only known to date) in V(s3). This operation is given in
the general case by the formula,

En−1(s, a) = {(αn[rn + γvj ], (P \ s′) ∪ {(s′, j)}) |
vj ∈ Vn−1(s

′) ∧ s′ @ Qn−1(s, a) ∧ (4)
(s′, j) 6@ Qn−1(s, a) ∧ ∃q(q, P ) ∈ Qn−1(s, a)}

where (s′, j) 6@ Qn−1(s, a) denotes that index (s, a) does not appear in the index set of
any vector in Qn−1(s, a).



4 L. Mandow and J.L. Pérez-de-la-Cruz

Let us complete the description of the algorithm with the formal definition of the
V(s) sets,

V(s) = ND
⋃
a∈A
{q | (q, P ) ∈ Q(s, a)} (5)

where ND(X ) denotes the set of nondominated, (or Pareto-optimal) vectors in set X .
In summary, optimal policies for each state-action pair are obtained combinig opti-

mal policies from reachable states. MPQ-learning incrementally builds a partial model
of the environment through sets of indices, ensuring that each estimate is updated in-
crementally always from the same (optimal) policies. This reduces the number of com-
binations of policies tracked by the algorithm, increasing its efficiency.

2.2 Efficiency issues with MPQ-learning

By considering the algorithm at work, some issues can be detected. First of all, the
“update” operation U is defined in a very conservative way respect to the use of memory.
Notice that in the former definition of the U(s, a) set only optimal values in successors
s′ of s (i. e., values in V(s′)) are considered. In this way, new and potentially useful
information in s′ is not propagated to s.

Related to this point is the generation of useless cyclical (nonstationary) policies
in intermediate steps of the algorithm. Indeed, since some of them can be optimal, the
consideration of cyclical policies is unavoidable and, in fact, necessary. However, many
cyclical policies appearing during the execution are mere artifacts due to the delayed
propagation of true Q-values. These policies will be eventually discarded, since they
will have –sooner or later– a dominated Q-value; but until that moment, they populate
Q sets and slow down greatly the execution of the algorithm.

Finally, these spurious policies and Q-values difficult considerably an adequate fi-
nalization of the algorithm. At any given moment, it is difficult to identify them inside Q
sets and hence it is difficult to output an useful approximation of the real set of optimal
policies.

3 Example

Let us illustrate the concerns raised in section 2.2. Let us consider a simple state space
consisting of only two states, s1 and s2. Episodes start always at s1 and terminate at s2.
There are two actions available at s1. Action a1 loops back deterministically to s1, and
the agent receives a vector reward of (−1, 0). Action a2 leads deterministically to s2,
and the agent receives a vector reward of (−1, 0). At s2 the episode ends, and the agent
receives a reward of (−1, 1). Let us assume all Q(s, a) sets are initialized with a zero
vector, and V(s2) = {q2

1 = (−1, 1)}. The agent maximizes all rewards.
There is just one optimal policy in this problem with value (−2, 1), i.e. at s1 the

agent chooses action a2 leading to s2. However, there are infinitely many dominated
nonstationary policies: looping with a1 a number of times and then choosing a2.

Let us assume that the process starts, and fixed values of α = 0′1 and γ = 1
are used. We further assume that the agent chooses action a2 leading to transition



Pruning Dominated Policies in Multiobjective Pareto Q-learning 5

s1, a2, r, s2. Through application of the new rule in MPQ-learning (see formula 2),
and since V(s2) = {q2

1 = (−1, 1)}, a new value is calculated in Q1(s1, a2) =
{(q1

1 , (s2, 1)}. The new vector q1
1 stands for the optimal policy, and is linked to the

first (and only) estimate in s2. With the provided data, the initial value for the estimate
would be q1

1 = (−0.2, 0.1).
Let us assume the process starts again and the agent performs transition s1, a1, r, s1.

Now Q2(s1, a2) = Q1(s1, a2), but through application of the new rule, and since
V(s1) = {q1

1 = (−0.2, 0.1)}, a new value is calculated in Q2(s1, a1) = {(q1
2 , (s1, 1)}.

The new estimate q1
2 is linked through its index to the first estimate in s1, which in turn

is linked to the first estimate in s2. In other words, the new estimate stands for a nonsta-
tionary policy that loops once in s1 and then proceeds to s2. However, with the provided
data, the initial value of this estimate would be q1

2 = (−0.12, 0.01), which is nondom-
inated with the value of q1

1 .
Let us assume the process starts again and the agent performs transition s1, a1, r, s1

once again. Now V(s1) = {q1
1 , q

1
2}. Therefore, two different operations will be carried

out to obtain Q3(s1, a1). First, estimate q1
2 will be updated according to its index (for-

mula 3). But additionally, an extra estimate q1
3 will be created (formula 4), since there is

a new element in V(s1). The new estimate will have an index (s1, 2), and stands for the
nonstationary policy consisting of looping twice in s1 and then proceeding to s2. The
calculated initial value for q1

3 would be (−0′112, 0, 001) which is again nondominated
in V(s1).

Now, each time the transition s1, a1, r, s1 is performed, an extra vector will be
added to Q(s1, a1), and a long chain of dependencies between its estimates will be
created (q1

2 ← q1
3 ← . . .← q1

k).
Let us assume that, after some experience in the environment is accumulated, the

value of q1
2 eventually converges to its true value and is found to be dominated in V(s1).

The update rule in MPQ-learning would then remove q1
3 (i.e. the two loop policy) the

next time transition s1, a1, r, s1 is performed. Two observations are in order here. In the
first place, nothing prevents in the future the reconsideration of the two-loop policy pro-
vided an optimistic estimate happens to be nondominated again in V(s1). Additionally,
a set of broken estimates is left in V(s1), since they not only depend on an estimate
that was found to be dominated, but that was even removed from the Q-set.

In the next section we propose a new mechanism to tackle this kind of situation,
noting that, once an estimate is found to be dominated, all estimates that depend on it
through their indices cannot lead to nondominated policies, even if their current esti-
mates happen to be locally nondominated.

4 Pruning MPQ-learning

According to the aforementioned problems, the following modifications are proposed
and implemented in the MPQ algorithm.
Nondiscriminating update. Updating of Q-values depending of preexisting continua-
tions are performed for all Q-values in Q(s′, a). More concretely, the general expression
for updating is not defined as in 3, but as,



6 L. Mandow and J.L. Pérez-de-la-Cruz

Un−1(s, a) = {((1− αn)q + αn[rn + γvj ], P ) |
(q, P ) ∈ Qn−1(s, a) ∧ (s′, j) ∈ P

∧ vj ∈ ∪aQn−1(s
′, a)} (6)

Suspended Q-values. In order to avoid the generation of more and more cyclical poli-
cies, every Q-value can be labelled as “suspended”. A suspended value in never con-
sidered for the operations “new” and “extra”. In this way, the definitions are no more 2
and 4. They are now,

Nn−1(s, a) = {((1− αn)q + αn[rn + γvj ], P ∪ {(s′, j)} |
(q, P ) ∈ Qn−1(s, a) ∧ vj ∈ Vn−1(s

′)

∧ ¬suspended(vj) ∧ s′ 6@ Qn−1(s, a)} (7)

and

En−1(s, a) = {(αn[rn + γvj ], (P \ s′) ∪ {(s′, j)}) |
vj ∈ Vn−1(s

′) ∧ s′ @ Qn−1(s, a)

∧ ¬suspended(vj)∧ (8)
(s′, j) 6@ Qn−1(s, a) ∧ ∃q(q, P ) ∈ Qn−1(s, a)}

Suspension. Additional rules must be defined in order to (i) label and (ii) unlabel Q-
values q ∈ Q(s, a) as “suspended”,

(i.1) A Q-value is labelled as “suspended” when it is dominated by another Q-value
in the state. Formally, the condition is as follows: ∀s, a, q ∈ Q(s, a), whenever V(s)
is modified, if q.suspended = false ∧ q /∈ V(s), then q.suspended ← true. (i.2)
A Q-value is labelled as “suspended” whenever any of their indices is labelled as “sus-
pended”. This propagation is done recursively. In practice, this implements the idea that,
if an estimate is found to be suspended, then any estimate depending on it is suspended
as well.

(ii) A Q-value is unlabelled as “suspended” when it ceases to be dominated by
another Q-value in the state and none of the estimates referenced by its indices is
suspended. Formally, the condition is as follows: for every state s, whenever V(s) is
modified, ∀a, q ∈ Q(s, a), if q.suspended = true ∧ q ∈ V(s) ∧ ∀(s′, j) index of
q, qs′

j .suspended = false then q.suspended← false.

5 Experimental results and discussion

Both the MPQ-learning algorithm, and the alternative described in this paper (MPQ2),
were implemented and tested over a set of sample problems. These are based on the
standard Deep Sea Treasure (DST) problem proposed by [5].



Pruning Dominated Policies in Multiobjective Pareto Q-learning 7

Fig. 2: Sample environment for deep sea treasure. Treasure values are indicated by values inside
the cells.

More precisely, we consider a grid world like the one shown in figure 2. The agent
controls a submarine that searches for treasures. These are found on the sea bed. Each
grid cell represents a valid state of the agent. Grids are referenced according to their row
(numbered top to bottom starting at 1), and column (numbered from left to right starting
at 1). The agent is allowed to move in four directions (up, down, left or right) from its
current cell to an adjacent one. Obstacles (represented as black cells) are unreachable
for the agent. If an action tries to move the agent to an unreachable state or outside
the grid, then the state remains unchanged. The start position is always (1, 1), and each
episode ends whenever a treasure position is reached. The agent receives a vector reward
with two components. The first one is a negative reward of -1 each time it moves. The
second one is the value of the treasure found, or 0 if no treasure is available in the cell.
The goal of the agent is to find all Pareto optimal policies that maximize both rewards.

Our experiments consider a number of subproblems of increasing difficulty. In prob-
lem Pi the state space is made up only of the first i columns of the grid shown in figure
2. This way we obtain a sequence of problems such that, for larger i we obtain a larger
state space and a larger set of nondominated policies. Notice that in these problems all
Pareto-optimal policies are stationary.

In our implementation, the sets of optimal policies for each state V(s) are calculated
in such a way that whenever two vectors are equal, we prefer the one that first entered
V(s), i.e. the one with smaller index value. This way we try to ensure that, once values
stabilize and several policies can propagate the same values, the algorithm consistently
prefers the same one.

A limit of 700 actions per episode was set. We used the multiobjective ε-greedy
behavior policy described by [3]. This basically calculates the ratio of nondominated
vectors that each Q(s, a) contributes to V(s). With probability (1− ε) each action a is
selected with a probability proportional to the ratio of its Q(s, a) set. With probability ε
each action is selected randomly with equal probability. The following parameters were
used: Learning rate α = 0′1; Discount rate γ = 1; Exploration probability ε = 0′4.

Both algorithms were run until the estimates of the initial state (V(1, 1)) approxi-
mated the values of all optimal policies (which are readily known beforehand in this
problem set) with a precision up to 1%. One hundred agents were run for each problem,
and the number of training steps, episodes and maximum number of estimates were
recorded for each run. All agents for both algorithms reached the termination criterion.



8 L. Mandow and J.L. Pérez-de-la-Cruz

Trainig st. Epi. # estimates
Prob. avg. min max avg avg. min max

1 188’99 128 258 44’00 133’56 51 255
2 2310’64 1540 3049 229’64 502’18 329 721

MPQ 3 7756’59 6116 11553 507’13 1360’21 1012 2252
4 22359’75 14838 30403 1046’93 2891’84 2364 3357
5 35085’68 26367 45286 1371’28 5222’02 4517 5956
6 50015’24 38679 78576 1740’66 7767’18 6844 9569

Trainig st. Epi. # estimates
Prob. avg. min max avg avg. min max

1 136’86 118 169 44’00 95’95 27 186
2 1031’34 886 1384 253’51 599’24 254 1324

MPQ2 3 3519’36 2793 4665 633’51 2246’98 1352 3867
4 8150’70 6448 9623 938’02 7433’49 4648 10652
5 12110’93 9923 15281 968’05 15834’05 11689 21402
6 18392’22 15719 25634 1205’79 30682’54 23763 38454

Table 1: no. of episodes, training steps and vector estimates for MPQ (top) and MPQ-2 (bottom).

Fig. 3: Comparison of the average number of training steps(left) and maximum number of vector
estimates (right) required by MPQ and MPQ2 for the deep sea treasure subproblems.

Table 1 summarizes the data gathered for MPQ (top) and MPQ2 (bottom). Figure 3
(left) compares the average value of overall training steps obtained by both algorithms
for the different problems. Figure 3 (right) presents the analogous comparison for the
maximum number of vector estimates stored in the Q(s, a) sets.

The results show an important trade-off between the number of training steps and
the number of vector estimates required by both algorithms. This is to be expected,
given the different design criteria for both algorithms. MPQ tries to reduce as much
as possible the number of estimates. On the other hand, the main concern in MPQ2 is
pruning dominated policies (and dominated nonstationary policies in particular), so that
exploration can concentrate on the promising policies.

Figure 4 further illustrates the behavior and trade-off between both algorithms. The
graphic displays the number of estimates stored by both algorithms on a particular run
of problem P6. The number of estimates kept by all Q(s, a) sets was recorded every
500 training steps. The growth in the number of policy estimates in MPQ2 is mono-



Pruning Dominated Policies in Multiobjective Pareto Q-learning 9

tonic non-decreasing, since once an estimate is created, it is never discarded. If the
estimate is suspended or found to be locally dominated, it is prevented from generating
new or extra estimates in neighboring states. These values help MPQ2 limit the number
of nonstationary policies. Therefore the exploration of the state space quickly concen-
trates on promising policies, achieving convergence in a small number of steps. In this
particular instance, MPQ2 requires 16331 training steps distributed into 1052 episodes,
and stores 28448 estimates.

In contrast, the number of policies tracked by MPQ can vary widely during the
exploration of the state space. The only limit to the number of nonstationary policies
considered is local dominance. Therefore, MPQ has to establish the dominance of each
policy on an individual basis. However, once a policy is found dominated, it is forgotten,
and is likely to reappear again and again. In practice, the number of local nonstationary
nondominated estimates can be very high, making it hard for the behavior policy to
concentrate on the interesting learned policies. This increases considerably the number
of training steps required by MPQ. In this particular instance, MPQ requires 48650
training steps distributed into 1688 episodes, and stores a peak of 8291 estimates.

Fig. 4: Number of vector estimates kept by MPQ and MPQ2 agents on a sample run.

6 Conclusions and future work

The MPQ-learning algorithm is an interesting framework to investigate and analyze
the phenomena of multi-policy temporal-difference learning. In this paper we address
one such penomenon, the presence of dominated policies, and particularly the chal-
lenge of controlling the growth of dominated nonstationary policies. These frequently
present nondominated estimates due to the delayed propagation of true Q-values, and
their dominated nature can only be revealed after costly learning. This paper describes
a variant of MPQ-learning aimed at pruning dominated policies. The pruning mecha-
nism, called suspension, helps to reduce the number of nonstationary policies tracked



10 L. Mandow and J.L. Pérez-de-la-Cruz

by the algorithm. The performance of both algorithms is evaluated over sample problem
instances based on a standard benchmark.

MPQ-learning does not incorporate a special treatment for nonstationary policies.
These are left to grow and eventually disappear whenever learned to be dominated.
MPQ is very conservative with the use of memory, deleting candidate policy estimates
as soon as they are found to be dominated. This results in an increase in the number
of update steps required by the algorithm, since valuable information can be lost due
to local oscilations in dominance. Additionally, dominated nonstationary policies tend
to reapear quickly after being discarded, and require learning their values each time,
frequently to be dominated again and again.

The alternative contributed in this paper (MPQ2) is monotonic in the number of
policy estimates considered, i.e. once an estimate is added to the Q(s, a) sets, it is never
removed. The algorithm keeps updating its value even when it is locally dominated or
suspended. In such cases, it will never be used to generate new or extra estimates, since
new nondominated estimates can only be achieved through the combination of non-
dominated ones. Suspension is a recursive procedure, such that, if a particular estimate
is suspended, all the estimates that depend on it will be suspended as well. However,
if after some time the value is found to be locally nondominated again and suspension
is lifted, it can immediatelly contribute to the determination of optimal policies. The
experiments show that this strategy significantly reduces the number of training steps in
the algorithm. The number of steps per episode is also considerably reduced, indicating
that they are shorter and more focused on the interesting policies. The price to pay is an
increase in space requirements.

Another important advantage of MPQ2 is that it clearly identifies the set of learned
Pareto-optimal policies. Once the estimate of a policy converges to a dominated value,
it is kept suspended. Through the recursive suspension mechanism, all such policies
are eventually identified and suspended. In consequence, the subsets of un-suspended
estimates in the V(s) sets end up populated only with the estimates of Pareto optimal
policies. In MPQ, on the contrary, even when the optimal policies have been found,
temptative nonstationary policy estimates emerge in the V(s) sets to be discarded cycli-
cally again and again.

Pruning dominated policies in general, and dominated nonstationary policies in
particular, remains an important challenge in multiobjective temporal-difference learn-
ing. The evaluation of the alternatives here presented over more ambitious and diverse
benchmark problems is an interesting avenue of future research. It would also be inter-
esting to reduce the memory requirements of MPQ2 in a cost-effective way.

References

1. Madalina Drugan, Marco Wiering, Peter Vamplew, and Madhu Chetty. Editorial: Special issue
on multi-objective reinforcement learning. Neurocomputing, 263:1–2, 2017.

2. Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey
of multi-objective sequential decision-making. Journal of Artificial Intelligence Research
(JAIR), 48:67–113, 2013.



Pruning Dominated Policies in Multiobjective Pareto Q-learning 11

3. Manuela Ruiz-Montiel, Lawrence Mandow, and Jose-Luis Perez-de-la Cruz. A temporal
difference method for multi-objective reinforcement learning. Neurocomputing, 263:15–25,
2017.

4. Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan Dekker. Em-
pirical evaluation methods for multiobjective reinforcement learning algorithms. Machine
Learning, 84(1-2):51–80, 2011.

5. Peter Vamplew, John Yearwood, Richard Dazeley, and Adam Berry. On the limitations of
scalarisation for multi-objective reinforcement learning of pareto fronts. In AI 2008: Advances
in Artificial Intelligence, chapter 37, pages 372–378. Springer, 2008.


