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Abstract 

 

Throughout the years, digital and analog designs have evolved meaningfully towards performance 

improvement, cost reduction and new features enablement. As a result, complexity has increased 

rapidly, demanding the development of better validation techniques in order to meet the time-to-

market pressure calls with a bug free device. The primary choice of silicon development companies 

to validate software before the hardware becomes available, until now, is the FPGA based 

emulation platform, which leads to a big gap as it loads a register transfer level code that is usually 

not validated with SW-like flows in the early development stages.  SW flows, mainly drivers, are 

validated in parallel to HW on SW emulation platforms. In order to fill the validation gap and 

push the finding of certain bugs to an earlier development stage, the idea of running SW tests with 

no or little modification in simulation environments would represent a big return of investment, 

rising the reliability of the system before manufacturing it, reducing time to market and 

development cost of the system on chip. This thesis explains the complete development of a 

framework able to run python scripts in VCS simulation by implementing the OVM Multi Language 

capability.
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1. Introduction 

Throughout the years, digital and analog designs have evolved meaningfully towards 

performance improvement, cost reduction and new features enablement. As a result, complexity 

has increased rapidly, demanding the development of better validation techniques in order to meet 

the time-to-market pressure calls with a bug free device.  

 

The primary choice of silicon development companies to validate software (SW) before 

the hardware (HW) becomes available, until now, is the FPGA based emulation platform, which 

leads to a big gap as it loads a register transfer level (RTL) code that is usually not validated with 

SW-like flows in the early development stages. Performing SW validation on an emulation 

platform becomes a challenging team work as it requires the collaboration of both, HW and SW 

engineers solving first non RTL issues and then real design problems with limited visibility.  

 

As the emulation platforms are used to validate SW flows before the silicon becomes 

available, the main goal of pre-silicon validation is to bring up individual features and connectivity, 

checking whether the implemented design meets defined specifications[1].  

 

 SW flows, mainly drivers, are usually validated in emulation platforms at the same time 

that HW is validated through pre-silicon simulations with real RTL. Even HW and SW validation 

efforts are essential activities in the integrated circuit design process, there is no way to detect 

discrepancy between both of them as the test content of both is completely different.  

 

In order to fill this validation gap and push the finding of certain bugs to an earlier 

development stage, the idea of running SW tests with no or little modification in simulation 

environments would represent a big return of investment, rising the reliability of the system before 

manufacturing it, reducing time to market and development cost of the system on chip (SoC)[2]. 

While adding controllability, repeatability and observability to the behavior of the design when 

performing a pre-silicon simulation as stablished by Bob Bentley in the 47th Design Automation 

Conference [3].  
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The validation process of any robust SoC tends to be an iterative work, creating a cycle of 

run, debug, and fix several times until the design does what is meant to do with all the collaterals 

in place. It is common that a great amount of issues are from the verification environment or even 

errors while coding the tests. Every time a change is made to the code, it is needed to be compiled, 

this task can be as short as 5 minutes or as long as 1 or 2 hours, as a result, the compilation process 

slows down the validation progress. 

`

 

Figure 1-1: Traditional Validation Workcycle 

 

 

By implementing the Multilanguage (ML) capability in an Universal Verification 

Methodology (UVM) environment, which is widely used all along the HW validation industry,  

for a specific Intellectual Property (IP) the integration of code written in different programming 

languages and methodologies can be achieved[4]. We call framework to every Validation 

Intellectual Property (VIP) implemented using a given language in such a way that UVM-ML can 

implement an internal communication between all of them and externally via its backplane 

adapters as seen in Figure 1-2. For the user, the backplane adapter is a normal Transaction Level 

Modeling (TLM) port, simple data transactions as integers or strings are copied from a source to a 

destination framework, while complex transactions like classes are serialized in the source end and 

then copied to the destination framework who is responsible of executing the deserialization to a 

matched type, finally events and barriers are synchronized with common events and barrier pools. 
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UVM-ML Backplane

UVM-ML 

SC Adapter

UVM-ML 

SV Adapter

System C 

Framework

SystemVerilog 

Framework

 

Figure 1-2: UVM-ML SC and SV Architecture 

 

When having an UVM-ML environment that involves both, SystemVerilog (SV) and 

SystemC (SC), the SV framework usually operates as master, controlling simulation timing while 

the SC framework works as a slave synchronized to the master’s time. In this side-by-side 

hierarchy, the UVM pre-run phases are executed individually in each framework while the run 

phases are executed synchronously. 

 

All along the industry, nowadays Python is commonly chosen to write SoC SW tests that 

run in different software simulation platforms. The goal for the development of this thesis/project 

is to demonstrate that specific SW tests written in any interpreted language can stress a DUT during 

a pre-silicon simulation, pushing the finding of several potential design bugs earlier in the project 

timeline. This is achieved by introducing to the SC framework the capability of communicating 

with the desired interpreted language, Python in this case. The SC agent needs to launch an 

interpreter, which exchanges data with Python scripts and synchronizes with the rest of the UVM-

ML components. A helper agent in the SV framework is also needed to process and generate 

according sequences as of the commands received form the SC framework, then the sequences, as 

in any UVM environment, drive stimulus to the Design Under Test (DUT) and finally return results 
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back to the interpreter agent, leading to a bidirectional communication between Verification 

Components (VC). 

 

An advantage of implementing python testing with a SC framework is that the testbench 

(TB) and sequences remain always the same and there is no need of recompiling every time a 

change is done to the test, as python is an interpreted language and the logic of it is extracted during 

runtime, reducing the time taken by the tradition validation work cycle. 

 

The development of the complete Python Embedding Framework for pre-silicon 

simulations is discussed through this document, a brief background about the tools implemented 

is shown in Chapter 2, the high level overview and architecture are described in Chapter 3, it 

explains its architecture and the way it communicates through the UVM-ML backplane. Chapter 

4 explains the main components needed in the testbench, Chapter 5 is about the way the scripts 

need to be written using the capabilities that the tool provides, meanwhile, Chapter 6 shows how 

the environment is built, and finally Chapter 7 provides details on the results obtained.
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2. Background 

This chapter explains the functionality of the foreign tools that make possible the end to end 

communication between Python (Interpeted language) and System Verilog (Hardware description 

and Verification language), the main component is the Multilanguage block, which enables the 

data exchange and synchronization between SV and C++ through a SC adapter, while Python talks 

to C++ through Boost and Ctypes functionalities. 

2.1. UVM-ML 

The Multi Language capability is an open source code that can be built in a Universal 

Verification Methodology environment. It forms the joint of multiple verification components 

(VC) implemented in different frameworks and syncs through the UVM-ML backplane. The 

environment can connect any amount of frameworks as long as every one of them has its own 

adapter properly connected to the UVM-ML backplane [5] as seen in Figure 2-1. 

 

 

Adapter

Framework 3

Adapter

Framework 4

Adapter

Framework N

Adapter

Framework 1

Adapter

Framework 2

UVM-ML Backplane
 

Figure 2-1: UVM-ML High level architecture 

2.1.1 Adapters 

Every framework adapter in the design must be registered in the backplane only once with 

a specific name. Then, a unique identifier is assigned to each adapter in order to enable 

communication with the backplane. The UVM-ML release contains the proper adapters needed 

for the development of this tool: SC and SV. 
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 The UVM-SV adapter is instantiated inside the uvm-ml package, for integrating it to 

the code the lines in Table 2-1 must be added: 

 

 
Table 2-1: UVM-SV adapter import 

 

 The UVM-SC adapter is built on top of the UVM-SC included in the release, for 

integrating it to the code the lines in Table 2-2 must be added to system C code: 

 

 

 
Table 2-2: UVM-ML include statements in C++ 

  

2.2. Python extension to C++ 

Python programming language allows to add extension modules in order to be able to do 

things that usually cannot be achieved with python standalone. There is a Python application 

programmers interface (API) able to connect C or C++ code to Python, it can implement new built-

in object types, call C library functions and do system calls[6]. 

 

This API, creates the connection between Python and C++, where then it is hooked to the 

UVM-ML backplane through the SC adapter. It consists of a set of functions, macros and variables 

accessing to Python run-time system and is incorporated in a C source file when including the 

header “Python.h”. 

 

 

import uvm_pkg::*;        // import the UVM-SV library package 

 

`include "uvm_macros.svh" // macros which are part of the UVM-SV library 

 

import uvm_ml::*;         // import the UVM-SV ML adapter (must come after the 

above) 

#include "uvm_ml.h" 

using namespace uvm_ml; 
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Python C++API

 
Figure 2-2: Python C++ extension 

 

The Python interpreter must be compiled and linked with the Python system, this can be 

done dynamically or the C++ module can be set permanently part of the Python interpreter by 

adjusting its settings and rebuilding the Makefile. 

 

This interface works for both, C++ function calls in Python and Python function calls in 

C++, this is mainly used for the libraries that support callback functions in such a way that a Python 

function could require calling a C++ callback function or the other way around. An example of 

how a Python function can be called in C++ can be seen in Appendix A. Python function call in 

C++. 

 

Python interpreter is enhanced with third party tools such as ctypes [7] on the Python side 

and  Boost [8] on the C++ side. 

2.2.1 Ctypes 

The foreign function library for Python called ctypes enables compatibility with C data 

types, making possible the data interaction between C programming language and Python. The 

functions defined in C can be executed from Python, nevertheless the arguments must be accurate 

as only data types none, integers, bytes object and strings can be used as parameters in C function 

calls from Python, while the remaining data types should be casted using ctypes functionality. The 

complete list of data types in both languages is shown in Table 2-3: C and Python datatypes 

mapping with ctypes. 
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Ctypes type C type Python type 

c_bool _Bool bool (1) 

c_char  char 1-character bytes 

object 

c_wchar  wchar_t 1-character string 

c_byte  char int 

c_ubyte  unsigned char int 

c_short short int 

c_ushort unsigned short int 

c_int  int int 

c_uint  unsigned int int 

c_long long int 

c_ulong unsigned long int 

c_longlong __int64 or long long int 

c_ulonglong unsigned __int64 or unsigned longlong int 

c_size_t size_t int 

c_ssize_t  ssize_t or Py_ssize_t int 

c_float  float float 

c_double  double float 

c_longdouble  long double float 

c_char_p  char * (NUL terminated) bytes object or None 

c_wchar_p  wchar_t * (NUL terminated) string or None 

c_void_p void * int or None 
Table 2-3: C and Python datatypes mapping with ctypes 

 

2.2.2 Boost Python 

On the other hand, Boost Python is a C++ library developed at Lawrence Berkeley National 

Laboratories, commonly used in the tests logic and implemented at the C++ interpreter to 

understand the packets formed at the python driver.  

 

It exposes C++ classes, functions and objects to Python, and vice-versa through the C++ 

compiler. It supports: 

 

 References and Pointers 

file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_bool
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_char
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_wchar
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_byte
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_ubyte
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_short
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_ushort
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_int
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_uint
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_long
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_ulong
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_longlong
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_ulonglong
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_size_t
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_ssize_t
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_float
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_double
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_longdouble
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_char_p
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_wchar_p
file:///C:/Users/czuleta/Zotero/storage/KC62ZBGJ/ctypes.html%23ctypes.c_void_p
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 Globally Registered Type Coercions 

 Automatic Cross-Module Type Conversions 

 Efficient Function Overloading 

 C++ to Python Exception Translation 

 Default Arguments 

 Keyword Arguments 

 Manipulating Python objects in C++ 

 Exporting C++ Iterators as Python Iterators 

 Documentation Strings 

 

The library functionality can be observed in Appendix B. Boost Python Hello World.
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3. Architecture 

3.1. Overview 

The main benefits of implementing the Python Embedding Framework in a VCS (simulation 

tool) environment are: 

 Enable new content categories. Software that will stress the DUT written in a 

language other than System Verilog can now run on the pre-silicon model. 

Resulting in a shift-left of the software activities, increasing confidence in the 

design as the software tools meant to run in a real platform can run on the pre-

silicon design. As most of the post-silicon content is written in Python, the 

interpreter has been first created to embed Python over other interpreted 

languages. 

 

 Faster iteration of the content of the script. Referring as a script to a test or 

a checker, a new iteration of it does not require any recompilation nor re-

elaboration of the VCS model, it only demands the desired coding changes and 

rerunning the simulation. This saves a big amount of time per each iteration 

since the elaboration is not performed. 

 

 Lower cost of entry for writing validation content. There is a high(er) cost 

of entry when someone new to the team needs to write checkers or other content 

for the validation tasks.  A post-Si person coming to help out the pre-Si 

validation effort would normally need to come up to speed on System Verilog, 

OVM/UVM, the validation environment, etc.  When implementing an 

interpreter, this person can now have a choice as to what language the new 

validation content is written in. 

 

 Cross validate full system simulator model with real RTL. Usually in the 

silicon development process, software for a specific IP is created from the 
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features and specifications defined by the architects and run in a full system 

simulator model such as a Simics[9] emulation model. With an interpreter tool, 

the real RTL can be cross validated with this model which results in having 

more reliable software. 

 

 Failure case portability. When having equivalent models in different 

platforms and running the same test scenarios, the failures can be reproduced in 

any model, representing a big first step in debugging purposes. 

 

This framework is able to inject stimulus to a DUT from a Python script, it is formed by: 

 Python script/testcase 

 Python Driver 

 C++ interpreter 

 UVM-ML SystemC Adapter 

 UVM-ML SystemVerilog Adapter 

 SystemVerilog Driver 

 Traditional UVM environment 

 

UVM-ML Backplane

Python Test 

Scenario
Python Driver

C++

Interpreter

Ctypes

Boost

Python - C++ Interpreter

UVM-ML 

SystemC adapter

Transaction

UVM-ML 

SystemVerilog 

adapter

SystemVerilog

Driver

Transaction 

Response

Testbench

Helper

UVM

Sequences

Data

Completion

Design Under 

Test
        

Pre-Silicon Validation Environment

Master Slave

Python Embedding Tool Framework 

 

Figure 3-1: Python Embedding Tool Framework Block Diagram 
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Once all the VCs are completely built and synchronized in the environment, the commands 

are initiated from the Python script, for example, a function call in a Python script that performs a 

control status register (CSR) read operation. First the Python interpreter agent forwards it to the 

UVM-ML SC adapter, then the UMV-ML backplane serializes the transaction and packs it into a 

byte stream.  Afterwards, the SV framework adapter receives the byte stream, de-serializes it into 

matched transaction, the helper agent processes it, recognizes a CSR read command and generates 

the proper sequence in the pre-silicon validation environment. Upon the completion of the CSR 

read operation, the helper agent sends the response back to the Python script via the UMV-ML 

adapters and backplane. 

3.2. Python – C++ Interpreter 

3.2.1 Description 

For this purpose, an interpreter is a validation component that connects to a VCS simulation 

via the Multilanguage capability provided by UVM. This tool can embed one or more interpreted 

language (Python for now) and allow scripts to run in a VCS simulation[10]. 

 

3.2.2 Architecture 

The generic interpreter is primarily written in C++, using UVM-SystemC as the connection 

to the ML backplane, while the backplane itself connects to the System Verilog testbench and the 

specific language interpreters are embedded by using standard embedding tools as observed in 

Figure 3-2. 
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UVM-ML Backplane

Python Driver

C++

Interpreter

Python - C++ Interpreter

UVM-ML 

SystemC adapter

 
Figure 3-2: Python Interpreter High Level Architecture 

 

As mentioned in section 2.2, the boost Python wrapper and ctypes functionality are used to 

create a bridge between the two main blocks of the interpreter, the driver which is written in Python 

and its C++ complement. 

 

This tool has been developed with Python 3.x, so the Python interpreter and all its 

collaterals must be 3.x compliant. 

 

3.2.3 Python Driver 

Similar to SW drivers that provide SW applications functions to interact with HW devices, 

the Python driver in the interpreter side provides functions to the test for it to be able to interact 

with a pre-silicon validation environment. For a successful development, the driver must have two 

ends and work similar to a Master-Slave interface, where the Master is the Python Driver and has 

the control of the execution and the Slave is the C++ interpreter. 

 

 The logic and self-checking engines usually appear completely in Python, and the driver is 

the responsible of sending the control messages that eventually are going to be transformed into 
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stimulus at the testbench. The driver functions are defined accordingly the needs of the project, 

but the typical functions for an application specific integrated circuit (ASIC) design are: 

 

 open(): Initializes the simulation environment and checks it’s status to make sure it is 

ready to interact with tests and obtain resources such as memory allocations. 

 

 close(): releases the resources obtained by calling open(). 

 

 csr_write(): CSR write operation with specified parameters sent as KVPs (address, 

data, etc). If the design is a PCIe device, this could be either CfgWrite or MMIO write. 

 

 csr_read(): CSR read operation with specified parameters sent as KVPs (address, 

number of bytes, etc.). If the design is a PCIe device, this could be either CfgRead or 

MMIO read. 

 

 mem_write(): host memory write operation. In a pre-silicon validation environment, 

this is usually a write to the system memory model. Certain address translation might 

also be performed if needed. 

 

 mem_read(): host memory read operation. In a pre-silicon validation environment, 

this is usually a read from the system memory model. Certain address translation might 

also be performed if needed. 

 

 sfence(): write fencing operation. For a PCIe design, this can be implemented as a 

zero-length MMIO read operation. 

 

 delay():  time delay operation. 
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3.3. Interpreter and Helper Communication  

The bidirectional communication between an interpreter and a helper is achieved by fixed 

control messages with defined fields as in Table 3-2: Key Value Pairs (KVP) attributes for csr_read 

command, where the fields of name and rspReq are mandatory, the id is assigned automatically by 

the tool and any extra information can be sent through a key value pair. At the helper side, the 

messages are processed by the System Verilog driver and turned into sequences items returning 

completions status and any resulting data to the interpreter side, this can be observed in Figure 3-3. 

 

The key/value pairs contained in the control messages are configurable depending on the 

needs of each function, in such a way that the interpreter only needs to understand these specific 

messages and not all the instructions delivered by the script. That is why a complement for the 

interpreter is needed at the System Verilog, which comprehends the model-specific commands, 

this component is called “helper”. 

 

Interpreted 

language 

script

Verification 

environment

Control Messages

Key Value Pairs

Framework

Interpreter Helper
Control Messages

Key Value Pairs

 
Figure 3-3: Interpreter and Helper Communication 

 

3.3.1 Transaction 

The transaction class is used as a container for the control messages sent between C++ and 

System Verilog, it is populated with 3 fixed variables and as many KVPs needed according to the 

function, these variables that are shown at the Table 3-1: Transaction class variables. 
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 Field Type Description 

id int Transaction ID, used to track transaction, maintained by driver 

name string Transaction name such as “csr_read, mem_write”, etc 

rspReq bool Indicates whether a response is required 

kvp map<string, 

string> 

Command specific attributes in <key, value> pairs 

Table 3-1: Transaction class variables 

 

The generic KVP allows any attributes of a command to be defined. For example, command 

“csr_read” definition is shown at Table 3-2: KVP attributes for csr_read command. The attributes 

of the remaining functions (Section 3.2.3) is not shown in this document, as their key value pairs 

might reveal some Intel Corporation confidential information. 

 

Field Type Description 

id Auto  

name “csr_read”  

rspReq true Requires response 

kvp[“addr”] <string value> CSR address in hex format 

kvp[“byte_count”] <string value> Number of bytes to read 

kvp[“result”] <string value> Data returned from read 

operation 
Table 3-2: KVP attributes for csr_read command 

   

The responses coming from the helper into the interpreter side are, also, generic KVP control 

messages with the fields shown in Table 3-3: Response KVP fields. 

 

Field Type Description 

kvp[“Result”] <string value> Success or null 

kvp[“Info”] <string value> Extra information for debug purposes 
Table 3-3: Response KVP fields 

The C++ interpreter principal classes’ definitions can be observed in Appendix C. Python 

driver engine C++ class definitions. 
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3.4. Helper Agent 

The helper agent residing in the SV framework is like a typical UVM/OVM agent that contains 

a driver and a monitor. The monitor observes the SV adapter’s TLM ports and forwards the 

transactions to the driver, at this point the received transactions are processed generating specific 

test sequences per command that are then transformed into stimulus by the pre-silicon validation 

environment. For the commands that require responses, the helper agent receives the results from 

the validation environment and sends back to the SC framework, where the interpreter agent 

completes a pending command. 

 

The Python scripts can be executed once the transaction class is implemented in the 

interpreter and both drivers are added into the framework infrastructure. However, minor 

modification are necessary if the tests contain timing control such as calling time.sleep() function, 

running it in Python standalone the execution is paused during the timeframe desired, which does 

not match to the simulation timing source run by the master framework. These two separate timing 

sources cause undeterministic behavior of the simulation. As a solution, every time.sleep() 

function call must be replaced with the driver function delay(), which runs on the same timing 

source as the rest of the UVM-ML environment. 

 

As an example, the implemented Python code in an application specific driver of the 

csr_write and csr_read is shown in Appendix D. Python driver code. A counterpart in SV with 

fixed response values was developed in order to test the functionality, this can be seen in Appendix 

E. SV development command processing. This last reference is the code used to validate the driver 

functionality and does not call any project specific sequence, it returns hardcoded values as a result.
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4. Testbench Integration 

The tool is integrated into the UVM compliant testbench by creating a new helper instance 

and added in the UVM database. The processCmd task must be called as it will handle all the 

commands that the script sends to the testbench. A good example of the implementation of the 

Multilanguage embedding tool in an UVM environment is presented in the code below, where the 

important items are highlighted. 

… 

  set_type_override_by_type(stl_intrp_embed_ctrl_helper::get_type(), 

my_ctrl_helper::get_type()); 

  … 

  class my_ctrl_helper extends stl_intrp_embed_ctrl_helper; 

    `uvm_component_utils(my_ctrl_helper) 

     

    // Standard UVM_Component functions 

    function new(string name, uvm_component parent = null); 

      super.new(name, parent);  

    endfunction : new 

      

    function void build(); 

      super.build(); 

    endfunction : build 

      

    function void connect(); 

      super.connect(); 

    endfunction : connect 

    ///////////// 

    // Main task - just pull stuff off the fifo and analyze the coverage sent 

    task processCmd(stl_intrp_embed_ctrl_item ctrlIn, output bit processed); 

      stl_intrp_embed_ctrl_send_one_seq   ctrl_send_seq; 

      string idx; 

 

      // see if base class handles this command, and if not we need to handle it 

      processed = 0; 

      super.processCmd(ctrlIn, processed); 

 

      if (processed) begin 

        `uvm_info(get_type_name(), "base class Processed Cmd from IntrpEmbed", UVM_FULL) 

        return; 

      end 

 

      `uvm_info(get_type_name(), "Processing Cmd from IntrpEmbed - SandBox", UVM_FULL) 

 

      if (ctrlIn.name == "CSR_READ") begin 

        `uvm_info(get_type_name(), {"Got a CSR_READ command : ", ctrlIn.sprint}, UVM_NONE) 

        /////////////// 

        // Send the response – create a single-item sequence and set the results. 

        ctrl_send_seq = stl_intrp_embed_ctrl_send_one_seq::type_id::create("cmd_response", 

this); 

  

// it is critical you set the following 2 fields in this way. 

// Copy the ID and call it “command_response. 

        ctrl_send_seq.ctrl.id             = ctrlIn.id; 

        ctrl_send_seq.ctrl.name           = "command_response"; 

  

// this is what the script should read as a result 

        ctrl_send_seq.ctrl.kvp["result"]  = "98765"; 
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Table 4-1: Interpreter tool UVM testbench 

 

 

// in this simple example, we copy all KVP items.  This is not needed, but you must set 

 // kvp[STL_INTRP_EMBED_ENGINE_NAME] equal to the value from the command 

if (ctrlIn.kvp.first(idx) ) 

          do begin 

            ctrl_send_seq.ctrl.kvp[idx] = ctrlIn.kvp[idx]; 

          end 

 

          while (ctrlIn.kvp.next(idx));    

        `ovm_info(get_type_name(), {"sending response : ", ctrl_send_seq.ctrl.sprint}, 

OVM_NONE) 

  

 // send the result 

        ctrl_send_seq.start(sqr_h); 

        

        // mark this as processed 

        processed  = 1; 

      end else begin 

        // no - we didn't process! 

        processed  = 0; 

 

        `ovm_info(get_type_name(), {"unknown command: ", ctrlIn.sprint}, OVM_NONE) 

      end 

    endtask : processCmd 

  endclass: my_ctrl_helper 
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5. API 

The interpreter tool has been designed to provide a set of primitives to make easier the debug 

and the sync with the testbench. These primitives are accessible from both, script and UVM sides 

in such a way that the information messages and errors will be triggered for both or in whichever 

side is needed. Depending on the project needs, new primitives can be defined, but for now the 

predefined ones are: 

 

 

 Writing to log file. Equivalent to the UVM macro called `uvm_info the primitive 

LOGDebug()  has been implemented and is used to display any information needed in 

the script and simulation logs during the execution. 

 

 Reporting errors. The statements that use the LOGError() primitive will be reported as 

an error in the script execution and will be shown as a UVM_ERROR at the simulation 

log. 

 

 Reporting warnings. The statements that use the LOGWarn() primitive will be reported 

as a warning in the script execution and will be shown as a UVM_WARNING at the 

simulation log. 

 

 Gating/Ungating quiescence. In order to keep control of the execution, the 

set_quiesced() primitive can be set true to pause the simulation. This helps to have a 

deterministic system. 

 

 Subscription to a monitor. The IE_Subscribe() primitive allows to subscribe to any 

monitor associated with a tracker. 

 

 Sending arbitrary commands. The IE_Sendcmd() primitive allows to send any 

command to the helper instance that resides in the testbench. 
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5.1. C++/Python classes 

By using the boost library in Python, the C++ classes get exposed to Python, allowing the 

execution of two fundamental classes: command and testbench interface. 

5.1.1 Command Class – stl_intrp_embed_ctrl_py 

The command class is a simple Key-Value Pair container that supports any command that the 

testbench helper will implement in the validation environment, the Table 5-1: Command class 

methods and properties shows its methods and properties. 

 

 

Property/Method Type Description 

constructor(string name) method 
Constructor to set the 

command name (see below) 

name string property 

Sets the command name that 

will be used. “” by default, so 

it is needed to assign a value. 

rspReq Boolean property 

Whether a response is 

required to this command.  

This indicates to the control 

helper that it must send an 

appropriate response back to 

the Python script. False by 

default. 

id unsigned int property 

A unique ID assigned to this 

command.  When instantiating 

this command, the ID is 

automatically assigned. 
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string getKVP(string key) method 
Gets the value associated with 

the given key. 

setKVP(string key, string 

value) 
method 

Sets the value for the given 

key. 

string toString() method 
Turns the command into a 

string for debug printout. 

newID() method 

Assign a new ID to this 

command.  When reusing a 

command instance, it needs to 

be assigned a newID before 

sending the command. 

Table 5-1: Command class methods and properties 

5.1.1.1 Example Usage  

The following python code in Table 5-2 shows how a csr read command is created and filled 

with the proper fields. 

5.1.2  Testbench Interface – stl_intrp_embed_engine_python_py 

This class represents the interface to the whole remaining simulation testbench. An instance 

of this is placed in the C++ as static python code in such a way that it is always available and it is 

not needed to be placed in every test case. The instance is done by placing the following line of 

code, while its methods and properties are described in Table 5-3: Testbench Interface class 

properties and methods. 

# instantiate a cmd, name is “csr_read” 

csrReadCmd  = stl_intrp_embed_ctrl_py("csr_read") 

# this command requires a response 

csrReadCmd.rspReq = True 

# set the KVP fields associated with a CSR read 

csrReadCmd.setKVP("csr", "my_csr") 

csrReadCmd.setKVP("field", "my_field") 

csrReadCmd.setKVP("misc", "%d" %(1234)) 

Table 5-2:Python csr_read command 
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stl_ie = stl_intrp_embed_engine_python_py() 

 

 

Property / Method Type Description 

release() method 

After doing initialization of the script and 

subscribing to any monitors, etc. This 

method must be called to enable the C++ side 

of things to progress. If it is not called, the 

simulation will be blocked from progressing.  

It is a way of synchronizing the Python script 

and the C++ side of things in a minimal way. 

LOGInfo(string text) method 

Prints out the text to the script’s log file 

(created by the C++ side of things). 

The text will be prepending by %I{Info} 

LOGDebug(string text) method 

Prints out the text to the script’s log file 

(created by the C++ side of things). 

The text will be prepending by %D{Debug}. 

This will be printed out only if debug is 

enabled in the STL IE. 

LOGWarn(string text) method 

Prints out the text to the script’s log file 

(created by the C++ side of things). 

The text will be prepending by %W{Warn} 

and will be sent to the UVM side of things as 

an uvm_warning. 

reportError(string text) method 

Prints out the text to the script’s log file 

(created by the C++ side of things). 

The text will be prepending by %E{Error} 

and will be sent to the UVM side of things as 

an uvm_error. 

sendCmd(stl_intrp_embed_ctrl_py 

cmd) 
method 

Sends a command to the testbench. 
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stl_intrp_embed_ctrl_py 

getCmdResp(unsigned int id, bool 

wait) 

method 

Gets the result from the interpreter core for 

the command ID given.  If the command has 

not received a result from the testbench, it 

will return with a KVP “result” equal to 

“NULL” and “info” equal to why. 

If wait is true, it will wait for the successful 

result.  A successful result will have “result” 

equal to “SUCCESS” and the other KVPs set 

to the result from the testbench. 

stl_intrp_embed_ctrl_py recvCmd() method 

Polls the C++ side of the interpreter to see if 

the testbench has sent a command to the 

script. The KVP “Empty” will be true if there 

is no command and false if there is. The 

name and other KVP items will be set if 

Empty is not true. 

boolean hasRecvCmd() method 

Returns true if there is a command from the 

testbench waiting to be received by the 

script. 

stl_intrp_embed_ctrl_py 

recvFeedback() 
method 

Polls the C++ side of the interpreter to see if 

the testbench has sent a feedback to a 

monitor that was subscribed to.  The KVP 

“Empty” will be true if there is no feedback 

and false if there is. If there is feedback, then 

the KVP items will be set.  

quiesced 
Boolean 

property 

Set this to True when the script determines 

that it is quiesced and False when it is not.  It 

can be set and reset any time that the script 

determines this. 

Table 5-3: Testbench Interface class properties and methods 
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5.1.2.1 Example Usage 

The following Python code in Table 5-4 shows the usage of the methods provided by the 

testbench interface class: 

5.2. Standard Commands 

Standard commands can be implemented by the tool, for now only the subscribe_to_monitor 

method is in place in the current tool release, its description can be seen in Table 5-5. 

 

Command Description 

SUBSCRIBE_TO_MONITOR 

Causes the testbench to subscribe to a monitor known by 

STL_SIMPLE_MON_SOURCE_GROUP   and 

STL_SIMPLE_MON_SOURCE_INST, which are merged to 

create the “monitor_name” in the KVP.  See example below.  

Those fields will be set in the returned values. 

Only monitors that are stl_simple_kvp_monitors work here 

since the connection to those monitors happens by default 

with the base helper class.   
Table 5-5: Standard commands descriptions 

 

import time 

 

# start off by saying we're not quiesced 

stl_ie.quiesced = False 

########### 

# release the c++ side of things 

stl_ie.release() 

 

count = 0 

while (count < 10): 

    if (count % 3 == 0): 

        stl_ie.LOGInfo("count is %d \n" %(count)) 

    elif (count % 3 == 1): 

        stl_ie.LOGDebug("count is %d \n" %(count)) 

    elif (count % 3 == 2): 

        stl_ie.LOGWarn("count is %d \n" %(count)) 

    count = count + 1 

 

stl_ie.LOGInfo("waiting 10 sec\n") 

time.sleep(10) 

stl_ie.LOGInfo("Done waiting\n") 

# finish by indicating we are quiesced 

stl_ie.quiesced = True 

Table 5-4: Python base test 
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5.2.1 Example Usage 

The following Python code in Table 5-6 implements a Monitor Subscription: 

 

The output of above code is seen in Table 5-7: 

 

 

import time 

# start off by saying we're not quiesced 

stl_ie.quiesced = False 

stl_ie.LOGInfo("Doing Monitor Subscribe...\n") 

 

# instantiate a cmd 

subMonCmd  = stl_intrp_embed_ctrl_py("subscribe_to_monitor") 

stl_ie.LOGInfo("Doing Monitor Subscription (ID :%d)\n" %(subMonCmd.id)) 

subMonCmd.setKVP("monitor_name", "sdt_sb_packet__bfm") 

 

# send the command to the cpp side 

stl_ie.sendCmd(subMonCmd) 

########### 

# release the c++ side of things 

stl_ie.release() 

 

# get the result 

for i in range (0, 50): 

    monFeedback = stl_ie.recvFeedback() 

    stl_ie.LOGInfo("Waiting on Monitor Feedback #%d\n" %(i)) 

    while (monFeedback.getKVP("Empty") == "1"): 

        stl_ie.LOGInfo("Got Monitor Feedback - Empty\n%s\n" %(monFeedback.toString())) 

        time.sleep(1) 

        monFeedback = stl_ie.recvFeedback() 

    stl_ie.LOGInfo("Got Monitor Feedback\n%s\n" %(monFeedback.toString())) 

 

stl_ie.LOGInfo("waiting 5 sec\n") 

time.sleep(5) 

stl_ie.LOGInfo("Done waiting\n") 

 

# finish by indicating we are quiescedstl_ie.quiesced = True 

%I{INFO }{Time        295}{my_monitor_subscribe}:: PY: Got Monitor Feedback 

Name:  MONITOR_FEEDBACK 

Id:    18446744073709551516 

rspReq:0 

kvp[DESTLID] = 0xab041e 

kvp[DIRECTION] = Tx 

kvp[EMPTY] = 0 

kvp[OPCODE] = SDT_SB_OP_RSP_E2E_ONLY_ACK 

kvp[PACKETTYPE] = SDT_SB_TYPE_RSP 

kvp[SOURCELID] = 0xd269f4 

kvp[STL_INTRP_EMBED_ENGINE_NAME] = my_monitor_subscribe 

kvp[STL_SIMPLE_MON_SOURCE_GROUP] = sdt_sb_packet 

kvp[STL_SIMPLE_MON_SOURCE_INST] = bfm 

kvp[TIME] =            59000 

Table 5-6: Python Monitor Subscription 

Table 5-7: Monitor Suscription Output 
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6. Environment setup 

A basic driver test has been placed inside the Python Embedding Framework repository, this 

driver test works as a hello world and is able to demonstrate the robustness of the project, also 

helps debugging any issue on the functions implementation before merging it into any VIP 

environment. 

 

Before cloning the embedded  repository it is essential to have in place a working environment 

that includes the synopsis VCS simulation tool and Python 3 or greater.  

 

The following section presents a step by step guide to run the python driver test with the 

UVM-ML capability in the VCS simulator. 

6.1. Step by step execution guide 

As there is a fixed infrastructure, the process of setup has been simplified into 3 main scripts 

that run in a linux shell, the first step is to generate the TDIF files from an XMLand compile them 

to enable the SV and C++ code for Multilanguage capability. This can be obtained by running the 

command in Table 6-1. 

 

The expected output in the terminal is what can be seen  in Table 6-2: 

 

>> source scripts/make_tdif.cmd 

-I-: Generated code from XML 

-I-: Source XML: /nfs/sc/disks/mst_pe_czuleta/stl_intrp_embed-

srvr10nm/stl_intrp_embed_common_pkg/tdif/ctrl.xml 

-I-: Reading: /nfs/sc/disks/mst_pe_czuleta/stl_intrp_embed-

srvr10nm/stl_intrp_embed_common_pkg/tdif/ctrl.xml    

-I-: Processing TDIF: Source: manual Version: 1                                                                 

-I-: PARSING: class: stl_intrp_embed_ml_ctrl                                                                    

-I-: Generating SV Code 

-I-: Generating SC Code 

-I-: Generating e Code 

-I-: Done Generating Code 

-I-: Done. 

STL IE Regression PASSED!! 

Test PASS 

Table 6-1: Multilanguage compilation command line 

Table 6-2: Multilanguage compilation expected output 
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This script should be executed only once, as the Multilanguage plane code is already robust 

and is meant to be static. The next step is to run the script responsible of compiling the whole C++ 

infrastructure, every time a modification is made to the interpreter C++ code, the linux command 

line in Table 6-3 should be executed: 

 

The expected output in the terminal is shown in Table 6-4: 

 

Finally, the UVM testbench should be compiled after any modification made to the C++ or 

SV code, also this script executes as sanity, the base test for the interpreter tool with the command 

in Table 6-5. 

 

The expected output in the terminal is seen in Table 6-6: 

>> source scripts/make_sc.cmd 

scons: done building targets. 

Compile PASSED for /nfs/…/sandbox/sv/full_ie 

Simulation PASSED for /nfs/…/sandbox/sv/full_ie 

 

STL IE Regression PASSED!! 

>> source scripts/make_sandbox_full_ie.cmd 

Table 6-3: C++ compilation command line 

Table 6-4: C++ compilation expected output 

Table 6-5: UVM testbench compilation command line 

Table 6-6: UVM testbench compilation expected output 
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7. Results 

7.1. Base Test 

As stated before, the base test runs by sourcing the full_ie makefile after compiling the SV 

code, the base test at the UVM side called “stl_intrp_embed_test_base” is executed, it is 

responsible of parsing the script name and the parameters needed for the VCS simulation, the 

command formed by the Makefile for running the base test is:  

On the other hand, the Python base test perform the primitives shown in Table 7-3: Testbench 

Interface class properties and methods, proving that the Python logic can be translated into UVM 

sequences, functions or tasks. The Python base test does not need to be included in every test 

scenario, hence, some lines should be legacy code for every Python simulation. The complete 

Python base test code is shown below, where the legacy code is highlighted. 

 

>> /nfs/…/sandbox/sv/full_ie/results_stl_intrp_embed_pkg_sles11/simv 

+UVM_NUM_ERROR=1 +UVM_VERBOSITY=UVM_FULL +ntb_random_seed=1 +SC_ENVNAME=my_sc_env 

+UVM_TESTNAME=stl_intrp_embed_test_base +stl_ie_debug=on +stl_ie_log=on 

+stl_ie_tracker=on +stl_ie_min_quiesce_length=1001 

+stl_ie_stop_count_threshold=6001 +stl_tracker_all=on +verbose=0 

+stl_ie_script0=sandbox/sv/full_ie/myBaseTest.py +stl_ie_script_type0=python 

+stl_ie_script_name0=my_python +stl_ie_script_param0="-bob='hello world'" 

# start off by saying we're not quiesced 

ie_setQuiesced(False) 

# release the c++ side of things 

ie_release() 

# Get the arguments 

import sys 

ie_LOGInfo("argv = %s\n"%(str(sys.argv))) 

print(sys.argv) 

# loop with some different print outs 

count = 0 

while (count < 10): 

    if (count % 3 == 0): 

        ie_LOGInfo("remainder 0, count is %d \n" %(count)) 

    elif (count % 3 == 1): 

        ie_LOGDebug("remainder 1, count is %d \n" %(count)) 

    elif (count % 3 == 2): 

        ie_LOGWarn("remainder 2, count is %d \n" %(count)) 

    count = count + 1 

driver_sleep(.00000001) 

ie_LOGInfo("Done waiting\n") 

# finish by indicating we are quiesced 

ie_setQuiesced(True) 

Table 7-1: Base test simulation command 

Table 7-2: Python base test code 
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For every simulation performed, it is expected to have two separate log files, one is for the 

script execution and the remaining one is for the VCS simulation, which also is set to include the 

information displayed in the first log. The python run log of the base test prints the following 

statements. 

 

 

The VCS simulation log is where every script, as well as, logic design or verification 

component messages are merged, in the specific case of the Python base test, the interpreter is the 

only component in the environment, so it is expected to see the same messages that in the 

interpreter but with a timestamp and UVM format, as seen below. 

%I{INFO }{Time 2}{my_python}:: spawning thread using script 

sandbox/sv/full_ie/myBaseTest.py... 

%I{INFO }{Time 2}{my_python}:: Waiting for CV... 

%I{INFO }{Time 2}{my_python}:: Initializing Python 

%I{INFO }{Time 2}{my_python}:: Adding arguments to argc/argv for Python 

py_argv[0] = 0x10f69e0 (From /nfs/.../sandbox/sv/full_ie/myBaseTest.py) 

py_argv[3] = 0x104abb0 (From -bob=hello world) 

 

%I{INFO }{Time 2}{my_python}:: calling extract 

%I{INFO }{Time 2}{my_python}:: extracted Python gbl_stl_ie object 

%I{INFO }{Time 2}{my_python}:: executing file "sandbox/sv/full_ie/myBaseTest.py" 

from path "/nfs/.../" 

%I{INFO }{Time 2}{my_python}:: PY: LOG DEBUG. Loading VCS Driver 

%I{INFO }{Time 2}{my_python}:: Released CV 

%I{INFO }{Time 2}{my_python}:: Done waiting for CV... 

%I{INFO }{Time 2}{my_python}:: PY: argv = 

['/nfs/.../sandbox/sv/full_ie/myBaseTest.py', '-bob=hello world'] 

%I{INFO }{Time 2}{my_python}:: PY: remainder 0, count is 0  

%D{DEBUG}{Time 2}{my_python}{T#     1}:: PY: remainder 1, count is 1  

%W{WARN }{Time 2}{my_python}:: PY: remainder 2, count is 2  

%I{INFO }{Time 2}{my_python}:: PY: remainder 0, count is 3  

%D{DEBUG}{Time 2}{my_python}{T#     1}:: PY: remainder 1, count is 4  

%W{WARN }{Time 2}{my_python}:: PY: remainder 2, count is 5  

%I{INFO }{Time 2}{my_python}:: PY: remainder 0, count is 6  

%D{DEBUG}{Time 2}{my_python}{T#     1}:: PY: remainder 1, count is 7  

%W{WARN }{Time 2}{my_python}:: PY: remainder 2, count is 8  

%I{INFO }{Time 2}{my_python}:: PY: remainder 0, count is 9  

%I{INFO }{Time 2}{my_python}:: PY: waiting 10 ticks 

%I{INFO }{Time 2}{my_python}:: PY: DELAY n = 1 ticks 

%I{INFO }{Time 3}{my_python}:: PY: Done waiting 

%I{INFO }{Time 3}{my_python}:: python exec_file success! 

Table 7-3: Base test Python simulation log 
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UVM_INFO  @ 0: reporter [UVM-ML]: Found framework command line arg 

UVM_TESTNAME=stl_intrp_embed_test_base 

SC_ENVNAME=my_sc_env 

 

UVM_INFO /.../tb_comp_pkg.svh(290)@0: [my_ctrl_subscriber] New component created 

UVM_INFO /.../tb_comp_pkg.svh(422)@0: [IE Sandbox Test] Checking for STL IE SB 

Plusargs 

 

UVM_INFO /.../tb_comp_pkg.svh(56)@0: [stl_ie_sb_env] build called 

 

SC intrp_embed_env::end_of_elaboration 

SC intrp_embed_env::start_of_simulation 

 

UVM_INFO /.../tb_comp_pkg.svh(454)@0:[TEST] SV run phase 

 

UVM_INFO /.../tb_comp_pkg.svh(498)@0:[stl_intrp_embed_test_base] Tick           0 

 

UVM_INFO /.../stl_intrp_embed_ctrl_mon.sv(56)@2000: [ie_ctrl_mon] STL INTRP EMBED 

is quiesced 

UVM_INFO /.../stl_intrp_embed_ctrl_mon.sv(60)@3000: [ie_ctrl_mon] STL INTRP EMBED 

is not quiesced 

 

UVM_INFO /.../stl_intrp_embed_ctrl_mon.sv(47)@4000: [STL INTRP EMBED] {my_python}:: 

PY: remainder 0, count is 0  

 

UVM_INFO /.../stl_intrp_embed_ctrl_mon.sv(47)@4000: [DEBUG] {my_python}:: PY: 

remainder 1, count is 1  

 

UVM_WARNING /.../stl_intrp_embed_ctrl_mon.sv(49)@4000: [STL INTRP EMBED] 

{my_python}:: PY: remainder 2, count is 2  

 

 

--- UVM Report Summary --- 

 

Quit count :           0 of           1 

** Report counts by severity 

UVM_INFO :  251 

UVM_WARNING :   10 

UVM_ERROR :    0 

UVM_FATAL :    0 

Table 7-4: Base test VCS simulation log 
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7.2. Driver Test 

The driver test implements in a sandbox area all the functions that have been defined in the 

Python driver (Section 3.2.3), the source code is shown next. 

 

 

  

import time 

import imp 

import os 

import subprocess 

import sys 

 

ie_setQuiesced(False) 

ie_release() 

 

open_hdl() 

 

wr_csr(0x0,0x4e31) 

wr_config_csr(0,0x4e31) 

rd_csr(0x1e01010) 

rd_config_csr(0x0) 

driver_sleep(.000001) 

sfence() 

wr_csr(0x8,0x4e31) 

sfence() 

wr_csr(0x402008,0x4e31) 

sfence() 

rd_csr(0xc04008) 

wr_csr(0xc04008,0x4e31) 

sfence() 

 

wr_host_mem(8,0x1e01010,[0x4A]) 

wr_host_mem8b(0x1e01010,[0x1A2B3C4D5E6F7A8B]) 

wr_host_mem4b(0x1e01010,[0x1A2B3C4D5E6F7A8B]) 

wr_host_mem2b(0x1e01010,[0x1A2B3C4D5E6F7A8B]) 

wr_host_mem1b(0x1e01010,[0x1A2B3C4D5E6F7A8B]) 

 

ie_LOGInfo("LOG DEBUG. Read host mem return %s\n"%rd_host_mem(8,0x1e01010)) 

ie_LOGInfo("LOG DEBUG. Read host mem return %s\n"%rd_host_mem8b(0x1e01010)) 

ie_LOGInfo("LOG DEBUG. Read host mem return %s\n"%rd_host_mem4b(0x1e01010)) 

ie_LOGInfo("LOG DEBUG. Read host mem return %s\n"%rd_host_mem2b(0x1e01010)) 

delay(10) 

close_hdl() 

ie_LOGInfo("LOG DEBUG. Close return handle value:%d\n"%(fxr_hdl)) 

ie_setQuiesced(True) 

Table 7-5: Driver Test source code 
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After running the simulation the Python logfile shows initialization, the parsing of arguments, 

the loading of the proper drivers, the sends and responses for each command (Just the first 

CSR_WRITE shown here) and finally the test overall result: 

 

 

 

Table 7-6: Python Driver Test Python log 

  

%I{INFO }{Time   2}{my_driver_test}:: spawning thread using script 

sandbox/sv/driver_test/driver_test.py... 

 

%I{INFO }{Time   2}{my_driver_test}:: Waiting for CV... 

%I{INFO }{Time   2}{my_driver_test}:: Initializing Python 

%I{INFO }{Time   2}{my_driver_test}:: Adding arguments to argc/argv for Python 

argc = 1 argv =  

 

%I{INFO }{Time   2}{my_driver_test}:: PY: LOG DEBUG. Loading VCS Driver 

%I{INFO }{Time   2}{my_driver_test}:: PY: LOG DEBUG. Test import driver 

%I{INFO }{Time   2}{my_driver_test}:: Released CV 

 

%I{INFO }{Time   7}{my_driver_test}:: Calling sendCmd with cmd info: id:1 (new: 1)  

name: csr_write (new: CSR_WRITE)  

%D{DEBUG}{Time   7}{my_driver_test}{T#     6}:: inserted cmdID 1 

 

%D{DEBUG}{Time  12}{my_driver_test}{T#    11}:: in getCmdResp - cmdId = 1 got a 

response  

retVal = SystemC Class Data Dumper for Class stl_intrp_embed_ctrl 

                          name = COMMAND_RESPONSE 

                            id = 0x00000001 

                       rspReq? = false 

                  kvp[ADDR] = "0x0" 

            kvp[BYTE_COUNT] = "8" 

              kvp[CSR_NAME] = "CSR[0][0]" 

                  kvp[DATA] = "0x4e31" 

                kvp[RESULT] = "1" 

kvp[STL_INTRP_EMBED_ENGINE_NAME] = "my_driver_test" 

 

 

%I{INFO }{Time 123}{my_driver_test}:: PY: CLOSE HDL. Handler has been closed 

successfully 

 

%I{INFO }{Time 123}{my_driver_test}:: PY: LOG DEBUG. Close return handle value:-1 

%I{INFO }{Time 123}{my_driver_test}:: python exec_file success! 
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The equivalent information is shown in the VCS log file, the info, debug or even messages 

of this log are created by the testbench after being called from python, while in the previous log 

are created fully in Python: 

 

 

Table 7-7: Python Driver Test VCS log 

UVM_INFO /nfs/.../sandbox/sv/full_ie//tb_comp_pkg.svh(161) @ 10000: 

stl_intrp_embed_test_base.stl_ie_sb_env.ie_ctrl.ie_ctrl_help [my_ctrl_helper] Got a 

CSR_WRITE command :  

Name                     Type                Size                Value 

---------------------------------------------------------------------- 

stl_intrp_embed_common_+ stl_intrp_embed_ct+ -    

stl_intrp_embed_common_pkg::stl_intrp_embed_ctrl@321 

  name                   string              9               CSR_WRITE 

  id                     integral            64                    'h1 

  rspReq                 integral            1                     'h1 

  kvp                    aa(string,string)   6                       - 

    [ADDR]               string              3                     0x0 

    [BYTE_COUNT]         string              1                       8 

    [CSR_NAME]           string              17              CSR[0][0] 

    [DATA]               string              6                  0x4e31 

    [STL_INTRP_EMBED_EN+ string              14         my_driver_test 

---------------------------------------------------------------------- 

 

UVM_INFO /nfs/.../sandbox/sv/full_ie//tb_comp_pkg.svh(175) @ 10000: 

stl_intrp_embed_test_base.stl_ie_sb_env.ie_ctrl.ie_ctrl_help [my_ctrl_helper] 

sending response :  

Name                     Type                Size                Value 

---------------------------------------------------------------------- 

ctrl_send_one_seq_ctrl   stl_intrp_embed_ct+ -    ctrl_send_one_seq_ctrl@325 

  name                   string              16       command_response 

  id                     integral            64                    'h1 

  rspReq                 integral            1                     'h0 

  kvp                    aa(string,string)   7                       - 

    [ADDR]               string              3                     0x0 

    [BYTE_COUNT]         string              1                       8 

    [CSR_NAME]           string              17              CSR[0][0] 

    [DATA]               string              6                  0x4e31 

    [STL_INTRP_EMBED_EN+ string              14         my_driver_test 

    [result]             string              1                       1 

---------------------------------------------------------------------- 

… 

UVM_INFO /nfs/.../sandbox/sv/full_ie//tb_comp_pkg.svh(443) @ 40156000: 

stl_intrp_embed_test_base [Test PASS ] SV report phase 

 

--- UVM Report Summary --- 

 

Quit count :           0 of           1 

** Report counts by severity 

UVM_INFO :  371 

UVM_WARNING :    9 

UVM_ERROR :    0 

UVM_FATAL :    0 
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Currently, in this development infrastructure, there is not a DUT instance in place, thus there 

are not interfaces where the stimulus can be observed in waveforms. Nevertheless, it has been 

demonstrated that Python can be understood by an UVM testbench, where it is easily transformed 

into stimulus.  
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8. Conclusion 

Nowadays, in the changing ecosystem of the integrated circuits design process, the FPGA 

based emulation platforms are commonly used to enable SW/HW co-validation before the specific 

platform is available. This project demonstrates robust and reliable validation component that 

represents an alternative or a complement to FPGA platforms with a valuable advantage of 

mapping real chip usage code directives into a simulation model, by integrating it successfully, 

this tool is able to reproduce any post-silicon issue in simulation model, or even find it earlier in 

the project development while decreasing its cost, increasing its quality and simplifying the debug 

process. 

 

The Multilanguage Interpreter Embedding tool is part of a process of continuous improvement 

inside Intel Corporation, its development represents a major effort to deliver high quality products 

to market as the idea was conceived after detecting a gap within the SOC development process 

between the design verification and the post-silicon validation process.  

 

This Python Interpreter Embedding tool for shift-left validation has been successfully 

implemented within an IP at Intel Corporation, leading to the first time a SW test runs in a pre-

silicon model and supporting the advantages this thesis establishes. 

 

At this point, it has been demonstrated that interpreted language scripts can be executed in a 

pre-silicon simulation model fulfilling its objectives of cross validating software with hardware 

and accelerating the validation process.  

 

Future work involves the integration to a specific IP model, create its own driver and obtain 

a benchmark out of its behavior. Also, adding the support of other scripting languages such as Perl 

or Ruby should be considered for the continuity of this project. 
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Appendix A. Python function call in C 

static PyObject *my_callback = NULL; 

 

static PyObject * 

my_set_callback(PyObject *dummy, PyObject *args) 

{ 

    PyObject *result = NULL; 

    PyObject *temp; 

 

    if (PyArg_ParseTuple(args, "O:set_callback", &temp)) { 

        if (!PyCallable_Check(temp)) { 

            PyErr_SetString(PyExc_TypeError, "parameter must be callable"); 

            return NULL; 

        } 

        Py_XINCREF(temp);         /* Add a reference to new callback */ 

        Py_XDECREF(my_callback);  /* Dispose of previous callback */ 

        my_callback = temp;       /* Remember new callback */ 

        /* Boilerplate to return "None" */ 

        Py_INCREF(Py_None); 

        result = Py_None; 

    } 

    return result; 

}
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Appendix B. Boost Python Hello World 

C++ function definition: 

 
char const* greet() 

{ 

   return "hello, world"; 

} 

 

 

Python call: 

 
#include <boost/python.hpp> 

 

BOOST_PYTHON_MODULE(hello_ext) 

{ 

    using namespace boost::python; 

    def("greet", greet); 

} 

 
 

 

Python run: 

 
>>  import hello_ext 

>>> print hello_ext.greet() 

hello, world 
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Appendix C. Python driver engine C++ class 

definitions 

BOOST_PYTHON_MODULE(em_stl_intrp_embed_ctrl_py) { 

  python::class_<stl_intrp_embed_ctrl_py> ("stl_intrp_embed_ctrl_py", 

init<std::string>()) 

    .def("getKVP",              &stl_intrp_embed_ctrl_py::getKVP) 

    .def("setKVP",              &stl_intrp_embed_ctrl_py::setKVP) 

    .def("toString",            &stl_intrp_embed_ctrl_py::toString) 

    .def("newID",               &stl_intrp_embed_ctrl_py::newID) 

    .add_property("name",       &stl_intrp_embed_ctrl_py::getName,        

&stl_intrp_embed_ctrl_py::setName) 

    .add_property("rspReq",     &stl_intrp_embed_ctrl_py::getRspReq,      

&stl_intrp_embed_ctrl_py::setRspReq) 

    .add_property("id",         &stl_intrp_embed_ctrl_py::getID,          

&stl_intrp_embed_ctrl_py::setID); 

} 

 

void stl_intrp_embed_ctrl_py::setKVP(string key, string val) { 

  string localKey = key; 

  strToUpper(localKey); 

  kvp[localKey] = val; 

} 

 

string stl_intrp_embed_ctrl_py::toString() const { 

  stringstream ss; 

 

  ss << "Name:  " << name << endl; 

  ss << "Id:    " << id << endl; 

  ss << "rspReq:" << rspReq << endl; 

  for (auto itr = kvp.begin(); itr != kvp.end(); ++itr) { 

    ss << "kvp[" << itr->first << "] = " << itr->second << endl; 

  } 

 

  return ss.str(); 

} 

 

string stl_intrp_embed_ctrl_py::getKVP(string key) { 

  string localKey = key; 

  strToUpper(localKey); 

 

  auto itr = kvp.find(localKey); 

  if (itr != kvp.end()) { 

    return itr->second; 

  } else { 

    return string(""); 

  } 

} 

 

 

// Pack the Base class wrapper into a module 

BOOST_PYTHON_MODULE(em_stl_intrp_embed_engine_python_py) { 

  python::class_<stl_intrp_embed_engine_python_py> 

("stl_intrp_embed_engine_python_py") 

    .def("LOGInfo",             &stl_intrp_embed_engine_python_py::LOGInfo) 

    .def("LOGWarn",             &stl_intrp_embed_engine_python_py::LOGWarn) 

    .def("reportError",         &stl_intrp_embed_engine_python_py::reportError) 

    .def("LOGDebug",            &stl_intrp_embed_engine_python_py::LOGDebug) 
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    .def("sendCmd",             &stl_intrp_embed_engine_python_py::sendCmd) 

    .def("getCmdResp",          &stl_intrp_embed_engine_python_py::getCmdResp) 

    .def("recvCmd",             &stl_intrp_embed_engine_python_py::recvCmd) 

    .def("hasRecvCmd",          &stl_intrp_embed_engine_python_py::hasRecvCmd) 

    .def("recvFeedback",        &stl_intrp_embed_engine_python_py::recvFeedback) 

    .def("hasRecvFeedback",     &stl_intrp_embed_engine_python_py::hasRecvFeedback) 

    .def("release",             &stl_intrp_embed_engine_python_py::release) 

 .def("delay",               &stl_intrp_embed_engine_python_py::delay) 

    .add_property("quiesced",   &stl_intrp_embed_engine_python_py::getQuiesced,   

&stl_intrp_embed_engine_python_py::setQuiesced); 

} 

 

void stl_intrp_embed_engine_python_py::LOGInfo(std::string str) { 

  if (myCppP) { 

    stringstream ss; 

    ss << "PY: " << str; 

    myCppP->LOGInfo(ss.str()); 

  } 

} 

void stl_intrp_embed_engine_python_py::LOGWarn(std::string str) { 

  if (myCppP) { 

    stringstream ss; 

    ss << "PY: " << str; 

    myCppP->LOGWarn(ss.str()); 

  } 

} 

void stl_intrp_embed_engine_python_py::LOGDebug(std::string str) { 

  if (myCppP) { 

    stringstream ss; 

    ss << "PY: " << str; 

    myCppP->LOGDebug(ss.str()); 

  } 

} 

void stl_intrp_embed_engine_python_py::reportError(std::string str) { 

  if (myCppP) { 

    stringstream ss; 

    ss << "PY: " << str; 

    myCppP->reportError(ss.str()); 

  } 

}
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Appendix D. Python driver code 

csr_write: 

 

 

 

csr_read: 

 

 

      # instantiate a cmd 
    csrWriteCmd  = stl_intrp_embed_ctrl_py("csr_write") 

    csrWriteCmd.rspReq = True 

    csrWriteCmd.setKVP("addr", hex(waddr)) 

    csrWriteCmd.setKVP("data", hex(wdat)) 

    csrWriteCmd.setKVP("byte_count", str(bc)) 

    csrWriteCmd.setKVP("csr_name", csr_name)    #str(csr._name)) 

    if ( idx != -1 ): 

        csrWriteCmd.setKVP("inst", str(int(idx))) 

    csrWriteCmd.setKVP("func", func_str) 

 

    # send the command to the cpp side 

    ie_sendCmd(csrWriteCmd) 

    # get the result 

    csrWriteResp = ie_getCmdResp(csrWriteCmd.id, True) 

      # instantiate a cmd 
    csrReadCmd  = stl_intrp_embed_ctrl_py("csr_read") 

    csrReadCmd.rspReq = True 

    csrReadCmd.setKVP("addr", hex(raddr)) 

    csrReadCmd.setKVP("byte_count", str(bc)) 

    csrReadCmd.setKVP("csr_name", str(csr_name)) 

 

    if idx != None and idx != -1: 

        csrReadCmd.setKVP("inst", str(int(idx))) 

     

    csrReadCmd.setKVP("func", func_str) 

 

    # send the command to the cpp side 

    ie_sendCmd(csrReadCmd) 

 

    # get the result 

    csrReadResp = ie_getCmdResp(csrReadCmd.id, True) 
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Appendix E. SV development command processing 

    // Main task - just pull stuff off the fifo and analyze the coverage sent 

    task processCmd(stl_intrp_embed_ctrl_item ctrlIn, output bit processed); 

 

      stl_intrp_embed_ctrl_send_one_seq   ctrl_send_seq; 

      string idx; 

 

      // see if base class handles this command 

      processed = 0; 

      super.processCmd(ctrlIn, processed); 

 

      if (processed) begin 

        `ovm_info(get_type_name(), "base class Processed Cmd from IntrpEmbed", 

OVM_FULL) 

 

        return; 

      end 

 

      `ovm_info(get_type_name(), "Processing Cmd from IntrpEmbed - SandBox", OVM_FULL) 

 

      if (ctrlIn.name == "CSR_READ") begin 

       

        `ovm_info(get_type_name(), {"Got a CSR_READ command : ", ctrlIn.sprint}, 

OVM_NONE) 

 

        /////////////// 

        // Send the response 

        ctrl_send_seq                     = 

stl_intrp_embed_ctrl_send_one_seq::type_id::create("cmd_response", this); 

        ctrl_send_seq.ctrl.id             = ctrlIn.id; 

        ctrl_send_seq.ctrl.name           = "command_response"; 

        ctrl_send_seq.ctrl.kvp["result"]  = "0xF2F342A100003500"; 

     

        if (ctrlIn.kvp.first(idx) ) 

          do begin 

            ctrl_send_seq.ctrl.kvp[idx] = ctrlIn.kvp[idx]; 

          end 

 

          while (ctrlIn.kvp.next(idx)); 

         

        `ovm_info(get_type_name(), {"sending response : ", ctrl_send_seq.ctrl.sprint}, 

OVM_NONE) 

  

        ctrl_send_seq.start(sqr_h); 

        

        // mark this as processed 

        processed  = 1; 

      end else if (ctrlIn.name == "CSR_WRITE") begin 

            `ovm_info(get_type_name(), {"Got a CSR_WRITE command : ", ctrlIn.sprint}, 

OVM_NONE) 

            /////////////// 

            // Send the response 

            ctrl_send_seq                     = 

stl_intrp_embed_ctrl_send_one_seq::type_id::create("cmd_response", this); 

            ctrl_send_seq.ctrl.id             = ctrlIn.id; 

            ctrl_send_seq.ctrl.name           = "command_response"; 

            ctrl_send_seq.ctrl.kvp["result"]  = "1"; 
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            if (ctrlIn.kvp.first(idx) ) 

               do begin 

                  ctrl_send_seq.ctrl.kvp[idx] = ctrlIn.kvp[idx]; 

               end 

            while (ctrlIn.kvp.next(idx)); 

 

            `ovm_info(get_type_name(), {"sending response : ", 

ctrl_send_seq.ctrl.sprint}, OVM_NONE) 

 

            ctrl_send_seq.start(sqr_h); 

 

            // mark this as processed 

            processed  = 1;
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