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Abstract
We have studied the local supersymmetry in two D = 4 supergravity models, with

N = 1 and N = 2, given the Lagrangians [1]. We have used a simple method based on
the differential of the action H, which provides an alternative systematic derivation of
the gauge field variations in the first order formalism. This method may be used to find
non-relativistic limits of supergravity models.

1 Introduction
There are two main groups of particles in nature, which are known as fermions and bosons.
The first type has a half-integer spin whereas it is integer for the other. The spin-statistics
connection tells us that they have a different statistical behaviour. Generally, the elementary
particle physics decompose matter into quarks and leptons (fermions) and describe the basic
forces between them in terms of exchange particles (bosons). An exception would be the Higgs
boson, which is not associated to any interaction.

Now, we are going to introduce supersymmetry [2]. By definition, this concept is based on
the idea of a symmetry that relates fermions and bosons. A supersymmetric theoretical model
is one which exhibits this symmetry. Such a model will cause the disappearance of the distinc-
tion between matter and interaction. Supersymmetry implies the existence of a new kind of
particles called ‘superpartners’, which are associated with their equivalent known particles, and
they have the same mass but differ by 1/2 in spin. This means that the superpartners of the
bosons are fermions (bosinos) and those of the fermions are bosons (sfermions). When there
is supersymmetry, fermions and bosons may be organized in multiplets with same mass and
different spin (‘supermultiplets’), and in this way we could eliminate the distinction between
matter and interaction that we mentioned before. However, superpartners have not been found
yet, so that supersymmetric theories are at present only theoretical models. The fact that
there is not experimental evidence of supersymmetry tells us that such models must have spon-
taneously broken supersymmetry, which implies that the ground state is not invariant under
supersymmetric transformations and its energy cannot be zero.

Working in a relativistic field theory frame, the supersymmetric transformations are gener-
ated by quantum fermionic operators Q that interchange fermionic with bosonic states, so they
change the state spin by 1/2. These operators have to obey certain anti-commutation rela-
tions. Adding anti-commutation relations we can generalise Lie algebras in what is called ‘Lie
superalgebras’ or ‘Z2-graded Lie algebras’. Lie superalgebras are associated to Lie supergroups
whose elements provide this kind of symmetry. Then, they have the property of combining
spacetime and internal symmetries, which gives these theories a special interest to study them.

In spite of the lack of experimental results, there are some powerful theoretical reasons to
study these theories. A first reason is the cancellation of some divergences in field theories when
supersymmetry is considered. It caused some interest in the hierarchy problem of the Grand
Unified Theories (GUTs), the thirteen magnitude order between the GUT mass of 1015 GeV/c2

and the W boson mass. Normally, a gap of this magnitude is not stable in perturbation theory
and it only can be maintained by fine-tuning repetition until high orders in the perturbation
expansion. Considering supersymmetry, we can avoid the mixture in mass and the fine-tuning
associated, and when the hierarchy is established, it is stabilized. But, as we said before, the
symmetry must be broken, so that it should not happen at a high energy scale if we still want
to solve the hierarchy problem.
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The other main reason is the following. Supersymmetry started to be studied with the aim
of unifying the four basic interactions: gravity, electromagnetic, weak and strong. In these
sense, it was of crucial importance the Coleman-Mandula (C-M) Theorem [3]. It states that
the most general symmetry algebra of the S matrix must be decomposed in a direct sum of
two subalgebras, contained in it, which enclosed the spacetime and internal symmetries: P⊕G,
respectively. As a result of this, it looked impossible to join gravity (based on spacetime symme-
tries) with the other interactions (based on internal symmetries). However, Haag, Lopuszanski
and Sohnius [4] made an extension of the C-M result, considering supersymmetry operations.
They introduced the Q operators mentioned before and classified all the relevant superalgebras
compatible with the C-M Theorem. Doing it, they realized that these theories solved the initial
problem and could relate spacetime with internal symmetries, so that supersymmetric theories
were the main candidates to unify the fundamental natural forces. Later, in the paper [5] it was
argued that susy was able to make the running coupling constants for the weak, electromagnetic
and strong interactions converge at high energies, something that is not possible to achieve in
the Standard Model of particles and interactions.

So far, we have dealt with supersymmetric theories generally. But, as gauge theories, they
can be considered globally or locally. Global supersymmetry is only called supersymmetry and
it does not depend on the spacetime point. In the gauge theories of strong and electro-weak
interactions, the spin of the fields cannot be greater than 1, what limits the number of su-
persymmetries to 4. From the Yang-Mills theories, the case with the maximum number of
super-Yang-Mills supersymmtries has 4. Local supersymmetry depends on the spacetime point
and these models are known as supergravity models. Supergravity always includes gravity: it
contains the graviton, the theoretical 1 boson that describes gravity, whose spin is s = 2 and its
fermionic superpartner, the gravitino, whose spin is s = 3/2. In these models, the spin is limited
to a value of 2, so that the maximum number of supersymmetries is 8. The D = 4 supergravity
with 8 supersymmetries is a dimensional reduction of the model in 11 dimensions. Gravity is
a non-renormalizable theory, so the infinities that always arise in field theory cannot be con-
sistently absorbed. Therefore, the only chance of making sense of a quantum theory of gravity
in the perturbation theory framework is that the theory turned out to be finite. Although
gravity is one-loop finite, it is divergent already at two loops [6]. The fact that infinities may
cancel, when there is supersymmetry, makes supergravity less divergent, but it is still divergent
at three loops when D = 4 [7]. This has been interpreted as being the result of ignoring high
energy degrees of freedom present in a finite theory of gravity. A candidate for such a theory
is superstring theory. When string theory began to be formulated, supersymmetry played an
important role: introducing this symmetry in string theory gave place to superstring theories.
There were five consistent superstring theories, which it seemed to be a problem, but through
the discovery of three dualities that relate them, they were enclosed in one theory: M theory,
the main candidate theory in the unification problem. Obviously, all these theories are still
models without experimental improvement, and we have to do a huge amount of work to find
their final formulations. D = 11 supergravity is the low-energy limit model of M theory. The
superstring theories also have as a low-energy limit a supergravity model each one, but in this
case in 10 dimensions.

Although supergravity is now 40 years old, recently there has been some interest in the
construction of supergravity actions based on spacetime algebras different from the Poincaré
one. For instance, the AdS/CFT correspondence that relates superstring theory in the bulk
with a conformal field theory on the AdS boundary, has led to the study of Galilean grav-
ity/supergravity models [8]. For that, a way to build locally supersymmetric actions is needed.

1‘Theoretical’ means that it has not been discovered yet.
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There is not a satisfactory tensor calculation in supergravity. Then, we are going to briefly
introduce the main different formalisms to formulate supergravity, explaining and comparing
their foundations:

• Noether formalism [9]: It is a formalism which consists in adding pieces successively
starting from an action for gravity, perhaps including the gravitino kinetic term. An
advantage is that it sometimes lets check the symmetries of the actions easily and it leads
directly to the physical action. The main shortcomings are that it is not geometric, it
makes difficult to build the actions with local supersymmetry.

• Superfields formalism [10]: It is a geometric formalism which lets build actions through
the superfields of the generic form ψ(xµ, θα), where xµ are the spacetime coordinates,
and θα are extra anticommuting coordinates labelled by the fermionic index α. Due to
the anticommuting character of the θα one has a finite expansion φ(xµ, θα) = φ0(xµ) +
φ1
α(xµ)θα+φ2

αβ(xµ)θαθβ+. . . where the coefficients φkα1...αk
(xµ) are called component fields.

In general there are too many component fields in a superfield, and the non-physical ones
have to be removed. This is done by imposing constraints. The problem is that there
is not a general method to establish these constraints, and also in high dimensions the
constraints themselves imply the superspace field equations.

• Geometric formalism [11]: It is often called Rheonomic. It is a geometric formalism
supported in differential forms (the gauge one-forms of an algebra, among others), and it
is expressed in components. This formalism, and the next one rely in the process called
‘gauging of a Lie algebra’ which, given a Lie algebra of commutation relations [Xi, Xj] =
Ck

ijXk, uses the gauge one-forms Ai and two-form curvatures F i = dAi + 1
2C

i
jkA

j ∧ Ak
as building blocks for constructing the action [12]. The resulting actions are always in the
first order formulation of gravity (in terms of the spin connection ωab, see Section 3). This
formalism also is supported in the superspace and may be used to check the invariance
of the actions but it does not let build them easily.

• In this work we present a slightly different geometric formalism [13], which is similar to
the previous one but does not use the superspace. This formalism is expressed in terms
of differential forms, as the previous one, and it is expressed in components too. The
main difference from the other formalisms is that it focuses on the exterior differential of
the action. We will see that this formalism is suitable to check the local supersymmetry
for first-order supergravity actions, and we will consider two cases: D = 4, N = 1 and
D = 4, N = 2. Also, when the algebra is an expansion [14] of the Poincaré superalgebra
that leads to a Galilei-type superalgebra, by performing the expansion of the Poincaré
supergravity, in this formalism it is almost immediate to see whether the expanded action
is locally supersymmetric.

The present work is organized as follows. In Section 2 we describe the general setting of
the model. Section 3 is devoted to the simpler N = 1 case. The N = 2 case, which contains
many features of the higher dimensional supergravities, is described in Section 4. Section 5
contains our conclusions. After this, we include a proof of the Lemma 1 as an appendix. We
also attach a document with two annexes, which include all the calculations done during this
work: the calculations of N = 1 and N = 2 cases. These annexes are not needed for the proper
understanding of this work, they are included for the interested reader.
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2 General theoretical aspects
The purpose of this work consists in studying the local supersymmetry in supergravity. We
have chosen a model in 4 dimensions, D = 4, and have considered two cases: N = 1 and N = 2,
where N is the number of supersymmetries. At first, we are going to write some foundations
in order to explain our development.

We start writing the Lagrangian, BN (N = 1, 2) 2, which describes the model chosen,
in terms of differential forms, the gauge fields and their associated curvatures, as Julia and
Silva did in their paper [1]. Given B, in order to write an action, we have to realize the gauge
curvatures on the spacetime M, Ai = Aiµdx

µ, F i = F i
µνdx

µ∧dxν . Inserting this in the expression
of B, we obtain a realization of B on M given by B = Bµ1...µD

dxµ1 ∧ · · · ∧ dxµD , and the action
is given by

I[A] =
∫
M
B =

∫
M
Bµ1...µD

dxµ1∧· · ·∧dxµD = D!
∫
M
B0...D−1dx

0∧· · ·∧dxD−1 = D!
∫
M
Bµ1...µD

dDx .

(1)
Our procedure is based on calculating the differential of the Lagrangian, defined by HN =

dBN . Once we have done it, we can easily derive from HN the motion equations by calculating
an interior derivation of the expression with respect to the curvatures. The next step is writing
the equation obtained from the derivation with respect to the gravitino field, denoted by ψ.
We must express the last relation in terms of the field equations, obtained before. The final
step consists in studying the symmetries from the last result. The original gauge symmetry
transformations which are derived from the algebra of the model, are not symmetries of the
action for D > 3, so the actual variations that lead to a symmetry are in general modified gauge
transformations.

In order to study the symmetries of the action of our model we may use the following lemma
(see the appendix for a proof):

Lemma 1. Let Ai, F i = dAi + 1
2C

i
jkA

j ∧Ak be the gauge one-forms and curvature two-forms
for a Lie algebra G, i, j, k = 1 . . . dimG, and let GI denote a set of zero-forms. Assume that
the D-form B is an element of the exterior algebra generated by Ai, F i, GI , dGI so that in
particular

∫
MD B defines an action as described above. We define the interior derivations (resp.

antiderivations) IF i, (resp. IAi, IdGI ) by giving the only non-zero cases,

IF iF j = δji , IAiAj = δji , IdGIdGJ = δJI . (2)

Then,

1. The field equations corresponding to the action are given by

IF iH = 0 , IdGIH = 0 . (3)

2. The gauge variation of the action is given by

δgauge

∫
MD

B =
∫
MD

αi IAiH . (4)
2When we write BN (equivalently HN ), we want to remark that we are focusing in our two cases. Whereas,

if we write B (equivalently H), we are writing expressions for general Lagrangians (or their differentials).
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3. If for a certain value of i there exist on M one-forms Xj
i and zero-forms Y J

i on MD

such that
IAiH = Xj

i ∧ IF jH + Y J
iIdGJH (5)

where H = dB, then the action is invariant under the variations

δAk = δki dα
i − Ck

ijα
iAj −Xk

iα
i no sum in i

δGJ = −Y J
iα
i no sum in i . (6)

In particular, if IAiH = 0, then the action is invariant under the gauge transformation
with parameter αi.

As a particular case, if there are no 0-forms, i.e., GI = 0, and the action is exclusively
expressed in terms of curvatures, it is a Chern-Simons action. This is the case of gravity [15]
and supergravity [16] in three dimensions.

In the next two sections we are going to particularize what we have just described, for the
mentioned cases: N = 1 and N = 2, D = 4 supergravities. Before doing it, we establish our
conventions: we take the metric signature ηab = {−,+,+,+} and the Levi-Civita tensor ε0123 =
1. The matrices γa are the Dirac matrices which satisfy the Clifford algebra {γa, γb} = 2ηab
and γ5 := γ0γ1γ2γ3, with (γ5)2 = I (I is the identity matrix). The constant 4κ2 = 16πG where
G is the Newton constant.

3 N = 1 case
The 4-form Lagrangian of D = 4, N = 1 supergravity, in the first order formulation reads:

B1 = − 1
8κ2 εabcdR

ab ∧ ec ∧ ed + i

2 ψ̄ ∧ γ
5γae

a ∧ ρ (7)

It depends on the 1-form vierbein ea, the associated 1-form spin-connection ωab, the spinor-
1-form the gravitino ψ and the 2-form curvatures Rab and ρ. The 1-form gauge fields and its
associated 2-form curvatures are related through the algebra equations:

Rab = dωab + ωac ∧ ωcb

T a = dea + ωab ∧ eb −
iκ2

2 ψ̄γa ∧ ψ

ρ ≡ Dψ = dψ + 1
4γabω

ab ∧ ψ

(8)

The Riemann curvature Rab is associated to ωab, the torsion T a to ea and ρ to ψ. We
also have that γab are antisymmetrized gamma matrices with two indices, γab ≡ γ[aγb] =
1
2(γaγb − γbγa). If we set the curvatures in (8) equal to zero, we obtain the Maurer-Cartan
equations, i.e. the dual version, of the superPoincaré algebra.

Now, we derive the expression of H1 = dB1, where d is the exterior derivative. Note that we
do not realize the abstract for B1 on spacetime yet, otherwise this differential would be equal
to zero. In order to compute the exterior differential, we may use that B1 is a Lorentz scalar
form, so the differential coincides with the Lorentz covariant differential, so we just have to
compute the covariant exterior differential of B1. So, H1 = DB1. The result reads:

H1 = 1
4κ2 εabcdR

ab ∧ ec ∧ T d + i

2 ρ̄ ∧ γ
5γae

a ∧ ρ− i

2 ψ̄ ∧ γ
5γaT

a ∧ ρ (9)
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In order to obtain this expression, we have made use of the following facts:

• DRab = 0 by the Bianchi identities.

• From the second equation of (8) we write: Dea = T a + iκ2

2 ψ̄γa ∧ ψ.

• It follows that Dρ = 1
4γabR

ab ∧ ψ.

• The quadratic terms in ψ are cancelled between them.

• The cubic term in ψ vanishes by the Fierz rearrangement ψ̄γa ∧ ψ̄γa ∧ ψ = 0.

Then, it is easy to read the motion equations associated with each 1-form from (9):

IRabH1 = 1
2κ2 εabcde

c ∧ T d = 0

IT dH1 = 1
4κ2 εabcdR

ab ∧ ec − i

2 ψ̄ ∧ γ
5γdρ = 0

Iρ̄H1 = iγ5γae
a ∧ ρ− i

2γ
5γaT

a ∧ ψ = 0

(10)

In the last one, we could equally have used ρ.

From the first equation, we can obtain an important result: torsion vanishes, T a = 0. Also,
the vanishing of the torsion allows us to solve for ωab in terms of the eaµ, its inverse and ψµ,
leaving as independent fields the eaµ corresponding to the gravity field, and ψµ, i.e., the gravitino
field. Inserting the expression for ωab in the action leads to the second order formalism. The
second equation gives us the vacuum Einstein field equations, 1

κ2 [Rsb
db−

1
2η

s
dR

uv
uv] = 0, where

Rab
cd are the Riemann curvature components. And the last one, the fermionic equation, lets

us derive the Rarita-Schwinger (R-S) equation, γνασρνα = 0, where ρνα are the components of
ρ and γνασ are the antisymmetrized products of three gamma matrices.

Finally, we have to study the symmetries of the action. To do it, we are going to compute
the interior derivation with respect to ψ in (9) in order to show that

Iψ̄H1 = − i2γ
5γaT

a ∧ ρ ∼= 0 (11)

The last symbol means that the relation vanishes when we impose it the field equations,
i.e., if we take the result T a = 0.

Now, we have to write (11) in terms of IRabH1 ≡ E(ωab). So, we have that

Iψ̄H1 = − i2γ
5γaT

a ∧ ρ = 1
2X

ab ∧ E(ωab) (12)

Where Xab is the 1-form that we have to compute in order to study the invariance under
variations, as we said in the lemma. After an easy calculation, we obtain,

Xab = −iκ2εabcdγ5γce
u ∧ ρud −

iκ2

2 εabcdγ5γueu ∧ ρcd (13)
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We already have all the ingredients to work out the field variations. According to the lemma,
they are: 

δωab = −ε̄Xab

δea = iκ2ε̄γaψ

δψ = dε+ 1
4γabω

abε,

(14)

With ε the parameter of the gauge transformations. The difference respect to the original
variations is that δωab = 0 in the gauge case. With these results we conclude our work in the
N = 1 case.

4 N = 2 case
The Lagrangian of N = 2 supergravity depends on the 1-form ea, the associated 1-form so(1, 3)
spin-connection ωab, two spinor-1-forms the gravitinos ψA (A = 1, 2 is the internal global SO(2)
R-symmetry 3 index) and one Abelian 1-form connection, the Maxwell field A. The need for
the field A is apparent if we remember that the number of bosonic degrees of freedom equals
the number of fermionic degrees of freedom in each supermultiplet due to supersymmetry. The
action also contains auxiliary zero-forms F ab needed to write, in the first order formalism, the
kinetic term for the field A. Since now we have two gravitinos, then the graviton degrees of
freedom are not enough to match the fermionic ones. We write the 4-form Lagrangian as,

B2 = − 1
8κ2 εabcdR

ab∧ec∧ed+ i

2 ψ̄A∧γ
5γae

a∧ρA−1
2F∧∗F+∗F∧dA−∗F∧a−b∧dA+ 1

2a∧b. (15)

Where

a = iκ

2 ε
A
Bψ̄A ∧ ψB, b = iκ

2 ε
A
Bψ̄Aγ

5 ∧ ψB (16)

The symbol ∗ refers to the standard Hodge-duality and εAB is the antisymmetric SO(2)-
invariant tensor, which satisfies ε1

2 = −ε2
1 = 1 and εACε

C
B = −δAB. In relation to the field

strength F , we express it and its duality in components:

F = Fab ∧ ea ∧ eb, ∗F = 1
2εabcdF

ab ∧ ec ∧ ed (17)

As we did in the previous section, we give the algebra of our model whose equations relate
the curvatures and the fields:

Rab = dωab + ωac ∧ ωcb

T a = dea + ωab ∧ eb −
iκ2

2 ψ̄Aγ
a ∧ ψA

ρA = dψA + 1
4γabω

ab ∧ ψA

F = dA− a

(18)

With F the associated curvature to A, and the ‘curvature’ of the zero-form F ab is simply
DF ab. Again, setting the curvatures equal to zero, we obtain a superalgebra that includes
internal bosonic generator as well as the Poincaré ones. This is an example of the non-trivial
algebras allowed by the Haag-Lopuszanski-Sohnius Theorem.

3A R-symmetry is a proper symmetry of supersymmetry operators.
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Proceeding as in the previous case, we calculate the differential of the action, H2 = DB2.
The process is more tedious now, and we have to do it more carefully. We use the following
facts:

• In a similar way as before: DRab = 0, Dea = T a+ iκ2

2 ψ̄Aγ
a∧ψA and DρA = 1

4γabR
ab∧ψA.

• The Fierz identity is now, γaψA ∧ (ψ̄Bγa ∧ ψB) + εABψ
B ∧ (εCDψ̄C ∧ ψD) + εABγ

5ψB ∧
(εCDψ̄Cγ5 ∧ ψD) = 0, which is more complicated.

• We take control of the terms that depend on T a and dA. To do it, we use the fact
that T a = 0, according to the motion equations which we will compute later, and we
express the terms which are proportional to dA in the next way: (dA−F − a) + (F + a),
expression which relates A and F . So, these terms that are of our interest are those that
are proportional to T a and (dA− F − a).

We have the necessary tips to work out the final expression of H2. After a long computation
(see the correspondent annex) and simplifying:

H2 = 1
4κ2 εabcdR

ab ∧ ec ∧ T d + i

2 ρ̄A ∧ γ
5γae

a ∧ ρA − i

2 ψ̄A ∧ γ
5γaT

a ∧ ρA

+ 1
4εabcdDF

ab ∧ ec ∧ ed ∧ Fuv ∧ eu ∧ ev −
1
4εabcdF

ab ∧ ec ∧ ed ∧DFuv ∧ eu ∧ ev

+ 1
2εabcdF

ab ∧ ec ∧ ed ∧ Fuv ∧ eu ∧ T v −
iκ2

4 εabcdF
ab ∧ ec ∧ ψ̄Aγd ∧ ψA ∧ Fuv ∧ eu ∧ ev

+ iκ2

4 εabcdF
ab ∧ ec ∧ ed ∧ Fuv ∧ eu ∧ ψ̄Aγv ∧ ψA − εabcdF ab ∧ ec ∧ T d ∧ (dA− a− F

2 )

+ iκ

2 εabcdF
ab ∧ ec ∧ ed ∧ εABψ̄A ∧ ρB + iκεABψ̄Aγ

5 ∧ ρB ∧ Fuv ∧ eu ∧ ev

+ 1
2εabcdDF

ab ∧ ec ∧ ed ∧ (dA− F − a)− iκ2

2 εabcdF
ab ∧ ec ∧ ψ̄Aγd ∧ ψA ∧ (dA− F − a)

+ iκεABψ̄Aγ
5 ∧ ρB ∧ (dA− F − a)

(19)
As we can see, the first three terms are the same as in the N = 1 case. The rest are new,

so that it is easy to note the difficulty raised in this case.

It is easy to read from (19) the motion equations. A simple calculation gives:

IRabH2 = 1
2κ2 εabcde

c ∧ T d = 0

IT dH2 = 1
4κ2 εabcdR

ab ∧ ec − i

2 ψ̄Aγ
5γd ∧ ρA + 1

2εabcdF
ab ∧ ec ∧ ed ∧ Fuv ∧ eu

− εabcdF ab ∧ ec ∧ (dA− a− 1
2F ) = 0

Iρ̄A
H2 =iγ5γae

a ∧ ρA − i

2γ
5γaT

a ∧ ψA − iκ(∗F + γ5F ) ∧ εABψB

− iκεABψBγ5 ∧ (dA− F − a) = 0

IDFabH2 = 1
2εabcde

c ∧ ed ∧ (dA− a− F ) = 0

IFH2 = D(∗F − b) = 0

(20)
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The first one tells us, as before, that the torsion vanishes. This is why it is important to
take account of the terms depending on T a in H2. According to the importance of (dA−F −a)
we can check the equation of F ab.

At this point, we only have to study the symmetries from the Iψ̄A
H2 equation. The expres-

sion is:

Iψ̄A
H =− i

2γ
5γaT

a ∧ ρA − iκ2

2 εabcdF
ab ∧ ecγd ∧ ψA ∧ F + iκ2

∗F ∧ Fuv ∧ euγv ∧ ψA

+ iκ(∗F + γ5F ) ∧ εABρB − iκ2εabcdF
ab ∧ ecγd ∧ ψA ∧ (dA− F − a)

+ iκεABγ
5ρB ∧ (dA− F − a) ∼= 0

(21)

It vanishes when we impose the motion equations, as we wanted to show. Indeed, first we
note that we can take T a = 0 and (dA−F − a) = 0 on-shell since they are obtained from some
field equations. The remaining terms are cancelled through the fermionic equation, as we now
show. Taking in this relation T a = 0 and (dA− F − a) = 0, it is easy to prove that

Mγ5γae
a = (∗F + γ5F ) (22)

With M a matrix which takes the value:

M = 1
2/e ∧

/F (23)

Where the slashed notation is defined as: /e = γae
a and /F = γabF

ab. Following this recipe
we can check what we said, Iψ̄A

H2 ∼= 0.

The last step consists in writing this equation in terms of IRabH2 ≡ E(ωab), IDFabH2 ≡
E(F ab) and Iρ̄A

H2 ≡ E(ψ̄A) in order to compute the field variations to study the symmetries
according to the lemma, which is our task. So that, we have to express (21) as,

Iψ̄A
H2 = 1

2X
ab,A ∧ E(ωab) + 1

2Y
ab,AE(F ab) + ZA

B ∧ E(ψ̄B) = 0 (24)

It is a vanishing relation because it directly depends on motion equations. Xab,A, Y ab,A and
ZA

B are, respectively, the 1-form, the 0-form and the 1-form matrix, which let us to work out
the gauge field transformations that we are looking for. To compute them, we have done it
term by term. It is easy to relate (21) with the fermionic equation through (22), which gives
the value of ZA

B. Xab,A is obtained from those terms which depend on T a, and those that
depend on (dA−F −a) give the value of Y ab,A. This is possible because, as we have mentioned
before, T a = 0 and (dA−F−a) = 0 are equivalent to the ωab and Fab field equations respectively.

A tedious, but simple, systematic calculation leads us to:


Xab,A = −iκ2εabcdγ5γce

u ∧ (ρAud − κ(Mψ)Aud)−
iκ2

2 εabcdγ5γueu ∧ (ρAcd − κ(Mψ)Acd)
Y ab,A = −iκεabcdεABγ5(ρBcd + κ(Mψ)Bcd)− 2iκ2F abγc ∧ ψc,A + 4iκ2F [acγb] ∧ ψAc
ZA

B = κM

(25)
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Finally, using the results of the Lemma presented in Sec. 2, we immediately obtain the
searched variations: 

δωab = −ε̄AXab,A

δea = iκ2ε̄Aγ
aψA

δψA = dεA + 1
4γabω

abεA − ZA
Bε

B

δA = iκεAB ε̄Aψ
B

δF ab = −ε̄AY ab,A

(26)

With εA (equivalently ε̄A) the local supersymmetry parameter. Again, the variations include
new terms beyond the gauge variations obtained directly from the Poincaré Lie superalgebra.

5 Conclusions
We have shown how to derive the supersymmetry transformation rules of D = 4, N = 1 and
N = 2 supergravities using a method that exploits the exterior differential of the Lagrangian
form, when it is given by an element of the exterior algebra generated by the gauge fields and
curvatures of a superalgebra (in our case, superPoincaré), plus some additional zero-forms and
their exterior differentials in the N = 2 case. We have not considered higher-dimensional su-
pergravities such as D = 11 supergravity but nearly all their features are present already in
the D = 4, N = 2 case.

Another reason for considering N = 2 is the possible application of our construction to
Galilean supergravities when the method of Lie algebra expansions is used. Starting from
Poincaré supergravity we may perform an expansion of both Iψ̄H and the field equation forms
IRabH, IDFabH, Iρ̄H to see if there is still a connection of the type (5) after the expansion.
N = 2 is necessary to have a Galilean supersymmetry as the expanded algebra (see, for in-
stance, [17]). However, it has recently been shown [18] that N = 1 superPoincaré is enough to
obtain p-brane Galilean supergravities for p = 1 (string) and p = 2 (membrane), p = 0 being
the particle case which requires N = 2. Our work provides a simple proof of the local super-
symmetry of these models. It would be interesting to apply this method to the ultrarelativistic
supergravity models associated to the Carroll algebra (see for instance [19]).

Finally, we now comment on another possible application of our results. We have seen
that given a D-form Lagrangian B constructed out of the gauge forms and curvatures of a Lie
superalgebra, only when IAaH = 0 for all Aa, the action is a Chern-Simons one. This provides
a connection between CS actions and non-CS ones that may be used to check the conjectured
connection between D = 11 supergravity and a CS theory [20].

A Appendix: Proof of Lemma 1
1. Let us compute the generic variation δI given δAa, δGI that vanishes in ∂M (or goes to

zero at infinity) so that we can discard total differentials when integrating by parts:

δ
∫
M
B =

∫
M

(
δAi ∧ IAiB + δF i ∧ IF iB + δGIIGIB + δ(dGI) ∧ IdGIB

)
=

∫
M

(
δAi ∧ IAiB + d(δAi) ∧ IF iB + Ci

jkδA
j ∧ Ak ∧ IF iB + δGIIGIB + δ(dGI) ∧ IdGIB

)
=

∫
M

{
δAi ∧

(
IAiB + Cj

ikA
k ∧ IF jB + dIF jB

)
+ δGI (IGIB − dIdGIB)

}
. (27)
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Now, we note the identities

[d, IF i ] = −IAi − Cj
ikA

k ∧ IF j (28)

and
{d, IdGI} = IGI . (29)

Then,

dIF iB = iF iH − IAiB − Cj
ikA

k ∧ IF jB

dIdGIB = −IdGIH + IGIB . (30)

Inserting this in (27) we obtain, as stated,

δ
∫
M
B =

∫
M

(
δAi ∧ IF iH + δGIIdGIH

)
. (31)

2. Let us particularize (31) to the case when δAi is the gauge variation of parameters αi,

δgaugeA
i = dαi − Ci

jkα
jAk , δgaugeG

I = 0 . (32)

Then, also omitting the boundary terms,

δgauge

∫
M
B =

∫
M
αi
(
−dIF iH − Cj

ikA
k ∧ IF jH

)
. (33)

Again, using equation (28) acting on H,

− dIF iH = −IF idH + IAiH + Cj
ikA

k ∧ IF jH , (34)

we obtain
δgauge

∫
M
B =

∫
M
αiIAiH . (35)

3. Let us now assume that

IAiH = Xj
i ∧ iF jH + Y J

iIdGJH . (36)

Then, under the modified variations

δ′Ai = δsugraA
i −X i

jα
j

δ′GI = −Y I
iα
i , (37)

we have taken into account (35) and (31),

δ′
∫
M
B = δgauge

∫
M
B +

∫
M

(
−X i

j ∧ αjIF iH − Y I
iα
iIdGIH

)
=

∫
M
αi
(
IAiH −Xj

i ∧ IF jH − Y I
iIdGIH

)
= 0 , (38)

where in the last equality we have used (36).
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