
i

Instituto Tecnológico

y de Estudios Superiores de Occidente

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial
15018, publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

Maestría en Diseño Electrónico

Multi Language Interpreter Embedding Tool for

Shift Left Pre-Silicon Validation

ESTUDIO DE CASO para obtener el GRADO de

MAESTRO EN DISEÑO ELECTRÓNICO

Presenta: CHRISTIAN APARICIO ZULETA

Director CARLOS MARIO ANGULO PÁEZ

Tlaquepaque, Jalisco. 18 de julio de 2019.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional del ITESO

https://core.ac.uk/display/232124458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

 iii

Acknowledgments

To my role-models, my parents Jorge and Alma, for your advices, your patience and for your

guidance since day one, I feel fortunate of achieving this big personal and professional goal with

you and my brother Erick by my side. Many thanks!

I am grateful to all the teachers at ITESO for sharing your knowledge with me and for your

invaluable feedback that has boosted my career development, thank you all.

A special gratitude to all my coworkers at Intel Corporation, as each and every one of you

motivates me to succeed, every personal achievement represents a milestone for the whole team

and helps us consolidate as one, thanks for your encouragement.

To my manager and mentor, Carlos Angulo, for your trust on me and your excellent guidance for

the past sixteen months, it has been an amazing experience.

Big thanks for your support, guidance and remarkable contributions to the people involved in the

development of this project, Jonathan Newton for your inventiveness, patience and the great work

done, Yaping Liu for sharing your knowledge with me and specially to Luke Chang, for your

support and for playing a big bet on us, this is now a reality because of you. It has been a pleasure

to share this stage of my life with you, keep inspiring those around you!

To my coworker, colleague and friend, Samed Abraham for your support, words of encouragement

and for being there always looking after me, boosting my career with advices and long enriching

talks.

Thank you all!

 iv

 v

Abstract

Throughout the years, digital and analog designs have evolved meaningfully towards performance

improvement, cost reduction and new features enablement. As a result, complexity has increased

rapidly, demanding the development of better validation techniques in order to meet the time-to-

market pressure calls with a bug free device. The primary choice of silicon development companies

to validate software before the hardware becomes available, until now, is the FPGA based

emulation platform, which leads to a big gap as it loads a register transfer level code that is usually

not validated with SW-like flows in the early development stages. SW flows, mainly drivers, are

validated in parallel to HW on SW emulation platforms. In order to fill the validation gap and

push the finding of certain bugs to an earlier development stage, the idea of running SW tests with

no or little modification in simulation environments would represent a big return of investment,

rising the reliability of the system before manufacturing it, reducing time to market and

development cost of the system on chip. This thesis explains the complete development of a

framework able to run python scripts in VCS simulation by implementing the OVM Multi Language

capability.

vii

List of Figures

FIGURE 1-1: TRADITIONAL VALIDATION WORKCYCLE ... 2
FIGURE 1-2: UVM-ML SC AND SV ARCHITECTURE .. 3
FIGURE 2-1: UVM-ML HIGH LEVEL ARCHITECTURE .. 5
FIGURE 2-2: PYTHON C++ EXTENSION .. 7
FIGURE 3-1: PYTHON EMBEDDING TOOL FRAMEWORK BLOCK DIAGRAM .. 12
FIGURE 3-2: PYTHON INTERPRETER HIGH LEVEL ARCHITECTURE .. 14
FIGURE 3-3: INTERPRETER AND HELPER COMMUNICATION ... 16

ix

List of Tables

TABLE 2-1: UVM-SV ADAPTER IMPORT ... 6
TABLE 2-2: UVM-ML INCLUDE STATEMENTS IN C++ .. 6
TABLE 2-3: C AND PYTHON DATATYPES MAPPING WITH CTYPES ... 8
TABLE 3-1: TRANSACTION CLASS VARIABLES... 17
TABLE 3-2: KVP ATTRIBUTES FOR CSR_READ COMMAND .. 17
TABLE 3-3: RESPONSE KVP FIELDS... 17
TABLE 4-1: INTERPRETER TOOL UVM TESTBENCH ... 20
TABLE 5-1: COMMAND CLASS METHODS AND PROPERTIES .. 23
TABLE 5-2:PYTHON CSR_READ COMMAND .. 23
TABLE 5-3: TESTBENCH INTERFACE CLASS PROPERTIES AND METHODS ... 25
TABLE 5-4: PYTHON BASE TEST ... 26
TABLE 5-5: STANDARD COMMANDS DESCRIPTIONS ... 26
TABLE 5-6: PYTHON MONITOR SUBSCRIPTION ... 27
TABLE 5-7: MONITOR SUSCRIPTION OUTPUT ... 27
TABLE 6-1: MULTILANGUAGE COMPILATION COMMAND LINE.. 29
TABLE 6-2: MULTILANGUAGE COMPILATION EXPECTED OUTPUT .. 29
TABLE 6-3: C++ COMPILATION COMMAND LINE ... 30
TABLE 6-4: C++ COMPILATION EXPECTED OUTPUT .. 30
TABLE 6-5: UVM TESTBENCH COMPILATION COMMAND LINE ... 30
TABLE 6-6: UVM TESTBENCH COMPILATION EXPECTED OUTPUT .. 30
TABLE 7-1: BASE TEST SIMULATION COMMAND .. 31
TABLE 7-2: PYTHON BASE TEST CODE ... 31
TABLE 7-3: BASE TEST PYTHON SIMULATION LOG ... 32
TABLE 7-4: BASE TEST VCS SIMULATION LOG... 33
TABLE 7-5: DRIVER TEST SOURCE CODE .. 34
TABLE 7-6: PYTHON DRIVER TEST PYTHON LOG ... 35
TABLE 7-7: PYTHON DRIVER TEST VCS LOG... 36

file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424303
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424305
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424307
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424308
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424309
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424310
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424311
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424312
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424313
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424314
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424315
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424316
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424317
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424318
file:///C:/Users/czuleta/Documents/ITESO/Tesis/ML_embedRev9.docx%23_Toc14424319

xi

List of Acronyms, Abbreviations and Keywords

ASIC: Application Specific Integrated Circuit

API: Application programmers interface

Bug: Design errors

CSR: Control Status Register

DUT: Design Under Test

FPGA: Field-Programmable gate array

KVP: Key Value Pair

Pre-silicon: Usually associated with Validation before the silicon chip is available

RTL: Register Transfer Level

SC: System C

SoC: System on Chip

SV: System Verilog

TLM: Transaction Level Modeling

UVM-ML: Universal Verification Methodology Multi-Language

VC: Verification Component

VCS: Synopsis high performance simulation solution

VIP: Validation Intellectual Property

xiii

Content

Acknowledgments .. iii

Abstract ... v

List of Figures .. vii

List of Tables .. ix

List of Acronyms, Abbreviations and Keywords .. xi

Content .. xiii

1. Introduction .. 1

2. Background .. 5

2.1. UVM-ML ... 5
2.1.1 Adapters ... 5

2.2. PYTHON EXTENSION TO C++ ... 6
2.2.1 Ctypes... 7
2.2.2 Boost Python .. 8

3. Architecture ..11

3.1. OVERVIEW... 11
3.2. PYTHON – C++ INTERPRETER .. 13

3.2.1 Description ... 13
3.2.2 Architecture .. 13
3.2.3 Python Driver ... 14

3.3. INTERPRETER AND HELPER COMMUNICATION ... 16
3.3.1 Transaction ... 16

3.4. HELPER AGENT ... 18

4. Testbench Integration ..19

5. API ...21

5.1. C++/PYTHON CLASSES .. 22
5.1.1 Command Class – stl_intrp_embed_ctrl_py .. 22
5.1.1.1 Example Usage .. 23
5.1.2 Testbench Interface – stl_intrp_embed_engine_python_py .. 23
5.1.2.1 Example Usage .. 26

5.2. STANDARD COMMANDS .. 26
5.2.1 Example Usage .. 27

6. Environment setup ...29

6.1. STEP BY STEP EXECUTION GUIDE ... 29

7. Results ...31

 xiv

7.1. BASE TEST .. 31
7.2. DRIVER TEST ... 34

8. Conclusion ..39

Appendix A. Python function call in C ..41

Appendix B. Boost Python Hello World ..43

Appendix C. Python driver engine C++ class definitions45

Appendix D. Python driver code ..47

Appendix E. SV development command processing ..49

References ...51

1

1. Introduction

Throughout the years, digital and analog designs have evolved meaningfully towards

performance improvement, cost reduction and new features enablement. As a result, complexity

has increased rapidly, demanding the development of better validation techniques in order to meet

the time-to-market pressure calls with a bug free device.

The primary choice of silicon development companies to validate software (SW) before

the hardware (HW) becomes available, until now, is the FPGA based emulation platform, which

leads to a big gap as it loads a register transfer level (RTL) code that is usually not validated with

SW-like flows in the early development stages. Performing SW validation on an emulation

platform becomes a challenging team work as it requires the collaboration of both, HW and SW

engineers solving first non RTL issues and then real design problems with limited visibility.

As the emulation platforms are used to validate SW flows before the silicon becomes

available, the main goal of pre-silicon validation is to bring up individual features and connectivity,

checking whether the implemented design meets defined specifications[1].

 SW flows, mainly drivers, are usually validated in emulation platforms at the same time

that HW is validated through pre-silicon simulations with real RTL. Even HW and SW validation

efforts are essential activities in the integrated circuit design process, there is no way to detect

discrepancy between both of them as the test content of both is completely different.

In order to fill this validation gap and push the finding of certain bugs to an earlier

development stage, the idea of running SW tests with no or little modification in simulation

environments would represent a big return of investment, rising the reliability of the system before

manufacturing it, reducing time to market and development cost of the system on chip (SoC)[2].

While adding controllability, repeatability and observability to the behavior of the design when

performing a pre-silicon simulation as stablished by Bob Bentley in the 47th Design Automation

Conference [3].

 2

The validation process of any robust SoC tends to be an iterative work, creating a cycle of

run, debug, and fix several times until the design does what is meant to do with all the collaterals

in place. It is common that a great amount of issues are from the verification environment or even

errors while coding the tests. Every time a change is made to the code, it is needed to be compiled,

this task can be as short as 5 minutes or as long as 1 or 2 hours, as a result, the compilation process

slows down the validation progress.

`

Figure 1-1: Traditional Validation Workcycle

By implementing the Multilanguage (ML) capability in an Universal Verification

Methodology (UVM) environment, which is widely used all along the HW validation industry,

for a specific Intellectual Property (IP) the integration of code written in different programming

languages and methodologies can be achieved[4]. We call framework to every Validation

Intellectual Property (VIP) implemented using a given language in such a way that UVM-ML can

implement an internal communication between all of them and externally via its backplane

adapters as seen in Figure 1-2. For the user, the backplane adapter is a normal Transaction Level

Modeling (TLM) port, simple data transactions as integers or strings are copied from a source to a

destination framework, while complex transactions like classes are serialized in the source end and

then copied to the destination framework who is responsible of executing the deserialization to a

matched type, finally events and barriers are synchronized with common events and barrier pools.

Introduction

 3

UVM-ML Backplane

UVM-ML

SC Adapter

UVM-ML

SV Adapter

System C

Framework

SystemVerilog

Framework

Figure 1-2: UVM-ML SC and SV Architecture

When having an UVM-ML environment that involves both, SystemVerilog (SV) and

SystemC (SC), the SV framework usually operates as master, controlling simulation timing while

the SC framework works as a slave synchronized to the master’s time. In this side-by-side

hierarchy, the UVM pre-run phases are executed individually in each framework while the run

phases are executed synchronously.

All along the industry, nowadays Python is commonly chosen to write SoC SW tests that

run in different software simulation platforms. The goal for the development of this thesis/project

is to demonstrate that specific SW tests written in any interpreted language can stress a DUT during

a pre-silicon simulation, pushing the finding of several potential design bugs earlier in the project

timeline. This is achieved by introducing to the SC framework the capability of communicating

with the desired interpreted language, Python in this case. The SC agent needs to launch an

interpreter, which exchanges data with Python scripts and synchronizes with the rest of the UVM-

ML components. A helper agent in the SV framework is also needed to process and generate

according sequences as of the commands received form the SC framework, then the sequences, as

in any UVM environment, drive stimulus to the Design Under Test (DUT) and finally return results

 4

back to the interpreter agent, leading to a bidirectional communication between Verification

Components (VC).

An advantage of implementing python testing with a SC framework is that the testbench

(TB) and sequences remain always the same and there is no need of recompiling every time a

change is done to the test, as python is an interpreted language and the logic of it is extracted during

runtime, reducing the time taken by the tradition validation work cycle.

The development of the complete Python Embedding Framework for pre-silicon

simulations is discussed through this document, a brief background about the tools implemented

is shown in Chapter 2, the high level overview and architecture are described in Chapter 3, it

explains its architecture and the way it communicates through the UVM-ML backplane. Chapter

4 explains the main components needed in the testbench, Chapter 5 is about the way the scripts

need to be written using the capabilities that the tool provides, meanwhile, Chapter 6 shows how

the environment is built, and finally Chapter 7 provides details on the results obtained.

5

2. Background

This chapter explains the functionality of the foreign tools that make possible the end to end

communication between Python (Interpeted language) and System Verilog (Hardware description

and Verification language), the main component is the Multilanguage block, which enables the

data exchange and synchronization between SV and C++ through a SC adapter, while Python talks

to C++ through Boost and Ctypes functionalities.

2.1. UVM-ML

The Multi Language capability is an open source code that can be built in a Universal

Verification Methodology environment. It forms the joint of multiple verification components

(VC) implemented in different frameworks and syncs through the UVM-ML backplane. The

environment can connect any amount of frameworks as long as every one of them has its own

adapter properly connected to the UVM-ML backplane [5] as seen in Figure 2-1.

Adapter

Framework 3

Adapter

Framework 4

Adapter

Framework N

Adapter

Framework 1

Adapter

Framework 2

UVM-ML Backplane

Figure 2-1: UVM-ML High level architecture

2.1.1 Adapters

Every framework adapter in the design must be registered in the backplane only once with

a specific name. Then, a unique identifier is assigned to each adapter in order to enable

communication with the backplane. The UVM-ML release contains the proper adapters needed

for the development of this tool: SC and SV.

 6

 The UVM-SV adapter is instantiated inside the uvm-ml package, for integrating it to

the code the lines in Table 2-1 must be added:

Table 2-1: UVM-SV adapter import

 The UVM-SC adapter is built on top of the UVM-SC included in the release, for

integrating it to the code the lines in Table 2-2 must be added to system C code:

Table 2-2: UVM-ML include statements in C++

2.2. Python extension to C++

Python programming language allows to add extension modules in order to be able to do

things that usually cannot be achieved with python standalone. There is a Python application

programmers interface (API) able to connect C or C++ code to Python, it can implement new built-

in object types, call C library functions and do system calls[6].

This API, creates the connection between Python and C++, where then it is hooked to the

UVM-ML backplane through the SC adapter. It consists of a set of functions, macros and variables

accessing to Python run-time system and is incorporated in a C source file when including the

header “Python.h”.

import uvm_pkg::*; // import the UVM-SV library package

`include "uvm_macros.svh" // macros which are part of the UVM-SV library

import uvm_ml::*; // import the UVM-SV ML adapter (must come after the

above)

#include "uvm_ml.h"

using namespace uvm_ml;

Background

 7

Python C++API

Figure 2-2: Python C++ extension

The Python interpreter must be compiled and linked with the Python system, this can be

done dynamically or the C++ module can be set permanently part of the Python interpreter by

adjusting its settings and rebuilding the Makefile.

This interface works for both, C++ function calls in Python and Python function calls in

C++, this is mainly used for the libraries that support callback functions in such a way that a Python

function could require calling a C++ callback function or the other way around. An example of

how a Python function can be called in C++ can be seen in Appendix A. Python function call in

C++.

Python interpreter is enhanced with third party tools such as ctypes [7] on the Python side

and Boost [8] on the C++ side.

2.2.1 Ctypes

The foreign function library for Python called ctypes enables compatibility with C data

types, making possible the data interaction between C programming language and Python. The

functions defined in C can be executed from Python, nevertheless the arguments must be accurate

as only data types none, integers, bytes object and strings can be used as parameters in C function

calls from Python, while the remaining data types should be casted using ctypes functionality. The

complete list of data types in both languages is shown in Table 2-3: C and Python datatypes

mapping with ctypes.

 8

Ctypes type C type Python type

c_bool _Bool bool (1)

c_char char 1-character bytes

object

c_wchar wchar_t 1-character string

c_byte char int

c_ubyte unsigned char int

c_short short int

c_ushort unsigned short int

c_int int int

c_uint unsigned int int

c_long long int

c_ulong unsigned long int

c_longlong __int64 or long long int

c_ulonglong unsigned __int64 or unsigned longlong int

c_size_t size_t int

c_ssize_t ssize_t or Py_ssize_t int

c_float float float

c_double double float

c_longdouble long double float

c_char_p char * (NUL terminated) bytes object or None

c_wchar_p wchar_t * (NUL terminated) string or None

c_void_p void * int or None
Table 2-3: C and Python datatypes mapping with ctypes

2.2.2 Boost Python

On the other hand, Boost Python is a C++ library developed at Lawrence Berkeley National

Laboratories, commonly used in the tests logic and implemented at the C++ interpreter to

understand the packets formed at the python driver.

It exposes C++ classes, functions and objects to Python, and vice-versa through the C++

compiler. It supports:

 References and Pointers

file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_bool
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_char
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_wchar
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_byte
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_ubyte
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_short
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_ushort
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_int
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_uint
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_long
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_ulong
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_longlong
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_ulonglong
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_size_t
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_ssize_t
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_float
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_double
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_longdouble
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_char_p
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_wchar_p
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_void_p

Background

 9

 Globally Registered Type Coercions

 Automatic Cross-Module Type Conversions

 Efficient Function Overloading

 C++ to Python Exception Translation

 Default Arguments

 Keyword Arguments

 Manipulating Python objects in C++

 Exporting C++ Iterators as Python Iterators

 Documentation Strings

The library functionality can be observed in Appendix B. Boost Python Hello World.

11

3. Architecture

3.1. Overview

The main benefits of implementing the Python Embedding Framework in a VCS (simulation

tool) environment are:

 Enable new content categories. Software that will stress the DUT written in a

language other than System Verilog can now run on the pre-silicon model.

Resulting in a shift-left of the software activities, increasing confidence in the

design as the software tools meant to run in a real platform can run on the pre-

silicon design. As most of the post-silicon content is written in Python, the

interpreter has been first created to embed Python over other interpreted

languages.

 Faster iteration of the content of the script. Referring as a script to a test or

a checker, a new iteration of it does not require any recompilation nor re-

elaboration of the VCS model, it only demands the desired coding changes and

rerunning the simulation. This saves a big amount of time per each iteration

since the elaboration is not performed.

 Lower cost of entry for writing validation content. There is a high(er) cost

of entry when someone new to the team needs to write checkers or other content

for the validation tasks. A post-Si person coming to help out the pre-Si

validation effort would normally need to come up to speed on System Verilog,

OVM/UVM, the validation environment, etc. When implementing an

interpreter, this person can now have a choice as to what language the new

validation content is written in.

 Cross validate full system simulator model with real RTL. Usually in the

silicon development process, software for a specific IP is created from the

 12

features and specifications defined by the architects and run in a full system

simulator model such as a Simics[9] emulation model. With an interpreter tool,

the real RTL can be cross validated with this model which results in having

more reliable software.

 Failure case portability. When having equivalent models in different

platforms and running the same test scenarios, the failures can be reproduced in

any model, representing a big first step in debugging purposes.

This framework is able to inject stimulus to a DUT from a Python script, it is formed by:

 Python script/testcase

 Python Driver

 C++ interpreter

 UVM-ML SystemC Adapter

 UVM-ML SystemVerilog Adapter

 SystemVerilog Driver

 Traditional UVM environment

UVM-ML Backplane

Python Test

Scenario
Python Driver

C++

Interpreter

Ctypes

Boost

Python - C++ Interpreter

UVM-ML

SystemC adapter

Transaction

UVM-ML

SystemVerilog

adapter

SystemVerilog

Driver

Transaction

Response

Testbench

Helper

UVM

Sequences

Data

Completion

Design Under

Test

Pre-Silicon Validation Environment

Master Slave

Python Embedding Tool Framework

Figure 3-1: Python Embedding Tool Framework Block Diagram

Architecture

 13

Once all the VCs are completely built and synchronized in the environment, the commands

are initiated from the Python script, for example, a function call in a Python script that performs a

control status register (CSR) read operation. First the Python interpreter agent forwards it to the

UVM-ML SC adapter, then the UMV-ML backplane serializes the transaction and packs it into a

byte stream. Afterwards, the SV framework adapter receives the byte stream, de-serializes it into

matched transaction, the helper agent processes it, recognizes a CSR read command and generates

the proper sequence in the pre-silicon validation environment. Upon the completion of the CSR

read operation, the helper agent sends the response back to the Python script via the UMV-ML

adapters and backplane.

3.2. Python – C++ Interpreter

3.2.1 Description

For this purpose, an interpreter is a validation component that connects to a VCS simulation

via the Multilanguage capability provided by UVM. This tool can embed one or more interpreted

language (Python for now) and allow scripts to run in a VCS simulation[10].

3.2.2 Architecture

The generic interpreter is primarily written in C++, using UVM-SystemC as the connection

to the ML backplane, while the backplane itself connects to the System Verilog testbench and the

specific language interpreters are embedded by using standard embedding tools as observed in

Figure 3-2.

 14

UVM-ML Backplane

Python Driver

C++

Interpreter

Python - C++ Interpreter

UVM-ML

SystemC adapter

Figure 3-2: Python Interpreter High Level Architecture

As mentioned in section 2.2, the boost Python wrapper and ctypes functionality are used to

create a bridge between the two main blocks of the interpreter, the driver which is written in Python

and its C++ complement.

This tool has been developed with Python 3.x, so the Python interpreter and all its

collaterals must be 3.x compliant.

3.2.3 Python Driver

Similar to SW drivers that provide SW applications functions to interact with HW devices,

the Python driver in the interpreter side provides functions to the test for it to be able to interact

with a pre-silicon validation environment. For a successful development, the driver must have two

ends and work similar to a Master-Slave interface, where the Master is the Python Driver and has

the control of the execution and the Slave is the C++ interpreter.

 The logic and self-checking engines usually appear completely in Python, and the driver is

the responsible of sending the control messages that eventually are going to be transformed into

Architecture

 15

stimulus at the testbench. The driver functions are defined accordingly the needs of the project,

but the typical functions for an application specific integrated circuit (ASIC) design are:

 open(): Initializes the simulation environment and checks it’s status to make sure it is

ready to interact with tests and obtain resources such as memory allocations.

 close(): releases the resources obtained by calling open().

 csr_write(): CSR write operation with specified parameters sent as KVPs (address,

data, etc). If the design is a PCIe device, this could be either CfgWrite or MMIO write.

 csr_read(): CSR read operation with specified parameters sent as KVPs (address,

number of bytes, etc.). If the design is a PCIe device, this could be either CfgRead or

MMIO read.

 mem_write(): host memory write operation. In a pre-silicon validation environment,

this is usually a write to the system memory model. Certain address translation might

also be performed if needed.

 mem_read(): host memory read operation. In a pre-silicon validation environment,

this is usually a read from the system memory model. Certain address translation might

also be performed if needed.

 sfence(): write fencing operation. For a PCIe design, this can be implemented as a

zero-length MMIO read operation.

 delay(): time delay operation.

 16

3.3. Interpreter and Helper Communication

The bidirectional communication between an interpreter and a helper is achieved by fixed

control messages with defined fields as in Table 3-2: Key Value Pairs (KVP) attributes for csr_read

command, where the fields of name and rspReq are mandatory, the id is assigned automatically by

the tool and any extra information can be sent through a key value pair. At the helper side, the

messages are processed by the System Verilog driver and turned into sequences items returning

completions status and any resulting data to the interpreter side, this can be observed in Figure 3-3.

The key/value pairs contained in the control messages are configurable depending on the

needs of each function, in such a way that the interpreter only needs to understand these specific

messages and not all the instructions delivered by the script. That is why a complement for the

interpreter is needed at the System Verilog, which comprehends the model-specific commands,

this component is called “helper”.

Interpreted

language

script

Verification

environment

Control Messages

Key Value Pairs

Framework

Interpreter Helper
Control Messages

Key Value Pairs

Figure 3-3: Interpreter and Helper Communication

3.3.1 Transaction

The transaction class is used as a container for the control messages sent between C++ and

System Verilog, it is populated with 3 fixed variables and as many KVPs needed according to the

function, these variables that are shown at the Table 3-1: Transaction class variables.

Architecture

 17

 Field Type Description

id int Transaction ID, used to track transaction, maintained by driver

name string Transaction name such as “csr_read, mem_write”, etc

rspReq bool Indicates whether a response is required

kvp map<string,

string>

Command specific attributes in <key, value> pairs

Table 3-1: Transaction class variables

The generic KVP allows any attributes of a command to be defined. For example, command

“csr_read” definition is shown at Table 3-2: KVP attributes for csr_read command. The attributes

of the remaining functions (Section 3.2.3) is not shown in this document, as their key value pairs

might reveal some Intel Corporation confidential information.

Field Type Description

id Auto

name “csr_read”

rspReq true Requires response

kvp[“addr”] <string value> CSR address in hex format

kvp[“byte_count”] <string value> Number of bytes to read

kvp[“result”] <string value> Data returned from read

operation
Table 3-2: KVP attributes for csr_read command

The responses coming from the helper into the interpreter side are, also, generic KVP control

messages with the fields shown in Table 3-3: Response KVP fields.

Field Type Description

kvp[“Result”] <string value> Success or null

kvp[“Info”] <string value> Extra information for debug purposes
Table 3-3: Response KVP fields

The C++ interpreter principal classes’ definitions can be observed in Appendix C. Python

driver engine C++ class definitions.

 18

3.4. Helper Agent

The helper agent residing in the SV framework is like a typical UVM/OVM agent that contains

a driver and a monitor. The monitor observes the SV adapter’s TLM ports and forwards the

transactions to the driver, at this point the received transactions are processed generating specific

test sequences per command that are then transformed into stimulus by the pre-silicon validation

environment. For the commands that require responses, the helper agent receives the results from

the validation environment and sends back to the SC framework, where the interpreter agent

completes a pending command.

The Python scripts can be executed once the transaction class is implemented in the

interpreter and both drivers are added into the framework infrastructure. However, minor

modification are necessary if the tests contain timing control such as calling time.sleep() function,

running it in Python standalone the execution is paused during the timeframe desired, which does

not match to the simulation timing source run by the master framework. These two separate timing

sources cause undeterministic behavior of the simulation. As a solution, every time.sleep()

function call must be replaced with the driver function delay(), which runs on the same timing

source as the rest of the UVM-ML environment.

As an example, the implemented Python code in an application specific driver of the

csr_write and csr_read is shown in Appendix D. Python driver code. A counterpart in SV with

fixed response values was developed in order to test the functionality, this can be seen in Appendix

E. SV development command processing. This last reference is the code used to validate the driver

functionality and does not call any project specific sequence, it returns hardcoded values as a result.

19

4. Testbench Integration

The tool is integrated into the UVM compliant testbench by creating a new helper instance

and added in the UVM database. The processCmd task must be called as it will handle all the

commands that the script sends to the testbench. A good example of the implementation of the

Multilanguage embedding tool in an UVM environment is presented in the code below, where the

important items are highlighted.

…

 set_type_override_by_type(stl_intrp_embed_ctrl_helper::get_type(),

my_ctrl_helper::get_type());

 …

 class my_ctrl_helper extends stl_intrp_embed_ctrl_helper;

 `uvm_component_utils(my_ctrl_helper)

 // Standard UVM_Component functions

 function new(string name, uvm_component parent = null);

 super.new(name, parent);

 endfunction : new

 function void build();

 super.build();

 endfunction : build

 function void connect();

 super.connect();

 endfunction : connect

 /////////////

 // Main task - just pull stuff off the fifo and analyze the coverage sent

 task processCmd(stl_intrp_embed_ctrl_item ctrlIn, output bit processed);

 stl_intrp_embed_ctrl_send_one_seq ctrl_send_seq;

 string idx;

 // see if base class handles this command, and if not we need to handle it

 processed = 0;

 super.processCmd(ctrlIn, processed);

 if (processed) begin

 `uvm_info(get_type_name(), "base class Processed Cmd from IntrpEmbed", UVM_FULL)

 return;

 end

 `uvm_info(get_type_name(), "Processing Cmd from IntrpEmbed - SandBox", UVM_FULL)

 if (ctrlIn.name == "CSR_READ") begin

 `uvm_info(get_type_name(), {"Got a CSR_READ command : ", ctrlIn.sprint}, UVM_NONE)

 ///////////////

 // Send the response – create a single-item sequence and set the results.

 ctrl_send_seq = stl_intrp_embed_ctrl_send_one_seq::type_id::create("cmd_response",

this);

// it is critical you set the following 2 fields in this way.

// Copy the ID and call it “command_response.

 ctrl_send_seq.ctrl.id = ctrlIn.id;

 ctrl_send_seq.ctrl.name = "command_response";

// this is what the script should read as a result

 ctrl_send_seq.ctrl.kvp["result"] = "98765";

 20

Table 4-1: Interpreter tool UVM testbench

// in this simple example, we copy all KVP items. This is not needed, but you must set

 // kvp[STL_INTRP_EMBED_ENGINE_NAME] equal to the value from the command

if (ctrlIn.kvp.first(idx))

 do begin

 ctrl_send_seq.ctrl.kvp[idx] = ctrlIn.kvp[idx];

 end

 while (ctrlIn.kvp.next(idx));

 `ovm_info(get_type_name(), {"sending response : ", ctrl_send_seq.ctrl.sprint},

OVM_NONE)

 // send the result

 ctrl_send_seq.start(sqr_h);

 // mark this as processed

 processed = 1;

 end else begin

 // no - we didn't process!

 processed = 0;

 `ovm_info(get_type_name(), {"unknown command: ", ctrlIn.sprint}, OVM_NONE)

 end

 endtask : processCmd

 endclass: my_ctrl_helper

21

5. API

The interpreter tool has been designed to provide a set of primitives to make easier the debug

and the sync with the testbench. These primitives are accessible from both, script and UVM sides

in such a way that the information messages and errors will be triggered for both or in whichever

side is needed. Depending on the project needs, new primitives can be defined, but for now the

predefined ones are:

 Writing to log file. Equivalent to the UVM macro called `uvm_info the primitive

LOGDebug() has been implemented and is used to display any information needed in

the script and simulation logs during the execution.

 Reporting errors. The statements that use the LOGError() primitive will be reported as

an error in the script execution and will be shown as a UVM_ERROR at the simulation

log.

 Reporting warnings. The statements that use the LOGWarn() primitive will be reported

as a warning in the script execution and will be shown as a UVM_WARNING at the

simulation log.

 Gating/Ungating quiescence. In order to keep control of the execution, the

set_quiesced() primitive can be set true to pause the simulation. This helps to have a

deterministic system.

 Subscription to a monitor. The IE_Subscribe() primitive allows to subscribe to any

monitor associated with a tracker.

 Sending arbitrary commands. The IE_Sendcmd() primitive allows to send any

command to the helper instance that resides in the testbench.

 22

5.1. C++/Python classes

By using the boost library in Python, the C++ classes get exposed to Python, allowing the

execution of two fundamental classes: command and testbench interface.

5.1.1 Command Class – stl_intrp_embed_ctrl_py

The command class is a simple Key-Value Pair container that supports any command that the

testbench helper will implement in the validation environment, the Table 5-1: Command class

methods and properties shows its methods and properties.

Property/Method Type Description

constructor(string name) method
Constructor to set the

command name (see below)

name string property

Sets the command name that

will be used. “” by default, so

it is needed to assign a value.

rspReq Boolean property

Whether a response is

required to this command.

This indicates to the control

helper that it must send an

appropriate response back to

the Python script. False by

default.

id unsigned int property

A unique ID assigned to this

command. When instantiating

this command, the ID is

automatically assigned.

API

 23

string getKVP(string key) method
Gets the value associated with

the given key.

setKVP(string key, string

value)
method

Sets the value for the given

key.

string toString() method
Turns the command into a

string for debug printout.

newID() method

Assign a new ID to this

command. When reusing a

command instance, it needs to

be assigned a newID before

sending the command.

Table 5-1: Command class methods and properties

5.1.1.1 Example Usage

The following python code in Table 5-2 shows how a csr read command is created and filled

with the proper fields.

5.1.2 Testbench Interface – stl_intrp_embed_engine_python_py

This class represents the interface to the whole remaining simulation testbench. An instance

of this is placed in the C++ as static python code in such a way that it is always available and it is

not needed to be placed in every test case. The instance is done by placing the following line of

code, while its methods and properties are described in Table 5-3: Testbench Interface class

properties and methods.

instantiate a cmd, name is “csr_read”

csrReadCmd = stl_intrp_embed_ctrl_py("csr_read")

this command requires a response

csrReadCmd.rspReq = True

set the KVP fields associated with a CSR read

csrReadCmd.setKVP("csr", "my_csr")

csrReadCmd.setKVP("field", "my_field")

csrReadCmd.setKVP("misc", "%d" %(1234))

Table 5-2:Python csr_read command

 24

stl_ie = stl_intrp_embed_engine_python_py()

Property / Method Type Description

release() method

After doing initialization of the script and

subscribing to any monitors, etc. This

method must be called to enable the C++ side

of things to progress. If it is not called, the

simulation will be blocked from progressing.

It is a way of synchronizing the Python script

and the C++ side of things in a minimal way.

LOGInfo(string text) method

Prints out the text to the script’s log file

(created by the C++ side of things).

The text will be prepending by %I{Info}

LOGDebug(string text) method

Prints out the text to the script’s log file

(created by the C++ side of things).

The text will be prepending by %D{Debug}.

This will be printed out only if debug is

enabled in the STL IE.

LOGWarn(string text) method

Prints out the text to the script’s log file

(created by the C++ side of things).

The text will be prepending by %W{Warn}

and will be sent to the UVM side of things as

an uvm_warning.

reportError(string text) method

Prints out the text to the script’s log file

(created by the C++ side of things).

The text will be prepending by %E{Error}

and will be sent to the UVM side of things as

an uvm_error.

sendCmd(stl_intrp_embed_ctrl_py

cmd)
method

Sends a command to the testbench.

API

 25

stl_intrp_embed_ctrl_py

getCmdResp(unsigned int id, bool

wait)

method

Gets the result from the interpreter core for

the command ID given. If the command has

not received a result from the testbench, it

will return with a KVP “result” equal to

“NULL” and “info” equal to why.

If wait is true, it will wait for the successful

result. A successful result will have “result”

equal to “SUCCESS” and the other KVPs set

to the result from the testbench.

stl_intrp_embed_ctrl_py recvCmd() method

Polls the C++ side of the interpreter to see if

the testbench has sent a command to the

script. The KVP “Empty” will be true if there

is no command and false if there is. The

name and other KVP items will be set if

Empty is not true.

boolean hasRecvCmd() method

Returns true if there is a command from the

testbench waiting to be received by the

script.

stl_intrp_embed_ctrl_py

recvFeedback()
method

Polls the C++ side of the interpreter to see if

the testbench has sent a feedback to a

monitor that was subscribed to. The KVP

“Empty” will be true if there is no feedback

and false if there is. If there is feedback, then

the KVP items will be set.

quiesced
Boolean

property

Set this to True when the script determines

that it is quiesced and False when it is not. It

can be set and reset any time that the script

determines this.

Table 5-3: Testbench Interface class properties and methods

 26

5.1.2.1 Example Usage

The following Python code in Table 5-4 shows the usage of the methods provided by the

testbench interface class:

5.2. Standard Commands

Standard commands can be implemented by the tool, for now only the subscribe_to_monitor

method is in place in the current tool release, its description can be seen in Table 5-5.

Command Description

SUBSCRIBE_TO_MONITOR

Causes the testbench to subscribe to a monitor known by

STL_SIMPLE_MON_SOURCE_GROUP and

STL_SIMPLE_MON_SOURCE_INST, which are merged to

create the “monitor_name” in the KVP. See example below.

Those fields will be set in the returned values.

Only monitors that are stl_simple_kvp_monitors work here

since the connection to those monitors happens by default

with the base helper class.
Table 5-5: Standard commands descriptions

import time

start off by saying we're not quiesced

stl_ie.quiesced = False

###########

release the c++ side of things

stl_ie.release()

count = 0

while (count < 10):

 if (count % 3 == 0):

 stl_ie.LOGInfo("count is %d \n" %(count))

 elif (count % 3 == 1):

 stl_ie.LOGDebug("count is %d \n" %(count))

 elif (count % 3 == 2):

 stl_ie.LOGWarn("count is %d \n" %(count))

 count = count + 1

stl_ie.LOGInfo("waiting 10 sec\n")

time.sleep(10)

stl_ie.LOGInfo("Done waiting\n")

finish by indicating we are quiesced

stl_ie.quiesced = True

Table 5-4: Python base test

API

 27

5.2.1 Example Usage

The following Python code in Table 5-6 implements a Monitor Subscription:

The output of above code is seen in Table 5-7:

import time

start off by saying we're not quiesced

stl_ie.quiesced = False

stl_ie.LOGInfo("Doing Monitor Subscribe...\n")

instantiate a cmd

subMonCmd = stl_intrp_embed_ctrl_py("subscribe_to_monitor")

stl_ie.LOGInfo("Doing Monitor Subscription (ID :%d)\n" %(subMonCmd.id))

subMonCmd.setKVP("monitor_name", "sdt_sb_packet__bfm")

send the command to the cpp side

stl_ie.sendCmd(subMonCmd)

###########

release the c++ side of things

stl_ie.release()

get the result

for i in range (0, 50):

 monFeedback = stl_ie.recvFeedback()

 stl_ie.LOGInfo("Waiting on Monitor Feedback #%d\n" %(i))

 while (monFeedback.getKVP("Empty") == "1"):

 stl_ie.LOGInfo("Got Monitor Feedback - Empty\n%s\n" %(monFeedback.toString()))

 time.sleep(1)

 monFeedback = stl_ie.recvFeedback()

 stl_ie.LOGInfo("Got Monitor Feedback\n%s\n" %(monFeedback.toString()))

stl_ie.LOGInfo("waiting 5 sec\n")

time.sleep(5)

stl_ie.LOGInfo("Done waiting\n")

finish by indicating we are quiescedstl_ie.quiesced = True

%I{INFO }{Time 295}{my_monitor_subscribe}:: PY: Got Monitor Feedback

Name: MONITOR_FEEDBACK

Id: 18446744073709551516

rspReq:0

kvp[DESTLID] = 0xab041e

kvp[DIRECTION] = Tx

kvp[EMPTY] = 0

kvp[OPCODE] = SDT_SB_OP_RSP_E2E_ONLY_ACK

kvp[PACKETTYPE] = SDT_SB_TYPE_RSP

kvp[SOURCELID] = 0xd269f4

kvp[STL_INTRP_EMBED_ENGINE_NAME] = my_monitor_subscribe

kvp[STL_SIMPLE_MON_SOURCE_GROUP] = sdt_sb_packet

kvp[STL_SIMPLE_MON_SOURCE_INST] = bfm

kvp[TIME] = 59000

Table 5-6: Python Monitor Subscription

Table 5-7: Monitor Suscription Output

29

6. Environment setup

A basic driver test has been placed inside the Python Embedding Framework repository, this

driver test works as a hello world and is able to demonstrate the robustness of the project, also

helps debugging any issue on the functions implementation before merging it into any VIP

environment.

Before cloning the embedded repository it is essential to have in place a working environment

that includes the synopsis VCS simulation tool and Python 3 or greater.

The following section presents a step by step guide to run the python driver test with the

UVM-ML capability in the VCS simulator.

6.1. Step by step execution guide

As there is a fixed infrastructure, the process of setup has been simplified into 3 main scripts

that run in a linux shell, the first step is to generate the TDIF files from an XMLand compile them

to enable the SV and C++ code for Multilanguage capability. This can be obtained by running the

command in Table 6-1.

The expected output in the terminal is what can be seen in Table 6-2:

>> source scripts/make_tdif.cmd

-I-: Generated code from XML

-I-: Source XML: /nfs/sc/disks/mst_pe_czuleta/stl_intrp_embed-

srvr10nm/stl_intrp_embed_common_pkg/tdif/ctrl.xml

-I-: Reading: /nfs/sc/disks/mst_pe_czuleta/stl_intrp_embed-

srvr10nm/stl_intrp_embed_common_pkg/tdif/ctrl.xml

-I-: Processing TDIF: Source: manual Version: 1

-I-: PARSING: class: stl_intrp_embed_ml_ctrl

-I-: Generating SV Code

-I-: Generating SC Code

-I-: Generating e Code

-I-: Done Generating Code

-I-: Done.

STL IE Regression PASSED!!

Test PASS

Table 6-1: Multilanguage compilation command line

Table 6-2: Multilanguage compilation expected output

 30

This script should be executed only once, as the Multilanguage plane code is already robust

and is meant to be static. The next step is to run the script responsible of compiling the whole C++

infrastructure, every time a modification is made to the interpreter C++ code, the linux command

line in Table 6-3 should be executed:

The expected output in the terminal is shown in Table 6-4:

Finally, the UVM testbench should be compiled after any modification made to the C++ or

SV code, also this script executes as sanity, the base test for the interpreter tool with the command

in Table 6-5.

The expected output in the terminal is seen in Table 6-6:

>> source scripts/make_sc.cmd

scons: done building targets.

Compile PASSED for /nfs/…/sandbox/sv/full_ie

Simulation PASSED for /nfs/…/sandbox/sv/full_ie

STL IE Regression PASSED!!

>> source scripts/make_sandbox_full_ie.cmd

Table 6-3: C++ compilation command line

Table 6-4: C++ compilation expected output

Table 6-5: UVM testbench compilation command line

Table 6-6: UVM testbench compilation expected output

31

7. Results

7.1. Base Test

As stated before, the base test runs by sourcing the full_ie makefile after compiling the SV

code, the base test at the UVM side called “stl_intrp_embed_test_base” is executed, it is

responsible of parsing the script name and the parameters needed for the VCS simulation, the

command formed by the Makefile for running the base test is:

On the other hand, the Python base test perform the primitives shown in Table 7-3: Testbench

Interface class properties and methods, proving that the Python logic can be translated into UVM

sequences, functions or tasks. The Python base test does not need to be included in every test

scenario, hence, some lines should be legacy code for every Python simulation. The complete

Python base test code is shown below, where the legacy code is highlighted.

>> /nfs/…/sandbox/sv/full_ie/results_stl_intrp_embed_pkg_sles11/simv

+UVM_NUM_ERROR=1 +UVM_VERBOSITY=UVM_FULL +ntb_random_seed=1 +SC_ENVNAME=my_sc_env

+UVM_TESTNAME=stl_intrp_embed_test_base +stl_ie_debug=on +stl_ie_log=on

+stl_ie_tracker=on +stl_ie_min_quiesce_length=1001

+stl_ie_stop_count_threshold=6001 +stl_tracker_all=on +verbose=0

+stl_ie_script0=sandbox/sv/full_ie/myBaseTest.py +stl_ie_script_type0=python

+stl_ie_script_name0=my_python +stl_ie_script_param0="-bob='hello world'"

start off by saying we're not quiesced

ie_setQuiesced(False)

release the c++ side of things

ie_release()

Get the arguments

import sys

ie_LOGInfo("argv = %s\n"%(str(sys.argv)))

print(sys.argv)

loop with some different print outs

count = 0

while (count < 10):

 if (count % 3 == 0):

 ie_LOGInfo("remainder 0, count is %d \n" %(count))

 elif (count % 3 == 1):

 ie_LOGDebug("remainder 1, count is %d \n" %(count))

 elif (count % 3 == 2):

 ie_LOGWarn("remainder 2, count is %d \n" %(count))

 count = count + 1

driver_sleep(.00000001)

ie_LOGInfo("Done waiting\n")

finish by indicating we are quiesced

ie_setQuiesced(True)

Table 7-1: Base test simulation command

Table 7-2: Python base test code

 32

For every simulation performed, it is expected to have two separate log files, one is for the

script execution and the remaining one is for the VCS simulation, which also is set to include the

information displayed in the first log. The python run log of the base test prints the following

statements.

The VCS simulation log is where every script, as well as, logic design or verification

component messages are merged, in the specific case of the Python base test, the interpreter is the

only component in the environment, so it is expected to see the same messages that in the

interpreter but with a timestamp and UVM format, as seen below.

%I{INFO }{Time 2}{my_python}:: spawning thread using script

sandbox/sv/full_ie/myBaseTest.py...

%I{INFO }{Time 2}{my_python}:: Waiting for CV...

%I{INFO }{Time 2}{my_python}:: Initializing Python

%I{INFO }{Time 2}{my_python}:: Adding arguments to argc/argv for Python

py_argv[0] = 0x10f69e0 (From /nfs/.../sandbox/sv/full_ie/myBaseTest.py)

py_argv[3] = 0x104abb0 (From -bob=hello world)

%I{INFO }{Time 2}{my_python}:: calling extract

%I{INFO }{Time 2}{my_python}:: extracted Python gbl_stl_ie object

%I{INFO }{Time 2}{my_python}:: executing file "sandbox/sv/full_ie/myBaseTest.py"

from path "/nfs/.../"

%I{INFO }{Time 2}{my_python}:: PY: LOG DEBUG. Loading VCS Driver

%I{INFO }{Time 2}{my_python}:: Released CV

%I{INFO }{Time 2}{my_python}:: Done waiting for CV...

%I{INFO }{Time 2}{my_python}:: PY: argv =

['/nfs/.../sandbox/sv/full_ie/myBaseTest.py', '-bob=hello world']

%I{INFO }{Time 2}{my_python}:: PY: remainder 0, count is 0

%D{DEBUG}{Time 2}{my_python}{T# 1}:: PY: remainder 1, count is 1

%W{WARN }{Time 2}{my_python}:: PY: remainder 2, count is 2

%I{INFO }{Time 2}{my_python}:: PY: remainder 0, count is 3

%D{DEBUG}{Time 2}{my_python}{T# 1}:: PY: remainder 1, count is 4

%W{WARN }{Time 2}{my_python}:: PY: remainder 2, count is 5

%I{INFO }{Time 2}{my_python}:: PY: remainder 0, count is 6

%D{DEBUG}{Time 2}{my_python}{T# 1}:: PY: remainder 1, count is 7

%W{WARN }{Time 2}{my_python}:: PY: remainder 2, count is 8

%I{INFO }{Time 2}{my_python}:: PY: remainder 0, count is 9

%I{INFO }{Time 2}{my_python}:: PY: waiting 10 ticks

%I{INFO }{Time 2}{my_python}:: PY: DELAY n = 1 ticks

%I{INFO }{Time 3}{my_python}:: PY: Done waiting

%I{INFO }{Time 3}{my_python}:: python exec_file success!

Table 7-3: Base test Python simulation log

Results

 33

UVM_INFO @ 0: reporter [UVM-ML]: Found framework command line arg

UVM_TESTNAME=stl_intrp_embed_test_base

SC_ENVNAME=my_sc_env

UVM_INFO /.../tb_comp_pkg.svh(290)@0: [my_ctrl_subscriber] New component created

UVM_INFO /.../tb_comp_pkg.svh(422)@0: [IE Sandbox Test] Checking for STL IE SB

Plusargs

UVM_INFO /.../tb_comp_pkg.svh(56)@0: [stl_ie_sb_env] build called

SC intrp_embed_env::end_of_elaboration

SC intrp_embed_env::start_of_simulation

UVM_INFO /.../tb_comp_pkg.svh(454)@0:[TEST] SV run phase

UVM_INFO /.../tb_comp_pkg.svh(498)@0:[stl_intrp_embed_test_base] Tick 0

UVM_INFO /.../stl_intrp_embed_ctrl_mon.sv(56)@2000: [ie_ctrl_mon] STL INTRP EMBED

is quiesced

UVM_INFO /.../stl_intrp_embed_ctrl_mon.sv(60)@3000: [ie_ctrl_mon] STL INTRP EMBED

is not quiesced

UVM_INFO /.../stl_intrp_embed_ctrl_mon.sv(47)@4000: [STL INTRP EMBED] {my_python}::

PY: remainder 0, count is 0

UVM_INFO /.../stl_intrp_embed_ctrl_mon.sv(47)@4000: [DEBUG] {my_python}:: PY:

remainder 1, count is 1

UVM_WARNING /.../stl_intrp_embed_ctrl_mon.sv(49)@4000: [STL INTRP EMBED]

{my_python}:: PY: remainder 2, count is 2

--- UVM Report Summary ---

Quit count : 0 of 1

** Report counts by severity

UVM_INFO : 251

UVM_WARNING : 10

UVM_ERROR : 0

UVM_FATAL : 0

Table 7-4: Base test VCS simulation log

 34

7.2. Driver Test

The driver test implements in a sandbox area all the functions that have been defined in the

Python driver (Section 3.2.3), the source code is shown next.

import time

import imp

import os

import subprocess

import sys

ie_setQuiesced(False)

ie_release()

open_hdl()

wr_csr(0x0,0x4e31)

wr_config_csr(0,0x4e31)

rd_csr(0x1e01010)

rd_config_csr(0x0)

driver_sleep(.000001)

sfence()

wr_csr(0x8,0x4e31)

sfence()

wr_csr(0x402008,0x4e31)

sfence()

rd_csr(0xc04008)

wr_csr(0xc04008,0x4e31)

sfence()

wr_host_mem(8,0x1e01010,[0x4A])

wr_host_mem8b(0x1e01010,[0x1A2B3C4D5E6F7A8B])

wr_host_mem4b(0x1e01010,[0x1A2B3C4D5E6F7A8B])

wr_host_mem2b(0x1e01010,[0x1A2B3C4D5E6F7A8B])

wr_host_mem1b(0x1e01010,[0x1A2B3C4D5E6F7A8B])

ie_LOGInfo("LOG DEBUG. Read host mem return %s\n"%rd_host_mem(8,0x1e01010))

ie_LOGInfo("LOG DEBUG. Read host mem return %s\n"%rd_host_mem8b(0x1e01010))

ie_LOGInfo("LOG DEBUG. Read host mem return %s\n"%rd_host_mem4b(0x1e01010))

ie_LOGInfo("LOG DEBUG. Read host mem return %s\n"%rd_host_mem2b(0x1e01010))

delay(10)

close_hdl()

ie_LOGInfo("LOG DEBUG. Close return handle value:%d\n"%(fxr_hdl))

ie_setQuiesced(True)

Table 7-5: Driver Test source code

Results

 35

After running the simulation the Python logfile shows initialization, the parsing of arguments,

the loading of the proper drivers, the sends and responses for each command (Just the first

CSR_WRITE shown here) and finally the test overall result:

Table 7-6: Python Driver Test Python log

%I{INFO }{Time 2}{my_driver_test}:: spawning thread using script

sandbox/sv/driver_test/driver_test.py...

%I{INFO }{Time 2}{my_driver_test}:: Waiting for CV...

%I{INFO }{Time 2}{my_driver_test}:: Initializing Python

%I{INFO }{Time 2}{my_driver_test}:: Adding arguments to argc/argv for Python

argc = 1 argv =

%I{INFO }{Time 2}{my_driver_test}:: PY: LOG DEBUG. Loading VCS Driver

%I{INFO }{Time 2}{my_driver_test}:: PY: LOG DEBUG. Test import driver

%I{INFO }{Time 2}{my_driver_test}:: Released CV

%I{INFO }{Time 7}{my_driver_test}:: Calling sendCmd with cmd info: id:1 (new: 1)

name: csr_write (new: CSR_WRITE)

%D{DEBUG}{Time 7}{my_driver_test}{T# 6}:: inserted cmdID 1

%D{DEBUG}{Time 12}{my_driver_test}{T# 11}:: in getCmdResp - cmdId = 1 got a

response

retVal = SystemC Class Data Dumper for Class stl_intrp_embed_ctrl

 name = COMMAND_RESPONSE

 id = 0x00000001

 rspReq? = false

 kvp[ADDR] = "0x0"

 kvp[BYTE_COUNT] = "8"

 kvp[CSR_NAME] = "CSR[0][0]"

 kvp[DATA] = "0x4e31"

 kvp[RESULT] = "1"

kvp[STL_INTRP_EMBED_ENGINE_NAME] = "my_driver_test"

%I{INFO }{Time 123}{my_driver_test}:: PY: CLOSE HDL. Handler has been closed

successfully

%I{INFO }{Time 123}{my_driver_test}:: PY: LOG DEBUG. Close return handle value:-1

%I{INFO }{Time 123}{my_driver_test}:: python exec_file success!

 36

The equivalent information is shown in the VCS log file, the info, debug or even messages

of this log are created by the testbench after being called from python, while in the previous log

are created fully in Python:

Table 7-7: Python Driver Test VCS log

UVM_INFO /nfs/.../sandbox/sv/full_ie//tb_comp_pkg.svh(161) @ 10000:

stl_intrp_embed_test_base.stl_ie_sb_env.ie_ctrl.ie_ctrl_help [my_ctrl_helper] Got a

CSR_WRITE command :

Name Type Size Value

--

stl_intrp_embed_common_+ stl_intrp_embed_ct+ -

stl_intrp_embed_common_pkg::stl_intrp_embed_ctrl@321

 name string 9 CSR_WRITE

 id integral 64 'h1

 rspReq integral 1 'h1

 kvp aa(string,string) 6 -

 [ADDR] string 3 0x0

 [BYTE_COUNT] string 1 8

 [CSR_NAME] string 17 CSR[0][0]

 [DATA] string 6 0x4e31

 [STL_INTRP_EMBED_EN+ string 14 my_driver_test

--

UVM_INFO /nfs/.../sandbox/sv/full_ie//tb_comp_pkg.svh(175) @ 10000:

stl_intrp_embed_test_base.stl_ie_sb_env.ie_ctrl.ie_ctrl_help [my_ctrl_helper]

sending response :

Name Type Size Value

--

ctrl_send_one_seq_ctrl stl_intrp_embed_ct+ - ctrl_send_one_seq_ctrl@325

 name string 16 command_response

 id integral 64 'h1

 rspReq integral 1 'h0

 kvp aa(string,string) 7 -

 [ADDR] string 3 0x0

 [BYTE_COUNT] string 1 8

 [CSR_NAME] string 17 CSR[0][0]

 [DATA] string 6 0x4e31

 [STL_INTRP_EMBED_EN+ string 14 my_driver_test

 [result] string 1 1

--

…

UVM_INFO /nfs/.../sandbox/sv/full_ie//tb_comp_pkg.svh(443) @ 40156000:

stl_intrp_embed_test_base [Test PASS] SV report phase

--- UVM Report Summary ---

Quit count : 0 of 1

** Report counts by severity

UVM_INFO : 371

UVM_WARNING : 9

UVM_ERROR : 0

UVM_FATAL : 0

Results

 37

Currently, in this development infrastructure, there is not a DUT instance in place, thus there

are not interfaces where the stimulus can be observed in waveforms. Nevertheless, it has been

demonstrated that Python can be understood by an UVM testbench, where it is easily transformed

into stimulus.

39

8. Conclusion

Nowadays, in the changing ecosystem of the integrated circuits design process, the FPGA

based emulation platforms are commonly used to enable SW/HW co-validation before the specific

platform is available. This project demonstrates robust and reliable validation component that

represents an alternative or a complement to FPGA platforms with a valuable advantage of

mapping real chip usage code directives into a simulation model, by integrating it successfully,

this tool is able to reproduce any post-silicon issue in simulation model, or even find it earlier in

the project development while decreasing its cost, increasing its quality and simplifying the debug

process.

The Multilanguage Interpreter Embedding tool is part of a process of continuous improvement

inside Intel Corporation, its development represents a major effort to deliver high quality products

to market as the idea was conceived after detecting a gap within the SOC development process

between the design verification and the post-silicon validation process.

This Python Interpreter Embedding tool for shift-left validation has been successfully

implemented within an IP at Intel Corporation, leading to the first time a SW test runs in a pre-

silicon model and supporting the advantages this thesis establishes.

At this point, it has been demonstrated that interpreted language scripts can be executed in a

pre-silicon simulation model fulfilling its objectives of cross validating software with hardware

and accelerating the validation process.

Future work involves the integration to a specific IP model, create its own driver and obtain

a benchmark out of its behavior. Also, adding the support of other scripting languages such as Perl

or Ruby should be considered for the continuity of this project.

41

Appendix A. Python function call in C

static PyObject *my_callback = NULL;

static PyObject *

my_set_callback(PyObject *dummy, PyObject *args)

{

 PyObject *result = NULL;

 PyObject *temp;

 if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {

 if (!PyCallable_Check(temp)) {

 PyErr_SetString(PyExc_TypeError, "parameter must be callable");

 return NULL;

 }

 Py_XINCREF(temp); /* Add a reference to new callback */

 Py_XDECREF(my_callback); /* Dispose of previous callback */

 my_callback = temp; /* Remember new callback */

 /* Boilerplate to return "None" */

 Py_INCREF(Py_None);

 result = Py_None;

 }

 return result;

}

43

Appendix B. Boost Python Hello World

C++ function definition:

char const* greet()

{

 return "hello, world";

}

Python call:

#include <boost/python.hpp>

BOOST_PYTHON_MODULE(hello_ext)

{

 using namespace boost::python;

 def("greet", greet);

}

Python run:

>> import hello_ext

>>> print hello_ext.greet()

hello, world

45

Appendix C. Python driver engine C++ class

definitions

BOOST_PYTHON_MODULE(em_stl_intrp_embed_ctrl_py) {

 python::class_<stl_intrp_embed_ctrl_py> ("stl_intrp_embed_ctrl_py",

init<std::string>())

 .def("getKVP", &stl_intrp_embed_ctrl_py::getKVP)

 .def("setKVP", &stl_intrp_embed_ctrl_py::setKVP)

 .def("toString", &stl_intrp_embed_ctrl_py::toString)

 .def("newID", &stl_intrp_embed_ctrl_py::newID)

 .add_property("name", &stl_intrp_embed_ctrl_py::getName,

&stl_intrp_embed_ctrl_py::setName)

 .add_property("rspReq", &stl_intrp_embed_ctrl_py::getRspReq,

&stl_intrp_embed_ctrl_py::setRspReq)

 .add_property("id", &stl_intrp_embed_ctrl_py::getID,

&stl_intrp_embed_ctrl_py::setID);

}

void stl_intrp_embed_ctrl_py::setKVP(string key, string val) {

 string localKey = key;

 strToUpper(localKey);

 kvp[localKey] = val;

}

string stl_intrp_embed_ctrl_py::toString() const {

 stringstream ss;

 ss << "Name: " << name << endl;

 ss << "Id: " << id << endl;

 ss << "rspReq:" << rspReq << endl;

 for (auto itr = kvp.begin(); itr != kvp.end(); ++itr) {

 ss << "kvp[" << itr->first << "] = " << itr->second << endl;

 }

 return ss.str();

}

string stl_intrp_embed_ctrl_py::getKVP(string key) {

 string localKey = key;

 strToUpper(localKey);

 auto itr = kvp.find(localKey);

 if (itr != kvp.end()) {

 return itr->second;

 } else {

 return string("");

 }

}

// Pack the Base class wrapper into a module

BOOST_PYTHON_MODULE(em_stl_intrp_embed_engine_python_py) {

 python::class_<stl_intrp_embed_engine_python_py>

("stl_intrp_embed_engine_python_py")

 .def("LOGInfo", &stl_intrp_embed_engine_python_py::LOGInfo)

 .def("LOGWarn", &stl_intrp_embed_engine_python_py::LOGWarn)

 .def("reportError", &stl_intrp_embed_engine_python_py::reportError)

 .def("LOGDebug", &stl_intrp_embed_engine_python_py::LOGDebug)

 46

 .def("sendCmd", &stl_intrp_embed_engine_python_py::sendCmd)

 .def("getCmdResp", &stl_intrp_embed_engine_python_py::getCmdResp)

 .def("recvCmd", &stl_intrp_embed_engine_python_py::recvCmd)

 .def("hasRecvCmd", &stl_intrp_embed_engine_python_py::hasRecvCmd)

 .def("recvFeedback", &stl_intrp_embed_engine_python_py::recvFeedback)

 .def("hasRecvFeedback", &stl_intrp_embed_engine_python_py::hasRecvFeedback)

 .def("release", &stl_intrp_embed_engine_python_py::release)

 .def("delay", &stl_intrp_embed_engine_python_py::delay)

 .add_property("quiesced", &stl_intrp_embed_engine_python_py::getQuiesced,

&stl_intrp_embed_engine_python_py::setQuiesced);

}

void stl_intrp_embed_engine_python_py::LOGInfo(std::string str) {

 if (myCppP) {

 stringstream ss;

 ss << "PY: " << str;

 myCppP->LOGInfo(ss.str());

 }

}

void stl_intrp_embed_engine_python_py::LOGWarn(std::string str) {

 if (myCppP) {

 stringstream ss;

 ss << "PY: " << str;

 myCppP->LOGWarn(ss.str());

 }

}

void stl_intrp_embed_engine_python_py::LOGDebug(std::string str) {

 if (myCppP) {

 stringstream ss;

 ss << "PY: " << str;

 myCppP->LOGDebug(ss.str());

 }

}

void stl_intrp_embed_engine_python_py::reportError(std::string str) {

 if (myCppP) {

 stringstream ss;

 ss << "PY: " << str;

 myCppP->reportError(ss.str());

 }

}

47

Appendix D. Python driver code

csr_write:

csr_read:

 # instantiate a cmd
 csrWriteCmd = stl_intrp_embed_ctrl_py("csr_write")

 csrWriteCmd.rspReq = True

 csrWriteCmd.setKVP("addr", hex(waddr))

 csrWriteCmd.setKVP("data", hex(wdat))

 csrWriteCmd.setKVP("byte_count", str(bc))

 csrWriteCmd.setKVP("csr_name", csr_name) #str(csr._name))

 if (idx != -1):

 csrWriteCmd.setKVP("inst", str(int(idx)))

 csrWriteCmd.setKVP("func", func_str)

 # send the command to the cpp side

 ie_sendCmd(csrWriteCmd)

 # get the result

 csrWriteResp = ie_getCmdResp(csrWriteCmd.id, True)

 # instantiate a cmd
 csrReadCmd = stl_intrp_embed_ctrl_py("csr_read")

 csrReadCmd.rspReq = True

 csrReadCmd.setKVP("addr", hex(raddr))

 csrReadCmd.setKVP("byte_count", str(bc))

 csrReadCmd.setKVP("csr_name", str(csr_name))

 if idx != None and idx != -1:

 csrReadCmd.setKVP("inst", str(int(idx)))

 csrReadCmd.setKVP("func", func_str)

 # send the command to the cpp side

 ie_sendCmd(csrReadCmd)

 # get the result

 csrReadResp = ie_getCmdResp(csrReadCmd.id, True)

49

Appendix E. SV development command processing

 // Main task - just pull stuff off the fifo and analyze the coverage sent

 task processCmd(stl_intrp_embed_ctrl_item ctrlIn, output bit processed);

 stl_intrp_embed_ctrl_send_one_seq ctrl_send_seq;

 string idx;

 // see if base class handles this command

 processed = 0;

 super.processCmd(ctrlIn, processed);

 if (processed) begin

 `ovm_info(get_type_name(), "base class Processed Cmd from IntrpEmbed",

OVM_FULL)

 return;

 end

 `ovm_info(get_type_name(), "Processing Cmd from IntrpEmbed - SandBox", OVM_FULL)

 if (ctrlIn.name == "CSR_READ") begin

 `ovm_info(get_type_name(), {"Got a CSR_READ command : ", ctrlIn.sprint},

OVM_NONE)

 ///////////////

 // Send the response

 ctrl_send_seq =

stl_intrp_embed_ctrl_send_one_seq::type_id::create("cmd_response", this);

 ctrl_send_seq.ctrl.id = ctrlIn.id;

 ctrl_send_seq.ctrl.name = "command_response";

 ctrl_send_seq.ctrl.kvp["result"] = "0xF2F342A100003500";

 if (ctrlIn.kvp.first(idx))

 do begin

 ctrl_send_seq.ctrl.kvp[idx] = ctrlIn.kvp[idx];

 end

 while (ctrlIn.kvp.next(idx));

 `ovm_info(get_type_name(), {"sending response : ", ctrl_send_seq.ctrl.sprint},

OVM_NONE)

 ctrl_send_seq.start(sqr_h);

 // mark this as processed

 processed = 1;

 end else if (ctrlIn.name == "CSR_WRITE") begin

 `ovm_info(get_type_name(), {"Got a CSR_WRITE command : ", ctrlIn.sprint},

OVM_NONE)

 ///////////////

 // Send the response

 ctrl_send_seq =

stl_intrp_embed_ctrl_send_one_seq::type_id::create("cmd_response", this);

 ctrl_send_seq.ctrl.id = ctrlIn.id;

 ctrl_send_seq.ctrl.name = "command_response";

 ctrl_send_seq.ctrl.kvp["result"] = "1";

 50

 if (ctrlIn.kvp.first(idx))

 do begin

 ctrl_send_seq.ctrl.kvp[idx] = ctrlIn.kvp[idx];

 end

 while (ctrlIn.kvp.next(idx));

 `ovm_info(get_type_name(), {"sending response : ",

ctrl_send_seq.ctrl.sprint}, OVM_NONE)

 ctrl_send_seq.start(sqr_h);

 // mark this as processed

 processed = 1;

51

References

[1] E. Singh, D. Lin, C. Barrett, and S. Mitra, “Symbolic Quick Error Detection for Pre-Silicon

and Post-Silicon Validation: Frequently Asked Questions,” IEEE Des. Test, vol. 33, no. 6, pp.

55–62, Dec. 2016.

[2] Y. Liu, C. Aparicio, and L. Chang, “Shift left – Running Python tests on pre-silicon validation

environment,” presented at the Intel Design and Test Technology Conference 2019, 2019, p.

6.

[3] A. Nahir et al., “Bridging pre-silicon verification and post-silicon validation,” in Design

Automation Conference, 2010, pp. 94–95.

[4] “UVM-ML Open Architecture,” Accellera Systems Initiative Forums. [Online]. Available:

http://forums.accellera.org/files/file/65-uvm-ml-open-architecture/. [Accessed: 19-Jun-2019].

[5] Cadence Design Systems, Inc. and Advanced Micro Devices, Inc., “UVM-ML Integrator User

Guide.” 04-Aug-2014. Available: https://www.academia.edu/11301150/UVM-

ML_User_Guide_UVM-ML_Integrator_User_Guide

[6] “1. Extending Python with C or C++ — Python 3.7.4rc1 documentation.” [Online]. Available:

https://docs.python.org/3/extending/extending.html. [Accessed: 23-Jun-2019].

[7] “ctypes — A foreign function library for Python — Python 3.7.4rc1 documentation.” [Online].

Available: https://docs.python.org/3/library/ctypes.html#module-ctypes. [Accessed: 23-Jun-

2019].

[8] “Boost.Python - 1.69.0.” [Online]. Available:

https://www.boost.org/doc/libs/1_69_0/libs/python/doc/html/index.html. [Accessed: 23-Jun-

2019].

[9] P. S. Magnusson et al., “Simics: A full system simulation platform,” Computer, vol. 35, no. 2,

pp. 50–58, Feb. 2002.

[10] Jonathan Newton and Christian Aparicio, “STL Interpreter Embed Tool Reference.” 08-

Jun-2018. Intel Documentation.

	Multi Language Interpreter Embedding Tool for Shift Left Pre-Silicon Validation
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Acronyms, Abbreviations and Keywords
	Content
	1. Introduction
	2. Background
	2.1. UVM-ML
	2.1.1 Adapters

	2.2. Python extension to C++
	2.2.1 Ctypes
	2.2.2 Boost Python

	3. Architecture
	3.1. Overview
	3.2. Python – C++ Interpreter
	3.2.1 Description
	3.2.2 Architecture
	3.2.3 Python Driver

	3.3. Interpreter and Helper Communication
	3.3.1 Transaction

	3.4. Helper Agent

	4. Testbench Integration
	5. API
	5.1. C++/Python classes
	5.1.1 Command Class – stl_intrp_embed_ctrl_py
	5.1.1.1 Example Usage
	5.1.2 Testbench Interface – stl_intrp_embed_engine_python_py
	5.1.2.1 Example Usage

	5.2. Standard Commands
	5.2.1 Example Usage

	6. Environment setup
	6.1. Step by step execution guide

	7. Results
	7.1. Base Test
	7.2. Driver Test

	8. Conclusion
	Appendix A. Python function call in C
	Appendix B. Boost Python Hello World
	Appendix C. Python driver engine C++ class definitions
	Appendix D. Python driver code
	Appendix E. SV development command processing
	References

